
Safeness of Make-Based Incremental
Recompilation

Niels Jørgensen

Department of Computer Science, Roskilde University
P.O. Box 260, DK-4000 Roskilde, Denmark

nielsj@ruc.dk

Abstract. The make program is widely used in large software projects to
reduce compilation time. make skips source files that would have compiled
to the same result as in the previous build. (Or so it is hoped.) The crucial
issue of safeness of omitting a brute-force build is addressed by defining
a semantic model for make. Safeness is shown to hold if a set of criteria
are satisfied, including soundness, fairness, and completeness of makefile
rules. Conditions are established under which a makefile can safely be
modified by deleting, adding, or rewriting rules.

Keywords. Make, incremental recompilation, semantic model.

1 Introduction

The make program reads a makefile consisting of rules with the following mean-
ing: “If file G is older than one or more of the files D1, D2, etc., then execute
command C”, where D1, D2, etc., are source files that G depends on, and the
execution of C creates G by compiling the sources. This is characterized in [1]
as cascading incremental recompilation, because recompilation spreads to other
files along chains of dependency.

Safeness of make-based incremental compilation, the key result of this paper,
can be stated as follows: Suppose we build a program brute-force, and then edit
the source files, and possibly the makefile as well. Then under certain assump-
tions about the makefile rules and the kind of editing performed, the result of
make-based incremental recompilation is equivalent to the result of a (second)
brute force build. The result also applies to repeated cycles of editing and incre-
mental recompilation.

The required properties of makefile rules are intuitively reasonable, for exam-
ple, a fair rule may only create or update its own derived target. In confirming
intuition about make, the safeness result provides formal justification for the ex-
isting practice of using make. Moreover, the result establishes that one may rely
on make for incremental recompilation in situations where this is not obvious,
for example upon certain modifications of the makefile.

Comparison with related work:
Historically, make originated [4] within the Unix/C community. It is the most

useful with languages such as C that allow for splitting source files into implemen-
tation and interface (header) files, because then make’s cascading recompilation
can be instrumented as follows: Recompile a file either if the file itself changes,
or an interface file on which it depends changes – but not if there is merely a
change in the implementation of what is declared in the interface. Of course, the
scheme is still extremely simple, and many files will be recompiled redundantly,
for example, if a comment in a header file is modified.

A number of techniques exist for incremental recompilation which require
knowledge about the syntax and semantics of the programming language be-
ing compiled. Tichy [17] coined the notion of smart recompilation to describe a
scheme for recompilation based on analysis of the modifications made to a file,
to determine whether recompilation of a file that depended on the file would
be redundant, and applied the scheme to a variant of Pascal. A variant of
smart recompilation was proposed by Elsman [3] to supplement various other
techniques for compiling Standard ML programs, and incorporated into the ML
Kit with Regions compiler. Syntax directed editors [2, 5] have been developed
which perform compilation-as-you-type, and where the unit of granularity may
be language constructs such as an individual assignment.

The level of granularity in make-based incremental recompilation is the file,
and make controls the recompilation of files merely on the basis of their time
stamps. Indeed, make is useful for tasks involving file dependencies in general (see
[13] for some interesting examples) not just those that arise in the compilation
of programming languages. An analysis of make must take a similar “blackbox”
approach to files. The analysis framework comprises a small formal machinery
for reasoning about execution of commands that appear in makefile rules. The
machinery allows for proving the equivalence of certain command sequences,
comprising the same commands but in a different order and possibly duplicated.
representing brute-force vs. incremental recompilation.

The analysis framework also comprises a semantic definition for make which
is in some ways similar to the semantic definition for (constraint) logic programs
given in [8]. Makefile execution resembles logic program execution because it is
query-driven and does not assign values to global variables.

Despite the widespread use of make, there are only few scientific or other
publications on make. They include presentation or analysis of tools and meth-
ods [4, 18, 9], standardization [6], and tutorials [11, 12, 16] on make and makefile
generators such as mkmf and makedepend. In retrospect it can be seen that Stu-
art Feldman’s original paper on make [4] tacitly assumed that makefile rules
satisfy properties that guarantee safeness. Walden’s [18] analysis revealed errors
in makefile generators for C. In the terminology of this paper, he showed that
they did not generate complete rules for targets whose dependencies were de-
rived targets. The framework supplements work such as Walden’s because the
notion of rule completeness is defined formally and independently of C.

Contribution:

The main contribution is the definition of criteria that makefile rules should
meet as prerequisites for safeness of make-based recompilation, and the proof
that they are sufficient when editing of sources and makefile is constrained.

There are two ways that the rigorous formulation of criteria for makefile rules
may be useful:

First, the criteria may be of interest in a modified, tutorial form directed at
the makefile programmer. The criteria can be restated as three rules of thumb.
Writing correct makefiles by hand is difficult, and existing tools only automate
standard tasks such as the generation of rules for C files.

Second, the criteria are also of interest in the construction and verification of
make-related tools. For example, the starting point for this paper was an attempt
to verify that the Java compilation rules generated by the tool JavaDeps [14]
were appropriate, which was a practically important problem in a large software
development effort I was part of. It seemed that there were no criteria against
which the rules generated could be measured.

Using make with new languages where rule-generating tools are not mature
(or available at all) may be of interest for several reasons, even for languages hav-
ing compilers with built-in features for incremental recompilation. First, make is
useful if there are chains of dependencies due to compilation in multiple steps,
analogous to the conventional use of make for C source files created by the parser-
generator yacc. Second, in a sophisticated build system that monitors the com-
pilation process, and writes configuration information to system-specific log files,
make is useful because compilation of a file is invoked explicitly in makefile rules,
as opposed to automatically inside a compiler.

Because a number of crucial questions about make whose answer require a rig-
orous, formal approach have apparently not been addressed previously, in many
software projects there is little confidence in make. For example, the Mozilla
browser project states that it builds incrementally and brute force, “.. to make
sure our dependencies are right, and out of sheer paranoia .. ” [10]. In Mozilla, in-
cremental builds are used mainly as a regression test, to see whether the browser
compiles successfully; if compilation succeeds, the browser is built brute force
using the exact same sources.

Organization of the paper:

Sections 2-5 define notation, the subset of makefile syntax accounted for, the
notion of a brute-force build, and the command execution model.

The semantic definitions in Sections 6-7 comprise rule satisfiability and se-
mantics of make’s execution of a makefile and an initial target.

Section 8 defines the notions of derivability and build rules in terms of rule
completeness, fairness, and soundness. Section 9 contains the main result, safe-
ness of make-based incremental recompilation. Section 10 discusses the validity of
the make model, and Section 11 concludes. An appendix contains proof details.

2 Notation

X → Y is the set of functions from X to Y , X×Y is the Cartesian product of X
and Y , X∗ is the set of finite sequences of elements of X, and ℘X is the power
set of X. nil is the empty sequence. The concatenation of sequences L and L′

is written L;L′. We write X ∈ L if X occurs in the sequence L, and L ⊆ L′ if
X ∈ L implies X ∈ L′, and L′ \ L for {X | X ∈ L′ ∧X 6∈ L}.

