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ABSTRACT 

Iterative life cycle models have become popular in 
software engineering, for example in agile development. 
In contrast, the waterfall model appears to prevail in 
manufacturing engineering disciplines. This includes 
aircraft engineering and Boeing’s project for developing 
its most recent passenger aircraft, the 777. The paper 
walks through the phases of the 777’s development and 
compares to iterative development. This suggests two 
observations: 

Response time 

Firstly, the over-all waterfall approach in the 777 
project appears to be well-motivated by the physical, 
manufactured nature of aircraft components such as 
wings, in addition to safety concerns. 

Secondly, iterative elements in the development of 
the 777 can also be identified. They appear to be related to 
the digitalization of development, in particular using CAD 
tools for a process called digital pre-assembly. 

While the waterfall process elements were well 
reflected in the project’s official discourse, the iterative 
elements were seemingly adopted ad-hoc, which suggest 
that their further exploration is worthwhile. 

INTRODUCTION 

Maier and Rechtin in their book on systems 
architecting make several bold statements about life cycle 
models, including “hardware is best developed with as 
little iteration as possible, while software can (and often 
should) evolve through much iteration” (Maier and 
Rechtin, 2000, p 95). The present paper explores this and 
related assertions about life cycle models and their 
relevance for different domains of engineering. Life cycle 
models considered are waterfall and iterative models. Two 
highly simplified variants of these are shown in Figure 1. 

The method of the paper is a case study of  the 
development from 1986 to 1995 of the Boeing 777. 
Empirical data on the project is interpreted to indicate a 
typical waterfall approach: development proceeded in 
distinct phases and project organization was hierarchical 
in a manner that reflected the aircraft’s hierarchical 
decomposition into wings, fuselage, etc. Data on the 
project’s discourse indicates a thinking inspired by the 

waterfall-related discipline of concurrent engineering. 
This includes the project’s use of the phrase design-build 
teams for certain cross-functional teams. The main source 
of empirical data is the detailed and extensive account of 
the project in (Sabbagh, 1995).  
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Figure 1: Waterfall (above) vs. iteration (below). A 
benefit of the iterative approach is the ability to respond 

more quickly to design changes, and so adapt to changing 
markets and technologies. 

 
Analytically, focus is on the 777 project’s approach to 

design changes, for example design reviews to ensure 
decision in advance of transition to implementation 
(waterfall), rather than soliciting design feedback to 
prototypes (iteration). The analysis relates the approach to 
the nature of the aircraft’s components using  contra-
factual reasoning of the following common-sense sort. 
Suppose (contrary to what happened) that the aircraft had 
been developed iteratively; then delays would have 
resulted from manufacturing sequences of modified 
ailerons and transporting them oversees to Boeing’s 
American assembly plant. Or, suppose there had been a 
test flight of an early prototype; then this would have 
posed a threat to the lives of the test pilots. 

It is not surprising that a large aircraft such as the 
Boeing 777 is developed using a waterfall life cycle 
model. The approach has prevailed in the American 
aerospace industry since around World War II (see eg. 
Ziemke and Spann, 1993). 
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In justifying a study of a project completed more than 
ten years ago, firstly it can be observed that the Boeing 
777 is in fact the most recently developed large passenger 
aircraft in the world. (Boeing’s next model, the 787, is 
scheduled for delivery in 2008, Airbus’ A380 in 2007.) 

Secondly, aside from the forseeable waterfall 
approach of the 777 project, the study identifies process 
elements of an iterative sort. These were related to 
digitalization of design, and indicates a relationship 
between life cycle model and the software/hardware 
distinction, as asserted by Maier and Rechtin (see the 
quote above). 

Thirdly, the pros and cost of waterfall and iterative 
models remain disputed. The literature spans many views, 
including the following two opposing, extreme views: 
One is the life-cycle-follows-artifacts view of Maier and 
Rechtin. The other is an all-round-model view. Several 
studies emphasize the all-round usefulness of a particular 
life cycle model. These include Auyang’s account of the 
history of modern technology, which presents a phased, 
waterfall-type development model as the engineering 
method per se (Auyang, 2004). Symmetrically, Clark and 
Iansiti in their analysis of product development strategies 
in the 1990s, argue the universal usefulness of an iterative 
model, in the software industry as well as in 
manufacturing industries such as the automobile industry 
(Clark and Iansiti, 1997). 

Fourthly and finally, the present study may add 
legitimacy to asking, in a small software development 
project: Why should we use an approach suitable for a 
nine year, multi-billion dollar aerospace project ? 

