
DESIGN IN E-GOVERNMENT CURRICULA:
BOTTOM-UP VS. TOP-DOWN

2nd Scandinavian E-Government Workshop, February 2005. Revised version of Feb 2, 2005.

Niels Jørgensen

Roskilde University, Computer Science Department, Building 42.1, Universitetsvej 1, 4000 Roskilde, Denmark.
Email: nielsj@ruc.dk.

Abstract
Design should be a key paradigm in e-government curricula, because e-government is the design of new
administrative, organizational and technical systems. For the technical aspects of e-government, a design
perspective may guide the identification of topics that a curriculum should cover, such as software
architecture, and the selection or development of approaches to teaching them. A survey of recently
published ACM and IEEE curriculum reports indicates that their main approach to the teaching of technical
design is bottom-up. In a bottom-up approach, the subsystems of a system are studied as a prerequisite for
understanding the design of the system as a whole. Two alternative approaches are sketched: generic
design and top-down design. While the latter approaches are less prevalent and perhaps less well
understood, they deserve further exploration because they may provide the only realistic road for students
to ever reach the point of studying the level of an e-government (or other) system as a whole.

Introduction

At a workshop on formal education in e-government held at Roskilde University in April 2004
(Andersen et al., 2004), representatives from government and software vendors said almost
equivocally that the graduates they sought should possess business and organizational
competencies rather than technical. This was a disturbing message to the university
representatives, especially those affiliated with Computer Science departments, including the
author. The message could potentially reinforce students in avoiding technical topics ('I study to
become a project manager, not a programmer'), and seemed to lack critical reflection on current
practices of staffing e-government projects with graduates of Economics, Law and other
disciplines that do not provide technical insight.

Rather than giving precedence either to technical or non-technical topics, a crucial consideration
for educators is the development of curricula that provide insight into both. This entails a focus
on time-conserving or minimalist approaches to technical topics, in order to attain a balance of
topics in the over-all curriculum. Design can be a key concept in such 'optimized' approaches to
the teaching of technical topics, and a link to organizational and administrative topics. In the
sequel, design is viewed as technical system design, rather than aesthetic or user-interface
design; this view can be summarized as follows:

Design is the definition of a system in terms of a of its subsystems, with the purpose of
meeting specific use-related goals, and subject to technical, economic and other
constraints.

More specifically, a design perspective may provide guidance in the identification of topics to be
covered by the technical part of a curriculum. It implies priority to topics such as software
architecture (eg. connecting subsystems by means of the Internet) and security (eg. digital

1

signatures), because these are of relevance to the over-all design of e-government systems.
Indeed, much attention is devoted to security and architecture in recent Danish government white
papers on e-government, for example the landmark report (Finance Ministry, 2001).

A major difficulty associated with teaching of system-level design of e-government systems is
their complexity. To shed light on this difficulty, a series of recommended curricula for
Computer Science and related disciplines published recently by ACM and IEEE is surveyed.
(References are provided below in the section The ACM and IEEE curriculum reports.) The
series is of interest because several of the reports are highly focused on design. Moreover, the
series comprises four distinct fields and so provides a potential for the comparison of different
approaches. Finally, the reports are interesting because they recommend that students also study
an application domain - in other words, e-government for example !

The conclusion of the survey is that the prevailing approach to the teaching of design in the
ACM and IEEE reports is a bottom-up approach. Among other things this is based on the
observation that all four reports prioritize teaching the same low-level subsystems, for example
knowledge of operating systems and skills in programming-in-the small, eg. of small Java
programs. Also, despite many insightful and visionary general comments in the reports, the
concrete approach to the teaching of design is implicit, in the sense of not motivated explicitly.

In an attempt to clarify the rationale underlying the surveyed reports, and also to provide a basis
for a discussion of alternative approaches, the three idealized or archetypal approaches to the
teaching of design, bottom-up, generic, and top-down, are examined.

In a wider perspective, a clarification of advantages of various approaches to the teaching of
design within formal education programs may also be of interest from a perspective of enhancing
life-long learning, and a perspective of gaining insight into the design process per se.

The paper is organized as follows: Following a brief sketch of the paper's method, the first part
of the paper surveys the four ACM and IEEE reports. The second part of the paper identifies and
examines the approaches termed bottom-up, generic, and top-down to the teaching of design. A
final section concludes.

Method

The survey in the first part of the paper attempts to identify different approaches in the ACM and
IEEE curriculum reports to the teaching of design. This is done by examining the reports with
the aim of answering two questions: What role is assigned to design in the general discussion of
the discipline ? and how is this implemented in the concrete curriculum ?

The sketch in the second part of the paper of three approaches to the teaching of design is based
on the definition given above of design in terms of the system/subsystem distinction. The
definition entails a view of layered systems that can be traversed either bottom-up or top-down,
and thus suggests a coarse grouping of design approaches. The top-down, bottom-up, and generic
approaches are all present in the ACM and IEEE reports, with bottom-up prevailing. An attempt
is made to list relevant arguments in favor of all three approaches. Arguments are sought in the
reports themselves and in literature on Computer Science education. It is not the intension to
evaluate the three approaches, except for noting the obvious risks of bottom-up and top-down,
namely that students never advance to design issues at a sufficiently high or low system level.

2

The ACM and IEEE curriculum reports

The recent curriculum revision initiative undertaken jointly by ACM and IEEE began in 1998
and led to the publication of four curriculum recommendations through 2001-2004. The
publications and their common abbreviations, which will be used in the sequel, are:

Computer Science (Joint Task Force on Computing Curricula, 2001): CC 2001.

