
Mirage+

A Kernel Implementation of

Distributed Shared Memory

on a Network of Personal Computers

Brett D. Fleisch� Randall L. Hydey Niels Christian Juulz

DIKU-rapport 94/13x

April 1994

D I K U

Department of Computer Science

University of Copenhagen
Denmark

�Department of Computer Science, University of California, Riverside (brett@cs.ucr.edu). This research is

sponsored by a Joint Study with IBM Corporation, NSF CDA09209405.
yDepartment of Computer Science, University of California, Riverside (rhyde@cs.ucr.edu).
zDepartment of Computer Science, University of Copenhagen, Denmark (ncjuul@diku.dk). Work done

during PostDoc employment with UCR, also supported by the Danish Natural Science Research Council.
xReleased simultaneously as UCR-CS-94-2 by University of California, Riverside.

Abstract

We describe the evolution of a distributed shared memory (DSM) system, Mirage,

and the di�culties encountered when moving the system from a Unix-based1 kernel on

the VAX to a UNIX-based kernel on personal computers. Mirage provides a network

transparent form of shared memory for a loosely coupled environment. The system hides

network boundaries for processes that are accessing shared memory and is upward com-

patible with the Unix System V Interface De�nition.

This paper addresses the architectural dependencies in the design of the system and

evaluates performance of the implementation. The new version, Mirage+, performs

well compared to Mirage even though eight times the amount of data is sent on each

page fault because of the larger page size used in the implementation. We show that

performance of systems with a large page size to network packet size can be dramatically

improved on conventional hardware by applying three well-known techniques: packet

blasting, compression, and running at interrupt level.

The measured time for a page fault in Mirage+ has been reduced 37% by sending

a page using packet blasting instead of using a handshake for each portion of the page.

When compression was added to Mirage+, the time to fault a page across the network

was further improved by 47% when the page was compressed into one network packet.

Our measured performance compares favorably with the amount of time it takes to fault

a page from disk. Lastly, running at interrupt level may improve performance 16% when

faulting pages without compression.