The paper is organized as follows:  
To provide background, a summary is given of 

waterfall and iterative life cycle models, and of the 
business context of the 777 project. The main empirical 
part walks through the 777 project’s four development 
phases. The analysis part first identifies and discusses 
waterfall-type elements, and  then iterative elements. A 
final section concludes. 

BACKGROUND: WATERFALL VS. ITERATIVE 
LIFE CYCLES 

The difference between waterfall and iterative life 
cycle models is the ordering of development phases. In the 
two-phase setting of Figure 1, waterfall models would 
prescribe a single design-implement pass, while iterative 
models would prescribe a repetitive ordering with design-
implement, design-implement, and so on.  Many aspects 
of life cycle models escape this simplification, of course. 
For example, the waterfall variant first proposed for 
software contained a feedback-loop to a previous phase 
(Royce, 1970). However, for clarity the paper identifies 
waterfall models with strictly phased models – 
corresponding, by the way, to the effect gravity has on the 
flow of water.  

Waterfall life cycle models 

Waterfall models have been justified with reference 
to the tenet that design changes are the more costly the 
later they are decided. Phil Condit, project manager of the 
777 project (and later Boeing CEO) expressed this as “no 
more chainsaws”. – Indeed one can imagine the 
devastating effect of cutting up the fuselage of an almost 
completed aircraft to fit a changed part (see Figure 2 
below for an illustration in terms of time). 

 
 

                   

 

Design 
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Figure 2: A “chainsaw massacre” (indicated by hatched 
boxes) may result from the iterative approach, if the 

implementation is difficult to modify. 
 

In the software engineering discipline, waterfall 
models prevailed in the 1980s. A key argument in favor of 
waterfall models is the ability to avoid costs of fixing 
poorly designed code (Boehm, 1988).  This is as opposed 
to the code-and-fix approach presumably followed in the 
early days of software. Boehm also credited the influence 
of waterfall models in software engineering to their 
emphasis on structure and planning.  

In manufacturing engineering disciplines, the 
literature of concurrent engineering provides an academic 
basis for the waterfall approach. Concurrent engineering 
can be defined as “simultaneous design of a product and 
all its related processes in a manufacturing system” (Jo et 
al., 1993, p 4). Concurrent engineering emphasizes design 
for manufacture, design-for-assembly, and more 
generally, design-for-x, where x is integration, test, and 
other processes (ie., phases). This is as opposed to design 
merely for end use. A major goal is avoiding redundant 
costs, such as when a product design poses manufacturing 
difficulties and thereby entails extra costs of 
manufacturing or re-design (Smith, 1997). – Note that in 
concurrent engineering, concurrency refers to designing 
with a view to multiple phases, and to simultaneous 
development of components (not to phase concurrency). 

In aircraft engineering, key ideas of concurrent 
engineering were dissemminated by the Lean Aerospace 
Initiative (LAI). The process improvement effort at MIT 
was initiated in the early 1990s, at the time of the Boeing 
777 project. For example, statistical data was publicized 
which showed that the design phase commits to two thirds 
of the full life cycle costs of a product. Costs committed to 
by design include costs incurred during manufacture, 
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maintenance, etc. This suggests a holistic, design-for-X 
approach to design (Murman et al., 2000). – In addition to 
ideas related to concurrent engineering, the LAI 
incorporated ideas from lean automobile production. This 
is the Western  implementation of ideas suggested to 
explain the success of Toyota and other Japanese car 
makers (Womack et al., 1991). This sense of lean includes 
a general focus on cost reduction, as opposed to cost 
reduction by design as in concurrent engineering. An 
example is just-in-time delivery of parts for assembly, one 
of many lean ideas which would appear to be independent 
of the ordering of development phases. 

Iterative life cycle models 

Iterative models have been argued to enhance 
flexibility, debugging, and enthusiasm in a product 
development project.  

Flexibility: In their analysis of the ‘browser war’ 
between Microsoft and Netscape in 1995-96, Clark and 
Iansiti stress the companies’ ability to implement new 
features in six to eight weeks, allowing them to adapt to 
new user demands and new technologies (Clark and 
Iansiti, 1997). The short response time relied on releasing 
a series of browser prototypes, to the public (Netscape) or 
internally (Microsoft). In terms of Figure 1, response time 
is shortened because implementation provides an early 
prototype; the prototype generates design feedback, and 
its modular architecture facilitates the addition of new 
features. 

