
 Integrated Design and Process Technology, IDPT-2006
 Printed in the United States of America, June, 2006
 ©2006 Society for Design and Process Science

THE BOEING 777: DEVELOPMENT LIFE CYCLE FOLLOWS ARTIFACT

Niels Jørgensen

Roskilde University
Department of Computer Science,

Roskilde, Denmark

ABSTRACT

Iterative life cycle models have become popular in
software engineering, for example in agile development.
In contrast, the waterfall model appears to prevail in
manufacturing engineering disciplines. This includes
aircraft engineering and Boeing’s project for developing
its most recent passenger aircraft, the 777. The paper
walks through the phases of the 777’s development and
compares to iterative development. This suggests two
observations:

Response time

Firstly, the over-all waterfall approach in the 777
project appears to be well-motivated by the physical,
manufactured nature of aircraft components such as
wings, in addition to safety concerns.

Secondly, iterative elements in the development of
the 777 can also be identified. They appear to be related to
the digitalization of development, in particular using CAD
tools for a process called digital pre-assembly.

While the waterfall process elements were well
reflected in the project’s official discourse, the iterative
elements were seemingly adopted ad-hoc, which suggest
that their further exploration is worthwhile.

INTRODUCTION

Maier and Rechtin in their book on systems
architecting make several bold statements about life cycle
models, including “hardware is best developed with as
little iteration as possible, while software can (and often
should) evolve through much iteration” (Maier and
Rechtin, 2000, p 95). The present paper explores this and
related assertions about life cycle models and their
relevance for different domains of engineering. Life cycle
models considered are waterfall and iterative models. Two
highly simplified variants of these are shown in Figure 1.

The method of the paper is a case study of the
development from 1986 to 1995 of the Boeing 777.
Empirical data on the project is interpreted to indicate a
typical waterfall approach: development proceeded in
distinct phases and project organization was hierarchical
in a manner that reflected the aircraft’s hierarchical
decomposition into wings, fuselage, etc. Data on the
project’s discourse indicates a thinking inspired by the

waterfall-related discipline of concurrent engineering.
This includes the project’s use of the phrase design-build
teams for certain cross-functional teams. The main source
of empirical data is the detailed and extensive account of
the project in (Sabbagh, 1995).

Design

Implement

Response time

Design

Implement

Figure 1: Waterfall (above) vs. iteration (below). A
benefit of the iterative approach is the ability to respond

more quickly to design changes, and so adapt to changing
markets and technologies.

Analytically, focus is on the 777 project’s approach to

design changes, for example design reviews to ensure
decision in advance of transition to implementation
(waterfall), rather than soliciting design feedback to
prototypes (iteration). The analysis relates the approach to
the nature of the aircraft’s components using contra-
factual reasoning of the following common-sense sort.
Suppose (contrary to what happened) that the aircraft had
been developed iteratively; then delays would have
resulted from manufacturing sequences of modified
ailerons and transporting them oversees to Boeing’s
American assembly plant. Or, suppose there had been a
test flight of an early prototype; then this would have
posed a threat to the lives of the test pilots.

It is not surprising that a large aircraft such as the
Boeing 777 is developed using a waterfall life cycle
model. The approach has prevailed in the American
aerospace industry since around World War II (see eg.
Ziemke and Spann, 1993).

 1

In justifying a study of a project completed more than
ten years ago, firstly it can be observed that the Boeing
777 is in fact the most recently developed large passenger
aircraft in the world. (Boeing’s next model, the 787, is
scheduled for delivery in 2008, Airbus’ A380 in 2007.)

Secondly, aside from the forseeable waterfall
approach of the 777 project, the study identifies process
elements of an iterative sort. These were related to
digitalization of design, and indicates a relationship
between life cycle model and the software/hardware
distinction, as asserted by Maier and Rechtin (see the
quote above).

Thirdly, the pros and cost of waterfall and iterative
models remain disputed. The literature spans many views,
including the following two opposing, extreme views:
One is the life-cycle-follows-artifacts view of Maier and
Rechtin. The other is an all-round-model view. Several
studies emphasize the all-round usefulness of a particular
life cycle model. These include Auyang’s account of the
history of modern technology, which presents a phased,
waterfall-type development model as the engineering
method per se (Auyang, 2004). Symmetrically, Clark and
Iansiti in their analysis of product development strategies
in the 1990s, argue the universal usefulness of an iterative
model, in the software industry as well as in
manufacturing industries such as the automobile industry
(Clark and Iansiti, 1997).

Fourthly and finally, the present study may add
legitimacy to asking, in a small software development
project: Why should we use an approach suitable for a
nine year, multi-billion dollar aerospace project ?

The paper is organized as follows:
To provide background, a summary is given of

waterfall and iterative life cycle models, and of the
business context of the 777 project. The main empirical
part walks through the 777 project’s four development
phases. The analysis part first identifies and discusses
waterfall-type elements, and then iterative elements. A
final section concludes.