Functions are defined in curried from, i.e., having only a single argument.
The function space X → (Y → Z) is written as X → Y → Z. For a given
function F : X → Y → Y , the symbol Σ F is used for brevity to denote the
function which has range X∗ → Y → Y and is defined as the following recursive
application of F :

Σ F nil E = E
Σ F (D;L) E = Σ F L (F D E)

3 Syntax of Makefiles

For simplicity, the definitions given in this paper of syntax and semantics of
makefiles are concerned only with a subset of the makefile language defined in
the POSIX standard [6].

The basic syntax categories are Name and Command. Command contains
a (neutral) command nil. A rule R ∈ Rule is of the form

Ts : Ds;C

and contains a nonempty list of derived targets Ts ∈ Name∗, a (possibly empty)
list of dependency targets Ds ∈ Name∗, and a command C ∈ Command. The
rule is said to derive Ts, depend on Ds, and define C. A makefile M ∈Makefile
is a finite set of rules no two of which derive the same target. An invocation of
make comprises a makefile and an initial target. targ M is the set of all targets
occurring in M .

Macro rules are omitted; this is without loss of generality because macro
rules are expanded in a preprocessing phase, leaving only target rules. Multiple
rules deriving the same target are omitted; they can be rewritten into a single,
and semantically equivalent rule. Finally, an invocation of make with multiple or
zero initial targets can be modeled by adding an extra rule to the given makefile.

Among the syntactical constructs not captured is the special separator “::”
of derived targets vs. dependency targets.

The rules shown in Figure 1 are as in Feldman’s [4] C compilation example.
In all makefile examples, command lines are indicated by tabulation, which is
by far the most common in practice. In the formal model, the semicolon is used
instead for brevity. (Both are POSIX compliant.) In all examples, rule commands
comply with the syntax of the Unix Bourne shell, and rules derive only a single
target. Additionally, in examples it is assumed that M consists of the rules listed
in Figures 1 and 2, and the domain of targets Name is assumed to contain only
names that occur as targets in M (and not names such as cc).

pgm: codegen.o parser.o library # Rpgm

cc codegen.o parser.o library -o pgm

codegen.o: codegen.c definitions # Rcodegen.o

cc -c codegen.c

parser.o: parser.c definitions # Rparser.o

cc -c parser.c

parser.c: parser.y # Rparser.c

yacc parser.y

mv y.tab.c parser.c

Fig. 1. A makefile for building a C program pgm. We refer to the rules as Rpgm, etc.

4 Commands and Files

Execution of a rule’s command changes the contents and time stamps of files.
The formal framework must capture the distinction between file contents (the
basis for defining safeness of incremental compilation) and the time-last-modified
field in a file’s directory entry (which determines whether a rule fires).

A file F ∈ File = Time× Content is a pair consisting of a time stamp and
contents. A mapping S ∈ State = Name → File associates names with files;
by abuse of notation, it is identified with its natural extension to (℘ Name) →
(℘ File). For a given rule R = (Gs : Ds;C), the set {S T | T ∈ Gs ∨ T ∈ Ds)} is
written as S R.

No ordering relation on Time is required. This is because the definition of
rule satisfiability to be given below (Section 6) is abstract in the sense that it
does not specify how time stamps determine satisfiability.

Command execution is modeled in terms of a function exec : Command →
State→ State. The value of execnil S is S. The function exec is identified with
Σ exec, so the following expressions denote the same file state:

exec (C;C ′) S = Σ exec (C;C ′) S = exec C ′ (exec C S)

Files F, F ′ ∈ File are equivalent, written F ≡ F ′, if they have the same
contents, that is, if F = 〈T,X〉 and F ′ = 〈T ′, X〉. Equivalence is lifted to states
as follows: S ≡ S′ holds if S G ≡ S′ G holds for all G ∈ Name.

When a makefile and a state is given in the context, a derived (or dependency)
file is one that a derived (or dependency) target of a rule in the makefile maps
to under the given state.

5 Brute Force Building

Safeness of make-based incremental recompilation is defined in terms of the ref-
erence notion of a brute-force build defined in this section. A brute-force build
is the full, unconditional build in which everything is compiled. It is defined in
terms of a given makefile, consistently with the common use of make to execute a

brute-force build, for example when the developer uses targets such as clobber
of Figure 2 to delete the files that were created in a previous build, and when
the advanced user compiles source code before installation.

clean: # Rclean

rm *.o parser.c

clobber: clean # Rclobber

rm pgm

Fig. 2. Rules Rclean and and Rclobber may be added to the rules of Figure 1, for cleaning
up prior to invoking a brute-force build by deleting intermediate and executable files.
Example 3 discusses under what circumstances the commands of the rules are executed.

The command order in a brute-force build is derived from what is defined
here as the induced make graph:

The make graph induced by a makefile M is a directed graph where a leaf
node is a dependency target which is not derived by a rule in M , and a nonleaf
node is the target(s) derived by a rule in M . There is an edge from node Ts to
node Ds if there is a rule in M that derives a target in Ts and depends on a
target in Ds. A make file is well-formed if the induced make graph is acyclic.
Figure 3 shows the make graph induced by the makefile of Figure 1.

In the sequel all makefiles are assumed to be well-formed. This is consistent
with, e.g., gnumake which in the presence of circularity will print a warning
message and disregard one of the dependencies.

Rule R is a parent of rule R′ if R′ derives a target that R depends on. Prede-
cessor/ancestor rules are defined accordingly. Predecessor/ancestor commands
are defined in terms of the relationship between the rules that define the com-
mands. We write M|T for the set of predecessor rules of the rule R deriving
target T (including R); if T is not derived by a rule in M , M|T is the empty set.

Definition 1. Let M be a makefile. Then command sequence Cs is a brute-force
build with respect to M of the targets Ds if

– command C is in Cs if and only if for some rule R deriving a target T ∈ Ds,
C is defined by a rule in M|T .

– no command in Cs occurs before any of its predecessor commands.
– no command occurs more than once in Cs.

Example 1. The command sequence
cc -c codegen.c;
yacc parser.y ; mv y.tab.c parser.c;
cc -c parser.c;
cc codegen.o parser.o library -o pgm

is a brute-force build of target pgm wrt. to the makefile of Figure 1. So are two
permutations of the sequence.

A brute-force build wrt. M is a command sequence which is a brute-force
build wrt. M of some target list.

Definition 2 (Safeness). File state S is safe wrt. makefile M if

exec Cs S ≡ S

holds for any brute-force build Cs wrt. M .

pgm
���

��� ?

XXXXXXXXXz

codegen.o parser.o
library

�
��	

@
@@R

�
��	

parser.c
XXXz

codegen.c definitions parser.y

XXXXz

Fig. 3. The make graph induced by the makefile of Figure 1.

Thus a file state is safe if the contents of files will remain the same if a
brute-force build is invoked. Such a state is what one wants as the outcome of
make-based incremental recompilation. In practice, the set of rules relative to
which one is interested in safeness is a subset of a given makefile, e.g., the subset
M|T consisting of the rules relevant for building target T .