Debugging: McConnell in his book on rapid 
development argues that an iterative approach may 
support debugging during integration (McConnell, 1997). 
When parts are integrated into larger parts, errors emerge; 
their diagnosis is facilitated if the parts are added to a 
development version which is always kept in a working 
state. If adding a part entails a broken build or a failed 
regression test, the part is diagnosed to be involved in 
some interdependency problem. Implementation phases in 
rapid development are organized in small increments 
whose integration involve building and regressions testing 
on a frequent basis, say daily. 

Enthusiasm: Brooks mentioned a psychological 
aspect of what he called growing of software: 
“Enthusiasm jumps when there is a running system” 
(Brooks, 1987, p18). Cusumano and Selby observed 
similar effects of incremental development at Microsoft 
(Cusumano and Selby, 1995). In an interview with this 
author, a software developer of the FreeBSD operating 
system said “.. there is a tremendous satisfaction to the 
‘see bug, fix bug, see bug fix get incorporated so that the 
fix helps others’ cycle” (Jørgensen, 2005). Analogously to 
flexibility and debugging, a precondition is early 
implementation, providing a working prototype which is 
open for changes to be inserted and evaluated – and 
enjoyed. 

Choice of life cycle as depending upon artifact to be 
developed 

The choice of life cycle model is difficult  because, 
among other reasons, there is a multitude of possibly 
relevant parameters: 

- The independent variable side is the artifact to be 
developed, represented perhaps by an initial specification; 
here parameters include such factors as (estimations of) 
the complexity of the artifact and the required design 
effort. Perhaps this side includes also a project context in 
terms of a pool of participants, their culture, etc.  

- The dependent variable side is the life cycle model; 
parameters include the specifics of the model, such as the 
selection and ordering of phases, type of phase transitions 
such as formal reviews, etc. See Figure 3 below. 

These variables are difficult to define conceptually, 
let alone quantify and measure. Empirical data is from 
case studies that resist generalization. Difficulties increase  
further when making assertions about artifact / life cycle 
dependency across different engineering domains.  

 

Artifact Life cycle model 

Figure 3. Artifact to be developed as independent variable 
and life cycle model as dependent variable. 

 
In Maier and Rechtin’s discussion of the difference 

between software-intensive systems and manufactured 
hardware systems, three assertions can be identified 
(Maier and Rechtin, 2000, Chapter Six), which detail the 
assertion quoted in the introduction. 

1. Hardware is best developed with as little iteration 
as possible. The minimizes the relatively high costs of 
physical production. 

2. An iterative approach is possible with software. 
Complementing the first assertion, this is due to the low 
cost of software copying and distribution. Maier and 
Rechtin focus on field upgrades, but the argument applies 
to the development organization as well. For example, 
iterative development at Netscape, Microsoft, and 
FreeBSD rely on two modes of copying and (internal) 
distribution: (1) the full system to the local site (for trial 
integration of a new change), and (2) subsequently, the 
change to the central unit (for final integration). The 
approach is discussed further in (Holck and Jørgensen, 
2004).  

3. Software can be designed with a modular 
architecture, which facilitates iterative development. This 
is as opposed to hierarchical product architecture, where a 
system is composed of subsystems and so on recursively. 
While software can also be designed hierarchically, its 
flexibility allows for alternatives. Examples of non-
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hierarchical software architectures given by Maier and 
Rechtin include layered and object-oriented structures. 

In the software engineering literature, two further 
assertions are of interest. For a summary of the life cycle 
models and the five assertions, see Table 1 below. 

4. An iterative approach is suitable (only) if there is 
already an established design. The availability of a sound 
design was suggested by McConnell as an explanation of 
the success of the Linux project’s iterative approach 
which, had no dedicated design phase. “By the time Linux 
came around [..] architecture defects had already been 
flushed out during the development of many previous 
generations of Unix” (McConnell, 1999). This argument 
may not apply to iterative approaches per se, and in 
particular not to Boehm’s iterative and structured model, 
the spiral model  (Boehm, 1988). 

5. An iterative approach is suitable (only) if the 
project is of limited size. For example, Kenn Beck, 
coauthor of the agile manifesto (Beck, 2001) argues that 
extreme programming (XP) with its iterative approach is 
not appropriate for projects of (approximately) 20 or more 
developers. Beck asserts that the integration of all changes 
into a single development version is XP’s scaling 
bottleneck (Beck, 2000). Similarly, the present author’s 
study of FreeBSD indicated that in phases of intense 
development, the project’s development version was 
overloaded. The high number of changes inserted led to 
failed builds, so that frequently there would be no 
updated, working prototype. This eroded the advantages 
of debugging and enthusiasm (Jørgensen, 2005). A 
waterfall approach provides the alternative of staged 
integration, ie., unit integration, component integration, 
etc. This limits the number of parts which are assembled 
with each other in each stage. 
 

