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Abstract

Parnas’ information hiding approach to softwaremodularization (Parnas 1972) isone of many indicationsthat
knowl edgein softwar e engineering cannot be adequately under stood merely as* technical knowledge.” Rather,
insight into process issues such as coordination among module developers is also a constituent of such
knowledge. Withtheaimof contributing to abroader inter pretation of software engineering and itsunderlying
epistemol ogy, threeviews of technology are surveyed. Thefirstis Shaw’ stheory of theimmaturity of computer
science as a supporting discipline of software practice, as sketched initially in “ Prospects for an Engineering
Discipline of Software” (Shaw 1990). The second is Vincenti’ s theory of vicarious models and technol ogical
evolution, based on his study of aeronauticsin What Engineers Know and How They Know it (Vincenti 1990).
The third is Smon’s interdisciplinary account of design in The Sciences of the Artificial (Smon 1996). The
result of the survey is, on the one hand, that none of the three contributions account convincingly for a
significant role in engineering for insights of a qualitative, process-oriented nature. On the other hand, the
three studies of the relationship between scientific and engineering knowledge contain significant pointersfor
futureresearch of theinter play between technical and process-oriented aspects of the construction of software
artifacts. Thisincludesthe significance of codification of standard solutionsto routine problems, of vicarious
modeling to predict the behavior of proposed designs, and of satisficing (find a design that works) as opposed
to optimizing (find the best design).
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I ntroduction

Technical rationality isfrequently viewed as an appropriate epistemology of computing’ stechnical core, including the practical
activity of programming and the theory of programming languages. The view is common both within technical and nontechnical
communities. The 1989 ACM curriculum report (Denning et al. 1989) emphasized quantitative and formal knowledge, for
example by defining computing as based on three paradigms: theory, rooted in mathematics; abstraction, rooted in (natural)
science; and design, rooted in engineering. Also, proponents of soft methods for information systems development and their
underlying epistemologies, radically different from technical rationality, tend to accept a technical rationality for the technical
corepremise. For example, Dahlbom and Mathiassen (1997) contrasted amechanical and aromantic view, and argued that both
were relevant and legitimate views, corresponding to engineering of artifacts versus facilitation of evolution and culture in
organizations, respectively. Similarly, Avison et al. (1998), in arguing for the need to go beyond traditional, programming-based
approachesto | S devel opment, identified technical rationality asthe epistemol ogical basis of the original programming methods,
such as object-oriented and structured programming.

However, in the history of software engineering and software architecture, there are indications of intimate interplay between
technical and peopleissues. Theseinclude Parnas' (1972) definition of a software module as* aresponsibility assignment rather
than asubprogram” (p. 1054). With referenceto Schon’'s (1983) postulate of a“rigor and relevance” dilemma, one may say that
such considerations are not rigorousin the sense of quantifiable and formal, yet relevant in the technical construction of software
artifacts. If thisistrue for asubstantial part of the technical areas of computing, it seems reasonable to challenge the exclusive
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rights of technical rationality to account for technical knowledge in computing. The present study attempts to shed light on the
nature of technical knowledge in computing by drawing on three contributions from the emerging academic field of technology
theory.

Mitcham, in his Thinking Through Technol ogy (1994), distinguishes between two major approachesto the theory of technol ogy:
engineering philosophy of technol ogy and humanitiesphilosophy of technology. Theformer isan analytical approach originating
within the technological and engineering communities, the latter an interpretative approach rooted in the socia sciences and the
humanities. A common denominator isrejection, asin Layton’s“ Technology asKnowledge” (1974), of reductionisminthe sense
of viewing technology as merely applied science; such aview may underestimate the importance of technological knowledge,
distinct informand origin from scientific knowledge, aswell associal and other processesthat shape nonlinear, nondeterministic
paths of technological development. Asidefrom addressing such issuesin research, thereispromotionin educational institutions
of the study of technology, asin Science, Technology and Society (STS) programs, and attempts to counter views of technology
as academically subordinate to (natural) science. Indeed, it would be in line with these endeavors if the notion of software
engineering could be freed of its mechanical, nonintellectual, and nerdy connotations.

