
1

CHAPTER 4

FUNDAMENTAL DATA TYPES

2

Chapter goals

• To understand integer and floating-point numbers
• To recognize the limitations of the numeric types
• To become aware of causes for overflow and round-off

errors
• To understand the proper use of constants
• To write arithmetic expressions in Java
• To use the String type to define and manipulate

character strings
• To learn how to read program input

3

Number types
int: integers, no fractional part
1, -4, 0

double: floating-point numbers
0.5, -3.11111, 4.3E24, 1E-14

Java has 8 primitive types:
• four integer types including int
• two floating point types including double
• the character type char

• the truth-value type boolean

4

Floating-point types

• Rounding errors occur when an exact conversion between
numbers is not possible
double f = 4.35;
System.out.println(100 * f);
// prints 434.99999999999994

• Illegal to assign a floating-point expression to an integer variable
double balance = 13.75;
int dollars = balance; // Error

• Casts: Used to convert a value to a different type
int dollars = (int) balance; // OK
Cast discards fractional part.

5

Floating-point types (cont.)

Math.round converts a floating-point number to nearest integer

long rounded = Math.round(balance);
// if balance is 13.75, then
// rounded is set to 14

6

Syntax 4.1: Cast

(typeName) expression

Example:
(int) (balance * 100)

Purpose:
To convert an expression to a different type.

7

Constants: final
• A final variable is a constant
• Once its value has been set, it cannot be changed
• Named constants make programs easier to read and maintain
• Convention: use all-uppercase names for constants

final double QUARTER_VALUE = 0.25;
final double DIME_VALUE = 0.1;
final double NICKEL_VALUE = 0.05;
final double PENNY_VALUE = 0.01;
payment = dollars +
quarters * QUARTER_VALUE +
dimes * DIME_VALUE +
nickels * NICKEL_VALUE +
pennies * PENNY_VALUE;

8

Constants: static final

• If constant values are needed in several methods, declare them
together with the instance fields of a class and tag them as
static and final

• Give static final constants public access to enable other
classes to use them
public class Math
{

. . .
public static final double E =
2.7182818284590452354;
public static final double PI =
3.14159265358979323846;

}

double circumference = Math.PI * diameter;

9

Syntax 4.2: Constant definition
In a method:
final typeName variableName = expression;

In a class:
accessSpecifier static final typeName variableName = expression;

Example:
final double NICKEL_VALUE = 0.05;

Purpose:
To define a constant in a method or a class.

10

The CashRegister class
public class CashRegister
{

public CashRegister()
{

purchase = 0;
payment = 0;

}

public void recordPurchase(double amount)
{

purchase = purchase + amount;
}

11

The CashRegister class (cont.)
public void enterPayment(int dollars, int quarters,
int dimes, int nickels, int pennies)
{

payment = dollars + quarters * QUARTER_VALUE +
dimes * DIME_VALUE + nickels * NICKEL_VALUE +
pennies * PENNY_VALUE;

}

public double giveChange()
{

double change = payment - purchase;
purchase = 0;
payment = 0;
return change;

}

12

The CashRegister class (cont.)
public static final double QUARTER_VALUE = 0.25;

public static final double DIME_VALUE = 0.1;

public static final double NICKEL_VALUE = 0.05;

public static final double PENNY_VALUE = 0.01;

private double purchase;

private double payment;

}

13

The CashRegisterTester class
public class CashRegisterTester
{

public static void main(String[] args)
{

CashRegister register = new CashRegister();
register.recordPurchase(0.75);
register.recordPurchase(1.50);
register.enterPayment(2, 0, 5, 0, 0);
System.out.print("Change: ");
System.out.println(register.giveChange());
System.out.println("Expected: 0.25");
register.recordPurchase(2.25);
register.recordPurchase(19.25);
register.enterPayment(23, 2, 0, 0, 0);
System.out.print("Change: ");
System.out.println(register.giveChange());
System.out.println("Expected: 2.0");

}
}

14

Arithmetic operations: Division

/ is the division operator

If both arguments are integers, the result is an integer.
The remainder is discarded
7.0/4 = 1.75

7 / 4 = 1

Get the remainder with % (pronounced "modulo")
7%4 = 3

15

Mathematical Functions

closest integer to xMath.round(x)

sine,
cosine,
tangent

Math.sin(x),
Math.cos(x),
Math.tan(x)

natural logMath.log(x)

exMath.exp(x)

power xyMath.pow(x, y)

square rootMath.sqrt(x)

16

Analyzing an Expression

17

Calling static methods

• A static method does not operate on an object
double x = 4;

double root = x.sqrt(); // Error

• Static methods are defined inside classes
• Naming convention: Classes start with an uppercase

letter; objects start with a lowercase letter
Math
System.out

18

Syntax 4.3: Static Method Call

ClassName.methodName(parameters)

Example:
Math.sqrt(4)

Purpose:
To invoke a static method (a method that doesn't
operate on an object) and supply its parameters.

19

Strings

String constants:
"Carl"

String variables:
String name = "Carl";

String length:
int n = name.length();

20

Concatenation
String fname = "Harry";

String lname = "Hacker";

String name = fname + lname;

name is "HarryHacker"

If one operand of + is a string,
the other is converted to a string:
String a = "Agent";

String name = a + 7;

name is "Agent7"

21

Converting between Strings and
Numbers

• Convert to number:
int n = Integer.parseInt(str);
double x = Double.parseDouble(str);

• Convert to string:
String str = "" + n;
str = Integer.toString(n);

22

Substrings
• String greeting = "Hello, World!";

String sub = greeting.substring(0, 5);

// sub is "Hello"

• Supply start and “past the end” position
• First position is at 0

23

Substrings (cont.)
• String greeting = "Hello, World!";
String sub =greeting.substring(7, 12);
// sub is “World“

• Substring length is “past the end” – start

24

Characters

char: character type—a single character

Character constants use single quotes:
'A', 'B', 'a'

'A' is not the same as "A"

charAt method gets character from a string
"Hello".charAt(0) is 'H'

25

Reading input

• In Java 5.0, the Scanner class was added to read
keyboard input in a convenient manner

• Scanner in = new Scanner(System.in);
System.out.print("Enter quantity:");
int quantity = in.nextInt();

• nextDouble reads a double
• nextLine reads a line (until user hits Enter)
• nextWord reads a word (until any white space)

26

The CashRegisterSimulator class
import java.util.Scanner;

public class CashRegisterSimulator
{

public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
CashRegister register = new CashRegister();
System.out.print("Enter price: ");
double price = in.nextDouble();
register.recordPurchase(price);

27

The CashRegisterSimulator class (cont.)
System.out.print("Enter dollars: ");
int dollars = in.nextInt();
System.out.print("Enter quarters: ");
int quarters = in.nextInt();
System.out.print("Enter dimes: ");
int dimes = in.nextInt();
System.out.print("Enter nickels: ");
int nickels = in.nextInt();
System.out.print("Enter pennies: ");
int pennies = in.nextInt();

28

The CashRegisterSimulator class (cont.)

register.enterPayment(dollars, quarters,
dimes, nickels, pennies);
System.out.print("Your change: ");
System.out.println(register.giveChange());

}
}