6 Satisfiability

Satisfiability of rules is important in the model because a rule fires if and only
if it is unsatisfied.

The motivation for using the logical notion of satisfiability is the declarative
reading of a makefile as a statement that certain rules must be satisfied. In
addition to “rules” and “satisfiability”, the informal language commonly used
to describe make also contains the notion of “derived” targets. Both notions are
used in the model because they may help explain make execution, not because
results from logic are used to infer properties about make.

In the literature about make – including [4, 16, 12, 6, 18] – there is no definition
of make’s operational behavior which covers all the special cases. There may be
some doubt as to whether a rule fires if, say, its list of dependency targets is
empty and its derived file exists.

In order for the make-model not to be tied to a specific make-variant, the
model is parameterized in the satisfiability relation |=.

Definition 3 (Satisfiability). A satisfiability relation |= is a subset of State×
Rule such that for arbitrary states S and S′ we have:

– If S R = S′ R, then
S |= R⇔ S′ |= R

– If R is the rule (Gs : Ds;C), where Ds 6= nil, and R′ is the rule (Gs : Ds′;C ′),
where Ds ⊆ Ds′, then

S 6|= R⇒ S 6|= R′

Satisfiability is lifted to sets of rules: if M = {R,R′, . . .}, then S |= M means
S |= R, S |= R′, etc.

Thus while real make decides satisfiability by comparing time stamps, the
make model relies only on the above abstract notion of satisfiability, which can
be summarized as follows:

– Satisfiability of a rule depends only on the rule’s targets.
– Adding targets to a non-empty dependency list preserves unsatisfiability.

For example, the definition of soundness of a rule (see Section 8 below) re-
quires that executing the rule’s command renders the rule satisfied and its parent
rules unsatisfied (rather than explicitly requiring a reset of the derived file’s time
stamp).

While not used inside the model, the following interpretation of satisfiability
is assumed in the informal discussion and all examples given in the remainder
of the paper. The definition has been reversely engineered from gnumake.

Definition 4 (Interpretation of satisfiability). A rule is satisfied in a state
if
– no dependency file is strictly newer than any derived file, and
– all derived files exist, and
– all dependency files exist, and
– the dependency list is non-empty.

It may be noted that the above interpretation of satisfiability assumes that
Time is linearly ordered (so that time-stamp comparison is well-defined) and
that non-existence of files can be expressed. The abstract notion of interpretation
is independent of these notions, so we omit their formalization.

Example 2. Assume that codegen.c, definitions, parser.y, and library ex-
ist in S, and that none of codegen.o, parser.c, parser.o, and pgm exist in S
– in other words, only source files and the library exist. Then none of the rules
in Figure 1 are satisfied in S, because their derived files don’t exist.

So-called phony targets are targets that never (or practically never) exist as
files. The intention is that since the rules that derive them are always unsatisfied,
their commands will always be executed.

Example 3. See Figure 2. For all S we have S 6|= Rclean because the rule has no
dependencies. If we assume that clobber does not exist in S, then we also have
that S 6|= Rclobber. Thus running make with target clobber will always delete
all files except the source files and the external library.

7 Semantics of make

The semantic definitions model the behavior of make in terms of what sequence
of rule commands is executed when make is invoked.

Definition 5. The semantics of invoking make with makefile M and initial tar-
get T is as follows:

Perform a post order traversal of the nonleaf nodes of the induced make graph,
starting with the node containing T . A visit of node Gs entails the following
action: if Gs is derived by rule R = (Gs : Ds;C) ∈ M and S 6|= R holds, then
command C is executed.

Visiting targets in post order reflects that make always processes a rule’s
dependency targets before testing whether the rule is satisfied.

In addition to the above graph-based definition, a denotational-style defini-
tion is given below. By Definition 6 below the value of an expression M [[M]]S T
is the list of commands executed when make is invoked with makefile M in the
context of state S, and with initial target T . The denotational definition is more
explicit than the graph-based, and it brings out the similarity with logic pro-
grams, eg. the semantic definition for constraint logic programs given in [8]. It
can be seen from Definition 6 that the main mechanism is the reduction of a list
of targets, and there are no references to global variables in the makefile.

More specifically, the format of the definition is partly in the style of de-
notational semantics [15], including the convention of using [[·]] to distinguish
arguments that are syntactical objects. On the other hand, because of the finite
nature of make’s graph traversal the full machinery of a fixpoint-based definition
is not required.

In the definition of M, a triplet 〈V,Cs, S〉 ∈ Dom represents the list of nodes
visited so far (V), the commands executed (Cs), and the resulting state (S). The
function T represents the evaluation of a dependency target; note that a makefile
contains at most a single rule deriving a given target, so T is well-defined. The
function R represents rule evaluation.

Definition 6. The semantic function M is defined as follows.

Dom = Name∗ × Command∗ × State
M : Makefile→ State→ Name→ Command∗

T : Makefile→ Name→ Dom→ Dom
R : Rule→ Dom→ Dom

M [[M]] S T = let 〈V,Cs, S′〉 = Σ (T [[M]]) T 〈nil, nil, S〉 in Cs
T [[M]] T 〈V,Cs, S〉 = if T 6∈ V and T ∈ Ts and (Ts : Ds;C) ∈M

then R [[Ts : Ds;C]] 〈(V ;Ts), Cs, S〉
else 〈V,Cs, S〉

R [[Ts : Ds;C]] 〈V,Cs, S〉 = let 〈V ′, Cs′, S′〉 = Σ (T [[M]])Ds 〈V,Cs, S〉 in
if S′ |= (Ts : Ds;C) then 〈V ′, Cs′, S′〉
else 〈V ′, (Cs′;C), exec C S′〉

8 Derivability

This section defines three desirable properties of makefile rules, and compounds
them in the notion of a build rule. The properties may be summarized as follows:

Property of a build rule Expressed as rule of thumb

Completeness
The rule’s dependency list must contain all
the files that the rule’s target(s) depend on

Fairness
Executing the rule’s command may not create or

update any targets other than the rule’s own

Soundness
Executing the rule’s command

must update the rule’s target(s)

The first and core property of a rule is completeness wrt. to a given state. The
definition says that the effect on the derived files of executing the rule’s command
remains the same as long as the content of the dependency files remain the same.

complete (Gs : Ds;C) S ⇔
{
∀S′ : S′ Ds ≡ S Ds⇒
exec C S′ Gs ≡ exec C S Gs

Example 4. Rule Rpgm is complete wrt. any state S, because its command is
cc codegen.o parser.o library -o pgm

and by the semantics of linking of C object files, definitions of external references
are sought only in parser.o or library, which are both listed as dependency
targets. In contrast, rule Rcodegen.o is complete only in certain states, because its
command is

cc -c codegen.c
and by the semantics of compilation of C source files, a preprocessor searches
the file codegen.c recursively for include directives. Thus the rule, which lists
codegen.c, and definitions as dependencies, is complete only if S is such
that no other file than definitions is mentioned in an include directive in
codegen.c, and definitions (if it is mentioned) contains no directives to in-
clude other files.