1
Unix is a Registered Trademark of Unix International.

Contents

1 Introduction 1

1.1 Goals and Overview : 1

1.2 The New Environment : 2

2 The Mirage Model of Distributed Shared Memory 2

2.1 Consistency Control and Coherence : 2

2.2 The Mirage+ Protocol : 3

3 The Impact of a Larger Page Size 3

3.1 Performance Improvement Techniques : 4

3.2 Technique 1: High-Level Packet Blasting : 4

3.3 Technique 2: Interrupt Level Execution : 4

3.4 Technique 3: Compression : 5

4 Performance Analysis of Component Costs 5

4.1 Mechanisms for Performance Measurements : : : : : : : : : : : : : : : : : : : 5

4.2 Basic Communication Costs : 5

4.3 The Cost of a Page Fault : 6

4.4 Packet Blasting Performance : 7

4.5 Comparision of Remote Page Fault Costs : 7

4.6 Interrupt Level Execution : 8

4.7 Cost of Invalidation : 9

4.8 Compression : 9

5 Performance Evaluation of Applications 11

5.1 Philosophy Behind the Methodology : 11

5.2 Application Descriptions : 11

5.3 Performance of EachN, UptoN, and RandN : : : : : : : : : : : : : : : : : : : 13

5.4 Performance of the Battleship Simulation : 14

5.5 Performance of Matrix Multiply : 15

5.6 Performance Implications : 17

6 Related Work 17

6.1 Ivy : 17

6.2 Munin : 18

6.3 Mether : 18

7 Conclusions 18

7.1 Results : 18

7.2 Future Work : 19

8 Acknowledgements 20

i

List of Tables

1 The Component Costs of a Page Fault in Mirage+(handshake) : : : : : : : 7

2 The Component Costs of a Page Fault in Mirage+(blast) : : : : : : : : : : 7

3 Comparison of Page Fault Costs between Mirage and Mirage+ : : : : : : : 8

4 Average Cost of Remote Page Fault with Compression : : : : : : : : : : : : : 10

5 Performance of the Battleship Simulation. : 15

6 Performance of Matrix Multiply : 16

7 Performance Summary : 19

List of Figures

1 Remote Page Fault Algorithm (sketched) : 6

2 Codec Performance vs. Network Latency : 11

3 The Memory Access Pattern of the Central Loop in Battleship Simulation : : 12

4 The E�ect of Compression on Remote Page Fault Time : : : : : : : : : : : : 13

5 Shared Memory Access Pattern of the Battleship Simulation : : : : : : : : : : 14

6 The E�ect of Compression on Battleship Simulation : : : : : : : : : : : : : : 16

7 The Speed-up of Matrix Multiply : 17

ii

1 Introduction

Loosely coupled distributed systems have relatively low bandwidth inter-site communication

when compared to tightly coupled processors or uniprocessors. Achieving good performance

presents a number of challenges to designers, particularly when coordinated sharing is desired.

Nevertheless, loosely coupled distributed systems provide the potential to scale, economically,

to very large con�gurations using commodity hardware.

In the past, operating system designers have exploited the similarity between network

packets and messages in the design of loosely coupled distributed systems[Accetta 86]. How-

ever, some researchers have observed that the message passing approach may not be well

suited for tightly coupled processors that access shared memory[Li 86b, Li 90, Bisiani 90, Ben-

nett 90b, Ramachandran 88, Fleisch 89b]. Message passing interfaces require the programmer

to use conceptually di�erent primitives and organize their code di�erently than shared mem-

ory interfaces. Further, communicating large, complex data structures may be di�cult or

ine�cient using message passing. An alternate approach is to use Distributed Shared Memory

(DSM)[Fleisch 89b, Nitzberg 91].

Since large address space machines are becoming ubiquitous, globally-accessible memory

is increasingly important. DSM systems permit sites to access common blocks of memory

using the convenience of load and store instructions. Nonetheless, DSM presents challenges

to the system designer since DSM requires well tuned components to support e�cient transfer

between sites.

In this paper, we focus on performance issues related to DSM page size and the un-

derlying DSM support structure. This work is based on our previous DSM system called

Mirage[Fleisch 89b, Fleisch 89a]. Mirage is a DSM facility implemented entirely in the kernel

of a UNIX-based operating system[Popek 81, Walker 83]. Here we examine our work to adapt

Mirage for personal computers with a larger page size. We call the new system Mirage+.

1.1 Goals and Overview

Our prior work[Fleisch 89b] focused on operating system extensions to support DSM, perfor-

mance of synthetic applications which exercise DSM, examination of supporting algorithms

and protocols, and performance optimizations using a time-based locking approach.2 Al-

though experiences with Mirage were encouraging, there were a number of concerns that

motivated our port to a new research platform: 1) the hardware running the Mirage pro-

totype (VAX 11/750s) was obsolete, 2) Mirage was built on an early version of the Locus

operating system[Popek 81, Walker 83] that operated only on VAXs, 3) we needed a testbed

where we could examine the scalability of our system beyond three machines, and 4) we

needed a new platform to address the issue of reliability in our future work.

This paper addresses our experiences moving DSM to a new platform. The paper reports

on factors that a�ect the design, implementation, and component performance in Mirage+.

Our goal was to design a high performance DSM system. However, an important design

constraint is that our system be portable. Most of the Mirage+ code is machine and host

operating system independent assuming a kernel-to-kernel packet transport mechanism is

available. The few machine dependent portions of the code are isolated in separate modules.

The larger page size supported by the hardware was the source of serious performance

problems. Portability can be severely limited if a large page size impacts performance. Our

goal is to be able to add DSM to a system as a drop-in component without spending con-

siderable time optimizing vendor supplied communication subsystems that may not handle

2Formerly called time-based coherence.

1

large page sizes well. We address performance problems using various techniques including:

high level packet blasting, shipping less data via compression, and running at interrupt level.

The larger page size also introduces the possibility of a larger impact from false sharing .

In this paper, our major concern is to measure the DSM cost per page fault. We address

performance in terms of number of control messages to obtain data in theMirage+ protocol,

i.e., time to obtain remote pages and move the pages to service the requests. So, we focus on

component costs and the operation and performance of the protocol rather than reduction of

the number of page faults. Our performance enhancements are independent of the amount

of false sharing from the application level. The enhancements improve the performance of all

applications including those that exhibit false sharing.