BACKGROUND: WATERFALL VS. ITERATIVE
LIFE CYCLES

The difference between waterfall and iterative life
cycle models is the ordering of development phases. In the
two-phase setting of Figure 1, waterfall models would
prescribe a single design-implement pass, while iterative
models would prescribe a repetitive ordering with design-
implement, design-implement, and so on. Many aspects
of life cycle models escape this simplification, of course.
For example, the waterfall variant first proposed for
software contained a feedback-loop to a previous phase
(Royce, 1970). However, for clarity the paper identifies
waterfall models with strictly phased models –
corresponding, by the way, to the effect gravity has on the
flow of water.

Waterfall life cycle models

Waterfall models have been justified with reference
to the tenet that design changes are the more costly the
later they are decided. Phil Condit, project manager of the
777 project (and later Boeing CEO) expressed this as “no
more chainsaws”. – Indeed one can imagine the
devastating effect of cutting up the fuselage of an almost
completed aircraft to fit a changed part (see Figure 2
below for an illustration in terms of time).

Design

Implement

Wasted time

Figure 2: A “chainsaw massacre” (indicated by hatched
boxes) may result from the iterative approach, if the

implementation is difficult to modify.

In the software engineering discipline, waterfall
models prevailed in the 1980s. A key argument in favor of
waterfall models is the ability to avoid costs of fixing
poorly designed code (Boehm, 1988). This is as opposed
to the code-and-fix approach presumably followed in the
early days of software. Boehm also credited the influence
of waterfall models in software engineering to their
emphasis on structure and planning.

In manufacturing engineering disciplines, the
literature of concurrent engineering provides an academic
basis for the waterfall approach. Concurrent engineering
can be defined as “simultaneous design of a product and
all its related processes in a manufacturing system” (Jo et
al., 1993, p 4). Concurrent engineering emphasizes design
for manufacture, design-for-assembly, and more
generally, design-for-x, where x is integration, test, and
other processes (ie., phases). This is as opposed to design
merely for end use. A major goal is avoiding redundant
costs, such as when a product design poses manufacturing
difficulties and thereby entails extra costs of
manufacturing or re-design (Smith, 1997). – Note that in
concurrent engineering, concurrency refers to designing
with a view to multiple phases, and to simultaneous
development of components (not to phase concurrency).

In aircraft engineering, key ideas of concurrent
engineering were dissemminated by the Lean Aerospace
Initiative (LAI). The process improvement effort at MIT
was initiated in the early 1990s, at the time of the Boeing
777 project. For example, statistical data was publicized
which showed that the design phase commits to two thirds
of the full life cycle costs of a product. Costs committed to
by design include costs incurred during manufacture,

 2

maintenance, etc. This suggests a holistic, design-for-X
approach to design (Murman et al., 2000). – In addition to
ideas related to concurrent engineering, the LAI
incorporated ideas from lean automobile production. This
is the Western implementation of ideas suggested to
explain the success of Toyota and other Japanese car
makers (Womack et al., 1991). This sense of lean includes
a general focus on cost reduction, as opposed to cost
reduction by design as in concurrent engineering. An
example is just-in-time delivery of parts for assembly, one
of many lean ideas which would appear to be independent
of the ordering of development phases.

Iterative life cycle models

Iterative models have been argued to enhance
flexibility, debugging, and enthusiasm in a product
development project.

Flexibility: In their analysis of the ‘browser war’
between Microsoft and Netscape in 1995-96, Clark and
Iansiti stress the companies’ ability to implement new
features in six to eight weeks, allowing them to adapt to
new user demands and new technologies (Clark and
Iansiti, 1997). The short response time relied on releasing
a series of browser prototypes, to the public (Netscape) or
internally (Microsoft). In terms of Figure 1, response time
is shortened because implementation provides an early
prototype; the prototype generates design feedback, and
its modular architecture facilitates the addition of new
features.

Debugging: McConnell in his book on rapid
development argues that an iterative approach may
support debugging during integration (McConnell, 1997).
When parts are integrated into larger parts, errors emerge;
their diagnosis is facilitated if the parts are added to a
development version which is always kept in a working
state. If adding a part entails a broken build or a failed
regression test, the part is diagnosed to be involved in
some interdependency problem. Implementation phases in
rapid development are organized in small increments
whose integration involve building and regressions testing
on a frequent basis, say daily.

Enthusiasm: Brooks mentioned a psychological
aspect of what he called growing of software:
“Enthusiasm jumps when there is a running system”
(Brooks, 1987, p18). Cusumano and Selby observed
similar effects of incremental development at Microsoft
(Cusumano and Selby, 1995). In an interview with this
author, a software developer of the FreeBSD operating
system said “.. there is a tremendous satisfaction to the
‘see bug, fix bug, see bug fix get incorporated so that the
fix helps others’ cycle” (Jørgensen, 2005). Analogously to
flexibility and debugging, a precondition is early
implementation, providing a working prototype which is
open for changes to be inserted and evaluated – and
enjoyed.