The use of technology theory may supplement, and can indeed be seen as analogous to, the use of philosophy of science to shed
light on information technology and information systems research. An example of the latter is Hirschheim and Klein's (1989)
investigation of IS development paradigms, as defined in terms of concepts from the philosophy of science such as objectivism
and subjectivism. A third type of investigation across different technological domains can be found in innovation theory, asin
Rogers (1995) stage model of the diffusion of innovations, and King' s (1996) comparison of computerization and electrification
in terms of productivity benefit, or lack thereof.

The three studies of science and engineering surveyed here fall within Mitcham’s category of engineering philosophy of
technology. The studies focus on analytical topics such as the role of knowledge in engineering; they ask epistemological
guestions such as what sort of knowledge is relevant to engineering and where does it come from? The studies tend to focus on
design in a constructive, engineering sense, as opposed to design in the sense of uncovering user needs. Specificaly, Shaw’'s
(1990) and Vincenti’s (1990) studies rely on deep insights into the specific engineering fields of software and aircraft,
respectively. Simon’s (1996) account of design isinterdisciplinary but focuses, as do the two others, on the inner structures of
artificial systemsand their construction. Surveying aselection of contributions sharing the same (analytical) approach facilitates
reasoning acrossthe contributions; it does not reflect arejection of other (interpretative) approachessuch associal constructivism,
for example Pinch and Bijker's (1987) analysis of the early design history of the bicycle.

The result of the survey is, on the one hand, that none of the three contributions account convincingly for a significant role of
insights of a qualitative, process-oriented nature in software engineering and architecture. On the other hand, the three studies
contain significant pointersfor future research of theinterplay between technical and process-oriented aspects of the construction
of softwareartifacts. Thisincludesthesignificanceof codification of standard solutionsto routine problems (Shaw 1990), of cost-
saving, vicarious modeling to predict the behavior of proposed designs (Vincenti 1990), and of satisficing (find a design that
works) as opposed to optimizing (find the best design) (Simon 1996).

The present study employs software modularization, and more generally software architecture, as an example technical
(sub)discipline. The nature (technical and other) of the field of software architecture may in itself be of significance to the
Information Systems discipline, because the understanding of the nature of the field may be important for how it is taught at
universities and business schools. The overall architecture of asystem in a sense links the acquiring and the devel oping party,
that is, thetwo target professional roles sketched in the IS curriculum: “acquisition, deployment, and management of it resources
and services’ versus“ system devel opment, system operation, and system maintenance” (Gorgoneet a. 2002, p. 11). Bothroles
or sides of the negotiation table should understand software architecture and be able to communicate about it.

The paper isorganized asfollows: Thenext section recapitulatesParnas’ concept of information hiding. The subsequent sections
survey Shaw’s, Vincenti’'s, and Simon’ stheories of science and engineering. In thefinal section, the conclusions are presented.

Parnas Concept of Information Hiding

DavidParnas’ concept of information hiding addressesthe softwarearchitectural problem of how to decomposeasoftware system.
Parnas’ work isalso interesting becauseit isearly, widely acknowledged, and motivatesinformation hiding by arationale which
isessentially process-oriented rather than technical. The term processis used herein the sense of activities and mechanismsfor
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coordinationinan organi zation conducting software devel opment; the notion of insight and research resultsof aqualitative nature
is discussed later.

Software architecture can be defined as “the principled study of the overall structure of software systems, especialy therelations
among subsystems and components’ (Shaw 2001, p. 657). Examples of software structures include client-server structures,
generic class structures captured by design patterns, and the organization of networksinto stacks of layered protocols. Software
architecture also comprises the methods of communication and invocation among subsystems, such as message passing and
procedure calls. Thus software architecture comprises the overall technical design of a software system.

Parnas (1972) suggested information hiding asthe key decomposition criterion. The setting was ahypothetical team of software
developers given the task of creating a program to meet certain requirements, starting out by defining a modular structure.

Parnas defined information hiding asthe hiding of design decisions, for instance the details of adata structure and the procedures
to access it. Recently, Parnas (1998) provided an up-to-date example: he claimed that there would have been no year 2000
problem if hisidea had been widely accepted in practice; that is, if a program’s data structure for representing a date is hidden
within asingle module, then checking the program for aY 2K error can be done by working with essentially just that module, and
would not require inspection of the entire program for locally defined data structures for dates.

