
2005 — Twenty-Sixth International Conference on Information Systems 337

THE ENGINEERING OF SOFTWARE:
VIEWS FROM TECHNOLOGY THEORY

Niels Jørgensen
Roskilde University
Roskilde, Denmark

nielsj@ruc.dk

Abstract

Parnas’ information hiding approach to software modularization (Parnas 1972) is one of many indications that
knowledge in software engineering cannot be adequately understood merely as “technical knowledge.” Rather,
insight into process issues such as coordination among module developers is also a constituent of such
knowledge. With the aim of contributing to a broader interpretation of software engineering and its underlying
epistemology, three views of technology are surveyed. The first is Shaw’s theory of the immaturity of computer
science as a supporting discipline of software practice, as sketched initially in “Prospects for an Engineering
Discipline of Software” (Shaw 1990). The second is Vincenti’s theory of vicarious models and technological
evolution, based on his study of aeronautics in What Engineers Know and How They Know it (Vincenti 1990).
The third is Simon’s interdisciplinary account of design in The Sciences of the Artificial (Simon 1996). The
result of the survey is, on the one hand, that none of the three contributions account convincingly for a
significant role in engineering for insights of a qualitative, process-oriented nature. On the other hand, the
three studies of the relationship between scientific and engineering knowledge contain significant pointers for
future research of the interplay between technical and process-oriented aspects of the construction of software
artifacts. This includes the significance of codification of standard solutions to routine problems, of vicarious
modeling to predict the behavior of proposed designs, and of satisficing (find a design that works) as opposed
to optimizing (find the best design).

Keywords: Software engineering, technology theory, module, technical knowledge, process

Introduction

Technical rationality is frequently viewed as an appropriate epistemology of computing’s technical core, including the practical
activity of programming and the theory of programming languages. The view is common both within technical and nontechnical
communities. The 1989 ACM curriculum report (Denning et al. 1989) emphasized quantitative and formal knowledge, for
example by defining computing as based on three paradigms: theory, rooted in mathematics; abstraction, rooted in (natural)
science; and design, rooted in engineering. Also, proponents of soft methods for information systems development and their
underlying epistemologies, radically different from technical rationality, tend to accept a technical rationality for the technical
core premise. For example, Dahlbom and Mathiassen (1997) contrasted a mechanical and a romantic view, and argued that both
were relevant and legitimate views, corresponding to engineering of artifacts versus facilitation of evolution and culture in
organizations, respectively. Similarly, Avison et al. (1998), in arguing for the need to go beyond traditional, programming-based
approaches to IS development, identified technical rationality as the epistemological basis of the original programming methods,
such as object-oriented and structured programming.

However, in the history of software engineering and software architecture, there are indications of intimate interplay between
technical and people issues. These include Parnas’ (1972) definition of a software module as “a responsibility assignment rather
than a subprogram” (p. 1054). With reference to Schön’s (1983) postulate of a “rigor and relevance” dilemma, one may say that
such considerations are not rigorous in the sense of quantifiable and formal, yet relevant in the technical construction of software
artifacts. If this is true for a substantial part of the technical areas of computing, it seems reasonable to challenge the exclusive

mailto:nielsj@ruc.dk

Philosophy and Research Methods in Information Systems

338 2005 — Twenty-Sixth International Conference on Information Systems

rights of technical rationality to account for technical knowledge in computing. The present study attempts to shed light on the
nature of technical knowledge in computing by drawing on three contributions from the emerging academic field of technology
theory.

Mitcham, in his Thinking Through Technology (1994), distinguishes between two major approaches to the theory of technology:
engineering philosophy of technology and humanities philosophy of technology. The former is an analytical approach originating
within the technological and engineering communities, the latter an interpretative approach rooted in the social sciences and the
humanities. A common denominator is rejection, as in Layton’s “Technology as Knowledge” (1974), of reductionism in the sense
of viewing technology as merely applied science; such a view may underestimate the importance of technological knowledge,
distinct in form and origin from scientific knowledge, as well as social and other processes that shape nonlinear, nondeterministic
paths of technological development. Aside from addressing such issues in research, there is promotion in educational institutions
of the study of technology, as in Science, Technology and Society (STS) programs, and attempts to counter views of technology
as academically subordinate to (natural) science. Indeed, it would be in line with these endeavors if the notion of software
engineering could be freed of its mechanical, nonintellectual, and nerdy connotations.

The use of technology theory may supplement, and can indeed be seen as analogous to, the use of philosophy of science to shed
light on information technology and information systems research. An example of the latter is Hirschheim and Klein’s (1989)
investigation of IS development paradigms, as defined in terms of concepts from the philosophy of science such as objectivism
and subjectivism. A third type of investigation across different technological domains can be found in innovation theory, as in
Rogers’ (1995) stage model of the diffusion of innovations, and King’s (1996) comparison of computerization and electrification
in terms of productivity benefit, or lack thereof.