Choice of life cycle as depending upon artifact to be
developed

The choice of life cycle model is difficult because,
among other reasons, there is a multitude of possibly
relevant parameters:

- The independent variable side is the artifact to be
developed, represented perhaps by an initial specification;
here parameters include such factors as (estimations of)
the complexity of the artifact and the required design
effort. Perhaps this side includes also a project context in
terms of a pool of participants, their culture, etc.

- The dependent variable side is the life cycle model;
parameters include the specifics of the model, such as the
selection and ordering of phases, type of phase transitions
such as formal reviews, etc. See Figure 3 below.

These variables are difficult to define conceptually,
let alone quantify and measure. Empirical data is from
case studies that resist generalization. Difficulties increase
further when making assertions about artifact / life cycle
dependency across different engineering domains.

Artifact Life cycle model

Figure 3. Artifact to be developed as independent variable
and life cycle model as dependent variable.

In Maier and Rechtin’s discussion of the difference

between software-intensive systems and manufactured
hardware systems, three assertions can be identified
(Maier and Rechtin, 2000, Chapter Six), which detail the
assertion quoted in the introduction.

1. Hardware is best developed with as little iteration
as possible. The minimizes the relatively high costs of
physical production.

2. An iterative approach is possible with software.
Complementing the first assertion, this is due to the low
cost of software copying and distribution. Maier and
Rechtin focus on field upgrades, but the argument applies
to the development organization as well. For example,
iterative development at Netscape, Microsoft, and
FreeBSD rely on two modes of copying and (internal)
distribution: (1) the full system to the local site (for trial
integration of a new change), and (2) subsequently, the
change to the central unit (for final integration). The
approach is discussed further in (Holck and Jørgensen,
2004).

3. Software can be designed with a modular
architecture, which facilitates iterative development. This
is as opposed to hierarchical product architecture, where a
system is composed of subsystems and so on recursively.
While software can also be designed hierarchically, its
flexibility allows for alternatives. Examples of non-

 3

hierarchical software architectures given by Maier and
Rechtin include layered and object-oriented structures.

In the software engineering literature, two further
assertions are of interest. For a summary of the life cycle
models and the five assertions, see Table 1 below.

4. An iterative approach is suitable (only) if there is
already an established design. The availability of a sound
design was suggested by McConnell as an explanation of
the success of the Linux project’s iterative approach
which, had no dedicated design phase. “By the time Linux
came around [..] architecture defects had already been
flushed out during the development of many previous
generations of Unix” (McConnell, 1999). This argument
may not apply to iterative approaches per se, and in
particular not to Boehm’s iterative and structured model,
the spiral model (Boehm, 1988).

5. An iterative approach is suitable (only) if the
project is of limited size. For example, Kenn Beck,
coauthor of the agile manifesto (Beck, 2001) argues that
extreme programming (XP) with its iterative approach is
not appropriate for projects of (approximately) 20 or more
developers. Beck asserts that the integration of all changes
into a single development version is XP’s scaling
bottleneck (Beck, 2000). Similarly, the present author’s
study of FreeBSD indicated that in phases of intense
development, the project’s development version was
overloaded. The high number of changes inserted led to
failed builds, so that frequently there would be no
updated, working prototype. This eroded the advantages
of debugging and enthusiasm (Jørgensen, 2005). A
waterfall approach provides the alternative of staged
integration, ie., unit integration, component integration,
etc. This limits the number of parts which are assembled
with each other in each stage.

 Waterfall Iterative
Phase

ordering
One pass Multiple passes

Advantages
Handles complex design
problems; design-for-X
reduces cost

Flexibility;
debugging;
enthusiasm

Typical
application

Manufactured
technologies

Software-
centered
technologies

Limited
application

Markets with rapidly
changing requirements

Large projects;
new, complex
design problems

Table 1. Summary of waterfall vs. iteration.

BACKGROUND (CONTINUED): THE BUSINESS
CONTEXT OF THE BOEING 777 DEVELOPMENT
PROJECT

The first Boeing 777 was delivered to United Airlines
in May 1995 and entered commercial service the

following month. The previous major model, the 767,
entered service in 1982. In addition to new major models,
the company also develops model variants. Model variants
are introduced more frequently and include for example
the 747-400, a variant of the 747 (Jumbo jet) which
entered service in 1989 and had an improved wing design.

Work on the 777 commenced in 1986 as a builder-
initiated project, to use a term from (Maier and Rechtin,
2000). The nine year time span from initiation to first
delivery is an indication of the long-term nature of the
huge investments made by Boeing, and the pressure to
shorten and optimize the development process.