Parnas (1972) mentioned flexibility, comprehensibility, and shortening of development time as the three underlying goals. For
example, development time could be reduced because modules could be worked on independently. All three goals are process
or people oriented, in the sense of convenience and understandability from the point of view of the programmers, rather than
technical in the sense of being oriented toward program execution time, for example.

Parnas contrasted information hiding with flowcharts (i.e., with defining a separate module for each major step in aflowchart).
Parnasrecognized that afl owchart-based modul e structurewoul d of ten be more efficient, because program execution would jump
less frequently between modules (i.e., execution would remain inside the first modul e, then inside the second, etc.). Information
hiding-based decomposition may be less efficient because control would be transferred frequently from module to module, and
thiswould entail a higher number of procedure calls.

It seems permissible to make Parnas' analysis more explicit by asserting that the major scarce resource is developer time, not
computing power. At an underlying level, one may assert that it is difficult and time consuming for a developer to build
knowledge of theinner workings of amodule, soin asense limited devel oper knowledge isa constraint underlying the constraint
on developer time.

In retrospect, Parnas said that his early work on information hiding “was not appreciated by those whose background was
mathematics or science. They were looking for work that established fundamental limitations on computers; | was trying to
overcome people’ slimitations’ (1999, p. 48). Table 1 provides a summary of the information hiding concept.

Parnas’ concept of information hiding asinterpreted in Table 1 has amethodological aswell as an epistemological aspect. Itis
amethodological concept in the sense of being oriented toward guidelinesfor programming (i.e., modul arization), and providing
abasisfor the development of specific methods (e.g., structured programming). It isan epistemological position in the sense of
asserting that there is a crucial nontechnical component of software architectural knowledge, for example of the knowledge
embodied in a judgment of whether a certain design is appropriate for a given problem. The methodological (or software
engineering) aspect appears to be the starting point, entailing the epistemological (or software architectural) aspect.

Tablel. Parnas Concept of Information Hiding
Goals Three process-oriented goals. flexibility, com-
prehensibility, shortening of development time
Relevant devel oper competencies Understand process and how to balance process
(inferred by this author, not Parnas) goals against performance
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Technology View #1. Shaw’s Paradigm for the
Supporting Sciences of Engineering

Thefirst view isfrom within computing: Mary Shaw’s paradigm for software engineering. Thisview focuses on the supporting
sciences, rather than engineering itself, and has software architecture research as the main example of a supporting field (Shaw
1990, 2001, 2002). A major aim of Shaw’s work is to overcome a situation where “ software engineering does not yet have a
widely-recognized and widely-appreciated set of paradigmsin the way that other parts of computer science do.... Poor externa
understanding leads to lack of appreciation and respect” (Shaw 2001, p. 662). Shaw presents a nuanced approach, recognizing
the value of avariety of different paradigms, yet strongly favors among these a formal, quantitative approach.

Shaw defines the notion of an engineering discipline as the final state out of three in the historical evolution of the practical
exploitation of a technology. The states are characterized by the way knowledge relevant for practice is generated and
disseminated. The engineering state follows craftsmanship and commercia production, and is characterized by support from
science. Shaw claimed that computer scienceisimmature and largely unableto support software practice, and that consequently
software practice hasnot evolved into aproper engineering discipline. Rather, itisseen ascomparabletolarge-scale construction
of buildings, infrastructure, etc., before it evolved into the field of civil engineering approximately 150 to 250 years ago,
benefitting from support by the physical theories of statics and strength of materials. Exceptions to this immaturity include
developments within the field of programming languages, such as high-level programming language constructs to support
abstraction and modularization (Shaw 1990).