The three studies of science and engineering surveyed here fall within Mitcham’s category of engineering philosophy of
technology. The studies focus on analytical topics such as the role of knowledge in engineering; they ask epistemological
questions such as what sort of knowledge is relevant to engineering and where does it come from? The studies tend to focus on
design in a constructive, engineering sense, as opposed to design in the sense of uncovering user needs. Specifically, Shaw’s
(1990) and Vincenti’s (1990) studies rely on deep insights into the specific engineering fields of software and aircraft,
respectively. Simon’s (1996) account of design is interdisciplinary but focuses, as do the two others, on the inner structures of
artificial systems and their construction. Surveying a selection of contributions sharing the same (analytical) approach facilitates
reasoning across the contributions; it does not reflect a rejection of other (interpretative) approaches such as social constructivism,
for example Pinch and Bijker’s (1987) analysis of the early design history of the bicycle.

The result of the survey is, on the one hand, that none of the three contributions account convincingly for a significant role of
insights of a qualitative, process-oriented nature in software engineering and architecture. On the other hand, the three studies
contain significant pointers for future research of the interplay between technical and process-oriented aspects of the construction
of software artifacts. This includes the significance of codification of standard solutions to routine problems (Shaw 1990), of cost-
saving, vicarious modeling to predict the behavior of proposed designs (Vincenti 1990), and of satisficing (find a design that
works) as opposed to optimizing (find the best design) (Simon 1996).

The present study employs software modularization, and more generally software architecture, as an example technical
(sub)discipline. The nature (technical and other) of the field of software architecture may in itself be of significance to the
Information Systems discipline, because the understanding of the nature of the field may be important for how it is taught at
universities and business schools. The overall architecture of a system in a sense links the acquiring and the developing party,
that is, the two target professional roles sketched in the IS curriculum: “acquisition, deployment, and management of it resources
and services” versus “system development, system operation, and system maintenance” (Gorgone et al. 2002, p. 11). Both roles
or sides of the negotiation table should understand software architecture and be able to communicate about it.

The paper is organized as follows: The next section recapitulates Parnas’ concept of information hiding. The subsequent sections
survey Shaw’s, Vincenti’s, and Simon’s theories of science and engineering. In the final section, the conclusions are presented.

Parnas’ Concept of Information Hiding

David Parnas’ concept of information hiding addresses the software architectural problem of how to decompose a software system.
Parnas’ work is also interesting because it is early, widely acknowledged, and motivates information hiding by a rationale which
is essentially process-oriented rather than technical. The term process is used here in the sense of activities and mechanisms for

Jørgensen/Views from Technology Theory

2005 — Twenty-Sixth International Conference on Information Systems 339

coordination in an organization conducting software development; the notion of insight and research results of a qualitative nature
is discussed later.

Software architecture can be defined as “the principled study of the overall structure of software systems, especially the relations
among subsystems and components” (Shaw 2001, p. 657). Examples of software structures include client-server structures,
generic class structures captured by design patterns, and the organization of networks into stacks of layered protocols. Software
architecture also comprises the methods of communication and invocation among subsystems, such as message passing and
procedure calls. Thus software architecture comprises the overall technical design of a software system.

Parnas (1972) suggested information hiding as the key decomposition criterion. The setting was a hypothetical team of software
developers given the task of creating a program to meet certain requirements, starting out by defining a modular structure.

Parnas defined information hiding as the hiding of design decisions, for instance the details of a data structure and the procedures
to access it. Recently, Parnas (1998) provided an up-to-date example: he claimed that there would have been no year 2000
problem if his idea had been widely accepted in practice; that is, if a program’s data structure for representing a date is hidden
within a single module, then checking the program for a Y2K error can be done by working with essentially just that module, and
would not require inspection of the entire program for locally defined data structures for dates.

Parnas (1972) mentioned flexibility, comprehensibility, and shortening of development time as the three underlying goals. For
example, development time could be reduced because modules could be worked on independently. All three goals are process
or people oriented, in the sense of convenience and understandability from the point of view of the programmers, rather than
technical in the sense of being oriented toward program execution time, for example.

Parnas contrasted information hiding with flowcharts (i.e., with defining a separate module for each major step in a flowchart).
Parnas recognized that a flowchart-based module structure would often be more efficient, because program execution would jump
less frequently between modules (i.e., execution would remain inside the first module, then inside the second, etc.). Information
hiding-based decomposition may be less efficient because control would be transferred frequently from module to module, and
this would entail a higher number of procedure calls.