The period in which the 777 was developed witnessed
fierce competition in the aircraft industry. At project
initiation, mergers had left only two other suppliers of big
commercial airplanes, McDonnell and Airbus.
(McDonnell merged with Boeing in 1997.) Competition
intensified when military budgets were cut upon the end
of the Cold War around 1989. Privatization of airlines
since the 1980s made them less loyal to local,
government-supported aircraft suppliers. Competition also
intensified when aircraft were offered with a choice of
engine supplier. Then an airline could choose freely
among aircraft suppliers and still retain a single engine
supplier with a familiar maintenance program.

The end result for Boeing was an imperative to
compete on cost and performance. The aircraft market
may not be as dynamic as the web browser market in
terms of new user requirements, but a flexible
development process would still be needed to manage the
integration of new technologies to achieve ends related to
cost and performance. This is analogous to browser
suppliers integrating new technologies into their products,
to ensure inter-operation with new document and resource
formats, scripting languages, operating systems, etc.

EMPIRICAL DATA ON BOEING 777’S PHASED
DEVELOPMENT

The two main phases in the 777 project can be said to
be design and build, corresponding to the concepts design
and implement of Figures 1 and 2. The concepts of design
and build were central in the project’s own terminology,
most notably in the name Design-Build Teams. Design-
Build Teams (DBTs) was the key forum for making
design decisions. There was a DBT for every component
of some complexity, totaling approximately 250 teams.
For example there was a passenger door DBT and a cargo
door DBT.

The Design-Build Teams were cross-departmental,
comprising both design engineers, manufacturing
engineers, maintenance engineers, and others from
Boeing, as well as representatives from subcontractors and
customer airlines. The idea was understood as one of
avoiding departmentalization, where designers would
throw designs over the wall to manufacturers. Instead,

 4

designers should involve manufacturing people and use
their knowledge. This is a straightforward application of
design-for-x principles of concurrent engineering.

More specifically, four development phases of the
777 can be identified: Conceptual Design and Component
Design as subphases of design, and Assembly and Test as
subphases of build (See Figure 4). The four phases are
identified for the purpose of the presentation, and do not
reflect an explicitly stated Boeing development process.

Figure 4: The four phases of the 777 project.

Phase 1. Conceptual design, 1986 – October 90: From
derivative to independent model.

Work on the 777 began with Boeing’s investigation
of how the company could enter an emerging segment of
passenger aircraft: the segment between the company’s
747 (Jumbo jet) and its second-largest model, the 767.
Aircraft in this segment should have the capacity to carry
300-400 passengers on long distance flight. Boeing’s two
competitors, Douglas and Airbus, were developing their
own products for the segment.

 Initially the plan was to develop an enlarged version
of the 767. In 1988 the company decided to go for an all-
new design. Requirements had accumulated to above of
what could be meet by the evolutionary approach.

The over-all configuration of the 777 comprised two
engines, two aisles, and fly-by-wire. The 777 is Boeing’s
first plane where pilots would control rudder and wing
flaps electronically. Additionally, the conceptual design
comprised the size, shape, and materials used for major
components such as the wings. Conceptual design can be
viewed as effectively frozen in October 1990, when
United Airlines ordered 34 planes at a price of
approximately 100 million usd each. The contract also
stated requirements pertaining to parameters such as load,
cabin and seat space, speed, and fuel consumption.

Phase 2. Component design, October 1990 - January
1993: The door hinge design change.

Components were designed in-house at Boeing
except for two major exceptions, namely the engines
(developed by three alternative subcontractors) and the
main IT-system (developed by Honeywell).

The door design was an example of the 777 project’s
focus on reducing the number of design changes, as
compared to the previous model, the 767. More than
13.000 design changes had been made to the design of the
predecessor’s doors. The company estimated the cost of
these to 64 mill. usd, which is of the order of half the sales
prize of a full plane. The goal was to reduce the number of
changes by more than 50%. In itself, perception of design
changes as poor design indicates a waterfall approach, as
noted in (Clark and Iansiti, 1997, p 110).

Conceptual
design

Component
design

Boeing’s design of the 777’s passenger doors had to
take a set of partly conflicting requirements into account,
indicating the complex nature of the design task. Doors
are subject to generic constraints pertaining to weight and
outer surface smoothness. Specific requirements include a
closing mechanism to prevent opening during normal
flight, sealing to prevent loss of cabin air pressure, and
strength of the door as a whole to withstand the force
exerted by cabin air pressure. The force amounts to 15
metric tons, given the area of the door and including a
safety margin. At the same time, the door must open
easily on ground, even by not so strong hands with long
fingernails.

Assembly

Test

The main strategy pursued to attain the goal of
reducing assembly-phase and test-phase changes to the
door design was to use a common base of parts.
Eventually the passenger doors would use 98% common
parts. This was seen as a major achievement because the
shape of the doors are not the same. (The doors sit in the
fuselage at places where it has different diameters.)