In Shaw’ s notion of engineering, the supporting science should research problems of relevance to the practitioner, and codify
results in an accessible and useful form: “Engineering relies on codifying scientific knowledge about a technological problem
domain in aform that is directly useful to the practitioner, thereby providing answers for questions that commonly occur in
practice” (Shaw 1990, p. 16). Thereis an underlying assumption of some degree of pattern or regularity in the problems that
confront practitionersin agiven field. Shaw distinguishes between routine and innovative design: “Routine design involves
solving familiar problems, reusing large portions of prior solutions. Innovative design, on the other hand, involvesfinding novel
solutions to unfamiliar problems. Original designs are much more rarely needed than routine designs, so the latter is the bread
and butter of engineering” (1990, p. 16). Itisin thisrespect that computer science providesinsufficient support for practitioners.
As aresult, “ Software in most application domains is treated more often as original than routing” and so is perceived to require
“virtuoso design” more often than actually needed (Shaw 1990, p. 16).

Shaw’s proposal for evolving software practice into a proper engineering discipline prioritizes the codification of existing
knowledge in the form of handbooks such as Perry’ s Chemical Engineers Handbook (Perry and Green 1997). Such reference
material isneeded to aidethereuse of existing software (libraries, components, etc.), abstract entities (oversightsover algorithms,
classpatterns, architectures, etc.), and analysistechniques. Educational activitiesshould comprisethebuilding of realistic systems
aided by such material, rather than focus on fresh creation of small programs. These suggestions concern the codification and
dissemination of existing knowledge, rather than point to entirely new areas of research.

Shaw indicates that the scientific results that are of the highest value are of atechnical nature, in the form of general findings or
truthsand preferablein analytical or formal form. Knowledge about processissues, including life-cycle models, cost-estimation,
and quality assurance, is written off as software management rather than proper software engineering (Shaw 1990). Shaw
proposes aparadigm of software engineering research with ahierarchy of three classesof researchresults: findings, observations,
and rules of thumb, based on work by Brooks (1988). Table 2 summarizes Shaw’s hierarchy of research results.

Table2. Shaw'sHierarchy of Research Results (Shaw 2002)
Type of Research Results Characteristics
Findings Well-established scientific truths, judged by
truthfulness and rigor
Observations Reports on actual phenomena
Rules of thump Generalizations, signed by their author but
perhaps incompletely supported by data
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Findings, the highest form in Shaw’s hierarchy of research results, is also characterized by precision, formality, and statistical
validation. Intheabsence of findings, rules of thumbs and observation may provide some guidanceto practitioners; they arealso
“the groundwork for the research that will, intime, yield findings’ (Shaw 2002, p. 4). In other words, thereis an assumption that
research can eventually evolve into a quantitative form.

Aninitial observation isthat in Shaw’s hierarchy of types of research results (see Table 2), Parnas' initial formulations of the
concept of information hiding would fit into the lowest category.

Second, in emphasizing rigor and statistical validation (for the highest category), Shaw’ s research hierarchy iswell in-line with
aparadigm of technical rationality. However, it istempting to note that the rhetoric of scientific truthfulness seems beyond what
isjustifiable on the basis of critical rationalism in the sense of Popper’s (1972) work, that is, the discussion of the asymmetry
between verification and falsification, and the assertion of the impossibility of establishing in an absolute sense the truth of a
genera hypothesis by means of empirical testing.