1.2 The New Environment

The environment consists of 12 PS/2 Model 70s and 80s upgraded with i486 CPUs with 10

to 16 Mbytes of main memory.3 The cluster has a total disk storage capacity just under 5

Gbyte. The systems are connected by a 10 Mbps Ethernet[Metcalfe 76] using Ungermann-

Bass NICps/2 network adapters (technology circa 1987) without on-board caching. They

execute our modi�ed AIX Version 1.2 which includes IBM's Transparent Computing Facility

(TCF).4

As part of the new work we have completed, we have instrumented the operating system

and the DSM system with optional timers and counters to measure performance. These

mechanisms are discussed further in the beginning of the performance section. Second, we

have improved the performance of the basic network page faulting in Mirage+. Third, we

have added page compression. These last two mechanisms present two additional steps into

our research into high performance DSM suitable for other high performance architectures.

2 The Mirage Model of Distributed Shared Memory

The new DSM system, like Mirage[Fleisch 89b], uses a paged segmentation scheme[Daley 68,

Denning 70]. In our model, processes create shared memory segments by specifying the size

of the segment, name, and access protection. Processes locate and attach segments into

their virtual memory address space by name. Once the named segment is attached, the

shared memory behaves as conventional memory, the only di�erence being that changes to

the underlying memory are visible to the other local or remote processes sharing the segment.

A comparison of the Mirage model to other DSM models is given in the related work

section at the end of this paper.

2.1 Consistency Control and Coherence

Consistency control is an important issue in our model of shared memory. At the outset

of the design we decided that it would be unacceptable for processes to read data that

has become out-of-date or stale. In our model, we provide coherence at the lowest system

level. A coherent implementation is one in which a store to an address is always visible

to all subsequent load operations of the same address, independent of the machine location

where the load occurs. Higher level synchronization primitives, such as semaphores or mon-

itors[Brinch Hansen 73, Dijkstra 72, Hoare 74] may be used by applications that require

3The maximum number of uniformly con�gured machines in the cluster was eight.
4AIX/TCF is a trademark of IBM. The TCF portion of the AIX product has since been discontinued.

2

additional consistency guarantees. For example, we use the UNIX System V semaphore

interface in many of our (distributed) applications.

Our past work on Mirage focused on a time-based locking approach to DSM. The system

uses a clock mechanism to control when a site may be interrupted from its read/write pro-

cessing to relinquish shared pages. The clock mechanism grants the readers or the current

writer a time window (�) during which the processes on a given site possess the page. Like

the traditional CPU time slice, � is used to apportion time for the page to the site(s). During

the time window, processes on the site(s) having read-only access may read, or processes at

the site having write access may read or write the page. The page may also be unused during

�.

The time window provides a degree of fairness between sites requesting page access, the

current site using the page, and the controlling site (library) which attempts to invalidate

the page on behalf of another requester. In a sense, � provides some degree of control over

the processor locality, the number of references to a given page a processor will make before

another processor is allowed to reference that page.

2.2 The Mirage+ Protocol

When processes are co-located and they share memory, the UNIX System V implementation

is used. However, when remote memory access is required, theMirage+ protocol is used. In

Mirage+ a load is implemented by reading a local copy of the data page, if present. However,

sinceMirage+ is a write-invalidate coherent system, a store requires that all read-only copies

of a page be invalidated before storing to the page. In this case, a writable copy of the page

is required in the network and all other readable copies of the page are discarded.

InMirage+ there is one distinguished site associated with each segment, called the library

site. Requests for pages are sent to the library site, queued, and sequentially processed. All

pages must be \checked out" from the library. The library instructs the site which possesses

the page to return it directly to the requester. Depending on the con�guration, there may be

several di�erent sites used as library sites for the various segments created by user programs.

InMirage+, the site that creates the segment is con�gured as the library site for the segment.

Another distinguished site in our model is the clock site. The clock site is the site that has

the most recent copy of a page. For example, if there is a writer for the page on the network,

it is chosen as the clock site. On the other hand, if there are a set of readers using the page

simultaneously, one of the readers is selected as the clock site. The clock site controls the

decision-making for the time-based locking mechanisms described earlier and stores whether

the cluster possesses the page in read-only or read-write mode. The library site records which

site is acting as clock site.