The design of a single door hinge for use in all
passenger doors evolved in three rounds. In the first
round, a single common hinge was designed during three
months of design work, including a nearby give-up. Then
the fuselage shape was altered (for reasons related to the
plane’s overall aerodynamic performance), implying a
change of the door’s shape, and in turn, a different door
hinge. Now the hinge re-redesign took one month. A
second fuselage re-design spurred a third round of hinge
design, this time in one week. The chain of events was
reflected on by the engineers involved as a process of
build-up of competence to react to changed requirements.

Phase 3. Assembly, January 1993 - March 1994: The
rudder design change.

Wing assembly started at Boeing’s factory in Everett,
Seattle, in January 1993. The largest section of the wing is
the wingbox, which extends from fuselage to wing tip,
and to which two other components are added, the leading

 5

(front) edge and the trailing (rear) edge. Among the parts
that go into the wingbox assembly are a front and a rear
spar, which span the full length of the box, and a large
number of ribs, which connect the spars, and an outer
surface of aluminum plates.

Other parts than the wing box would be assembled
later or earlier, so the suggested assembly start date is
somewhat arbitrary. For example, the spars themselves
had been assembled before they were built into the wing
box, of course.

Assembly is intertwined with what may be called unit
process fabrication (Whitney, 2004). This is processing of
individual parts, for example the process of shot-peening
of wing skin sections. Shot-peening shoots swarms of
small metal balls onto the aluminum skin plates, to harden
the plates and give them the correct, curved form.

Advanced machine tools were widely used to
automate assembly. To the extent that a tool for a part
depends on the detailed design of the part, assembly must
await completion of the tool. For example, assembly of
the rudder was carried out by an Australian subcontractor
(ASTA), using special-purpose tools designed by the
subcontractor. Just before Boeing committed to a final
rudder design in January 94, the design was changed
substantially. The rudder design change entailed design
changes of more than 600 special-purpose tools, many of
whom had already been completed, based on the
preliminary design. The underlying goal of the design
change was performance: the rudder needed to transmit a
larger force to the fuselage, balancing the plane in case
one of its twin engines would fail during take-off, when
thrust of the new, powerful engines would be at the
maximum.

In contrast, tools used in software development, such
as IDEs (Integrated Development Environments) are more
universal, and less dependent upon design changes of the
product.

Phase 4. Test, March 1994 - June 1995: Engine
backfire.

The first plane was weighted on 18th March, 1994.
This can be seen as the first major test of the plane. The
assembled plane’s weight was a key performance
parameter. (The test showed 135 metric tonnes against a
predicted value of 132.) The first test flight was June 12,
1994, followed by a full year of flight testing.

The engine was flight tested before the 777 was
flown. One of the goals of engine testing was to have the
777 acquire a so-called 180 minutes certification prior to
first delivery. Boeing had promised customers that the
plane would be certified by authorities (the US Federal
Aviation Agency, FAA) for routes taking the plane up to
three hours away from the nearest airport, as calculated on
the basis of performance with only a single functioning
engine. Previously such certification had been granted
only on the basis of engine reliability data from

commercial service. To speed up engine testing, an engine
from Pratt & Whitney, of the type to be fitted on the
firstly delivered 777, was fitted to an old 747. This was in
November 93 when the first 777 was still in assembly.
The test actually revealed a serious flaw causing engine
behavior reminiscent of “backfiring” (a so-called engine
surge). Flight testing on the 747 provided more time for
Pratt & Whitney's engine re-design than if flight testing
had awaited the readiness of the 777 for flight.

In summary, the development of the 777 was
essentially phased, reflecting a “one shot” strategy of
avoiding design changes after completion of the design
phase. Table 2 below summarizes three design changes
discussed above. The first change (of the door hinge)
occurred inside the design phase, and so was consistent
with the strategy, while the two others were of the post
festum type.

Phase where

design change
occurred

Design
change of

Approach to reduction
of cost of change

2. Component
design Door hinge Competency build-up in

three rounds of re-design

3. Assembly Rudder Cost of tool re-design
deferred to sub-contractor

4. Test Engine Early detection by flight
testing on old plane

Table 2. Summary of three design changes in phases 2-4,

their causes, and methods to reduce their cost.

ANALYSIS: THE WATERFALL 777 APPROACH
AND THE PHYSICAL NATURE OF COMPONENTS

Components of an aircraft such as wing and rudder
are artifacts of a physical nature. This section discusses
how this nature lends itself towards a phased development
process. Each component exemplar represents a value,
reflecting its manufacturing cost. There is also a cost
associated with transporting a component from the place
of its assembly to the place where it is assembled into a
larger component. In contrast, the cost of copying and
distributing a software artifact is negligible.