It seems permissible to make Parnas’ analysis more explicit by asserting that the major scarce resource is developer time, not
computing power. At an underlying level, one may assert that it is difficult and time consuming for a developer to build
knowledge of the inner workings of a module, so in a sense limited developer knowledge is a constraint underlying the constraint
on developer time.

In retrospect, Parnas said that his early work on information hiding “was not appreciated by those whose background was
mathematics or science. They were looking for work that established fundamental limitations on computers; I was trying to
overcome people’s limitations” (1999, p. 48). Table 1 provides a summary of the information hiding concept.

Parnas’ concept of information hiding as interpreted in Table 1 has a methodological as well as an epistemological aspect. It is
a methodological concept in the sense of being oriented toward guidelines for programming (i.e., modularization), and providing
a basis for the development of specific methods (e.g., structured programming). It is an epistemological position in the sense of
asserting that there is a crucial nontechnical component of software architectural knowledge, for example of the knowledge
embodied in a judgment of whether a certain design is appropriate for a given problem. The methodological (or software
engineering) aspect appears to be the starting point, entailing the epistemological (or software architectural) aspect.

Table 1. Parnas’ Concept of Information Hiding
Goals Three process-oriented goals: flexibility, com-

prehensibility, shortening of development time
Relevant developer competencies
(inferred by this author, not Parnas)

Understand process and how to balance process
goals against performance

Philosophy and Research Methods in Information Systems

340 2005 — Twenty-Sixth International Conference on Information Systems

Technology View #1: Shaw’s Paradigm for the
Supporting Sciences of Engineering

The first view is from within computing: Mary Shaw’s paradigm for software engineering. This view focuses on the supporting
sciences, rather than engineering itself, and has software architecture research as the main example of a supporting field (Shaw
1990, 2001, 2002). A major aim of Shaw’s work is to overcome a situation where “software engineering does not yet have a
widely-recognized and widely-appreciated set of paradigms in the way that other parts of computer science do.…Poor external
understanding leads to lack of appreciation and respect” (Shaw 2001, p. 662). Shaw presents a nuanced approach, recognizing
the value of a variety of different paradigms, yet strongly favors among these a formal, quantitative approach.

Shaw defines the notion of an engineering discipline as the final state out of three in the historical evolution of the practical
exploitation of a technology. The states are characterized by the way knowledge relevant for practice is generated and
disseminated. The engineering state follows craftsmanship and commercial production, and is characterized by support from
science. Shaw claimed that computer science is immature and largely unable to support software practice, and that consequently
software practice has not evolved into a proper engineering discipline. Rather, it is seen as comparable to large-scale construction
of buildings, infrastructure, etc., before it evolved into the field of civil engineering approximately 150 to 250 years ago,
benefitting from support by the physical theories of statics and strength of materials. Exceptions to this immaturity include
developments within the field of programming languages, such as high-level programming language constructs to support
abstraction and modularization (Shaw 1990).

In Shaw’s notion of engineering, the supporting science should research problems of relevance to the practitioner, and codify
results in an accessible and useful form: “Engineering relies on codifying scientific knowledge about a technological problem
domain in a form that is directly useful to the practitioner, thereby providing answers for questions that commonly occur in
practice” (Shaw 1990, p. 16). There is an underlying assumption of some degree of pattern or regularity in the problems that
confront practitioners in a given field. Shaw distinguishes between routine and innovative design: “Routine design involves
solving familiar problems, reusing large portions of prior solutions. Innovative design, on the other hand, involves finding novel
solutions to unfamiliar problems. Original designs are much more rarely needed than routine designs, so the latter is the bread
and butter of engineering” (1990, p. 16). It is in this respect that computer science provides insufficient support for practitioners.
As a result, “Software in most application domains is treated more often as original than routine” and so is perceived to require
“virtuoso design” more often than actually needed (Shaw 1990, p. 16).

Shaw’s proposal for evolving software practice into a proper engineering discipline prioritizes the codification of existing
knowledge in the form of handbooks such as Perry’s Chemical Engineers’ Handbook (Perry and Green 1997). Such reference
material is needed to aide the reuse of existing software (libraries, components, etc.), abstract entities (oversights over algorithms,
class patterns, architectures, etc.), and analysis techniques. Educational activities should comprise the building of realistic systems
aided by such material, rather than focus on fresh creation of small programs. These suggestions concern the codification and
dissemination of existing knowledge, rather than point to entirely new areas of research.

Shaw indicates that the scientific results that are of the highest value are of a technical nature, in the form of general findings or
truths and preferable in analytical or formal form. Knowledge about process issues, including life-cycle models, cost-estimation,
and quality assurance, is written off as software management rather than proper software engineering (Shaw 1990). Shaw
proposes a paradigm of software engineering research with a hierarchy of three classes of research results: findings, observations,
and rules of thumb, based on work by Brooks (1988). Table 2 summarizes Shaw’s hierarchy of research results.