Software Engineering (Joint Task Force on Computing Curricula, 2004): SE 2004.

Information Systems (J. T. Gorgone et al., 2002): IS 2002.

Computer Engineering (Joint Task Force on Computer Engineering Curricula, 2002): CE
2002.

Each report defines a curriculum for a four year undergraduate program. It is assumed that the
typical student is also studying an area or discipline outside of computing, yet spending the most
time on the computing discipline.

There is some inconsistency in the way the reports use the term computing. Each discipline
report starts from scratch by defining the role played by the discipline within computing, where
computing is seen as the broader area whose various parts are covered by the disciplines.
However, the Computer Science report is called CC 2001, where CC abbreviates computing
curriculum. It would of course have been more logical to label the Computer Science report CS,
and reserve CC for a publication about the entire computing revision effort. This inconsistency
may reflect a view of Computer Science as the most central of the four disciplines.

In the sequel, each of the four reports are analyzed in turn. The findings regarding the role played
by design is summarized in Table 2 below.

Computer Science (CC 2001)

The Computer Science report (CC 2001) is in many ways visionary. In particular, it provides an
interesting characterization of Computer Science as a research field, advocates a sort of
principles-first approach, and discusses weaknesses of prevailing curriculum approaches,
including programming-first and technology-orientation. Weaknesses of a programming-first
approach cited in CC 2001 include giving students a limited sense of the discipline as equal to
programming, and of programming as equal to programming-in-the-small and mastery of
language details. The risk of technology orientation is exemplified by compiler or operating
system courses that are "system-artifact dinosaurs" (CC 2001, p 35, quoting from Shaw, 92),
where presumably students are overwhelmed by details about large if not extinct software
systems.

A previous curriculum initiative led to the publication of a computing or Computer Science
curriculum in 1989-1991 (Denning et al., 1989), and there are two even earlier predecessors from
1968 and 78, respectively. The 1989 report is even more ambitious that its 2001 successor, in the
sense of reflecting even more over the field of Computer Science, and since the latter reports
cites the former for background, it seems permissible to do so in the present paper as well.

Meta-level definition of Computer Science in CC 2001. The definition of Computer Science in
(Denning et al., 1989) and CC 2001 as a research field comprises two levels. The first level is a

3

kind of meta-level, or philosophy of science level: Computer science is said to be distinguished
from the natural sciences by the way it is related to engineering: Computer Science is integrated
with engineering, where the natural sciences are separated from the corresponding engineering
disciplines. For example, natural sciences such as physics and chemistry are separate disciplines
from engineering disciplines such as civil and chemical engineering.

At this general level, three fundamental paradigms of Computer Science are identified: theory,
abstraction, and design. These paradigms are said to be of equal importance (CC 2001, p 36, and
Denning et al, 1989, p 10). The way computing integrates science and engineering is expressed
in terms of the three paradigms: Theory and abstraction correspond to science, and abstraction
and design to engineering (see Figure 1).

Design is defined as follows:

 "[Design is] rooted in engineering and consists of four steps followed in the construction
of a system (or device) to solve a given problem: (1) state requirements; (2) state
specifications; (3) design and implement the system; (4) test the system" (Denning et al.,
1989, p 10).

The theory paradigm is viewed as a form of applied mathematics, for example complexity
theory, with formal theorems and proofs.

Abstraction is described as a broad paradigm that includes modeling and experimentation. These
are connected in a straightforward manner: abstraction is viewed as a prerequisite for modeling,
and modeling as providing guidance to the construction of experiments; and experiments are said
to be useful to predict the behavior of future implementations, and thus related to design. All in
all, at the general level, Computer Science is defined with great emphasis on design; design
represents the engineering component of Computer Science, and is understood as the full range
of creative and constructive activities during the software life cycle.

Concrete-level definition of Computer Science in CC 2001. The second level in the definition
of Computer Science is a concrete level, where Computer Science is defined in terms of a body
of knowledge. The knowledge body is defined as a hierarchy. The body consists of fourteen core
knowledge areas (cf. Figure 1) which are subdivided into units; in turn units are divided into

4

Figure 1. Computer science comprises theory, abstraction, and design, and so integrates areas
traditionally studied in science and engineering, respectively, according to the CC 2001 report.

Theory DesignAbstraction

Science Engineering

Computer Science

topics. For example, knowledge area Algorithms and Complexity contains knowledge unit
Cryptographic algorithms (and many others), which contains topic digital signatures (and many
others); and knowledge area Programming Languages contains knowledge unit Abstraction
mechanisms with topic Modules in programming languages.

It is note-worthy that even at the concrete level, the definition of Computer Science is given
from a research point of view. Knowledge areas were defined in (Denning et al., 1989) in terms
of a requirement that they possess: (1) underlying unity of subject matter, (2) substantial
theoretical component, (3) significant abstractions, and (4) important design and implementation
issues. In other words, knowledge areas were defined with reference to the three basic
paradigms. There is also a criterion of a sociological nature: knowledge areas should be based on
research communities having their own literature.

Courses are defined only in a next step, namely in terms of what parts of knowledge areas they
cover. Many courses cover material from several knowledge areas, for example an introductory
course may cover units from Algorithms and Complexity as well as Programming Languages.

The CC 2001 report aims at proposing an up-to-date Computer Science curriculum in the sense
of covering new phenomena, such as the world wide web, or phenomena of increased
significance, such as object oriented programming. The growth of the discipline is reflected in an
increasing number of knowledge areas, ie. from nine in the 1989 report (Denning et al., 1989) to
14 in CC 2001. It is interesting, though, that while CC 2001 speaks rather eloquently about the
rapid emergence of new topics, the curriculum devotes more time to Assembly Level machine
organization than to Human-Computer Interaction (p 85).