The significance of the cost of individual exemplars
of a component is illustrated by the 777 wing testing.
Wing testing culminated in January 1995 with the so-
called snap test, a year into the test phase. The wing is
required to withstand a load corresponding to the plane’s
weight plus an additional 150%. In a controlled, indoor
environment, an increasing force is applied to lift the wing
tips higher and higher, while the fuselage remains in a
fixed position. Eventually something breaks. In the snap
test, the wing broke at 157%, yielding a successful test.

 6

The wing snap test, being a destructive test, required
a plane taken out of the production line of the first series
of planes. Both wings of the test plane broke and were
rendered useless, except for providing data about the
breakage. (Even if the snap test had been aborted just
above the 150% level, the wings would already have been
deformed.)

The cost of a broken aircraft wing greatly exceeds
those of a broken build of a software project. The
information provided by a build breakage (namely that a
module added since the previous successful build has
introduced an error) incurs a loss of development time
only. Broken software builds during development do not
destroy physical products, let alone costly products such
as wings of a 100 mill. usd aircraft.

The significance of the cost of component
transportation is indicated by the first rudder delivery in
August 1994 to the main assembly site in Seattle. The first
rudder was flown in using a 747 freighter (into which it
would just fit), to save five weeks of seaway
transportation (as used subsequently). Even though there
remained a full seven months to assembly completion and
11 months to first flight (see Phase 4 above), presence of
the rudder at the assembly site was essential for the time
plan. This indicates the relevance of the “one-shot”
approach. An iterative approach to fitting the rudder onto
the plane’s tail is prohibited in these circumstances, if
such an approach requires awaiting the arrival of modified
rudders.

Figure 5: Hierarchical product view of the B777. There
was a separate Design-Build Team (DBT) for spar, outer
flap, door, and rudder. The DBTs reported upwards in a

project organization mirroring the product hierarchy.
Design was sent down to local sites for production. Parts

were transported reversely for assembly.

Geographical distribution of component
manufacturing was the rule in the 777 project. The
components discussed in this paper, shown above in
Figure 5, were produced at distant sites. The doors were
produced in Japan (by Mitsubishi) and one engine
alternative in England (by Rolls Royce). Spars were
produced by a subcontractor located 30 miles away from

the wing assembly plant, but still, transportation of the 30
meter long spar was somewhat cumbersome. As an aside,
it can be noted that Boeing’s coming 787 model will have
its entire wing assembled in Japan. Already the Airbus
company transports fully assembled wings from England
to the final assembly plant in France.

The ACM curriculum for software engineering lists
the following (and more) differences between software
and the artifacts of classical manufacturing engineering:
Software is intangible and logical (rather than physical),
has no manufacturing, and maintenance is continued
development (rather than dealing with wear and tear)
(Joint Task Force, 2004).

The major 777 components are of a physical nature,
but remain, of course, constructed artificial objects (ie.,
artifacts), as opposed to objects that exist in nature.

For software, the low cost of copying and distribution
can be attributed to its fluid, logical nature. However,
mass production of hardware for digital processing,
storage, and communication is a prerequisite as well.
Software’s fluid nature lends itself to low-cost copying by
means of a tangible infrastructure of computers and
networks. Distinguishing software from hardware context
may be reminiscent of separating social and technical
elements of a technology. A recurring theme in the theory
of social construction of technology (SCOT) by Bijker
and others is the insistence of a unified view of
technology as both social and technical (Bijker, 1997).

For the purpose of understanding the possible benefits
of the waterfall approach of the 777 project, relevant
properties of the aircraft’s component include such
properties as weight, size, and cost of manufacturing.
Reference to their physical nature, and to software as
fluid, is informal and metaphorical.

Boeing 777

tail wing engine

ruddertrailing edge door

outer flap

fuselage

spar

ANALYSIS (CONTINUED): ITERATION IN THE
777 PROJECT AND DIGITAL DEVELOPMENT

 wingbox
Boeing referred to the 777 as the first fully digitally

designed plane. This section first describes the role of the
CAD tool CATIA in Boeing’s design process, and then
discusses how this introduced iterative elements into the
777 development process.

Digitalized design

 The 777 design was defined fully in digital form,
and communicated digitally among participants, inside
and outside of Boeing, rather than as paper drawings. The
CATIA (Computer-graphics Aided Three-dimensional
Interactive Application) CAD tool from Dassault and IBM
included the following features:

Animation could be done in three dimensions, for
example showing the cockpit or a maintenance area from
arbitrary points of view. The movement of some parts
could also be simulated, for example opening of doors.
Additionally, the CAD tool had analytical capability to

 7

predict in an approximate manner various properties of a
component, such as weight and strength of a piece of
metal cut out in a certain way. A significant part of the
CATIA tool’s analytic capabilities was the so-called
digital pre-assembly feature. Pre-assembly is prediction in
advance of actual assembly of whether parts will fit
together.