As mentioned earlier, there may only be one writable copy of a given page in the network

at any one time. While there may be multiple readers simultaneously using a page, there may

not be read copies at the same time as the write copy. The process of converting a reader

to a writer when a protection fault occurs is called an upgrade. The process of converting a

writer to be a reader is called a downgrade. In Mirage+, a downgrade occurs when a writer

possesses the page and a remote read fault is serviced.

3 The Impact of a Larger Page Size

Perhaps the most signi�cant issue in the transition from Mirage to Mirage+ was the larger

page size. Mirage had a page size of 512 bytes while Mirage+ has a page size of 4096 bytes.

This factor of eight di�erence in page size has had a signi�cant impact on performance. To

3

assemble one Mirage+ page requires receipt of four network packets and processing by an

interrupt level server process or an interrupt service routine. The AIX/TCF communication

subsystem limits each network packet to contain a data bu�er of at most 1 Kbyte. The

data bu�er is in addition to the standard AIX/TCF header information of approximately 1

4

Kbyte. The limit is imposed by the upper layers of the kernel network software; the lower

layer communication software for the Ethernet is limited to roughly 1500 bytes.

Our �rst implementation ofMirage+ addressed the 4 Kbyte page size versus the 1 Kbyte

network packet size by modifying the sending routine to split the page into four network

packets. The receiving routine gathered the four packets in a bu�er and re-assembled the

page. Each of the packets was sent using a synchronous netsend() routine that required a

high-level acknowledgment for each packet.

We measured the performance of the system, and isolated the cost of a remote page fault,

which included the transfer of a page between sites. This measured cost averaged 31.7 msec.

3.1 Performance Improvement Techniques

We considered several possible ways to improve performance. Here we discuss the most

promising of the optimizations feasible for our environment. These optimizations include:

1. packet blasting

2. running at interrupt level

3. compression

3.2 Technique 1: High-Level Packet Blasting

One possible performance improvement is to optimize the network code to reduce time spent

moving data through the software layers of the protocol. The AIX/TCF kernel supports

cluster communication that provides virtual circuits between cluster sites. The low-level

communication subsystem is responsible for transmitting the programmer's packet to the

destination site. The messages are sequenced, ordered, reliable, and possibly combined with

other messages when sent to the destination.

Vertical optimization of the protocol layers is a well proven technique to achieve better

performance[Schroeder 90, Tanenbaum 92]. Our design constraints were, however, to build

the DSM system on top of the communication layers without spending considerable time

optimizing communication subsystems written by others.

With high-level packet blasting[Zwaenepoel 85, Carter 89], we expected the total time for

a remote page fault would improve signi�cantly. The savings using high-level packet blasting

instead of explicitly handshaking each packet, is not only due to the removal of explicit

acknowledgments, but also due to increased parallelism during communication. We have

applied packet blasting to the protocol for page transmission as well as to our iterative-send

version of multicast.

3.3 Technique 2: Interrupt Level Execution

Even with high level packet blasting, communication costs could remain high. Another

enhancement was inspired by the fact that processing on the interrupt-level could potentially

improve performance. Rather than scheduling and running a kernel-internal server process

to process each incoming network message, we process each packet directly in the interrupt

service routine. This eliminates the small start-up latency and the potential interference

4

between server processes scheduled concurrently. However, this approach requires additional

complexity in providing consistency of the kernel state during the interrupt service.

3.4 Technique 3: Compression

Compression is another technique we use to improve performance. Compression works by

reducing the number of network packets that the system must transmit on each page fault.

However, compression used inappropriately may actually reduce performance. This occurs

when it takes longer to compress, decompress, and transmit the data than to transmit the

uncompressed data. Furthermore, some pages cannot be compressed and therefore increase

the cost of transmission. Nevertheless, we felt a high performance compression system would

improve the expected performance for many applications in Mirage+.