Characterization of the design approach in CC 2001. In several ways the approach to design
in CC 2001 is a systems development-oriented approach. Such is the approach in the description
of the Software Engineering knowledge area, which is one of the five largest areas and defined in
terms of the units software design, software processes and software evolution, and others. This
approach can also be seen in two other contexts:

The first context is the explicit definition of a set of approaches to the intermediate level of the
undergraduate program, in the form of a set of courses. One of these is the systems-based
approach (CC 2001, p 38) which focuses on systems development. In this approach, each course
combines topics from Software Engineering with topics from other knowledge areas, for
example topic object oriented programming of Programming Languages, under an over-all
perspective of software development.

The second way that CC 2001 approaches design from a system development-perspective is by
strongly suggesting that students at the end of an undergraduate program follow a one or two
semester course where team of students work on a so-called capstone project, that is, develop a
software product of more considerable size than would be possible as part of fulfillment of
weakly assignments etc.

Despite the fact that the focus on software development implies some emphasis on design, that
emphasis does not appear to fully match the hailing of design as one of three fundamental
paradigms, in the meta-level definition of Computer Science. Moreover, since both the systems-
approach to courses and the capstone project are labeled in CC 2001 as optional, the system
development-based approach to design in CC 2001 to design is labeled optional in Table 2.

5

Fortunately, the 1989 Computer Science report provides some compensation for the vagueness
of the design-related guidelines in CC 2001. Recall that the 1989 report is the source of the
definition in CC 2001 of Computer Science in terms of theory, abstraction, and design. In the
1989 report, a list of theory, abstraction, and design examples were given for each knowledge
area. For example, the list suggested for knowledge area Programming Languages included
(Denning et al., 1989, p 18):

Theory: Turing machines; formal semantics of programming languages.

Abstraction: Classification of programming languages into eg. object oriented and
procedural; models for program structure; implementation models.

Design: specific programming languages; specific implementations.

It may be noted that the design examples listed above are artifacts, ie. textually specified artifacts
(programming languages) and software artifacts (implementations). Indeed, most design
examples listed in (Denning et al., 1989) are software or other artifacts. For example, design
examples in knowledge area Algorithms and Data Structures includes cryptographic protocols
and algorithms for important problems, both of which are textually defined artifacts, and design
examples in knowledge area Operating Systems includes network protocols such as TCP, etc. By
exception, knowledge area Software Engineering is described in part by reference to proper
design methods; however, most examples even for Software Engineering are artifacts: namely
software development tools such as specification languages, debuggers, etc. All in all, only a
small part of the design examples would qualify as a method or technique that is in some way
part of design activities, even in the broad sense of design as construction of systems from
specification to test.

Therefore, the design paradigm in (Denning et al., 1989), and by implication i CC 2001, appears
to be represented by a wealth of artifacts. The typical artifact is a representative of some
principle, for example a language class, the idea being that a given course should pick some class
instance, eg. Java. It seems reasonable to term this approach as the illustrative artifacts approach
to teaching design, and moreover, as an implicit approach, because there is no discussion of how
this exposure to artifacts may actually serve to illustrate design.

Software Engineering (SE 2004)

The Software Engineering report, SE 2004, defines a full undergraduate curriculum, analogously
to the three other discipline reports. The discipline is defined with historical reference to the
1968 NATO Conference on Software Engineering (Naur et al., 1969) and the complexity of
software as discussed by Brook (Brooks, 1995). As in CC 2001, the discipline is defined partly
in terms of knowledge areas. In contrast to CC 2001, the discipline is defined as a professional
field, rather than as a research field. Knowledge areas are called Software Engineering education
knowledge areas, and motivated by practical relevance. A large knowledge area is Computing
Essentials, which overlaps with several knowledge areas of CC 2001, and contains material
considered as important prerequisites for the professional software engineer.

The centrality of design. Two principles are stressed in the general definition of Software
Engineering in SE 2004: First, the centrality of the concept of design; and second, the
precedence of Computer Science knowledge over 'process'. The centrality of design is argued on

6

the grounds that design is central to any engineering field. In this general context of engineering,
design is "the definition of a new artifact by finding technical solutions to specific practical
issues, while taking into account economic, legal, and social considerations". Design and
engineering at this general level is seen as involving, among other things, trade-off analysis,
decision making, team work, and experiments and measurements.

Software engineering is seen as comprising implementation and testing activities, but unlike the
definition provided in CC 2001 these activities are not seen as part of design, which provides
(merely) "prerequisites for the physical realization of a solution". This is consistent with
definitions of design in eg. civil engineering, where the design of a bridge is expressed in
blueprints and other prerequisites for the physical construction process, while not actually
comprising the latter process.

Precedence of Computer Science over 'process'. The downplay of the role of process is stated
as follows: "A common misconception about Software Engineering is that it is primarily about
process-oriented activities". These are exemplified as "requirements, design, quality assurance,
process improvement, and project management" (SE 2004, p 6). These critical remarks appear as
being directed not against a 'soft' or Information Systems approach, but against over-emphasis on
process as such, hard or soft. Process is important but not at the expense of the Computer
Science context - this seems to be the point. The report lists a set of properties of Software
Engineering that distinguish it from "more traditional fields of engineering" (SE 2004, p7):
Software engineering deals with intangible and logical (rather than physical) artifacts; there is no
manufacturing process; there is a basis in discrete (rather than continuous) mathematics; and
maintenance can be seen as continued development (rather than dealing with wear and tear). As
an aside it may be noted that dealing with intangible artifacts could be seen as the most
fundamental property in the sense that it implies the others.