Finally, itisinteresting to note the persistence of qualitative resultsin one of thefields considered by Shaw to be mature: thefield
of programming languages. The field comprises notions such as data abstraction, and insightsinto how programming languages
support it, that can be seen asthe contemporary approach to what Parnas initiated with the information hiding concept. The most
extensiverealization of dataabstractionisin object-oriented programming languages; Java, for example, allowsfor declaring data
as private, thus effectively hiding it. The field of programming languages has produced a range of textbooks that resemble the
handbook-type reference publications that Shaw suggests are crucia for supporting engineering. However, programming
language textbooks such as Concepts of Programming Languages (Sebesta 1993) and Comparative Programming Languages
(Wilsonand Clark 1993) are conceptual and qualitative, rather than formal and quantitative, intheir presentati on of programming
language constructs (statements, classes, etc.), concepts (modules, abstraction), and specific languages. There are also formal
theoriesin the field of programming languages, such as denotational semantics, that can be used to give aformal definition of
the meaning (in the sense of execution effect) of a statement in a programming language, for example. Y et, available research-
based publications that attempt to give an overview over the usefulness of existing languages and the principal aspects of their
components are conceptual and qualitative. For instance, it is significant that the choice of programming language for agiven
problem, such as the choice between Java and C, which is more machine-oriented and provides less support for information
hiding, remains a problem for which there is no formal, quantitative method available. In such design choices oneis|eft with
what isessentially aqualitative judgment of the relative importance of factors such astime performance requirements, reliability
requirements, and the devel oper team’ sknowledge. Sebesta(1993) mentionsfour criteriafor eval uating aprogramming language:
source code writability (one subcriterion of which is support for abstraction), readability (with subcriteriaincluding simplicity),
reliability (e.g., type checking), and cost (e.g., compilation and execution time, as well as programmer training). Sebesta notes
that while most computer scientists would agree on theimportance of hiscriteria, “it may beimpossibleto get even two computer
scientiststo agree on the value of a given language characteristic relative to others” (p. 7). Onemay notethat itis precisely this
sort of dependence on personal judgment that one seeksto eliminate by formalization and quantification. Table 3 below attempts
to summarize the implications of Shaw’s view.

Table 3. Summary of the Implications of View # 1: Shaw’s Paradigm
for the Supporting Sciences of Engineering

View of « Engineering is an advanced state of the practical exploitation of technology which is characterized by
technology support from a mature science.

e Supporting sciences aid practitionersin applying standard solutions to routine problems.

e Supporting sciences should codify relevant and reliable knowledge in handbooks

Implications |« Themost reliable and useful results are based on quantitative or formal models.
e Other result types are of some use to practitioners, and a basis for further research.
«  Process considerations or ‘ software management’ is not a part of software engineering.
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Technology View #2: Vincenti’s Theory of Technological
Evolution and Vicarious Models

The second view, Vincenti’ s What Engineer s Know and How They Know it (1990), isan account of aeronautics. Vincenti’ sbook
contains five case studies of the evolution of flight technology in the first half of the 20" century, as well as a proposal for a
generic epistemology of engineering that focuses on the evolution of engineering knowledge.

A magjor aim of Vincenti’ swork isto demonstrate the rel ative independence of technology vis-a-vis science, asopposed to aview
of technology as applied science: “Technology, though it may apply science, is not the same as or entirely applied science”
(Vincenti 1990, p. 4, emphasisinoriginal). By science, Vincenti meansthe natural sciences, in particular physics; by technology,
he understands mainly the knowledge used in the creative engineering of technological artifacts (e.g., aircraft). He adopts a
conventional distinction between scientific and technol ogical knowledge, that is, between (knowledge for) explanation of natural
phenomenaversuspractical utility. Vincenti’sconcept of technological knowledgeincludesexplicit and formal knowledge such
asmeasurementsfrom wind tunnel tests of wing profiles, catal ogsover wing profileswith known good performance, and theories
of airflow on wing surfaces. Technological knowledge is seen as rooted in its own communities and organizations, including
research institutions and commercia aircraft companies. Vincenti argues that technological knowledge is independent from
scientific knowledge in a double sense: it isnot only adifferent body of knowledge, but it is also generated mainly within the
field of technology itself, rather than by transfer from science. Vincenti’sanalysisis aso of interest because from a historical
perspective, computing may resemble aeronautics more than civil engineering, for example, since aeronauticsis ayoung field
and was backed early on by organized research and commercialization. Finally, Vincenti’ stheory of the evolution of technology
isinteresting becauseit focuseson design: “Decreasing uncertainty inthe growth of knowledgein atechnology comes, | suggest,
mainly from the increase in scope and precision...in the vicarious means of selection” (Vincenti 1990, p. 250). By vicarious
selection, Vincenti refers to selection among proposed designs by means of theoretical or experimental modeling, as a cost and
time saving alternative to building full prototypes.

Aircraft designis subject to obvious quantitative requirements pertai ning to speed and load, and derived requirements pertaining
to the propulsion generated by propellers, for instance. Thereare aso requirements of aless easily quantifiable nature, including
stability and maneuverability. Vincenti’s work iswidely recognized, and is a sophisticated analysisin favor of a quantitative
paradigm for engineering progress.