Second, fairness of a rule wrt. to a state means that executing the rule’s
command never changes the content or time stamp of any file other than those
derived by the rule:

fair (Gs : Ds;C) S ⇔
{
∀S′ : S′ Ds ≡ S Ds⇒
exec C S′ (Name \Gs) = S′ (Name \Gs)

Example 5. Rules Rpgm, Rcodegen.o, Rparser.o, and Rparser.c are fair in any state.
Rules Rclean and Rclobber are designed to remove the targets of other rules, and
are unfair in any state. For example, firing Rclobber removes pgm, and even if pgm
does not exist in the given state S there is a state S′ satisfying S′clean ≡ Sclean
in which that file does exist, so that executing rm pgm makes a difference.

Third, soundness of a rule wrt. a state means that executing the rule’s com-
mand renders the rule satisfiable and any parent rule unsatisfiable:

sound (Gs : Ds;C) S ⇔

∀S
′ : S′ Ds ≡ S Ds⇒
exec C S′ |= (Gs : Ds;C)
exec C S′ 6|= R if R is a parent of (Gs : Ds;C)

Example 6. Rcodegen.o is sound wrt. S if the state meets the following two require-
ments: First, the process of compiling Rcodegen.c must succeed; then the object
file Rcodegen.o is created or updated, having a time stamp showing that it is newer
than the dependency targets Rcodegen.c and Rdefinitions, as well as newer than
the target pgm derived by the parent rule Rpgm. Second, the file definitions
must exist; otherwise Rcodegen.o is unsatisfied (before and) after executing cc -c
codegen.c.

Definition 7 (Build rule). Rule R = (Gs : Ds;C) in makefile M is a build rule
wrt. M and state S, if there is a brute-force build Cs of Ds wrt. M satisfying:
– R is complete wrt. exec Cs S
– R is fair wrt. exec Cs S
– R is sound wrt. exec Cs S

Example 7. If S is as required in Examples 4 and 6, then Rcodegen.o is sound, fair,
and complete wrt. S and M . Since none of the rule’s dependencies are derived
targets, the trivial command nil is a brute-force build of the dependency list, so
Rcodegen.o is a build rule wrt. S and M .

Example 8. To determine whether Rpgm is a build rule wrt. S and M it is neces-
sary to examine a state S′ obtained from S by executing commands for brute-
force building the three dependency targets of Rpgm. Rpgm is fair and complete
wrt. any state (see Examples 4 and 5). Thus Rpgm is a build rule wrt. S if it is
sound wrt. S′. The latter holds if S′ is such that executing the link command of
Rpgm does not fail, that is, any external reference of codegen.o must be defined
in parser.o or library, with the object files being as created in S′.

Derivability (`) expresses that all the rules in a makefile are build rules:

Definition 8 (Derivability (`)). The targets derived by rules in M are deriv-
able in S, written S `M , if M contains only build rules wrt. S and M .

For the build rule concept to be useful in practice, determination of whether
a rule is a build rule should be possible by considering only a single brute-force
build of the rule’s dependencies, and not the numerous permutations that may
exist (see Example 1). For this it suffices that permutations of brute-force builds
are equivalent in the sense established by the following lemma:

Lemma 1. Assume S ` M and let the permutations Cs and Cs′ be brute-force
builds wrt. M . Then exec Cs′ S ≡ exec Cs S.

Proof. See Appendix B.

This completes the formal framework. The key symbols are listed in the
following table.

Symbol Definition
Gs : Ds;C Rule deriving Gs, depending on Ds, and defining C.

S G The value of file name G in state S.
S G ≡ S′ G The contents of G is the same in S and S′.
S G = S′ G The contents and time stamp of G are the same in S and S′.

M|G The set of rules in M that are predecessors of the rule deriving G.
S |= M All rules in M are satisfied in context S.
S `M All rules in M are build rules in context S.

M [[M]] S T The command sequence executed by make
given makefile M , state S, and target T .

9 Safeness

This section contains the main result, Proposition 1 which states sufficient cri-
teria for safeness of make-based incremental recompilation. The criteria include
that the state against which make is invoked is partially safe wrt. the given
makefile:

Definition 9 (Partial safeness). File state S is partially safe wrt. M if

∀G ∈ targ M : S |= M|G ⇒ S is safe wrt. M|G.

Clearly, make cannot attain safeness when invoked against an arbitrary state,
even if the makefile’s rules are build rules. For example, if by a mistake a rule’s
target is “touched” (cf. the Unix touch command) upon editing of the depen-
dency files, the state would not qualify as partially safe. Indeed, the rule will not
fire, and make will not attain safeness. In general, partial safeness shall guaran-
tee that for any derived target G, if the rule deriving G does not fire, the state
prior to make execution must be already safe wrt. the portion of the makefile
containing the rule and its predecessors. Note also that a state is trivially safe
if it is safe or if all rules are unsatisfied.

Example 9. Suppose Ssafe |= M whereM contains the rules of Figures 1 and 2 as
in the previous examples. Now assume parser.y is edited, yielding state S that
satisfies all rules in M except for Rparser.c. Then S 6|= M|parser.c, S 6|= M|parser.o,
and S 6|= M|pgm, while S |= M|codegen.o. Thus for S to be partially safe wrt. M ,
we require that S is safe wrt. M|codegen.o.

Proposition 1 (Safeness of make-based incremental recompilation). As-
sume S ` M and S is partially safe wrt. M . Let Cmake = M [[M]] S T . Then
exec Cmake S is safe wrt. M|T .

Proof. See Appendix C.

The remainder of this section shows how partial safeness can be attained (so
that Proposition 1 applies) prior to an initial, brute-force make invocation as well
as prior to subsequent incremental make invocations. The difference is only in
how partial safeness is attained, while make is invoked the same way in all cases.

The initial brute-force build:
A sufficient criteria for partial safeness is that no derived files exist. Then all

rules are unsatisfied, and so by Proposition 1, if the relevant rules are build rules,
the ensuing make invocation produces a safe state. To enforce partial safeness
prior to an initial brute-force build, makefile rules such as Rclobber are sometimes
used to delete all derived files.

Additionally, the following lemma shows that the command sequence pro-
duced by make is indeed a brute-force build if make is invoked when all rules are
unsatisfied:

Lemma 2. Assume S `M and S 6|= R holds for all R ∈M . Then the command
sequence M [[M]] S T is a brute-force build of T wrt. M .

Proof. See Appendix C.

Subsequent incremental builds:
By Proposition 1 the result of the preceding make invocation is a state Ssafe

which is safe wrt. the corresponding makefile Msafe. Since a safe state is (triv-
ially) partially safe, we essentially need to constrain editing so as to preserve
partial safeness.