Characterization of the design approach in SE 2004. The approach in SE 2004 to the teaching
of design may be characterized as technical design. Design, emphasized as central, is integrated
or 'buried' in a Computer Science context, consistently with the downplay of generic process. In
the concrete definition of Software Engineering given in SE 2004 in the form of knowledge
areas, there is no single knowledge area capturing the "essentials of design in Software
Engineering"; rather, design issues are part of all ten knowledge areas. For example, the units
that knowledge area Software Design are composed of are mainly technical; they include unit
Architectural Design, which includes, in turn, a topic named Architectural Styles. The topic is
defined by a list of example styles, which are all complex technical concepts, for example pipes,
filters, layers, transactions, and events. The complexity of these concepts can also be seen from
the fact that the courses defined to cover them in SE 2004, for example the course SE 311
(Software Design and architecture, SE 2004, p 107), require several technical courses as
prerequisites.

Another aspect of the 'technical' approach to design is the focus on quantitative methods.
Knowledge area Mathematical and Engineering Fundamentals comprises, among others, a
number of quantitatively oriented units, such as statistical analysis and theory of measurement.
This approach is reflected in several general and programmatic statements such as "software
development practice [needs the] rigor that the engineering disciplines bring to the reliability and
trustworthiness of the artifacts they engineer" - by the way, statements that would seem to
emphasize generic process, rather than downplay it.

7

The context-dependency of design is emphasized even further: The Software Engineering report
stipulates that graduates should "come to terms with at least one application domain". The report
makes a statement (SE 2004 p 9) that Software Engineering has been the most successful within
specific application domains. One argument given for this is that for engineers to be able to
distinguish standard parts from those that must be developed from scratch, they must have
domain specific knowledge. The report recommends that institutions experiment with the
development of undergraduate programs that integrate Software Engineering into application
domains, and list for example "Aerospace Software Engineering". A program in "E-government
Software Engineering" would fit in here as well! Therefore, the approach to design may be
characterized also as domain-dependent design.

Information Systems (IS 2002)

The IS 2002 report defines Information Systems with reference to a job function: the
"Information Systems organization function" (IS 2002, p10). Academic programs in Information
Systems are viewed as analogous to business school programs that correspond to organizational
functions such as management of financial or human resources. More specifically, the
Information Systems function in an organization is defined as "acquisition, deployment, and
management of it resources and services". Additionally, the IS field is defined with reference to
activities of "system development, system operation, and system maintenance", that is, activities
that are typical of the software vendor, and so extend beyond the purchasing organization.

8

Discipline Perceived
role of design
in discipline

Definition of design General
recommendation

Actual approach

Computer
Science

(CC 2001)

(Denning et
al., 1989)

Design,
theory, and
abstraction
are the three
fundamental
paradigms.

Construction of system
from specification to test

Avoid artifact-centric
courses

Avoid identification
of Computer Science
with programming

Systems development-
oriented (optional)

Illustrative artifacts
(implicit)

Software
Engineering

(SE 2004)

Design is the
fundamental
paradigm in
engineering
practice.

Definition of a new artifact
by finding technical
solutions to specific
practical issues, while
taking into account [..]
considerations

Avoid process-
orientation

Emphasize rigor of
engineering approach

Technical design

Domain-dependent
design

Information
Systems

(IS 2002)

No particular
role.

No definition. None Conventional
(implicit).

Computer
Engineering

(CE 2002)

Same as SE
2004

Same as SE 2004, though
emphasis on choices,
trade-offs, and constraints.

Design must pervade
entire curriculum

Students' own work on
design assignments.

Table 2. The role of design in the ACM and IEEE curriculum reports.

The IS curriculum is motivated, at a general level, by a characterization of the competencies that
IS professionals should possess: sound technical knowledge, understanding of organizations, and
understanding of achievement of organizational goals with information technology (p11).

'Exit characteristics': Similarly to the Software Engineering report, the IS report views its field
as a practical field; however, while the former characterizes Software Engineering in terms of
the types of tasks engineers solve and how they solve them, the IS report merely state a set of
required competencies of the graduate. For example, it is striking that the IS 2002 curriculum is
not motivated by a discussion of current professional challenges, such as challenges related to
organizational change and the need for practitioners that integrate competencies of both a
technical and business/organizational nature. Instead, the curriculum is defined with reference to
a set of somewhat arbitrary, so-called 'exit characteristics" of IS graduates. These are stated in
highly general terms such as "Be problem solvers and critical thinkers" (p6). Another apparent
omission at the level of the general definition of the field of IS is that there is no discussion of
the role of design. This is striking because a discussion, for example, of the interplay between
technical and organizational/administrative design could provide motivation for IS as an
independent academic program.

The need for prioritizing of topics is perhaps even larger in the definition of a curriculum for
Information Systems than for Computer Science or Software Engineering, because the former
contains larger portions of both of the others, in addition to business and organizational material.
However, the report does not discuss criteria for selecting topics or knowledge areas that are the
most relevant as 'exit characteristics' of IS professionals.

The concrete curriculum definition in IS 2002 is given in the form of ten suggested courses. The
courses are defined at a detailed level with topics and learning goals, and prerequisites are shown
in a course graph. The courses are grouped into five learnings areas. Learning area "Information
Technology" contains three courses, indicating a strong emphasis on technical material rooted in
Computer Science, for example in the course "Networks and Telecommunication". Learning area
"Information Systems Development" also contains three courses, and design is central in all
three; the terminology in IS 2002 includes "logical design" and "physical design", corresponding
to system specification and design. Learning area "IS Fundamentals" contains two courses each
of which approach the interplay between organization and technology. For example, the course
"Electronic Business Strategy, Architecture and Design" focuses on "the linkage between
organizational strategy and networked information technologies".