The so-called Daviswing, the subject of one of Vincenti’ scase studies, illustrates how accumulation of technological knowledge
enhances the predictive power of modeling. A certain wing profile (developed by aD.A. Davis) was chosen by the designers of
the American second world war bomber plane B-24, of which more than 19,000 were eventually produced, the highest number
for any bomber planein history. A wing’sprofile (airfoil section) isits contour when viewed fromthe side. The Daviswing had
a novel profile, one aspect of which was that its point of maximum thickness was further aft (to the rear) compared to other
profiles.

Thewing profile for the B-24 was chosen mainly because it performed well in wind tunnel tests; indeed, the test results were so
favorable that they were not trusted until repeated wind tunnel tests had confirmed them. In addition, a prototype had been built
and successfully flown, but the wing profile decision had to be made before significant test results had been gathered about the
prototype. Thus the design decision was based on a vicarious model, in this case an experimental rather than a theoretical one.
Of course, the advantage of using avicariousmodel isthe elimination of thetime and financial costs associated with building and
testing afull prototype; the disadvantage is the uncertainty associated with the method, that is, the validity of the model testing
results. Vincenti terms this technological uncertainty, and views the accumulation of knowledge to reduce the uncertainty of
modeling as a key aspect of technological development.

The uncertainties associated with wind tunnel tests of wing profilesin the 1930s included uncertainty related to the scaling up
from the size of the model wing to the actual wing size, and scaling up of wind speed to actual flight speed. There was no
theoretical explanation of the favorable test results of the model, or theoretical justification that it would perform similarly in
practice. In retrospect, the successful wind tunnel test of the Davis profile can be partly explained on the basis of the distinction
between laminar and turbulent air-flow in the so-called boundary area (the section of air immediately surrounding the wing).
Moving the maximum thickness point rearward may extend the section of the wing over which the air-flow is laminar, and so
reduceoverall drag. However, it isalso known that the effect of reduced turbulent air-flow ismore significant in thewind tunnel
than on afull-scale plane, and that other contemporary profileswould in fact have performed similarly in practice, regardless of
thefact that they werelessimpressivein thewind tunnel. Modern aeronautics use computer simulation modelsthat utilizearange
of theoretical and practical resultsin fluid dynamics. Accordingto Vincenti (Chapter 2), it has been refined to apoint where such
vicarious models can reliably predict the performance of awing profile design.
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Table4. Summary of the Implications of View #2: Vincenti’s Theory
of Technological Evolution and Vicarious Models

View of e Technology is abody of knowledge relatively independent from scientific knowledge.
technology «  Technological evolution provides designers with increasingly precise vicarious models.
¢ Vicarious models |et designers predict performance of proposed designs.

Implications | ¢  Quantitative modeling paradigm of a more pure or radical nature than Shaw’s.

*  Fuid dynamicsis amajor supporting science, which suggests that increased precision in modeling is
due (at least partly) to applicability of natural, physical laws.

«  Computer scienceis an engineering discipline, not a science.

Vincenti’s view of the increased modeling precision attained as a product of technological development bears resemblance to
Shaw’ shierarchical classification of softwareengineering results, and the expectation that research will eventually produceresults
of the highest forminthe hierarchy. In softwaredesign, avicariousmodel (in Vincenti’ s sense) would be asoftware architecture
design that is proposed and not (yet) implemented.

A significant difference between aeronautics and software architecture is, of course, the physical nature of air-flow phenomena
and wings. The fact that these natural and artificial phenomena obey natural laws of physics, such asthose of gravity and fluid
dynamics, is akey source of the increased precision and validity of modeling that has been attained in aeronautics.