 Waterfall Iterative 
Phase 

ordering 
One pass Multiple passes 

Advantages 
Handles complex design 
problems; design-for-X 
reduces cost 

Flexibility; 
debugging; 
enthusiasm 

Typical 
application 

Manufactured 
technologies 

Software-
centered 
technologies 

Limited 
application 

Markets with rapidly 
changing requirements 

Large projects; 
new, complex 
design problems 

 
Table 1. Summary of waterfall vs. iteration. 

BACKGROUND (CONTINUED): THE BUSINESS 
CONTEXT OF THE BOEING 777 DEVELOPMENT 
PROJECT 

The first Boeing 777 was delivered to United Airlines 
in May 1995 and entered commercial service the 

following month. The previous major model, the 767, 
entered service in 1982. In addition to new major models, 
the company also develops model variants. Model variants 
are introduced more frequently and include for example 
the 747-400, a variant of the 747 (Jumbo jet) which 
entered service in 1989 and had an improved wing design. 

Work on the 777 commenced in 1986 as a builder- 
initiated project, to use a term from (Maier and Rechtin, 
2000). The nine year time span from initiation to first 
delivery is an indication of the long-term nature of the 
huge investments made by Boeing, and the pressure to 
shorten and optimize the development process. 

The period in which the 777 was developed witnessed 
fierce competition in the aircraft industry. At project 
initiation, mergers had left only two other suppliers of big 
commercial airplanes, McDonnell and Airbus. 
(McDonnell merged with Boeing in 1997.) Competition 
intensified when military budgets were cut upon the end 
of the Cold War around 1989. Privatization of airlines 
since the 1980s made them less loyal to local, 
government-supported aircraft suppliers. Competition also 
intensified when aircraft were offered with a choice of 
engine supplier. Then an airline could choose freely 
among aircraft suppliers and still retain a single engine 
supplier with a familiar maintenance program. 

The end result for Boeing was an imperative to 
compete on cost and performance. The aircraft market 
may not be as dynamic as the web browser market in 
terms of new user requirements, but a flexible 
development process would still be needed to manage the 
integration of new technologies to achieve ends related to 
cost and performance. This is analogous to browser 
suppliers integrating new technologies into their products, 
to ensure inter-operation with new document and resource 
formats, scripting languages, operating systems, etc. 

EMPIRICAL DATA ON BOEING 777’S PHASED 
DEVELOPMENT 

The two main phases in the 777 project can be said to 
be design and build, corresponding to the concepts design 
and implement of Figures 1 and 2. The concepts of design 
and build were central in the project’s own terminology, 
most notably in the name Design-Build Teams. Design-
Build Teams (DBTs) was the key forum for making 
design decisions. There was a DBT for every component 
of some complexity, totaling approximately 250 teams. 
For example there was a passenger door DBT and a cargo 
door DBT. 

The Design-Build Teams were cross-departmental, 
comprising both design engineers, manufacturing 
engineers, maintenance engineers, and others from 
Boeing, as well as representatives from subcontractors and 
customer airlines. The idea was understood as one of 
avoiding departmentalization, where designers would 
throw designs over the wall to manufacturers. Instead, 
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designers should involve manufacturing people and use 
their knowledge. This is a straightforward application of 
design-for-x principles of concurrent engineering. 

More specifically, four development phases of the 
777 can be identified: Conceptual Design and Component 
Design as subphases of design, and Assembly and Test as 
subphases of build (See Figure 4). The four phases are 
identified for the purpose of the presentation, and do not 
reflect an explicitly stated Boeing development process.  

 

Figure 4: The four phases of the 777 project. 
 
 

Phase 1. Conceptual design, 1986 – October 90: From 
derivative to independent model. 

Work on the 777 began with Boeing’s investigation 
of how the company could enter an emerging segment of 
passenger aircraft: the segment between the company’s 
747 (Jumbo jet) and its second-largest model, the 767. 
Aircraft in this segment should have the capacity to carry 
300-400 passengers on long distance flight. Boeing’s two 
competitors, Douglas and Airbus, were developing their 
own products for the segment. 

 Initially the plan was to develop an enlarged version 
of the 767. In 1988 the company decided to go for an all- 
new design. Requirements had accumulated to above of 
what could be meet by the evolutionary approach. 

The over-all configuration of the 777 comprised two 
engines, two aisles, and fly-by-wire. The 777 is Boeing’s 
first plane where pilots would control rudder and wing 
flaps electronically. Additionally, the conceptual design 
comprised the size, shape, and materials used for major 
components such as the wings. Conceptual design can be 
viewed as effectively frozen in October 1990, when 
United Airlines ordered 34 planes at a price of 
approximately 100 million usd each. The contract also 
stated requirements pertaining to parameters such as load, 
cabin and seat space, speed, and fuel consumption. 