Table 2. Shaw’s Hierarchy of Research Results (Shaw 2002)
Type of Research Results Characteristics
Findings Well-established scientific truths, judged by

truthfulness and rigor
Observations Reports on actual phenomena
Rules of thump Generalizations, signed by their author but

perhaps incompletely supported by data

Jørgensen/Views from Technology Theory

2005 — Twenty-Sixth International Conference on Information Systems 341

Findings, the highest form in Shaw’s hierarchy of research results, is also characterized by precision, formality, and statistical
validation. In the absence of findings, rules of thumbs and observation may provide some guidance to practitioners; they are also
“the groundwork for the research that will, in time, yield findings” (Shaw 2002, p. 4). In other words, there is an assumption that
research can eventually evolve into a quantitative form.

An initial observation is that in Shaw’s hierarchy of types of research results (see Table 2), Parnas’ initial formulations of the
concept of information hiding would fit into the lowest category.

Second, in emphasizing rigor and statistical validation (for the highest category), Shaw’s research hierarchy is well in-line with
a paradigm of technical rationality. However, it is tempting to note that the rhetoric of scientific truthfulness seems beyond what
is justifiable on the basis of critical rationalism in the sense of Popper’s (1972) work, that is, the discussion of the asymmetry
between verification and falsification, and the assertion of the impossibility of establishing in an absolute sense the truth of a
general hypothesis by means of empirical testing.

Finally, it is interesting to note the persistence of qualitative results in one of the fields considered by Shaw to be mature: the field
of programming languages. The field comprises notions such as data abstraction, and insights into how programming languages
support it, that can be seen as the contemporary approach to what Parnas initiated with the information hiding concept. The most
extensive realization of data abstraction is in object-oriented programming languages; Java, for example, allows for declaring data
as private, thus effectively hiding it. The field of programming languages has produced a range of textbooks that resemble the
handbook-type reference publications that Shaw suggests are crucial for supporting engineering. However, programming
language textbooks such as Concepts of Programming Languages (Sebesta 1993) and Comparative Programming Languages
(Wilson and Clark 1993) are conceptual and qualitative, rather than formal and quantitative, in their presentation of programming
language constructs (statements, classes, etc.), concepts (modules, abstraction), and specific languages. There are also formal
theories in the field of programming languages, such as denotational semantics, that can be used to give a formal definition of
the meaning (in the sense of execution effect) of a statement in a programming language, for example. Yet, available research-
based publications that attempt to give an overview over the usefulness of existing languages and the principal aspects of their
components are conceptual and qualitative. For instance, it is significant that the choice of programming language for a given
problem, such as the choice between Java and C, which is more machine-oriented and provides less support for information
hiding, remains a problem for which there is no formal, quantitative method available. In such design choices one is left with
what is essentially a qualitative judgment of the relative importance of factors such as time performance requirements, reliability
requirements, and the developer team’s knowledge. Sebesta (1993) mentions four criteria for evaluating a programming language:
source code writability (one subcriterion of which is support for abstraction), readability (with subcriteria including simplicity),
reliability (e.g., type checking), and cost (e.g., compilation and execution time, as well as programmer training). Sebesta notes
that while most computer scientists would agree on the importance of his criteria, “it may be impossible to get even two computer
scientists to agree on the value of a given language characteristic relative to others” (p. 7). One may note that it is precisely this
sort of dependence on personal judgment that one seeks to eliminate by formalization and quantification. Table 3 below attempts
to summarize the implications of Shaw’s view.

Table 3. Summary of the Implications of View # 1: Shaw’s Paradigm
for the Supporting Sciences of Engineering

View of
technology

• Engineering is an advanced state of the practical exploitation of technology which is characterized by
support from a mature science.

• Supporting sciences aid practitioners in applying standard solutions to routine problems.
• Supporting sciences should codify relevant and reliable knowledge in handbooks

Implications • The most reliable and useful results are based on quantitative or formal models.
• Other result types are of some use to practitioners, and a basis for further research.
• Process considerations or ‘software management’ is not a part of software engineering.

Philosophy and Research Methods in Information Systems

342 2005 — Twenty-Sixth International Conference on Information Systems

Technology View #2: Vincenti’s Theory of Technological
Evolution and Vicarious Models

The second view, Vincenti’s What Engineers Know and How They Know it (1990), is an account of aeronautics. Vincenti’s book
contains five case studies of the evolution of flight technology in the first half of the 20th century, as well as a proposal for a
generic epistemology of engineering that focuses on the evolution of engineering knowledge.