4 Performance Analysis of Component Costs

In this section we describe our methodologies, analysis, and results ofMirage+ performance

costs. We use the time spent servicing a remote page fault as the basis for understanding

the overall performance in the system. We compare the costs in Mirage to Mirage+. For

Mirage+ we examine the costs with and without packet blasting, and with and without

interrupt level optimization.

4.1 Mechanisms for Performance Measurements

We have instrumented the kernel with a micro-timing function that makes it possible to read

a timestamp with the granularity of 1 �sec. Timestamps are bu�ered inside the kernel and

can be output when the kernel is running. Each timestamp call requires approximately 15

�secs.

Counters have been added to critical routines in the kernel to count function calls. Both

the counters and the timestamps may be returned with a system call. In addition, we have

instrumented our applications to use kernel timestamping. Instead of printing the actual

values of the counters when the kernel is executing, which would interfere with the actual

timings themselves, the values may be read at the beginning of the application and again at

the end. This enhancement permits the incremental values during the application run to be

accumulated and output later.

4.2 Basic Communication Costs

We measured the basic cost of communication between two sites by instrumenting the system

call probe(). The probe call creates a message in the kernel that is sent though the protocol

layers of the communication system at the sending site, over the wire, through the protocol

layers at the receiving site from where it is returned to the caller through these same layers.

The probe takes approximately 5.5 msec round-trip. Although a probe mimics a high-level

ping operation, the probe is somewhat di�erent in that it travels through all of the layers in

the communication system, whereas a ping may not.

Based on the timings above, we determined the cost of a short message sent one-way

through the communication subsystem to be 2.7 msec. We also measured the round-trip cost

of a short message with a long message response to be 6.7 msec. Thus, the cost of a long

message sent one-way is 4.0 msec. This includes the additional cost of transmitting 1 Kbyte

over the wire (0.8 msec using full bandwidth of a 10 Mbps Ethernet) and copying of the data

through the protocol layers of the communication subsystem (0.5 msec).

5

1. Transfer page request to library site:

(a) Send request to library site

(b) Communication of short message

(c) Receive request at library site

2. Process request at library site

3. Transfer page to user site in four packets:

(a) Send packet

(b) Communication of long message

(c) Receive packet

(d) Send acknowledgment

(e) Communication of short message

(f) Receive acknowledgment

4. Install page at user site and resume the faulting process

Figure 1: Remote Page Fault Algorithm (sketched)

The component costs of a remote page fault for a checked-in page5 include time at the

faulting site, time at the library site, and network communication cost. The last component,

includes the cost of sending a message through the communication subsystem at the sending

site, over the wire, and through the communication subsystem at the receiving site.

Our detailed measurements show that a page fault request can be sent from the faulting

site to the library site in 3.0 msec. This is equivalent to the short message one-way cost of 2.7

msec plus 0.3 msec overhead to trap the page fault and generate the network message. The

measurements of the cost to transfer the page in four network packets include the cost of a

long message one-way (4.0 msec) and the cost of generating the network message and copying

1 Kbyte of data at each site (0.3 msec to send and 0.2 msec to receive) for each packet. When

using high-level acknowledgments for each packet, a cost similar to a short message one-way

is added (2.7 msec communication cost) for each acknowledgement. Thus, each part of the

page costs 4.5 msec without, and 7.2 msec with, the high-level acknowledgment.

4.3 The Cost of a Page Fault

A remote page fault results in a sequence of actions. The sequence which constitutes the

algorithm for a remote page fault for a checked-in page is outlined in Figure 1. Of these

action, only those in the critical path contribute to the latency introduced when a process

traps due to a remote page fault. The measured latency indicates that the components in

the critical path are the sole contributors to the cost. Thus, the cost of sending the last

acknowledgment (Steps 3d, 3e, and 3f in Figure 1) adds only the initial transmission time at

the user site. We measured that cost to be 0.9 msec.

The measured time for a remote page fault is 31.7 msec as shown in Table 1. This cost

is for a site that requests a page checked-in at the library site. The major cost for faulting a

page over the network is the cost of sending the page as four packets. The exchange of three

of the four packets using the handshake protocol costs 7.2 msec per packet.

5Checked-in means that library site is also the clock site for that page.