Phase 2. Component design, October 1990 - January 
1993: The door hinge design change. 

Components were designed in-house at Boeing 
except for two major exceptions, namely the engines 
(developed by three alternative subcontractors) and the 
main IT-system (developed by Honeywell). 

The door design was an example of the 777 project’s 
focus on reducing the number of design changes, as 
compared to the previous model, the 767. More than 
13.000 design changes had been made to the design of the 
predecessor’s doors. The company estimated the cost of 
these to 64 mill. usd, which is of the order of half the sales 
prize of a full plane. The goal was to reduce the number of 
changes by more than 50%. In itself, perception of design 
changes as poor design indicates a waterfall approach, as 
noted in (Clark and Iansiti, 1997, p 110). 

Conceptual 
design 

Component 
design 

Boeing’s design of the 777’s passenger doors had to 
take a set of partly conflicting requirements into account, 
indicating the complex nature of the design task. Doors 
are subject to generic constraints pertaining to weight and 
outer surface smoothness. Specific requirements include a 
closing mechanism to prevent opening during normal 
flight, sealing to prevent loss of cabin air pressure, and 
strength of the door as a whole to withstand the force 
exerted by cabin air pressure. The force amounts to 15 
metric tons, given the area of the door and including a 
safety margin. At the same time, the door must open 
easily on ground, even by not so strong hands with long 
fingernails.  

Assembly 
 

Test 

The main strategy pursued to attain the goal of 
reducing assembly-phase and test-phase changes to the 
door design was to use a common base of parts. 
Eventually the passenger doors would use 98% common 
parts. This was seen as a major achievement because the 
shape of the doors are not the same. (The doors sit in the 
fuselage at places where it has different diameters.) 

The design of a single door hinge for use in all 
passenger doors evolved in three rounds. In the first 
round, a single common hinge was designed during three 
months of design work, including a nearby give-up. Then 
the fuselage shape was altered (for reasons related to the 
plane’s overall aerodynamic performance), implying a 
change of the door’s shape, and in turn, a different door 
hinge. Now the hinge re-redesign took one month. A 
second fuselage re-design spurred a third round of hinge 
design, this time in one week. The chain of events was 
reflected on by the engineers involved as a process of 
build-up of competence to react to changed requirements. 

Phase 3. Assembly, January 1993 - March 1994: The 
rudder design change. 

Wing assembly started at Boeing’s factory in Everett, 
Seattle, in January 1993. The largest section of the wing is 
the wingbox, which extends from fuselage to wing tip, 
and to which two other components are added, the leading 
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(front) edge and the trailing (rear) edge. Among the parts 
that go into the wingbox assembly are a front and a rear 
spar, which span the full length of the box, and a large 
number of ribs, which connect the spars, and an outer 
surface of aluminum plates. 

Other parts than the wing box would be assembled 
later or earlier, so the suggested assembly start date is 
somewhat arbitrary. For example, the spars themselves 
had been assembled before they were built into the wing 
box, of course. 

Assembly is intertwined with what may be called unit 
process fabrication (Whitney, 2004). This is processing of 
individual parts, for example the process of shot-peening 
of wing skin sections. Shot-peening shoots swarms of 
small metal balls onto the aluminum skin plates, to harden 
the plates and give them the correct, curved form. 

Advanced machine tools were widely used to 
automate assembly. To the extent that a tool for a part 
depends on the detailed design of the part, assembly must 
await completion of the tool. For example, assembly of 
the rudder was carried out by an Australian subcontractor 
(ASTA), using special-purpose tools designed by the 
subcontractor. Just before Boeing committed to a final 
rudder design in January 94, the design was changed 
substantially. The rudder design change entailed design 
changes of more than 600 special-purpose tools, many of 
whom had already been completed, based on the 
preliminary design. The underlying goal of the design 
change was performance: the rudder needed to transmit a 
larger force to the fuselage, balancing the plane in case 
one of its twin engines would fail during take-off, when 
thrust of the new, powerful engines would be at the 
maximum. 

In contrast, tools used in software development, such 
as IDEs (Integrated Development Environments) are more 
universal, and less dependent upon design changes of the 
product. 

Phase 4. Test, March 1994 - June 1995: Engine 
backfire. 