A major aim of Vincenti’s work is to demonstrate the relative independence of technology vis-à-vis science, as opposed to a view
of technology as applied science: “Technology, though it may apply science, is not the same as or entirely applied science”
(Vincenti 1990, p. 4, emphasis in original). By science, Vincenti means the natural sciences, in particular physics; by technology,
he understands mainly the knowledge used in the creative engineering of technological artifacts (e.g., aircraft). He adopts a
conventional distinction between scientific and technological knowledge, that is, between (knowledge for) explanation of natural
phenomena versus practical utility. Vincenti’s concept of technological knowledge includes explicit and formal knowledge such
as measurements from wind tunnel tests of wing profiles, catalogs over wing profiles with known good performance, and theories
of airflow on wing surfaces. Technological knowledge is seen as rooted in its own communities and organizations, including
research institutions and commercial aircraft companies. Vincenti argues that technological knowledge is independent from
scientific knowledge in a double sense: it is not only a different body of knowledge, but it is also generated mainly within the
field of technology itself, rather than by transfer from science. Vincenti’s analysis is also of interest because from a historical
perspective, computing may resemble aeronautics more than civil engineering, for example, since aeronautics is a young field
and was backed early on by organized research and commercialization. Finally, Vincenti’s theory of the evolution of technology
is interesting because it focuses on design: “Decreasing uncertainty in the growth of knowledge in a technology comes, I suggest,
mainly from the increase in scope and precision…in the vicarious means of selection” (Vincenti 1990, p. 250). By vicarious
selection, Vincenti refers to selection among proposed designs by means of theoretical or experimental modeling, as a cost and
time saving alternative to building full prototypes.

Aircraft design is subject to obvious quantitative requirements pertaining to speed and load, and derived requirements pertaining
to the propulsion generated by propellers, for instance. There are also requirements of a less easily quantifiable nature, including
stability and maneuverability. Vincenti’s work is widely recognized, and is a sophisticated analysis in favor of a quantitative
paradigm for engineering progress.

The so-called Davis wing, the subject of one of Vincenti’s case studies, illustrates how accumulation of technological knowledge
enhances the predictive power of modeling. A certain wing profile (developed by a D.A. Davis) was chosen by the designers of
the American second world war bomber plane B-24, of which more than 19,000 were eventually produced, the highest number
for any bomber plane in history. A wing’s profile (airfoil section) is its contour when viewed from the side. The Davis wing had
a novel profile, one aspect of which was that its point of maximum thickness was further aft (to the rear) compared to other
profiles.

The wing profile for the B-24 was chosen mainly because it performed well in wind tunnel tests; indeed, the test results were so
favorable that they were not trusted until repeated wind tunnel tests had confirmed them. In addition, a prototype had been built
and successfully flown, but the wing profile decision had to be made before significant test results had been gathered about the
prototype. Thus the design decision was based on a vicarious model, in this case an experimental rather than a theoretical one.
Of course, the advantage of using a vicarious model is the elimination of the time and financial costs associated with building and
testing a full prototype; the disadvantage is the uncertainty associated with the method, that is, the validity of the model testing
results. Vincenti terms this technological uncertainty, and views the accumulation of knowledge to reduce the uncertainty of
modeling as a key aspect of technological development.

The uncertainties associated with wind tunnel tests of wing profiles in the 1930s included uncertainty related to the scaling up
from the size of the model wing to the actual wing size, and scaling up of wind speed to actual flight speed. There was no
theoretical explanation of the favorable test results of the model, or theoretical justification that it would perform similarly in
practice. In retrospect, the successful wind tunnel test of the Davis profile can be partly explained on the basis of the distinction
between laminar and turbulent air-flow in the so-called boundary area (the section of air immediately surrounding the wing).
Moving the maximum thickness point rearward may extend the section of the wing over which the air-flow is laminar, and so
reduce overall drag. However, it is also known that the effect of reduced turbulent air-flow is more significant in the wind tunnel
than on a full-scale plane, and that other contemporary profiles would in fact have performed similarly in practice, regardless of
the fact that they were less impressive in the wind tunnel. Modern aeronautics use computer simulation models that utilize a range
of theoretical and practical results in fluid dynamics. According to Vincenti (Chapter 2), it has been refined to a point where such
vicarious models can reliably predict the performance of a wing profile design.

Jørgensen/Views from Technology Theory

2005 — Twenty-Sixth International Conference on Information Systems 343

Table 4. Summary of the Implications of View #2: Vincenti’s Theory
of Technological Evolution and Vicarious Models

View of
technology

• Technology is a body of knowledge relatively independent from scientific knowledge.
• Technological evolution provides designers with increasingly precise vicarious models.
• Vicarious models let designers predict performance of proposed designs.

Implications • Quantitative modeling paradigm of a more pure or radical nature than Shaw’s.
• Fluid dynamics is a major supporting science, which suggests that increased precision in modeling is

due (at least partly) to applicability of natural, physical laws.
• Computer science is an engineering discipline, not a science.