6

Operation User Site Communication Library Site Totals

(msec) (msec) (msec) (msec)

1. Transfer Request 0.31 2.7 0.0 3.0

2. Process request 1.41 1.4

3.1 Transfer page (part 1) 0.21 6.7 0.3 7.2

3.2 Transfer page (part 2) 0.21 6.7 0.3 7.2

3.3 Transfer page (part 3) 0.21 6.7 0.3 7.2

3.4 Transfer page (part 4) 0.21 4.7 0.3 5.2

4. Installing page 0.51 0.5

Total 1.61 27.5 2.6 31.71

Table 1: The Component Costs of a Page Fault in Mirage+(handshake)

1: indicates a directly measured cost, the remainder is determined analytically.

Operation User Site Communication Library Site Totals

(msec) (msec) (msec) (msec)

1. Transfer Request 0.31 2.7 0.01 3.0

2. Process request 1.41 1.4

3.1 Transfer page (part 1) 0.21 4.0 0.61 4.3

3.2 Transfer page (part 2) 0.21 4.0-1.3=2.72 0.3 3.3

3.3 Transfer page (part 3) 0.21 4.0-1.3=2.72 0.3 3.3

3.4 Transfer page (part 4) 0.21 4.9-1.3=3.62 0.3 4.1

4. Installing page 0.51 0.5

Total 1.61 15.7 2.6 19.91

Table 2: The Component Costs of a Page Fault in Mirage+(blast)

1. indicates a directly measured cost, the remainder is determined analytically. 2. Approximately 1.3 msec of

the sending is overlapped with the transmission and reception of the previous packet due to packet blasting.

4.4 Packet Blasting Performance

With high-level packet blasting, the total time for a remote page fault was reduced from

31.7 msec to 19.9 msec as shown in Table 2. The savings using high-level packet blasting

instead of handshaking is not only due to the removal of explicit acknowledgments, but also

due to the parallelism achieved in sending the last three of the four packets. Recall that the

network time is attributed to time spent mostly in the communication layers at the sending

and receiving sites. Thus, the measurements re
ect that when the �rst packet has left the

library site it can be processed at the user site (both by the communication layers on that

site and later, by the actual packet receiving code), while the second packet is being sent

from the library site simultaneously. We measured the average time to receive the second

and third packet as 3.2 msec, the �rst packet does not bene�t from any concurrency, and the

last packet must reply with a high-level acknowledgment for all four packets.

4.5 Comparision of Remote Page Fault Costs

We have compared the results with previous published results for Mirage[Fleisch 89b] running

on a set of three VAX 11/750s. The comparison is shown as Table 3. The component costs of

7

Operation Time (in msec) Mirage Mirage+

(handshake) (blasting)

1a Read request1 2.5 0.3 0.3

1b Request transmission2 3.2 1.3 1.3

3 Page Transmission2 7.5 13.4 7.5

4 General overhead1 0.5 0.5

Total user side 13.2 15.5 9.6

1b Request transmission2 3.2 1.3 1.3

1c Request received1 1.5 0.0 0.0

2 Process request1 2.0 1.4 1.4

3 Page Transmission2 7.5 13.4 7.5

Delay by library site 14.2 16.1 10.2

Total costs1 27.5 31.7 19.9

Short message, round-trip1 12.9 5.5

Long message(1K bu�er) w/short response1 21.5 7.2

Table 3: Comparison of Page Fault Costs between Mirage and Mirage+

Mirage was measured on VAX 11/750 with 512 byte page size, and Mirage+ was measured on i486/25MHz

machines with 4K page size using 4 1K network packets. 1 indicates a directly measured cost, the remainder

is determined analytically. 2 indicates a transmission delay including the sending and receiving cost. Half of

the cost is attributed to each of the sites.

theMirage+ measurements are shown in a composite form similar to the VAX measurements

of Mirage, where the component costs are attributed to either the user or library site. With

high-level packet blasting added to the kernel, Mirage+ compares favorably given the eight

times page size di�erence. Actually most of the time spent during a remote page fault is

attributed to the communication subsystem, as in Mirage.

4.6 Interrupt Level Execution

Even with packet blasting, communication costs remain high. Another enhancement we pur-

sued was inspired by the fact that processing on the interrupt-level may improve performance.