The following proposition gives a sufficient criteria for the new state to be
partially safe S wrt. the new makefile M . (Recall that SR ≡ SsafeR means that
the rule’s derived and dependency files have the same contents in S and Ssafe):

Proposition 2 (Editing constraints). Assume Ssafe is safe wrt. Msafe, Ssafe `
Msafe, and S `M . Then S is partially safe wrt. M if

∀R ∈M : S |= R⇒
{
S R ≡ Ssafe R
Msafe contains a rule defining the same command as R

Proof. See Appendix D.

Thus partial safeness is preserved when editing of source files and makefile is
constrained as summarized in Table 1. It follows from Proposition 2 that we may
safely apply make-based incremental recompilation upon such kind of editing.

For source files, Table 1 simply says that editing of a rule’s dependency file
is permissible if the rule becomes unsatisfied.

With regard to the more subtle question of editing a makefile rule, the ta-
ble says that one may change the dependency list of a rule without enforcing
unsatisfiability of the rule, if the rule’s command is not alterned. This applies
to removing redundant elements from the dependency list. In addition, it is
permissible to add a new rule if the rule is unsatisfied, and to delete a rule.

Note that any number of modifications to source files and makefile may be
combined, as long as each modification is permissible on its own.

Type of editing Sufficient criteria for partial safeness

S D 6≡ Ssafe D
(editing of dependency file D ∈ Ds) S 6|= R

R 6∈Msafe

(adding or modifying rule R)
S R ≡ Ssafe R and Msafe contains

a rule defining the same command as R

Table 1. A field in the left column indicates a modification which is permissible if the
corresponding criterion in the right column is met. Assumptions: R = (T : Ds;C) ∈M ,
Ssafe is safe wrt. Msafe, Ssafe `Msafe, and S `M .

Example 10. Suppose target pgm has been built, so that the state is safe wrt.
M , and that in subsequent editing a portion of file codegen.c is moved to a new
file functions.c. Accordingly M is modified by adding the rule Rfunctions.o and
changing Rpgm to R′pgm, yielding M ′ which is equal to M except for the fragments
underlined below:

functions.o: functions.c definitions # Rfunctions.o

cc -c functions.c
pgm: codegen.o parser.o library function.o # R′pgm

cc codegen.o parser.o function.o library -o pgm

Assume also that all rules are build rules (wrt. the respective states). Then by
Proposition 2 the new state is partially safe wrt. M ′, since Rcodegen.o, Rfunctions.o,
and R′pgm are unsatisfied upon the editing. It follows from Proposition 1 that
invoking make to rebuild pgm incrementally will produce a safe state. This avoids
recompilation of two out of five derived files, even though editing has changed
or created two source files, and changed or added two makefile rules.

If the criteria for preserving partial safeness are met, Proposition 1 guarantees
that the state produced by incremental recompilation state is again safe, and so
repeated cycles are feasible of editing + incremental recompilation.

10 Discussion

One may ask whether Definition 8 of build rules is too narrow. For the safeness
result to apply to real make, the notions of completeness, fairness, and soundness
should not (for safety) require build rules to fire too often, and so disqualify
makefile rules that are appropriate in practice.

The analysis in Examples 4-8 of Stuart Feldman’s example makefile provided
indication that the definition is appropriate, because the verification that the
rules are build rules made only reasonable assumptions about the contents of
the relevant files.

Also, an argument for the validity of the build rule definition is the capture
of “cascading” of rule firing from an unsatisfied rule to all its ancestors:

Lemma 3. Let S `M , let T be a derived target in M , and let R = (Gs : Ds;C) ∈
M|T . Then

C ∈M [[M]] S T
⇔ for some predecessor R′ of R, S 6|= R′ holds.

Proof. See Appendix C.

The above lemma captures “cascading” because S 6|= M|G holds if and only
if S 6|= R′ for some predecessor R′ of R. In particular, the lemma shows that no
rules fire except those reached by cascading.

In addition, the following lemma shows that the model captures the fact that
make creates a state wherein all rules visited are satisfiable (so that none of them
will fire if make is invoked immediately after).

Lemma 4. Let S `M and let T be a derived target in M . Then

exec (M [[M]] S T) S |= M|T

Proof. See Appendix C.

11 Conclusion

The main result is Proposition 1 which states sufficient criteria for make-based
incremental recompilation to produce a safe state, that is, the same result as a
brute-force build. Safeness is shown to hold subject to makefile rules being build
rules, and partial safeness of the state against which make is invoked. For the use
of make for incremental recompilation, Proposition 2 provides a constraint on the
editing of sources and makefiles as performed upon a previous make invocation
which ensures that partial safeness, as required by Proposition 1, is attained.

From a practical point of view, the analysis pursued here may be of interest
as the basis for guidelines for writing makefiles. The definition of build rules
may be translated into rules of thumb for makefile programming, as indicated in
Section 8. Examples 4-8 indicate how the definition of build rules can be checked
in the case of a makefile for a C program.

Also of practical interest are the editing constraints. The permissible modi-
fications include deletion of rules and, under the stronger assumption that rules
are rendered unsatisfiable, further changes to rules such as changing their com-
mands. Any combination of these modifications may be performed, as long as
each is permissible on its own.

Verification of makefiles is given a strong basis because of the formal ap-
proach.

Verification or construction of makefile rules must additionally use knowledge
of the semantics of, for example, the commands for C compilation. As indicated
in Example 4, completeness of a C compilation rule cannot be verified simply
by checking that all files passed as parameters to the cc command are listed

as dependencies. Because of the semantics of the cc command, verification or
construction of the dependency list also involves parsing of source files, since
include directives may establish dependency upon files not passed as parameters.

The definition of the build rule property in terms of a state attained upon
execution of the commands of a given rule’s predecessor rules (if any) pinpoints
a major reason that automated tools for generation of makefile rules may be
indispensable in practice. The reason is that a file which is passed as input to,
for example, a cc command may be created by the command of a predecessor
rule, and so is not available for inspection to check for include directives prior
to make invocation.

The make model may support the verification or construction of such rule-
generating tools, because the properties that makefile rules should comply with
are stated generically in the sense of independently of any particular program-
ming language.

Acknowledgment. Thanks to the anonymous referees for many valuable sug-
gestions. The research was supported by the Development Center for Electronic
Business and the IT-University, Copenhagen.

References

1. R. Adams, W. Tichy, and A. Weinert. The cost of selective recompilation and envi-
ronment processing. ACM Transactions on Software Engineering and Methodology,
Vol. 3 (1), January 1994, 3-28.

2. Demers, A., Reps, T., and Teitelbaum, T. Incremental evaluation for attribute
grammars with application to syntax-directed editors. Proc. Eighth ACM Sympo-
sium on Principles of Programming Languages, Williamsburg, VA, January, 1981,
105-116.

3. M. Elsman. Static Interpretation of Modules. Proc. International Conference on
Functional Programming, September 99, Paris, France.

4. S. I. Feldman. Make - a program for maintaining computer programs. Software -
Practice and Experience, Vol. 9, 1979, 255-265.

5. R. Ford and D. Sawamiphakdi. A Greedy Concurrent Approach to Incremental
Code Generation. Proc. 12th Annual ACM Symposium on Principles of Program-
ming Languages, New Orleans, Louisiana, 1985, 165-178.