Vincenti’s view of the increased modeling precision attained as a product of technological development bears resemblance to
Shaw’s hierarchical classification of software engineering results, and the expectation that research will eventually produce results
of the highest form in the hierarchy. In software design, a vicarious model (in Vincenti’s sense) would be a software architecture
design that is proposed and not (yet) implemented.

A significant difference between aeronautics and software architecture is, of course, the physical nature of air-flow phenomena
and wings. The fact that these natural and artificial phenomena obey natural laws of physics, such as those of gravity and fluid
dynamics, is a key source of the increased precision and validity of modeling that has been attained in aeronautics.

If one adopts Vincenti’s view of technology as centered on knowledge for design and rooted in its own communities and
organizations, it is tempting to suggest that we label as technology or engineering a large portion of computing disciplines,
including portions of information systems and software engineering. This would be justified on the basis that these fields, or
portions of them, generate knowledge mainly for the purpose of practical utility. Shaw characterizes the fields of programming
languages and software architecture as scientific fields within computer science, but it is unsatisfactory to view these fields as
explaining the behavior of the phenomena they study; rather they create artifacts (i.e., languages and architectures) that may be
useful for certain applications, and prove or argue otherwise that they have certain useful properties. While such a view may be
controversial to some, it is consistent with Brooks’ later view of computer science: “I submit that by any reasonable criterion the
discipline we call ‘computer science’ is in fact not a science, but a synthetic, an engineering, discipline. We are concerned with
building things” (1996, p. 6). Brooks asserted that as a consequence, the field should be more concerned with users and their
needs, rather than “climbing into our ivory towers [and writing] to each other in ever more esoteric vocabularies” (1996, p. 6).

Technology View #3: Simon’s Theory of Satisficing
and the Sciences of the Artificial

The third view, Herbert Simon’s The Sciences of the Artificial (1996), is the broadest of the three. Simon’s unified approach to
design encompassed classical engineering fields as well as medicine and architecture, and even nontechnical fields such as
business (e.g., business strategy design), administration (e.g., organization design), and public policy (e.g., design of public
infrastructure). Simon provided reflections on what can be known about these fields of artifacts, as well as many reflections on
and characterizations of design processes.

Simon adhered to complexity as a major characteristic of artificial systems. He expressed this informally as “the whole is more
than the parts” (p. 183), and “it is typical of many kinds of design problems that the inner system consists of components whose
fundamental laws of behavior—mechanical, electrical, or chemical—are well known. The difficulty of the design problem often
resides in predicting how an assemblage of such components will behave” (p. 15).

Specifically referring to computers, Simon strongly emphasized that the hardware is relatively unimportant in determining the
properties of a computer system, and that instead what is important are the properties of the computing system as a whole. A
theory of an individual component (such as a computer’s hardware) “may indeed by simply irrelevant” (p. 19). If a reliable theory
of the full system is not available, developers must take an empirical approach. Referring to the development of the first time-
sharing operating systems (such as the OS/360 project that Brooks headed for a period), Simon states that since there was no
theory available to predict how a proposed design would behave, development proceeded essentially by building a system and
seeing how it worked.

Philosophy and Research Methods in Information Systems

344 2005 — Twenty-Sixth International Conference on Information Systems

Two of Simon’s characterizations of the design process may be of particular interest: First, satisficing is a term introduced by
Simon to capture the situation when a designer asks “does this alternative satisfy all the design requirements?” rather than “Of
all possible worlds…which is the best” (p. 121). The concept is rooted in Simon’s work in artificial intelligence, including
classical optimization problems such as the traveling salesman problem that has no known efficient solutions. Satisficing was
also seen as relevant when there is limited knowledge of design alternatives, or limited ability to predict their behavior; or if global
optimization is outright impossible because there is no common utility function that captures the individual preferences of
stakeholders, even if each of these are known.

Second, Simon emphasized that design should be conscious about resource allocation to the design process itself. “There are two
ways in which design processes are concerned with the allocation of resources. First, conservation of scarce resources may be
one of the criteria for a satisfactory design. Second, the design process itself involves management of the resources of the
designer” (Simon 1996, pp. 124-125). This applies to a computer program requiring time for its search for a solution to an
instance of the traveling salesman problem (i.e., a route design), as well as to human designers constrained by project deadlines.

Simon’s assertion of the irrelevance of hardware properties to the understanding of the entirety of a complex computer system
underpins the point made earlier (in the discussion of view #2) of the difference between physical systems (such as aircraft) and
nonphysical software systems. A similar point has been made by the complexity theorist Hartmanis (1995) in his Turing award
lecture. Hartmanis described the lack in computing of hard constraints, impossible to violate or circumvent as the laws of physics:
“Computer science deals with information, its creation and processing, and with the systems that perform it, much of which is
not directly restrained and governed by physical laws” (p. 19). Hartmanis described the pleasure he felt when eventually finding
resemblance of hard constraints in complexity theory: “I loved physics for its beautifully precise laws that govern and explain
the behavior of the physical world. In Shannon’s work, for the first time, I saw precise quantitative laws that governed the
behavior of…information. [This was] surprising and immensely fascinating” (p. 8).