At one instance in March 1992, towards the end of
the design phase, the pre-assembly feature was run on the
most current design of the outer flap. The outer flap is a
component of the wing’s trailing edge (see the component
hierarchy in Figure 5 above). The purpose of the flap is to
provide extra lift. This is useful at the lower speeds
desirable for take off and landing. The flap is movable,
and when moved out extends the wing to the rear and
somewhat downwards; as higher speeds, the flap is rolled
back into the wing’s trailing edge.

When asked to check twenty major components of
the outer flap, the system found 251 interferences between
the components. A typical interference is a physical
overlap, where two parts occupy the same physical space.
There are also subtle inter-dependencies such as when a
part extends into another part’s so-called swept volume.
This is space surrounding a part that must be kept empty,
for example to allow the part to be taken out for
replacement without removing other parts to gain access.

Detecting interference among parts in the outer flap
by digital pre-assembly during the design phase allowed
parts to be re-designed well ahead of actual assembly.
Indeed digital pre-assembly was seen as crucial to get the
design right before assembly, a key goal of Boeing’s
phased approach.

Analysis of digital pre-assembly

Pre-assembly is helpful because of the extremely
high number of parts (in the order of 100.000). The
designer of a part can not capture its possible inter-
dependencies with other parts.

Digital pre-assembly of the 777 replaced a method of
pre-assembly by physical mock-ups, which had been used
previously, eg., on the 747 and the 767. The mock-ups
were full scale, non-flying versions of the planes in easy
to build materials, such as foam and plywood. Typically,
three stages of mock-ups would be used, in increasing
detail and using a larger share of real parts. Digital pre-
assembly allows for checking parts interference with
greater accuracy. Also the digital processing allows for
more frequent checking, since the time consuming
physical construction of mock-ups is eliminated.

Digital pre-assembly as practiced by the 777
development project in several ways resemble iterative
software development.

Firstly, all design data was stored centrally,
resembling a software project’s central repository
containing the project’s development version in source
form.

Secondly, the central storage was easily accessible to
designers, for inspection of the design of other parts.
However CATIA ran on a cluster of central computers,
whose computing power was as scarce resource, so an
individual designer or team could not invoke frequent
interference checking of proposed designs. Rather,
interference checking of a component was done on a
single variant of the design, the centrally stored variant.

Thirdly, the project used digital pre-assembly in an
iterative manner, comprising six rounds of design
separated by six design freezes. Design freezes meant that
designers were prohibited from entering new designs into
the central store of the CATIA tool, a measure that
spurred complaints from designers. The only access
allowed during design freeze was to insert changes to sort
out parts interference. The repetitive design freezes in the
777 project resembles design freezes in iterative software
development. In the latter, design freezes address the
problem of overloading the development version of the
software – it cannot be used for stabilization and new
development simultaneously. Indeed, similarly as in the
777 project, developers in Mozilla and FreeBSD have
complained that design freezes was blocking their design
work (Holck and Jørgensen, 2004).

Vincenti in his account of aeronautics (Vincenti,
1990) presents a theory of technological development in
which a notion of vicarious modeling is central. This
notion may be useful in characterizing digital pre-
assembly. A vicarious model evaluates a design without
implementing it, thus optimizing the development process.
For example, vicarious modeling of wing profiles can be
by means of physical models (scaled down wings tested in
a wind tunnel) and computer models (using computational
fluid dynamics, CFD). A key element of technological
progress, according to Vincenti, is the evolution of
vicarious modeling to attain greater predictive power, as
exemplified by the achievements of CFD. Vicarious
modeling in Vincenti's sense applies to predictive
evaluation of the external performance of a part or entire
product, such as lift of a wing or drag of a full plane.

Vincenti’s concept of vicarious modeling may be
extended to the internal characteristics of an assembly,
such as whether the parts of an assembly will overlap.
Thus, the replacement of mock-ups with digital pre-
assembly is an evolution from a physical to a digital form
of vicarious modeling of the assembly process. In
geographically distributed development, the problem of
assembling parts originating from diverse suppliers is of
increasing importance, and so are efforts to improve the
assembly process by modeling.

 8

CONCLUSION

 A walk through of the Boeing 777 project of 1986-95
indicates that the project followed a waterfall life cycle.
Long phases of conceptual and component design (each 2-
3 years) were followed by shorter phases of assembly and
test (2.5 years in total). The project employed Design-
Build Teams and a discourse of cross-departmental
cooperation, consistently with concurrent engineering.

The phased 777 approach seems well suited to the
nature of the aircraft components involved. The cost of
their manufacture and worldwide transportation indicates
the importance of getting design right before assembly.
This should be added, of course, to the prohibitive risk of
flying a preliminary aircraft prototype. The introduction of
new software technology, most notably fly-by-wire, does
not appear to outweigh the physical nature of the basic
flight components. The plane appears to fit with Maier
and Rechtin’s rule of thumb that hardware-centered
technologies contains a 70% hardware part against a 30%
software part (Maier and Rechtin, 2000, p 89).