The first plane was weighted on 18th March, 1994. 
This can be seen as the first major test of the plane. The 
assembled plane’s weight was a key performance 
parameter. (The test showed 135 metric tonnes against a 
predicted value of 132.) The first test flight was June 12, 
1994, followed by a full year of flight testing. 

The engine was flight tested before the 777 was 
flown. One of the goals of engine testing was to have the 
777 acquire a so-called 180 minutes certification prior to 
first delivery. Boeing had promised customers that the 
plane would be certified by authorities (the US Federal 
Aviation Agency, FAA) for routes taking the plane up to 
three hours away from the nearest airport, as calculated on 
the basis of performance with only a single functioning 
engine. Previously such certification had been granted 
only on the basis of engine reliability data from 

commercial service. To speed up engine testing, an engine 
from Pratt & Whitney, of the type to be fitted on the 
firstly delivered 777, was fitted to an old 747. This was in 
November 93 when the first 777 was still in assembly. 
The test actually revealed a serious flaw causing engine 
behavior reminiscent of “backfiring” (a so-called engine 
surge). Flight testing on the 747 provided more time for 
Pratt & Whitney's engine re-design than if flight testing 
had awaited the readiness of the 777 for flight. 

In summary, the development of the 777 was 
essentially phased, reflecting a “one shot” strategy of 
avoiding design changes after completion of the design 
phase. Table 2 below summarizes three design changes 
discussed above. The first change (of the door hinge) 
occurred inside the design phase, and so was consistent 
with the strategy, while the two others were of the post 
festum type. 

 
Phase where 

design change 
occurred 

Design 
change of 

Approach to reduction 
of cost of change 

2. Component 
design Door hinge Competency build-up in 

three rounds of re-design 

3. Assembly Rudder Cost of tool re-design 
deferred to sub-contractor 

4. Test Engine Early detection by flight 
testing on old plane 

 
Table 2. Summary of three design changes in phases 2-4, 

their causes, and methods to reduce their cost. 
 

ANALYSIS: THE WATERFALL 777 APPROACH 
AND THE PHYSICAL NATURE OF COMPONENTS 

Components of an aircraft such as wing and rudder 
are artifacts of a physical nature. This section discusses 
how this nature lends itself towards a phased development 
process. Each component exemplar represents a value, 
reflecting its manufacturing cost. There is also a cost 
associated with transporting a component from the place 
of its assembly to the place where it is assembled into a 
larger component. In contrast, the cost of copying and 
distributing a software artifact is negligible. 

The significance of the cost of individual exemplars 
of a component is illustrated by the 777 wing testing. 
Wing testing culminated in January 1995 with the so-
called snap test, a year into the test phase. The wing is 
required to withstand a load corresponding to the plane’s 
weight plus an additional 150%. In a controlled, indoor 
environment, an increasing force is applied to lift the wing 
tips higher and higher, while the fuselage remains in a 
fixed position. Eventually something breaks. In the snap 
test, the wing broke at 157%, yielding a successful test. 
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The wing snap test, being a destructive test, required 
a plane taken out of the production line of the first series 
of planes. Both wings of the test plane broke and were 
rendered useless, except for providing data about the 
breakage. (Even if the snap test had been aborted just 
above the 150% level, the wings would already have been 
deformed.) 

The cost of a broken aircraft wing greatly exceeds 
those of a broken build of a software project. The 
information provided by a build breakage (namely that a 
module added since the previous successful build has 
introduced an error) incurs a loss of development time 
only. Broken software builds during development do not 
destroy physical products, let alone costly products such 
as wings of a 100 mill. usd aircraft. 

The significance of the cost of component 
transportation is indicated by the first rudder delivery in 
August 1994 to the main assembly site in Seattle. The first 
rudder was flown in using a 747 freighter (into which it 
would just fit), to save five weeks of seaway 
transportation (as used subsequently). Even though there 
remained a full seven months to assembly completion and 
11 months to first flight (see Phase 4 above), presence of 
the rudder at the assembly site was essential for the time 
plan. This indicates the relevance of the “one-shot” 
approach. An iterative approach to fitting the rudder onto 
the plane’s tail is prohibited in these circumstances, if 
such an approach requires awaiting the arrival of modified 
rudders. 
 

 

 
 

Figure 5: Hierarchical product view of the B777. There 
was a separate Design-Build Team (DBT) for spar, outer 
flap, door,  and rudder. The DBTs reported upwards in a 

project organization mirroring the product hierarchy. 
Design was sent down to local sites for production. Parts 

were transported reversely for assembly. 
 