Indeed, within the computing disciplines, complexity theory may be the field where laws in the strict sense of being impossible
to violate play the greatest role, aside from disciplines of computer hardware technology. Complexity analysis may be defined
as the study of resources required during computation to solve a problem, in particular time (cpu) and space (memory) resources.
For decades, algorithmic textbooks have provided reference-type information of relevance for practitioners, such as the average
or worst-case time consumption of alternative sorting and searching algorithms. However, complexity theory is a principled study,
producing results such as classifications of computation problems relative to one another, including the equivalence (in a certain
sense) of all so-called NP-complete problems (Garey and Johnson 1979). It is not commonly expected of complexity theory to
eventually become useful for vicarious modeling in the sense of Vincenti (i.e., predictive modeling of cost and benefits of software
architectural designs).

From the point of view of computing, Simon’s notions of the design process as a resource consumer may be of interest in
connection with the increased emphasis in the computing industry on shortening the development time. This is likely to make
designers less interested in finding the software architecture that is technically optimal, and focus merely on finding an architec-
ture that simply works. Time as a constraint of increased importance was emphasized by Brooks (1995) when he reviewed his
theses; he noted that the emergence of the shrink-wrapped industry had created a setting for software development where time
constraints were becoming more important, whereas in the classical software industry, schedule was more easily negotiable.
These events in the software industry are also reflected in the interest in flexible software development methods, such as methods
involving frequent releases, including those practiced by Microsoft and Netscape and recorded by Iansiti and MacCormack (1997).

Table 5. Summary of the Implications of View #3: Simon’s Theory
of Satisficing and the Sciences of the Artificial

View of
technology

• Complexity as a common denominator of artificial systems
• Complex systems can be perceived as aggregates of subsystems.
• Yet a system’s behavior cannot be inferred from that of its subsystems.

Implications • Computer software systems cannot be understood on the basis of physical laws.
• Satisficing (a design that works) as an alternative to optimizing (the best design).
• The time spent on the design process itself as a crucial constrained resource.

Jørgensen/Views from Technology Theory

2005 — Twenty-Sixth International Conference on Information Systems 345

Conclusion

The goal of this investigation was to examine concepts and other elements within the technology theories of Shaw, Vincenti, and
Simon that would account for the role of process-oriented and qualitative insights in software technology, such as Parnas’ concept
of information hiding.

On the one hand, in a basic sense this has been unsuccessful. Shaw and Vincenti propose a view of technological knowledge as
evolving to a state of precise results of quantitative and/or formal nature, and they see qualitative insights as intermediate and less
valuable. Simon’s account of knowledge for design is more pragmatic and does not grade different kinds of insights, but neither
does it account positively for the relevance of qualitative forms of insight. It may follow from Vincenti’s and Simon’s analyses
that there is significant room for nonquantifiable insights into software systems because they do not obey physical laws, but this
remains unexplored.

On the other hand, if one accepts the premise that qualitative and process-oriented insights will remain of relevance to a technical
field such as software architecture, even as knowledge is accumulated, then several key concepts of the technology theories
surveyed may provide some useful input: Shaw’s distinction between routine and innovative problems does not presuppose
Shaw’s quantitative paradigm, and may be useful also in a conceptual context where the identification of a routine problem is the
qualitative judgment of the practitioner. Vincenti’s concept of a vicarious model (i.e., a theoretical or practical model built to save
the cost of full scale prototype implementations) is closely linked to an ideal of finding an optimal design; however, the notion
can be reinterpreted with support from Simon’s concept of satisficing so as to stress the importance of finding, at an early stage,
a software design that is estimated to work, whether optimal or not. Simon’s focus on the resource consumption of the design
process is in line with Parnas’ concern for development time, and by implication, the limited time for developers to build
knowledge of a problem at hand. Attaining a vicarious model embodying a satisficing design can then be seen as a crucial step
in the knowledge-building process in a development project. Perhaps the integration of both analytical and interpretative
approaches, rather than merely analytical ones as in the this paper, is a road to capturing the composite nature of such knowledge.

References

Avison, D. E, Wood-Harper, A. T., Vidgen, R. T., and Wood, J. R. G. “A Further Exploration into Information Systems
Development: The Evolution of Multiview 2,” Information Technology and People (11:2), 1998, pp. 124-139.