6. Institute of Electrical and Electronics Engineers. Information technology - Portable
Operating System Interface (POSIX) . ANSI/IEEE Std. 1003.2, 1993, Part 2: Shell
and Utilities, Volume 1, 1013-1020.

7. N. Jørgensen. Safeness of Make-Based Incremental Recompilation. URL:
http://www.ruc.dk/~nielsj/research/papers/make.pdf.

8. K. Marriott and H. Søndergaard. Analysis of constraint logic programs, Proc. North
American Conference on Logic Programming, Austin, 1988, 521-540.

9. P. Miller. Recursive make considered harmful. URL:
http://www.pcug.org.au/~millerp/rmch/recu-make-cons-harm.html.

10. The Mozilla build process is described at the URL:
http://www.mozilla.org/tinderbox.html in the context of a presentation
of the build tool ”Tinderbox”.

11. P.J. Nicklin. Mkmf - makefile editor. UNIX Programmer’s Manual 4.2 BSD, June
1983.

12. A. Oram and S. Talbott. Managing projects with make. O’Reilly, 1993.
13. R. Quinton. Make and Makefiles. URL: http://www.ibiblio.org/pub/docs/

unix-tutorials/courses/make.ps.
14. S. Robbins. JavaDeps - automatic dependency tracking for Java.

http://www.cs.mcgill.ca/~stever/software/JavaDeps/. The JavaDeps tool is
a SourceForge project available at http://sourceforge.net/projects/jmk.

15. D.A. Schmidt. Denotational semantics - a methodoogy for language development.
Allyn and Bacon, 1986.

16. R. Stallman and R. McGrath. GNU Make, Version 3.77. Free Software Foundation,
1998.

17. W. F. Ticky. Smart recompilation. ACM Transactions on Programming Languages
and Systems, Vol. 8 (3), July 1986, 273-291.

18. K. Walden. Automatic Generation of Make Dependencies. Software - Practice and
Experience, Vol. 14 (6), June 1984, 575-585.

URLs available May 10, 2002.

Appendix

A Algebra of Commands

Lemma 7-9 establish a command algebra in the sense of criteria that allow for
commuting or duplicating commands that are executed on a state.

Recall that by definition of exec, the value of exec (C1;C2) S is the same as
exec C2 (exec C1 S). The first form is preferred because it is more intuitive.

First we note that by definition of rule completeness and soundness we have
the following two lemmas:

Lemma 5 (Simple criteria for rule completeness, fairness, and sound-
ness). Suppose R = (Gs : Ds;C) is complete, fair, and sound wrt. S, and that
S′ satisfies S′ Ds = S Ds. Then R is complete, fair, and sound wrt. S′.

Lemma 6 (Simple consequence of completeness and fairness). Suppose
R = (Gs : Ds;C) is complete and fair wrt. S, and that S′ ≡ S. Then execC S ≡
exec C S′.

Lemma 7 (Commutativity of unrelated commands). Suppose S ` M
where M contains R = (Gs : Ds;C) and R1 = (Gs1 : Ds1;C1), and R is complete,
fair, and sound wrt. S, and R′ is complete, fair and sound wrt. exec C S. Also
assume that R1 is neither predecessor nor ancestor of R. Then

(i) R is complete, fair, and sound wrt. exec C1 S
(ii) exec (C;C1) S ≡ exec (C1;C) S

Proof. (i) holds by Lemma 5 and fairness of R wrt. S using G 6∈ Ds1.
To establish (ii) we first note that by the same argument given to establish (i)

we have that R1 is complete, fair, and sound wrt. S. Thus by abuse of notation
we say both R and R1 are simply “complete”, “fair”, and “sound”, since R is
complete, fair, and sound wrt. S and exec C1 S, and, symmetrically, R1 is wrt.
S and exec C S.

By fairness of R and R1, to establish (ii) it suffices to establish

exec (C;C1) S {G,G1} ≡ exec (C1;C) S {G,G1}

To establish the equivalence for G, we first note that by fairness of R1 we have

exec C1 S Ds ≡ S Ds (since G1 6∈ Ds) (1)
exec (C;C1) S G ≡ exec C S G (since G1 6= G) (2)

By (1) and completeness of R wrt. S we have

exec (C1;C) S G ≡ exec C S G (3)

Thus by (3) and (2), using transitivity of (≡) we have

exec (C;C1) S G ≡ exec (C1;C) S G

The case of G1 is symmetrical. ut

The following lemma is a straightforward generalization of Lemma 7 (proof
omitted):

Lemma 8 (Generalized commutativity of unrelated commands). Sup-
pose S ` M and R,Ri ∈ M for i = 1, . . . , n, where R = (Gs : Ds;C) and
Ri = (Gsi : Dsi;Ci), R is complete, fair, and sound wrt. S, and Ri is complete,
fair, and sound wrt. exec (C1 . . . Ci−1) S. Then:

∀j : 1 ≤ j ≤ n⇒
(i) R is complete, fair, and sound wrt. exec (C1 . . . Cj) S
(ii) exec (C;C1 . . . Cn) S ≡ exec (C1 . . . Cj ;C;Cj+1 . . . Cn) S

Lemma 9 (Idempotence). Consider a rule R = (Gs : Ds;C) which is com-
plete and fair wrt. S. Then the equivalence exec (C;C) S ≡ exec C S holds.

Proof. Since M is well-formed, so that G 6∈ Ds, we have that the state exec C S
satisfies

exec C S Ds = S Ds (by fairness of R, using G 6∈ Ds)

Hence the state exec (C;C) S satisfies the following:

(i) exec (C;C) S G ≡ exec C S G (by completeness of R)
(ii) exec (C;C) S (Name \G) ≡ exec C S (Name \G) (by fairness of R)

ut

B Permutations of Commands in Brute-Force Builds

Lemma 1 of Section 8 stated that the execution of brute-force builds which
are permutations produce equivalent file states. The lemma is part (ii) of the
following lemma:

Lemma 10. Let S ` M . Let Cs = (C1 . . . Cn) and Cs′ be permutations and
brute-force builds wrt. M . Then

(i) for each Ri = (Gsi : Dsi;Ci) ∈M :
Ri is complete, fair, and sound wrt. exec (C1 . . . Ci−1)

(ii) exec Cs′ S ≡ exec Cs S

Proof. Let p(n) denote that (i) and (ii) hold if in each of Cs and Cs′ the number
of commands is at most n. We show by induction that p(n) holds for all n.
Base case: p(0)
Trivial because Cs = Cs′ = nil. (Note that the empty command sequence is a
brute-force build of a target derived by a rule whose dependency targets are not
derived by other rules, ie. “source” files).
Inductive case: p(n)⇒ p(n+ 1)
Assume p(n) and let Cs and Cs′ be arbitrary brute-force builds wrt.M containing
the same n + 1 commands. Suppose C is the last command in Cs′ and defined

by rule R = (G : Ds;C). Thus Cs′ = Cs′′;C, where Cs′′ contains n commands.
We have that Cs contains C, and in addition n commands which we enumerate
C1 . . . Cn based on the order in which they occur in Cs. Thus, for some i (0 ≤
i ≤ n) we have