Characterization of the design approach in IS 2002. The report's approach to design can be
characterized as conventional and implicit. The approach is conventional in the sense that the
report stresses that students must learn to construct databases and programs, which is similar to
the approach in the other discipline reports. For example, there is a statement that "Instruction in
physical design of Information Systems will ensure that the students can use a logical design to
implement Information Systems in both a DBMS and in emerging development environments",
the latter referring to competencies in programming with object oriented and procedural
languages. The term conventional is meant to indicate that in the concrete curriculum, design
plays a similar to the other disciplines. Finally, the approach can be said to be implicit because
there is no discussion of the role of design. IS 2002 in a way is the most consistent with respect
to design emphasis, in that its general remarks do not raise false expectations.

9

Computer engineering (CE 2002)

The last of the four disciplines targeted by the ACM and IEEE curriculum revision effort is
Computer Engineering. It is included in this survey not only for completeness, but also because
the report adds to a picture of all four suggested curricula being rather similar. One wonders:
shouldn't there be more difference between eg. Computer Engineering and Information
Systems ?

At a general level, CE 2002 provides an informal definition of Computer Engineering as a
combination of Computer Science and Electrical Engineering. The origin of the development of
Computer Engineering into a discipline separated from Electrical Engineering is said to be the
widespread diffusion in current society of embedded systems: small or large systems ranging
from mobile phones to automobiles equipped with full CPUs and associated memory and other
devices - rather than conventional electronic devices of the sort studied in Electrical Engineering.

Computer Engineering is defined as a professional field, analogously to the Software
Engineering and Informations Systems fields. There are many similarities with the Software
Engineering report, most notably the emphasis on design. The CE 2002 report lists the "ability to
design computer systems that include both hardware and software" as one of three characteristics
of computer engineers, the two others being breadth of mathematical and engineering
knowledge, and preparation for professional practice.

The concrete curriculum contains knowledge areas such as Digital Signal Processing and
Circuits and Signals. These technical areas testify to the emphasis on hardware which
distinguishes the Computer Engineering curriculum from the three other programs. Knowledge
area Computer Systems Engineering may capture the essence of the discipline, with its focus on
"the development of new devices such as digital cameras, hand-held computers, .." (CE 2002,
Appendix A, p6). The description of this knowledge area focuses on design and may contain the
richest account, in all four discipline reports, of the activities involved in design: there is focus
on errors, on strength and weaknesses of solutions to design problems, and emphasis on trade-
offs and choices, such as whether to implementing functionality in software or hardware.

Characterization of the design approach in CE 2002. The report suggests that students work
on a large project towards the end of the study program analogously to the capstone projects in
Computer Science and Software Engineering, and design is suggested as the primary theme for
this project. Also, experience with development and test of various designs is suggested as a key
theme for laboratory exercises. In stressing design as a theme for a final project as well as for
laboratory work, CE 2002 can be said to be the curriculum that places the most emphasis on
design. Since the report also stresses design as a key topic in course assignments, and to
differentiate it from the Software Engineering report, the approach to design in the Computer
Engineering report may be characterized as student's own work on design assignments.

Three design approaches: "Bottom-up", "generic", and "top-down"

In order to understand better the approach to the teaching of design in the surveyed reports (as
summarized above in Table 2), this section tentatively defines the three approaches bottom-up,
generic, and top-down, and list arguments that can be given in favor of each of them. The
arguments are summarized below in Table 3. The approach in the surveyed reports is

10

characterized as mainly bottom-up, yet with some elements also of generic and top-down.

The purpose of the tentative construction of the three idealized or archetypal approaches to the
teaching of design is to provide a basis for a discussion of alternatives to the approach that
prevails in the ACM and IEEE reports.

The labeling of the design approaches as top-down vs. bottom-up is with respect to a metaphor
of hierarchical systems, where a system is a composition of subsystems, and so on recursively.
Given this view of systems, design can be defined as follows (same definition as on first page):

Design is the definition of a system in terms of a of its subsystems, with the purpose of
meeting specific use-related goals, and subject to technical, economic and other
constraints.

The system/subsystem view entails a view of layered design, ie. divided into over-all system
design, subsystem design, etc. This view is consistent with the software design principle of
division of programs into subprograms, and prevailing views on the importance of related
concepts such as data abstraction and information hiding.

The design definition given here is similar to the definition given in the Software Engineering
and Computer Science reports (see subsections Computer Science and Software Engineering
above), with two exceptions: First, those definitions do not refer to layers or subsystems. Second,
the layered definition does not refer to implementation or test, only definition of system, whereby
it is dissimilar to the definition given in CC 2001 (but similar to SE 2004). It is not the intension
to exclude these activities from the design concept. Indeed, programming can be viewed as
design at a concrete level, that is, as the definition of a small subsystem in the form of a source
code file, and testing can be viewed as a method for design refinement.

Bottom-up design

The bottom-up approach to the teaching of design is defined as teaching students first and
foremost about subsystems; design issues associated with aggregate system levels are taught
later and with less emphasis.

This appears to be the prevailing approach in all four reports resulting from the ACM and IEEE
curriculum initiative. Indeed, it is striking that despite the diversification into four distinct
disciplines, the curricula are similar in that they all prioritize the same low-level subsystems, for
example knowledge of operating systems and skills in programming-in-the small, eg. of small
Java programs. The Software Engineering report is the most explicit in this respect, with its
downplay of 'process' and emphasis of the discipline's 'roots' (SE 2004, p 7) in Computer
Science.