Digitalization of design influenced the 777
development process. Digital pre-assembly introduced
consecutive design freezes for stabilization of
intermediate designs, as in iterative software development.
Digital pre-assembly can be interpreted as an instance of
vicarious modeling as in (Vincenti, 1990). Interestingly,
the rationale of vicarious modeling is to predict during
design, ie., the world-view of concurrent engineering.

Even the 777 design of classical, physical parts such
as fuselage doors witnessed iterative process elements,
resulting in a build-up of re-design competencies. The 777
project’s discourse of one-shot design did not address and
support this, perhaps leaving room for improvement. This
may be an indication that life cycle model does not follow
fully from artifact nature, after all, and that flexibility-
oriented modifications as suggested in (Clark and Iansiti,
1997) have a place even in the hardcore aircraft industry.

REFERENCES

Auyang, S.Y., 2004. Engineering - an Endless
Frontier. Harvard University Press, Cambridge, MA.

Beck, K., 2000. Extreme Programming Explained.
Addison-Wesley, Reading, Massachusetts.

Beck, K., et al., 2001. Manifesto for Agile Software
Development. URL: http://www.agilemanifesto.org/.

Bijker, W.E., 1997. Of Bicycles, Bakelites, and Bulbs
– Towards a Theory of Sociotechnical Change. MIT
Press, Cambridge, Massachusetts.

Boehm, B.W., 1988. A Spiral Model of Software
Development and Enhancement, Computer 21 (5), May:
61-72.

Brooks, F.P., 1987. No Silver Bullet. Essence and
accidents of software engineering. IEEE Computer, April:
10-19.

McConnell, S., 1996. Rapid Development. Microsoft
Press, Redmond, Washington.

– , 1999. Open-Source Methodology: Ready for
Prime Time ? IEEE Software, 16 (4), 6-11.

Cusumano, M.A., and Selby, R., 1995. Microsoft
Secrets. Free Press, New York.

Holck, J. and Jørgensen, N. 2004. Do Not Check in
on Red: Control Meets Anarchy in Two Open Source
Projects. Stefan Koch (ed), Free/Open Source Software
Development. Idea Group Publishing, Hershey, PA, USA:
1-26.

Iansiti, M. and MacCormack, A., 1997. Developing
Products on Internet Time, Harvard Business Review, 75
(Sep-Oct): 108-117.

Jo, H.H., Parsaei, H.R., and Sullivan, W.G., 1993.
Principles of Concurrent Engineering. Parsaei and
Sullivan (eds), Concurrent Engineering. Chapman & Hall,
London.

Joint Task Force on Computing Curricula, 2004.
Software Engineering 2004. ACM and IEEE. URL: http://
www.computer.org/education/cc2001/SE2004Volume.pdf

Jørgensen, N., 2005. Incremental and decentralized
integration in FreeBSD. In Feller, J., et al. (eds),
Perspectives on Free and Open Source Software, MIT
Press, Cambridge, Massachusetts, USA: 227-243.

Maier, M.E. and Rechtin, E., 2000. The Art of
Systems Architecting (2nd ed.), CRC Press, Boca Raton,
FL.

Murman, E.M., Walton, M., and Rebentisch, E.,
2000. Challenges in the Better, Faster, Cheaper Era of
Aeronautical Design, Engineering and Manufacturing.
Aeronautical Journal, 104 (October): 481-489.

Nolan, P., and Zhang, J., 2002. The Challenge of
Globalization for Large Chinese Firms. World
Development, 30 (12): 2089-2107.

Royce, W. W., 1970. Managing the Development of
Large Software Systems: Concepts and Techniques,
Proceedings of IEEE WESCON, August: 1-9.

Sabbagh, K., 1995. 21st Century Jet. The Making of
the Boeing 777, Macmillan, London.

Smith, R.P., 1997. The Historical Roots of
Concurring Engineering Fundamentals. IEEE
Transactions on Engineering Management, 44 (1),
February: 2-13.

Vincenti, W.G., 1990. What Engineers Know and
How They Know it. Analytical Studies from Aeronautical
History. Johns Hopkins University Press, Baltimore, MD.

Whitney, D.E., 2004. Mechanical Assemblies, Oxford
University Press, New York.

Womack, J.P., Jones, D.T., and Ross, D., 1991. The
Machine That Changed the World: The Story of Lean
Production. Harper, New York.

Ziemke, M.C., and Spann, M.S., 1993. Concurrent
Engineering’s Roots in the World War II Era. Parsaei and
Sullivan (eds), Concurrent Engineering. Chapman & Hall,
London.

 9

http://www.agilemanifesto.org/