This approach is an alternative to scheduling and running a kernel-internal server process.

By processing the packet reception activities directly at interrupt-level instead of through a

server proc, we reduced the total execution time for a page fault by approximately 4 msec.

The additional time consumed at interrupt time is minimal compared to the time already

spent passing through the network layers. Consequently, other interrupts were not blocked

out for a long period. More importantly, we did not observe any dropped or overrun packets

that could have arisen from using this technique. When the last packet is received, however,

we must assemble the page, install it, and resume the processes waiting for the page. Thus,

because of the additional time required to process the last packet, we chose not to use inter-

rupt level execution for that packet, but only on the �rst three packets. This optimization

reduced the page fault time to 16.7 msec (from 19.9 msec), a performance enhancement of

3.2 msec, or 16%.

8

4.7 Cost of Invalidation

In the previous sections we described the cost of a page fault without considering the cost of

invalidating outstanding readers when a write fault occurs. The invalidation expense would

be required for any write-invalidate DSM system.

In Mirage+ the system multicasts an invalidation message to all readers being discarded.

The packet blasting technique is used to implement an iterative send version of multicast.

Each multicast invalidation message is sent to all of the designated sites and then all the

high level responses are obtained. The cost for an invalidation of one, two, three, and four

additional sites was measured as 4.6 msec, 6.8 msec, 7.0 msec, and 8.2 msec respectively.

These measurements should scale if more sites need to be invalidated; the cost of invalidation

should increase linearly in the number of concurrent readers.

With our simple, iterative (and blasting) multicast on top of the existing communication

subsystem, the invalidation of multiple readers is as e�cient as one can hope for in a system

that does not support true multicast. However, our measurements emphasize the importance

of having a high performance multicast available in the communication subsystem. In select-

ing alternate networking technologies, such as ATM technology, support for true multicast is

essential for DSM systems.

4.8 Compression

Compression attempts to reduce the number of network packets that the system must trans-

mit on each page fault. In our system, the performance of the network protocol layers reduces

system performance signi�cantly. Currently, the system does allow only two sizes of packets,

a short message (containing the message system header only), and a long message (with an

additional 1 Kbyte data bu�er). Thus, the di�erence in transmission time for various sized

data bu�ers does not pay o�, unless it can be reduced to zero. Therefore, reducing the size of

transmitted page does not necessarily improve performance unless it eliminates entire pack-

ets. Since the number of messages has a key role in page fault performance, a compression

scheme which works best with Mirage+ is one which produces compression ratios of less

than 75%, less than 50%, or less than 25%.

The time to compress and decompress the data increases the network latency. To re-

duce communication time, compression must save more transmission time than it costs to

compress and decompress the data. Clearly a very fast codec (compressor/decompressor)

which does not compress the data well will not improve performance. Likewise, an algorithm

which compresses the data signi�cantly will not improve overall performance if it takes too

long. Therefore, it is important to consider both speed and expected compression ratio when

choosing codec algorithms for distributed memory systems.

There are many codec algorithms available or published in the literature[Bell 89b, Raita 87,

Ziv 77, Williams 90, Bell 89a, Storer 88, Nelson 91]. For the purposes of this initial work

on whether compression would be useful, we chose to use run-length encoding (RLE) as our

codec of choice. RLE exhibits many of the good characteristics required from a Mirage+

codec: it is fast, compression ratios do not depend on block size, and it is very easy to im-

plement. Though RLE does not produce outstanding compression ratios on common data,

it works quite well with the benchmarks we are currently using. Its simplicity gave us the

opportunity to instrument our system and run several experiments to check the feasibility of

using compression within Mirage+.

On our systems running compression, the current RLE codec algorithm averages between

0.9 to 2.0 msec to process a 4K block of data. If the RLE codec manages to compress to at

least 75%, it improves the performance of Mirage+.