Geographical distribution of component 
manufacturing was the rule in the 777 project. The 
components discussed in this paper, shown above in 
Figure 5, were produced at distant sites. The doors were 
produced in Japan (by Mitsubishi) and one engine 
alternative in England (by Rolls Royce). Spars were 
produced by a subcontractor located 30 miles away from 

the wing assembly plant, but still, transportation of the 30 
meter long spar was somewhat cumbersome. As an aside, 
it can be noted that Boeing’s coming 787 model will have 
its entire wing assembled in Japan. Already the Airbus 
company transports fully assembled wings from England 
to the final assembly plant in France. 

The ACM curriculum for software engineering lists 
the following (and more) differences between software 
and the artifacts of classical manufacturing engineering: 
Software is intangible and logical (rather than physical), 
has no manufacturing, and maintenance is continued 
development (rather than dealing with wear and tear) 
(Joint Task Force, 2004). 

The major 777 components are of a physical nature, 
but remain, of course, constructed artificial objects (ie., 
artifacts), as opposed to objects that exist in nature.  

For software, the low cost of copying and distribution 
can be attributed to its fluid, logical nature. However, 
mass production of hardware for digital processing, 
storage, and communication is a prerequisite as well. 
Software’s fluid nature lends itself to low-cost copying by 
means of a tangible infrastructure of computers and 
networks. Distinguishing software from hardware context 
may be reminiscent of separating social and technical 
elements of a technology. A recurring theme in the theory 
of social construction of technology (SCOT) by Bijker 
and others is the insistence of a unified view of 
technology as both social and technical (Bijker, 1997).  

For the purpose of understanding the possible benefits 
of the waterfall approach of the 777 project, relevant 
properties of the aircraft’s component include such 
properties as weight, size, and cost of manufacturing. 
Reference to their physical nature, and to software as 
fluid, is informal and metaphorical. 

Boeing 777 

tail wing  engine 

ruddertrailing  edge door 

outer flap 

fuselage 

spar 

ANALYSIS (CONTINUED): ITERATION IN THE 
777 PROJECT AND DIGITAL DEVELOPMENT 

 wingbox 
Boeing referred to the 777 as the first fully digitally 

designed plane. This section first describes the role of the 
CAD tool CATIA in Boeing’s design process, and then 
discusses how this introduced iterative elements into the 
777 development process. 

Digitalized design 

 The 777 design was defined fully in digital form, 
and communicated digitally among participants, inside 
and outside of Boeing, rather than as paper drawings. The 
CATIA (Computer-graphics Aided Three-dimensional 
Interactive Application) CAD tool from Dassault and IBM 
included the following features:  

Animation could be done in three dimensions, for 
example showing the cockpit or a maintenance area from 
arbitrary points of view. The movement of some parts 
could also be simulated, for example opening of doors. 
Additionally, the CAD tool had analytical capability to 
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predict in an approximate manner various properties of a 
component, such as weight and strength of a piece of 
metal cut out in a certain way. A significant part of the 
CATIA tool’s analytic capabilities was the so-called 
digital pre-assembly feature. Pre-assembly is prediction in 
advance of actual assembly of whether parts will fit 
together. 

At one instance in March 1992, towards the end of 
the design phase, the pre-assembly feature was run on the 
most current design of the outer flap. The outer flap is a 
component of the wing’s trailing edge (see the component 
hierarchy in Figure 5 above). The purpose of the flap is to 
provide extra lift. This is useful at the lower speeds 
desirable for take off and landing. The flap is movable, 
and when moved out extends the wing to the rear and 
somewhat downwards; as higher speeds, the flap is rolled 
back into the wing’s trailing edge. 

When asked to check twenty major components of 
the outer flap, the system found 251 interferences between 
the components. A typical interference is a physical 
overlap, where two parts occupy the same physical space. 
There are also subtle inter-dependencies such as when a 
part extends into another part’s so-called swept volume. 
This is space surrounding a part that must be kept empty, 
for example to allow the part to be taken out for 
replacement without removing other parts to gain access. 

Detecting interference among parts in the outer flap 
by digital pre-assembly during the design phase allowed 
parts to be re-designed well ahead of actual assembly. 
Indeed digital pre-assembly was seen as crucial to get the 
design right before assembly, a key goal of Boeing’s 
phased approach. 

Analysis of digital pre-assembly 

Pre-assembly is  helpful because of the extremely 
high number of parts (in the order of 100.000). The 
designer of a part can not capture its possible inter-
dependencies with other parts. 