If one adopts Vincenti’s view of technology as centered on knowledge for design and rooted in its own communities and
organizations, it is tempting to suggest that we label as technology or engineering a large portion of computing disciplines,
including portions of information systems and software engineering. This would be justified on the basis that these fields, or
portions of them, generate knowledge mainly for the purpose of practical utility. Shaw characterizes the fields of programming
languages and software architecture as scientific fields within computer science, but it is unsatisfactory to view these fields as
explaining the behavior of the phenomenathey study; rather they create artifacts (i.e., languages and architectures) that may be
useful for certain applications, and prove or argue otherwise that they have certain useful properties. While such aview may be
controversial to some, it isconsistent with Brooks' later view of computer science: “| submit that by any reasonable criterion the
disciplinewe call ‘computer science’ isin fact not a science, but a synthetic, an engineering, discipline. We are concerned with
building things” (1996, p. 6). Brooks asserted that as a consequence, the field should be more concerned with users and their
needs, rather than “climbing into our ivory towers [and writing] to each other in ever more esoteric vocabularies’ (1996, p. 6).

Technology View #3: Simon’s Theory of Satisficing
and the Sciences of the Artificial

Thethird view, Herbert Simon’s The Sciences of the Artificial (1996), isthe broadest of the three. Simon’s unified approach to
design encompassed classical engineering fields as well as medicine and architecture, and even nontechnical fields such as
business (e.g., business strategy design), administration (e.g., organization design), and public policy (e.g., design of public
infrastructure). Simon provided reflections on what can be known about these fields of artifacts, aswell as many reflections on
and characterizations of design processes.

Simon adhered to complexity as amajor characteristic of artificial systems. He expressed thisinformally as“the wholeis more
than the parts” (p. 183), and “it istypical of many kinds of design problemsthat the inner system consists of components whose
fundamental laws of behavior—mechanical, electrical, or chemical—are well known. Thedifficulty of the design problem often
resides in predicting how an assemblage of such components will behave’ (p. 15).

Specifically referring to computers, Simon strongly emphasized that the hardware is relatively unimportant in determining the
properties of a computer system, and that instead what is important are the properties of the computing system as awhole. A
theory of anindividual component (such asacomputer’ shardware) “ may indeed by smply irrelevant” (p. 19). If areliabletheory
of the full system is not available, developers must take an empirical approach. Referring to the development of the first time-
sharing operating systems (such as the OS/360 project that Brooks headed for a period), Simon states that since there was no
theory available to predict how a proposed design would behave, devel opment proceeded essentially by building a system and
seeing how it worked.
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Two of Simon’s characterizations of the design process may be of particular interest: First, satisficing is aterm introduced by
Simon to capture the situation when a designer asks “ does this alternative satisfy all the design requirements?’ rather than “ Of
all possible worlds...which is the best” (p. 121). The concept is rooted in Simon’s work in artificia intelligence, including
classical optimization problems such as the traveling salesman problem that has no known efficient solutions. Satisficing was
al so seen asrelevant when thereislimited knowledge of design alternatives, or limited ability to predict their behavior; or if global
optimization is outright impossible because there is no common utility function that captures the individual preferences of
stakeholders, even if each of these are known.

Second, Simon emphasi zed that design should be conscious about resource allocation to the design processitself. “ Therearetwo
ways in which design processes are concerned with the allocation of resources. First, conservation of scarce resources may be
one of the criteria for a satisfactory design. Second, the design process itself involves management of the resources of the
designer” (Simon 1996, pp. 124-125). This applies to a computer program requiring time for its search for a solution to an
instance of the traveling salesman problem (i.e., aroute design), aswell asto human designers constrained by project deadlines.

Simon’ s assertion of the irrelevance of hardware properties to the understanding of the entirety of a complex computer system
underpins the point made earlier (in the discussion of view #2) of the difference between physical systems (such as aircraft) and
nonphysical software systems. A similar point has been made by the complexity theorist Hartmanis (1995) in his Turing award
lecture. Hartmanisdescribed thelack in computing of hard constraints, impossibleto violate or circumvent asthelawsof physics:
“Computer science deals with information, its creation and processing, and with the systems that perform it, much of whichis
not directly restrained and governed by physical laws’ (p. 19). Hartmanis described the pleasure he felt when eventually finding
resemblance of hard constraints in complexity theory: “I loved physics for its beautifully precise laws that govern and explain
the behavior of the physical world. In Shannon’s work, for the first time, | saw precise quantitative laws that governed the
behavior of...information. [Thiswas] surprising and immensely fascinating” (p. 8).