Physicalism: A bottom-up approach bears some resemblance with an approach to civil
engineering and natural science curricula sometimes termed physicalism (Voetmann, 2002),
where physics is taught early in the curriculum because the discipline is considered foundational.
An associated view may be that mathematics, physics, chemistry, biology, and engineering form
a chain of dependent fields with eg. physics forming the basis for chemistry:

"Physics is the most fundamental of all natural sciences. Chemistry deals with .. the
application of the laws of physics [..] Biology must lean [..] on physics and chemistry [..]
The application of the principles of physics and chemistry to practical problems [..] has

11

given rise to [..] engineering." (Alonso and Finn, 1980, p 6, quoted from Voetmann, 2002).

A parallel view of the subdisciplines of Computer Science may be expressed as follows in terms
of layers of abstract machines. To understand the design of applications at a given layer,
understanding the underlying layer is a useful prerequisite, because the applications are
implemented in that layer's language. Example layers are machine instruction layer, operating
system layer, and layers in network reference models, such as the OSI/ISO model.

Retrospective design: The approach in the Computer Science report was characterized as
illustrative artifacts (cf. Table 2 above). In this approach, Java is a representative of object
oriented programming languages, etc. From a design point of view, this can be seen as 'exposure
to design results', where the design process is viewed retrospectively: An artifact, such as a
programming language, is seen as the result of a design process that implements eg. object
oriented principles and also embodies design trade-offs, weaknesses, etc.

Immaturity: Justification for a bottom-up approach may be found in Mary Shaw's work on
Software Engineering and education. She argues in (Shaw, 1990) that Software Engineering is
less mature than comparable disciplines such as civil and chemical engineering, rooted as they
are in thousands of years of craftsmanship, and hundreds of years of organized production and
scientific progress (in physics and chemistry). The main argument is based on the distinction
between routine and innovative design problems. Routine problems are those that have occurred
previously, and for which solutions have been developed which are known to work in practice. A
science that supports an engineering practice should support the development of solutions to
recurring practical problems, and codify solutions in a manner easily accessible by practitioners,
for example in handbooks. Mature disciplines institutionalize mechanisms for maintaining and
distributing handbook-type knowledge, for example Perry's Chemical Engineering Handbook
(published by McGraw-Hill). Shaw noted in 1990 that the increasing focus on software reuse
was a promising example of re-use of knowledge and solutions. However, her over-all finding
was that in typical Software Engineering practice, design tasks were treated as posing novel
problems. If a well-tested and organized body of design solutions is unavailable, a bottom-up
approach may be suitable as a temporary measure until the discipline matures.

Contextual facts: Additional support for a bottom-up approach may be inferred from Shaw's
assertion that an expert in a field must know about 50.000 chunks of information (Shaw 1990,
with reference to work by Herbert Simon on experts and expert systems). Although a relevant
store of facts would seem to comprise also facts about the application context, eg. e-Government,
this view of experts as masters of facts seems to emphasize component detail rather than
composite system structure.

Technical complexity: In the last decade there has been increasing interest in software
architecture as a field of research as well as teaching, see for example (Denning and Dargen,
1994) and (Garlan et al, 1992). Software architecture, which is of interest in an e-government
curriculum, entails many difficult technical issues and may lend itself to a bottom-up approach.
Indeed, the Software Design and Architecture course mentioned in the survey of the Software
Engineering report had several technical prerequisite courses. The recent work on teaching
software architecture appears to support this view. The course on Software Architecture
developed by Garlan, Shaw, and others that was evaluated in (Garlan et al, 1992) appears to
require extensive prerequisite competencies in programming and operating systems, for example

12

in order for students to comprehend topics such as composition of software entities by pipes or
events, and to fulfill the requirements that students design and implement their own prototype
system. Indeed it would appear that in-depth knowledge about software architecture presupposes
technical insight into the software entities as well as methods for composing them.

Generic design

The generic design approach is to teach design methods that are self-contained and independent
of specific context.

There is an element of generic design in all four curriculum reports: although the design part of
most knowledge area-definitions in (Denning et al., 1989) seems to consists mostly of illustrative
artifacts, there are knowledge areas for which generic methods are listed. This justifies labeling
(Denning et al., 1989), and be implication CC 2001, as following a generic approach as a
supplement to the main bottom-up approach.

A generic approach is central in a new civil engineering program at the Technical University of
Denmark, termed Design and Innovation. The generic focus is evident eg. in titles of courses in
the program, such as "Visualization", "Description of technical systems", "Problem solving",
"From need to task", etc. (M. M. Andreasen et al., 2002). The program focuses on physical
artifacts, rather than software artifacts, but remains of interest as a novel approach to
engineering, physical or software-oriented.

Design focus: Generic approaches allow students to focus more on proper design issues than
does the bottom-up approach, insofar as students are relieved of the technical details of
subsystems. Peter Denning in (Denning 2004) argues that study programs should emphasize
principles, including design principles. Denning says that "Computing professionals follow
principles of design", and provides a list of examples including abstraction, separate compilation,
version control, layering, and several others. These principles are said to be "driven" by five
generic design concerns, apparently sitting at the highest level of abstraction: simplicity,
performance, resilience, evolvability, and security. There is some resemblance with the literature
on project management and the definition therein of a project's major - and possibly conflicting -
parameters, including cost, quality, feature set, etc.