Digital pre-assembly of the 777 replaced a method of 
pre-assembly by physical mock-ups, which had been used 
previously, eg., on the 747 and the 767. The mock-ups 
were full scale, non-flying versions of the planes in easy 
to build materials, such as foam and plywood. Typically, 
three stages of mock-ups would be used, in increasing 
detail and using a larger share of real parts. Digital pre-
assembly allows for checking parts interference with 
greater accuracy. Also the digital processing allows for 
more frequent checking, since the time consuming 
physical construction of mock-ups is eliminated. 

Digital pre-assembly as practiced by the 777 
development project in several ways resemble iterative 
software development. 

Firstly, all design data was stored centrally, 
resembling a software project’s central repository 
containing the project’s development version in source 
form. 

Secondly, the central storage was easily accessible to 
designers, for inspection of the design of other parts. 
However CATIA ran on a cluster of central computers, 
whose computing power was as scarce resource, so an 
individual designer or team could not invoke frequent 
interference checking of proposed designs. Rather, 
interference checking of a component was done on a 
single variant of the design, the centrally stored variant. 

Thirdly, the project used digital pre-assembly in an 
iterative manner, comprising six rounds of design 
separated by six design freezes. Design freezes meant that 
designers were prohibited from entering new designs into 
the central store of the CATIA tool, a measure that 
spurred complaints from designers.  The only access 
allowed during design freeze was to insert changes to sort 
out parts interference. The repetitive design freezes in the 
777 project resembles design freezes in iterative  software 
development. In the latter, design freezes address the 
problem of overloading the development version of the 
software – it cannot be used for stabilization and new 
development simultaneously. Indeed, similarly as in the 
777 project, developers in Mozilla and FreeBSD have 
complained that design freezes was blocking their design 
work (Holck and Jørgensen, 2004). 

Vincenti in his account of aeronautics (Vincenti, 
1990) presents a theory of technological development in 
which a notion of vicarious modeling is central. This 
notion may be useful in characterizing digital pre-
assembly. A vicarious model evaluates a design without 
implementing it, thus optimizing the development process. 
For example, vicarious modeling of wing profiles can be 
by means of physical models (scaled down wings tested in 
a wind tunnel) and computer models (using computational 
fluid dynamics, CFD). A key element of technological 
progress, according to Vincenti, is the evolution of 
vicarious modeling to attain greater predictive power, as 
exemplified by the achievements of CFD. Vicarious 
modeling in Vincenti's sense applies to predictive 
evaluation of the external performance of a part or entire 
product, such as lift of a wing or drag of a full plane.  

Vincenti’s concept of vicarious modeling may be 
extended to the internal characteristics of an assembly, 
such as whether the parts of an assembly will overlap. 
Thus, the replacement of mock-ups with digital pre-
assembly is an evolution from a physical to a digital form 
of vicarious modeling of the assembly process. In 
geographically distributed development, the problem of 
assembling parts originating from diverse suppliers is of 
increasing importance, and so are efforts to improve the 
assembly process by modeling. 
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CONCLUSION 

 A walk through of the Boeing 777 project of 1986-95 
indicates that the project followed a waterfall life cycle. 
Long phases of conceptual and component design (each 2-
3 years) were followed by shorter phases of assembly and 
test (2.5 years in total). The project employed Design-
Build Teams and a discourse of cross-departmental 
cooperation, consistently with concurrent engineering. 

The phased 777 approach seems well suited to the 
nature of the aircraft components involved. The cost of 
their manufacture and worldwide transportation indicates 
the importance of getting design right before assembly. 
This should be added, of course, to the prohibitive risk of 
flying a preliminary aircraft prototype. The introduction of 
new software technology, most notably fly-by-wire, does 
not appear to outweigh the physical nature of the basic 
flight components. The plane appears to fit with Maier 
and Rechtin’s rule of thumb that hardware-centered 
technologies contains a 70% hardware part against a 30% 
software part (Maier and Rechtin, 2000, p 89). 

Digitalization of design influenced the 777 
development process. Digital pre-assembly introduced 
consecutive design freezes for stabilization of 
intermediate designs, as in iterative software development. 
Digital pre-assembly can be interpreted as an instance of 
vicarious modeling as in (Vincenti, 1990). Interestingly, 
the rationale of vicarious modeling is to predict during 
design, ie., the world-view of concurrent engineering. 

Even the 777 design of classical, physical parts such 
as fuselage doors witnessed iterative process elements, 
resulting in a build-up of re-design competencies. The 777 
project’s discourse of one-shot design did not address and 
support this, perhaps leaving room for improvement. This 
may be an indication that life cycle model does not follow 
fully from artifact nature, after all, and that flexibility-
oriented modifications as suggested in (Clark and Iansiti, 
1997) have a place even in the hardcore aircraft industry. 
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