Indeed, within the computing disciplines, complexity theory may be the field where lawsin the strict sense of being impossible
to violate play the greatest role, aside from disciplines of computer hardware technology. Complexity analysis may be defined
asthe study of resources required during computation to solve aproblem, in particular time (cpu) and space (memory) resources.
For decades, algorithmic textbooks have provided reference-type information of relevance for practitioners, such asthe average
or worst-casetime consumption of alternative sorting and searching algorithms. However, complexity theory isaprincipled study,
producing results such as classifications of computation problemsrelative to one another, including the equivalence (in acertain
sense) of all so-called NP-complete problems (Garey and Johnson 1979). It is not commonly expected of complexity theory to
eventually becomeuseful for vicariousmodeling in the sense of Vincenti (i.e., predictivemodeling of cost and benefits of software
architectural designs).

From the point of view of computing, Simon’s notions of the design process as a resource consumer may be of interest in
connection with the increased emphasis in the computing industry on shortening the development time. Thisislikely to make
designerslessinterested in finding the software architecture that is technically optimal, and focus merely on finding an architec-
ture that simply works. Time as a constraint of increased importance was emphasized by Brooks (1995) when he reviewed his
theses; he noted that the emergence of the shrink-wrapped industry had created a setting for software development where time
constraints were becoming more important, whereas in the classical software industry, schedule was more easily negotiable.
These eventsin the softwareindustry are also reflected in theinterest in flexible software devel opment methods, such as methods
involving frequent rel eases, including those practiced by Mi crosoft and Netscape and recorded by | ansiti and MacCormack (1997).

Table5. Summary of the Implications of View #3: Simon’s Theory
of Satisficing and the Sciences of the Artificial

View of e Complexity as acommon denominator of artificial systems
technology ¢ Complex systems can be perceived as aggregates of subsystems.
e Yet asystem’'sbehavior cannot be inferred from that of its subsystems.

Implications |« Computer software systems cannot be understood on the basis of physical laws.
« Satisficing (adesign that works) as an alternative to optimizing (the best design).
¢ Thetime spent on the design process itself as a crucia constrained resource.
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Conclusion

Thegoa of thisinvestigation wasto examine concepts and other elementswithin the technol ogy theories of Shaw, Vincenti, and
Simon that would account for the role of process-oriented and qualitativeinsightsin softwaretechnology, such asParnas’ concept
of information hiding.

On the one hand, in abasic sense this has been unsuccessful. Shaw and Vincenti propose aview of technological knowledge as
evolving to astate of preciseresultsof quantitative and/or formal nature, and they see qualitativeinsightsasintermediateand less
valuable. Simon’saccount of knowledge for design is more pragmatic and does not grade different kinds of insights, but neither
doesit account positively for the relevance of qualitative forms of insight. 1t may follow from Vincenti’ s and Simon’s analyses
that there is significant room for nonquantifiable insightsinto software systems because they do not obey physical laws, but this
remains unexplored.

Onthe other hand, if one acceptsthe premisethat qualitative and process-oriented insightswill remain of relevanceto atechnical
field such as software architecture, even as knowledge is accumulated, then several key concepts of the technology theories
surveyed may provide some useful input: Shaw’s distinction between routine and innovative problems does not presuppose
Shaw’ s quantitative paradigm, and may be useful aso in aconceptual context where theidentification of aroutine problemisthe
gualitativejudgment of the practitioner. Vincenti’ sconcept of avicariousmodel (i.e., atheoretical or practical model built to save
the cost of full scale prototype implementations) is closely linked to an ideal of finding an optimal design; however, the notion
can bereinterpreted with support from Simon’ s concept of satisficing so asto stress the importance of finding, at an early stage,
a software design that is estimated to work, whether optimal or not. Simon’s focus on the resource consumption of the design
process is in line with Parnas’ concern for development time, and by implication, the limited time for developers to build
knowledge of aproblem at hand. Attaining avicarious model embodying a satisficing design can then be seen asacrucial step
in the knowledge-building process in a development project. Perhaps the integration of both analytical and interpretative
approaches, rather than merely analytical onesasin thethispaper, isaroad to capturing the composite nature of such knowledge.
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