Cs = Csi where Csj is defined by Csj = C1 . . . Cj ;C;Cj+1 . . . Cn

To establish p(n+ 1) it suffices to show

(i) R is complete, fair, and sound wrt. exec Cs′′ S
(ii) exec Csi S ≡ exec (Cs′′;C) S

Let imin be the smallest i for which C1 . . . Ci is a brute-force build wrt. M of
Ds. By Definition 7, since R is a build rule, there is a brute-force builds CsR
of Ds which is a permutation of C1 . . . Cimin such that R is complete, fair, and
sound wrt. exec CsR S. Since imin ≤ n, we have by induction hypothesis that

exec (C1 . . . Cimin) S ≡ exec CsR S

and so by Lemma 5 we have

R is complete, fair, and sound wrt. exec (C1 . . . Cimin) S (4)

Writing Rj for the rule containing Cj , R is a predecessor of no Rj where j ≥ imin
(since Cs′ is a brute-force build), and so C1 . . . Cn is a brute-force build wrt. M ,
which implies that by induction hypothesis we also have

∀j.1 ≤ j ≤ n : Rj is complete, fair, and sound wrt. exec (C1 . . . Cj−1) S (5)

By (5) and (4) we can apply Lemma 8 (with the “base” state being exec(C1 . . . Cj−1)S)
to infer

R is complete, fair, and sound wrt. exec (C1 . . . Cn) S (6)
exec Csi S ≡ exec (C1 . . . Cn;C) S (7)

Since by induction hypothesis (p(n) (ii)) we have

exec (C1 . . . Cn) S ≡ exec Cs′′ S (8)

we infer from (6) and Lemma 5 that R is complete, fair, and sound wrt. execCs′′S
as well. This establishes p(n+ 1) (i).
Finally, to establish p(n+ 1) (ii), by (7) it suffices to show

exec (C1 . . . Cn;C) S ≡ exec (Cs′′;C) S

This follows directly from by (6) and (8). ut

Lemma 11 is a consequence of Lemma 10, and implies that if S ` M and S
is safe wrt. M , then all rules in M are complete, fair, and sound wrt. S.

Lemma 11 (Rule completeness + fairness + soundness in safe states).
Suppose S `M , and consider a rule R where for each R′ deriving a dependency
D of R, S is safe wrt. M|D. Then R is complete, fair, and sound wrt. S.

C Safeness: Proposition 1

Proposition 1 as well as Lemma 2-4 rely on Lemma 12-13.
Recall that safeness was defined in Definition 2 in terms of the execution

of full brute-force builds. The proof of Proposition 1 is simplified by the fol-
lowing safeness-criterion which allows for considering only the execution of the
individual commands in rules:

Lemma 12 (Safeness criterion). Assume S ` M . Then S is safe wrt. M if
and only if

exec C S ≡ S
holds for any command C occurring in a rule in M .

Proof.
(i) ⇒ (ii). Consider an arbitrary rule R = (G : Ds;C) in M , and let (Cs;C) be
a brute-force build of G. By (i) we have

S ≡ exec Cs S (9)
S ≡ exec (Cs;C) S (10)

By Lemma 10 we have that R is complete wrt. S, so

exec C S ≡ exec (Cs;C) S (by (9) and Lemma 6)
≡ S (by (10))

(ii) ⇒ (i).
Assume S `M and (ii). Let p(n) denote the proposition that the equivalence

exec Cs S ≡ S

holds if the number of commands in the brute-force build Cs is at most n. It
suffices to show that p(n) holds for all n, which we show by induction over n:
Base case: p(0)
In this case Cs is the empty command sequence nil, so the equivalence holds
trivially.
Inductive case: p(n)⇒ p(n+ 1)
Consider an arbitrary brute-force build Cs containing n + 1 commands. Let C
be the last command in the sequence, so that Cs = (Cs′;C) where Cs′ contains
n commands. Let the rule containing C be R = (G : Ds;C). We must show

exec (Cs′;C) S ≡ S (11)

By induction hypothesis we have

exec Cs′ S ≡ S (12)

By Lemma 10 we have that R is complete wrt. execCs′S, so by (12) and Lemma
6 we have

exec (Cs′;C) ≡ exec C S (13)

By (ii) we have

exec C S ≡ S (14)

Thus we can infer (11) from (13) and (14) using transitivity of (≡). ut

The following lemma is the basis for Proposition 1 and Lemma 2-4.

Lemma 13. Assume S ` M and S is partially safe wrt. M . Let N be the
number of nonleaf nodes in the make graph of M|T , and consider a post order
traversal of those N nodes starting with the node containing T . For 0 ≤ n ≤
N , let Sn be the state attained upon visiting the first n nodes (with S0 = S),
and let Rn = (Gsn : Dsn;Cn) be the rule deriving the targets of the n’th node.
Let Cmake = M [[M]] S T , and let p(n) denote the conjunction of the following
propositions:

pa(n) : S 6|= M|Rn ⇔ Cn ∈ Cmake
pb(n) : ∀i : i ≤ n ⇒ Sn |= Ri
pc(n) : ∀i : i ≤ n ∧ S |= Ri ⇒ Sn Gsi = S Gsi
pd(n) : ∀i, j : i < n ∧ (j ≤ i ∨ j > n)⇒ Sn Gsj = Si Gsj
pe(n) : ∀i : i ≤ n ⇒ exec Ci Sn ≡ Sn

Then p(n) holds for all n where 1 ≤ n ≤ N .

Specifically, Proposition 1 is pe(N), Lemma 2 follows from pa(N), Lemma 3
is pa(N), and Lemma 4 is pb(N).

Lemma 13 says that during traversal of the induced make graph, upon visiting
the n’th target Gn the following holds invariantly for 1 ≤ n ≤ N :

pa(n) Rn fired if and only if Rn has a predecessor rule not satisfied in S.
pb(n) For any node visited so far, the corresponding rule is satisfied in the current

state.
pc(n) For any node visited so far, if the corresponding rule was satisfied in S,

its derived files remains unaltered.
pd(n) In the current state and the state attained upon the visit to the i’th node,

all derived files are the same, except for derived files of rules corresponding
to a node visited after the i’th visit.

pe(n) For any rule R corresponding to a node visited so far, the current state is
safe wrt. M|R.

The proof of Lemma 13 is by induction over n. The idea is to consider two
distinct cases: First, in the case of S |= M|Rn use that exec Cn S ≡ S holds by
partial safeness, and second, in the case of S 6|= M|Rn use that Rn fires.

Proof. Base case: p(1)
pa(1): Since R1 is the first rule evaluated, it is evaluated against the initial state
S, and so by assumption S `M R1 is complete, fair, and sound wrt. S.