Availability: The generic approach presupposes that there is a body of relevant and useful
generic methods, of course. This is a matter of dispute, one extreme being that any information
system method is undue, as argued in (Baskerville et al., 1994). Methods listed in (Denning
1989) include formal specification and verification and software life cycle models. The Software
Engineering curriculum in SE 2004 mentions many generic methods including object-, function-,
data-structure-, and aspect-oriented design. In addition to formal methods and methods
developed in the context of classes of programming languages, there are of course methods of a
less structured and more user-centered nature, including participatory design methods, see eg.
(Bødker et al., 2004).

Increasing maturity: New generic methods may emerge as the field of Computer Science
matures, as predicted in (Shaw, 1990). Steps towards maturity may involve such relatively
simple matters as introducing consistent terminology. In their analysis of the software
architecture literature and 'folklore', (Garlan et al, 1992) identified many interesting examples of
inconsistent terminology for architectural entities, eg. components, objects, and segments.

13

Actually, software architecture when taught as sketched by Garlan et al. may be seen to have a
strong generic element, in the sense that what subcomponents actually do is largely abstracted
away, consistently with the philosophy of module encapsulation. That is, only generic technical
properties of subsystems are considered, such as the programming languages used for their
implementation, while specific functionality of subsystems is abstracted away.

Top-down design

A top-down approach is for students to begin at the level of the over-all system and then focus
on subsystems on an as-needed basis.

Project work: For the purpose of this discussion, the approach is identified with self-managed
project work, where students choose problem and problem-solving strategy under instructor
supervision. Project work may be seen as top-down insofar as students choose to work with high-
level design problems that cannot be solved by straightforward application of knowledge already
acquired, thus necessitating subsystem analysis as a means to solve the over-all problem.
Informally, a top-down approach can be viewed as the (building) architect's approach, while
bottom-up is the approach of the traditional engineer.

Project work plays a central role two Danish Universities formed in the 1970s, Roskilde
University and Aalborg University, including in their programs for Computer Science and
related disciplines. Projects are also central at the Design and Innovation program at DTU.
Background material including (Andreasen, 2002) on the program contains many interesting
views on the importance of project work in engineering, including a focus on students' acquiring
of competencies in synthesis and evaluation, eg. of trade-offs and alternative designs.

14

Approach Philosophy Rationale

Bottom-up Students must
understand
subsystems before
methods for their
composition.

Understand language of underlying abstract machine ('physicalism').

Understand design retrospectively, via design results (Denning, 1989).

Unavailability of standard methods, due to immaturity (Shaw, 1990).

Fact gathering to build context (Shaw, 1990).

Technical complexity of subsystems (Garlan et al, 1992).

Generic There are sound
design methods
that can be
understood at a
generic level,
independent of
subsystems.

Focus on design enabled when time is not unduly spent on technical
details of subcomponents.

Availability of relevant methods, including formal, structured and
object-oriented, and soft user-oriented.

Approach may become increasingly more viable as Computer Science
matures.

Top-down Explore
subsystems as
needed in self-
managed project
work

Development of analysis, synthesis, and evaluation skills (cf. Bloom).

Experience in identifying and solving routine vs. innovative problems.

Resembles professional practice.

Table 3. Summary of bottom-up, generic, and top-down approaches to design teaching.

Capstone projects as defined in CC 2001, SE 2004, and CE 2002 are intended to focus on design
and implementation. In CE 2002, capstone projects are referred to as the 'culminating design
experience' (CE 2002, p 21). (The Information Systems report does not define larger projects.)
Thus there is an element of the top-down approach in these reports as well.

Bloom's taxonomy: The Software Engineering report describes the capstone project as an
opportunity for students to apply in practice what they have already learned through course
work. Despite this view of project work as application of knowledge already acquired, and the
entailed downplay of the opportunity to acquire new insights, the report also motivates the
project work by an interesting reference to Bloom's taxonomy of levels of cognitive skills. The
CE 2002 report characterizes project work as one opportunity (though not the only) for students
to achieve the highest level of competence. Bloom's taxonomy of student's depth of knowledge is
summarized in Table 4. The three most advanced levels - analysis, synthesis, and evaluation - are
strikingly central in design work, whether in professional practice or self-managed student
projects.

Professional practice and the routine/innovative task distinction: Work in industry and
government resembles project work rather than course work. Moreover, Shaw conjectures in
(Shaw 1990) that in disciplines where solutions to standard problems are not synthesized and
distributed by a supporting science (due to immaturity, see the subsection on bottom-up above),
such insights will be generated through the practical work of professionals, and distributed
informally as 'folklore'. Therefore, qua its resemblance with real-world practice, project work
may serve as a means of acquiring these crucial, professional competencies, at least to some
degree. Relevant competencies that may be acquired include the ability to search for and apply
established solutions to routine problems, and to distinguish that sort of activity from the more
creative activity of solving the complementary problem type, those design tasks that require
innovative work.

Conclusion

Although the ACM and IEEE curriculum reports surveyed in this paper emphasize design in
various general remarks, and most notably the Computer Science report discusses in a visionary
manner various approaches to the introductory and intermediate levels of the curriculum, eg.
programming-first vs. breadth-first, the reports only vaguely indicate how the concrete curricula

15

Level Description

1: Knowledge Fact recall with no real understanding behind the meaning of the fact

2: Comprehension The ability to grasp the meaning of the material

3: Application The ability to use learned material in new and concrete situations

4: Analysis The ability to break a complex problem into parts

5: Synthesis The ability to put parts together to create a unique new entity

6: Evaluation The ability to judge the value of the material for a given purpose

Table 4. A summary of Bloom's taxonomy of acquired cognitive skills based on (Howard, 1996).

may actually help in building the student's design competencies.