Brooks, F. P. “The Computer Scientist as Toolsmith II,” Communications of the ACM (39:3), March 1996, pp. 61-68.
Brooks, F. P. “Grasping Reality Through Illusion: Interactive Graphics Serving Science,” in Proceedings of the 1988 ACM

SIGCHI Human Factors in Computer Systems Conference, E. Soloway, D. Frye, and S. B. Sheppard (Eds.), ACM Press, New
York, 1988, pp. 1-11.

Brooks, F. P. The Mythical Man-Month. Essays on Software Engineering: 20th Anniversary Edition, Addison-Wesley, Reading,
MA, 1995.

Dahlbom, B., and Mathiassen, L. “The Future of Our Profession,” Communications of the ACM (40:6), June 1997, pp. 80-89.
Denning, P. J., Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J., and Young, P. R. “Computing as a Discipline,”

Communications of the ACM (32:2), January 1989, pp. 9-23.
Garey, M. R., and Johnson, D. S. Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San

Francisco, 1979.
Gorgone, J. T., Davis, G. B., Valacich, J. S., Topi, H., Feinstein, D. L., and Longenecker, Jr., H. E. IS 2002: Model Curriculum

and Guidelines for Undergraduate Degree Programs in Information Systems, ACM, AIS, and AITP (available online at
http://www.aisnet.org/Curriculum/IS2002-12-31.pdf).

Hartmanis, J. Turing Award Lecture: On Computational Complexity and the Nature of Computer Science,” ACM Computing
Surveys (27:1), March 1995, pp. 7-16.

Hirschheim, R., and Klein, H. K. “Four Paradigms of Information Systems Development,” Communications of the ACM (32:10),
October 1989, pp. 1199-1216.

Iansiti, M., and MacCormack, A. “Developing Products on Internet Time,” Harvard Business Review, September-October, 1997,
pp. 108-117.

King, J. L. “Where Are the Payoffs from Computerization? Technology, Learning, and Organizational Change,” Computerization
and Controversy: Value Conflicts and Social Choices (2nd ed.), R. Kling (Ed.), Academic Press, Orlando, FL, 1996, pp. 239-
260.

Layton, E. L. “Technology as Knowledge,”Technology and Culture (15:1), January 1974, pp. 31-41.
Mitcham, C. Thinking Through Technology, University of Chicago Press, Chicago, 1994.

http://www.aisnet.org/Curriculum/IS2002-12-31.pdf

Philosophy and Research Methods in Information Systems

346 2005 — Twenty-Sixth International Conference on Information Systems

Parnas, D. L. “On the Criteria To Be Used in Decomposing Systems Into Modules,” Communications of the ACM (15:12),
December 1972, pp. 1053-1058.

Parnas, D. L. “Parnas on Parnas: A Life of Indecision,” Software Engineering Notes (24:4), July 1999, pp. 47-49.
Parnas, D. L. “Successful Software Engineering Result,” ACM SIGSOFT Software Engineering Notes (23:3), May 1998, pp. 64-

68.
Perry, R. H., and Green, D. W. (Eds.). Perry’s Chemical Engineers’ Handbook (7th ed.), McGraw-Hill, New York, 1997.
Pinch, T. J., and Bijker, W. E. “The Social Construction of Facts and Artifacts, or How the Sociology of Science and the

Sociology of Technology Might Benefit Each Other,” The Social Construction of Technological Systems, W. Bijker, T. P.
Hughes, and T. J. Pinch (Eds.), MIT Press, Cambridge, MA, 1987, pp. 17-50.

Popper, K. R. Objective Knowledge: An Evolutionary Approach, Clarendon Press, Oxford, England, 1972.
Rogers, E. M. Diffusion of Innovations (4th ed.), Free Press, New York, 1995.
Schön, D. The Reflective Practitioner, Basic Books, New York, 1983.
Sebesta, R. C. Concepts of Programming Languages (2nd ed.), Benjamin/Cummings, Redwood City, CA, 1993.
Shaw, M. “The Coming-of-Age of Software Architecture Research,” in Proceedings of the International Conference on Software

Engineering, May 2001, pp. 657-664.
Shaw, M. “Prospects for an Engineering Discipline of Software,” IEEE Software (7:6), November 1990, pp. 15-24.
Shaw, M. “What Makes Good Research in Software Engineering?,” International Journal on Software Tools for Technology

Transfer (4:1), 2002, pp. 1-7.
Simon, H. A. The Sciences of the Artificial (3rd ed.), MIT Press, Cambridge, MA, 1996.
Vincenti, W. G. What Engineers Know and How They Know it: Analytical Studies from Aeronautical History, Johns Hopkins

University Presss, Baltimore, MD, 1990.
Wilson, L. B., and Clark, R. G. Comparative Programming Languages (2nd ed.), Addison-Wesley, Wokingham, England, 1993.