For pa(1) - pe(1) we consider two distinct cases:

(i) S |= M|R1 :
pa(1): Since R1 is evaluated against S, it does not fire by assumption (i).
pb(1)-pd(1): Not firing R1 implies S1 = S, which establishes all three invariants.
pe(1): Since S1 = S, the equivalence pe(1) becomes

exec C1 S ≡ S

which holds by partial safeness of S and assumption S |= M|R1 .
(ii) S 6|= M|R1 :
pa(1): Since R1 is evaluated against S, the rule fires by assumption (ii).
pb(1): holds by soundness of R1 wrt. S.
pc(1): holds trivially by assumption (ii).
pd(1): holds by fairness of R1 wrt. S.
pe(1): The equivalence pe(1) becomes

exec (C1;C1) S ≡ exec C1 S

Since R1 is fair and complete wrt. S, this equivalence holds by Lemma 9.

Inductive case: (∀i ≤ n : p(i))⇒ p(n+ 1)

We first note that Rn+1 is evaluated against state Sn which by pe(n) is safe wrt.
M|D for any D ∈ Dsn+1. Thus by Lemma 11, Rn+1 is complete, fair, and sound
wrt. Sn.

For pa(1) - pe(1) we consider, as above, two distinct cases:
(i) S |= M|Rn+1 :
pa(n + 1): By (i) we have S |= Rn+1. Recall that R = (Gn+1 : Dsn+1;Cn+1),
where j ≤ n for each Dj ∈ Dsn+1. Thus

Sn Dsn+1 = S Dsn+1 (by pc(n))
Sn Gn+1 = S Gn+1 (by pd(n))

Thus by Definition 3 of satisfiability we have Sn |= Rn+1. Therefore Rn+1 does
not fire.
pb(n+1): Since Rn+1 does not fire, we have Sn+1 = Sn. Thus ∀i ≤ n : Sn+1 |= Ri
holds by pb(n), and Sn+1 |= Rn+1 holds by Sn |= Rn+1.
pc(n + 1): We must establish S |= Ri ⇒ Sn+1 Gi = S Gi for i ≤ n + 1. The
implication holds for i ≤ n by pc(n) and using Sn+1 = Sn. Since by assumption
(i) we have S |= Rn+1, it remains to establish:

Sn+1 Gn+1 = Sn Gn+1 (since Sn+1 = Sn)
= S Gn+1 (by pd(n))

pd(n+ 1): Follows directly from pd(n) and Sn+1 = Sn.
pe(n+ 1): We must establish

∀i ≤ n+ 1 : exec Ci Sn+1 ≡ Sn+1

Since Sn+1 = Sn, the equivalence holds for i ≤ n by pe(n). For i = n + 1 we
have, with G 6= Gn+1:

exec Cn+1 Sn G
= Sn G (by fairness of Rn+1 wrt. Sn)

exec Cn+1 Sn Gn+1

≡ exec Cn+1 S Gn+1 (by compl. of Rn+1 wrt. Sn, using Sn Dsn = S Dsn)
≡ S Gn+1 (by partial safeness of S wrt. M , using S |= M|Rn+1)
≡ Sn Gn+1 (by pd(n))

(ii) S 6|= M|Rn+1 :
pa(n+ 1): We consider two distinct sub-cases:

First, assume, in addition to (ii), that S |= M|Rj holds for any rule Rj
deriving a dependency target of Rn+1. Thus for this subcase of (i) we can infer,
as in (ii), that SnDsn+1 = SDsn+1 and SnGn+1 = SGn+1. Since in this subcase
we have S 6|= Rn+1, it follows that Sn 6|= Rn+1, so Rn+1 fires.

Second, assume S 6|= M|Rj for some Rj deriving a dependency target of
Rn+1. By pa(j) we have Cj ∈ Cmake, implying that Rj fired because Sj−1 6|= Rj .
By pa(j), Rj was sound wrt. Sj−1, so firing of Rj implies Sj 6|= Rn+1. By pd(n)
we have Sn {Gj , Gn+1} = Sj {Gj , Gn+1}, which by definition of rule soundness
implies Sn 6|= Rn+1, so Rn+1 fires. Thus pa(n+ 1) holds.

pb(n+ 1): Since Rn+1 fires, Sn+1 |= Rn+1 holds by soundness of Rn+1 wrt. Sn.
By pb(n) and fairness of Rn+1 wrt. Sn, Sn+1 |= Ri holds for any i ≤ n.
pc(n+ 1): This holds trivially by assumption (ii).
pd(n+ 1): Follows from pd(n) and fairness of Rn+1 wrt. Sn.
pe(n+ 1): We must show that for i ≤ n+ 1

exec Ci Sn+1 ≡ Sn+1

For i = n+ 1 we have

exec Cn+1 Sn+1 ≡ exec (Cn+1;Cn+1) Sn (since Rn+1 fires)
≡ exec Cn+1 Sn (by Lemma 9 and pa(n+ 1))
≡ exec Sn+1 (since Rn+1 fires)

For arbitrary i ≤ n we consider rule Ri = (Gi : Dsi;Ci). Since j ≤ i−1 holds
for each Dj ∈ Dsi we have:

Sn+1 Dsi = Si−1 Dsi (15)
Sn Dsi = Si−1 Dsi (16)

and so for G 6= Gi

exec Ci Sn+1 G ≡ Sn+1 G (by (15) and fairness of Ri wrt. Sn)
exec Ci Sn+1 Gi ≡ exec Ci Si−1 Gi (by (15) and completeness of Ri wrt. Si−1)

≡ exec Ci Sn Gi (by (16) and completeness of Ri wrt. Si−1)
≡ Sn Gi (by pd(n))

ut

D Editing Constraints: Proposition 2

This section proves Proposition 2 which says that S is partially safe wrt. M if

(∗)


Ssafe is safe wrt. Msafe

Ssafe `Msafe

S `M
∀R ∈M : S |= R⇒

{
S R ≡ Ssafe R
∃R′ ∈Msafe : R and R′ define the same command

Proof. Assume (∗). By Definition 9, it suffices to show that for an arbitrary
derived target T in M , where S |= M|T holds, we have that S is safe wrt. M|T .
By Lemma 12 this holds if

exec C S ≡ S (17)

where C is the command occurring in an arbitrary rule R = (Gs : Ds;C) ∈M|T .
The proof idea is to establish and use that

exec C Ssafe ≡ Ssafe (18)

From assumption S |= M|T and R ∈M|T we infer S |= R. Thus by (∗) there is
a rule R′ ∈Msafe defining the same command C, and by safeness of Ssafe wrt.
Msafe the equivalence (18) follows from Lemma 12.

Moreover, by S R ≡ Ssafe R we have

S Ds ≡ Ssafe Ds (19)
S Gs ≡ Ssafe Gs (20)

Since R is fair and complete wrt. Ssafe (by Lemma 11) we have

exec C S (Name \Gs) ≡ S (Name \Gs) (by (19) and fairness of R wrt. Ssafe)
exec C S Gs ≡ exec C Ssafe Gs (by (19) and completeness of R wrt. Ssafe)

≡ Ssafe Gs (by (18))
≡ S Gs (by (20))

which establishes (17). ut