The curricula recommended by the four reports overlap to a striking degree, for example, they all
prioritize operating system, databases, and programming-in-the small. The report on Computer
Science (CC 2001) tends to identify Computer Science with computing, the term also used in all
reports to denote the broader field whose parts are covered by the four disciplines: Not only do
the initials CC abbreviate Computing Curriculum; Computer Science is the only discipline
defined as a science; and the definition of Computer Science as integrating science and
engineering (see Figure 1) comprises, at least, the discipline of Software Engineering. If
graduates within all four disciplines acquire essentially the same competencies, albeit with
different emphasis, the existence of four independent disciplines may not be justified.

As a basis for discussing alternatives to the 'physicalist' approach of the ACM and IEEE reports,
a distinction between approaches of a bottom-up, generic, and top-down nature has been
tentatively introduced. The discussion of this taxonomy supports three observations: First, there
are indeed many advantages of a bottom-up approach; one key advantage is that technical insight
is a solid basis for studying, for example, software architecture design. Second, as Software
Engineering and Information Systems mature, an increasing body of relevant generic methods
may be available that can be taught and understood before deeper technical competencies are
acquired. And third, self-managed project work may be cultivated as a top-down approach to
design, and may potentially support the development of crucial and design-relevant
competencies such as analysis, synthesis, and evaluation.

References

M. Alonson, E. J. Finn. Fundamental University Physics. Vol 1. Addison-Wesley, 1980, 2/e.

K. V. Andersen, N. Jørgensen. Workshop om digital forvaltning og universitetsuddannelserne.
URL: http://www.ruc.dk/~nielsj/digitalforvaltning/workshop.html

M. M. Andreasen, P. Boelskifte, O. Broberg, C. Clausen, C.T. Hansen, L. Hein, M.S. Jørgensen,
U. Jørgensen, T. Lenau, T.C. McAloone. Design-ing. DTU, 2002. URL:
http://www.designing.dk/"Indstilling om design og innovation.pdf"

R. Baskerville, J. Travis, D. Truex. Systems Without Method: The Impact of New Technologies
on Information Systems Development Projects. In K. Kendall, K. Lyytinen, J. DeGross. (eds.).
IFIP Transactions A8, The Impact of Computer Supported Technologies on Information Systems
Development. Amsterdam: North-Holland, 1992, pp. 241-269.

F. P. Brooks. No Silver Bullet: Essence and Accidents of Software Engineering", Information
Processing 86, pp 1,069-1,076.

F. P. Brooks. The mythical man-month. Essays on Software Engineering, Anniversary Edition.
Addison-Wesley, 1995.

K. Bødker, F. Kensing, J. Simonsen. Participatory IT Design - Designing for Business and
Workplace Realities. MIT Press, 2004.

P. J. Denning. Great Principles in Computing. Technical Symposium on Computer Science
Education (SIGCSE), 2004 (Invited Talk), pp 336-341.

P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, and Paul R. Young.

16

Computing as a Discipline. Communications of the ACM, Vol. 32 (2), January 1989, pp 9-23.

P. J. Denning and P. A. Dargan. A Discipline of Software Architecture. Interactions, Vol 1 (1),
pp 55-65, 1994.

The Danish Finance Ministry. E-government. May 2001. Only available in Danish. URL:
http://www.fm.dk/db/filarkiv/6121/Digitalforvaltning.pdf

D. Garlan, M. Shaw, C. Okasaki, C. M. Scott, and R. F. Swonger. Experience with a Course on
Architectures for Software Systems. Proceedings of the SEI Conference on Software
Engineering Education, 1992. Lecture Notes In Computer Science (Vol. 640).

J. T. Gorgone et al. IS 2002. Model Curriculum and Guidelines for Undergraduate Programs in
Information Systems. ACM, AIS, and AITP, 2002. URL:
http://www.aisnet.org/Curriculum/IS20021231.pdf

Å. Grönlund (ed). Electronic Government: design, applications & management. Idea Group,
2002.

H. A. Howard, C. A. Carver, W. D. Lane. Felder's learning styles, Bloom's taxonomy, and the
Kolb learning cycle: Tying it all together in the CS2 course. Technical Symposium on Computer
Science Education (SIGCSE), 1996, pp 227-231.

Joint Task Force on Computing Curricula. Computer Science. (CC 2001). ACM and IEEE, 2001.
URL: http://www.computer.org/education/cc2001/cc2001.pdf

Joint Task Force on Computing Curricula. Software Engineering 2004. (SE 2004). ACM and
IEEE, 2004. URL: http://www.computer.org/education/cc2001/SE2004Volume.pdf

Joint Task Force on Computer Engineering Curricula. Computer Engineering 2002. (CE 2002).
ACM and IEEE, 2004. URL: http://www.eng.auburn.edu/ece/CCCE/CCCE
FinalReport2004Dec12.pdf

P. Naur and B. Randell (eds). Software Engineering: Report on a conference sponsored by the
NATO Science Committee, October 1968. Brussels, 1969.

Mary Shaw. Prospects for an Engineering Discipline of Software. IEEE Software, November
1990, pp 15-24.

Mary Shaw. We can teach software better. Computing Research News, 4 (4), pp 2-12, September
1992.

Frederik Voetmann Christiansen. Undervisningspraksis og -kulturer i de videregående
naturfaglige uddannelser. URL: http://www.fremtidensnaturfagligeuddannelser.u
net.dk/notater/notat6c.htm

17