9

Packets required to send the page 1 2 3 4

Compression msec 0.5 0.9 1.0 1.3

Decompression msec 0.4 0.5 0.7 0.0

Compression overhead msec 0.9 1.4 1.7 1.3

Costs minus compression overhead msec 9.6 12.1 15.4 20.0

Run-time using compression msec 10.5 13.5 17.1 21.3

Speed-up by compression percent 47.2 32.2 14.1 -7.0

Table 4: Average Cost of Remote Page Fault with Compression

Table 4 shows the average page fault time when using compression on various pages

that compress into one, two, three, or four packets. Note that if the compression algorithm

cannot achieve at least a 75% compression ratio, it immediately aborts and transmits an

uncompressed page.

The combination of our slow Ethernet cards, slow CPUs, and AIX's slow network commu-

nication software could provide an overly optimistic picture of the bene�ts of using compres-

sion. An issue is whether compression improves performance if network latency were reduced.

Figure 2 shows the e�ect of compression performance on our system if we reduce network

latency. The x-axis is the amount of software and hardware latency for our communication

sub-system on a 10 Mbps Ethernet. This cost includes passing the message which includes

the bu�ers to the network layers, through the layers, over the wire, and through the layers

on the destination. The current network latency for a remote page fault on our system is

15.7 msec when using packet blasting (See Table 2). This corresponds to the network cost

of one short message of 2.7 msec, four long messages at 4 msec each partly overlapping, and

part of the sending cost for a short message, 0.9 msec. The current communication latency

is 2.7 msec for a short message sent one-way. The zero point on the x-axis corresponds to

a bus which is capable of transmitting all the messages without delay. Although not possi-

ble in practice, this isolates the Mirage+ protocol overhead to be approximately 3.6 msec.6

The y-axis indicates the total time for a compressed remote page fault, including compres-

sion/decompression time. If the codec succeeds in compressing the page to one packet, the

system will always perform better. If the codec reduces the transmission to two packets,

then the codec improves system performance if the latency in the communication system is

at least 0.3 msec per short message sent one-way. For three packets, there must be about 0.9

msec latency per short message sent one-way for the system to show improvement.

As Thekkath and Levy[Thekkath 93] point out, bandwidths are improving dramatically

while latencies are not. This suggests that network transmission speed is limited by network

components other than wire time such as the network protocol layers. There are two obvious

ways to improve the performance of the network protocol stack: recode the network layers or

use a faster CPU. Rewriting the network code is beyond the scope of the Mirage+ project,

although, as the graph indicates, one would have to reduce the latency by a considerable

amount to eliminate the bene�ts of compression. Increasing the speed of the CPU will

certainly reduce the the network latency, but it improves codec performance as well.

61.0+2.6=3.6, taking advantage of concurrency between the sending and the receiving even when no delay

is present.

10

22

20

18

16

14

12

10

8

6

4

2

Total page-
fault time
(msec)

Communication
HW/SW Latency
(msec)

Uncompressed

AIX/TCF Latency
(Short message, one-way, 2.7 msec)

Compressed to 4 packets

Compressed to 3 packets

Compressed to 2 packets

Compressed to 1 packet

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Currrent wire latency (10 Mbps)
(Short message, one-way, 0.2 msec)

Figure 2: Codec Performance vs. Network Latency

Average cost of remote page fault under varying network latencies.

5 Performance Evaluation of Applications

This section provides an analysis of measurements of intense DSM use by �ve applications,

with and without compression.

5.1 Philosophy Behind the Methodology

To study DSM performance we constrain our attention to issues associated with component

costs of the DSM system. We focus on designing a system whose components are e�cient. To

examine how closely these objectives have been met, we designed and implemented our test

software to isolate DSM memory access costs from other non-germane system components

such as �le access, naming, and I/O device access. Nevertheless, even isolating these aspects,

an application's locality, site locality (for DSM), and application programming style can

greatly in
uence performance. To address the problems that could arise in instrumenting

non-germane functions in the system, we focus on timings from the direct delivery of DSM

services. For example, most of the applications synchronize using the memory system itself.

False sharing can have a big impact on the performance of a DSM system. False sharing

phenomena arises from the nature of applications. Dynamic detection and attribution of false

sharing remains a hard, important research problem. This issue is beyond the scope of this

paper. We present a precise de�nition of false sharing and our work in the area in a separate

paper[Hyde 94].

5.2 Application Descriptions

To check the viability of compression before investing extensive work in it, we constructed

three applications which access memory using common access patterns: EachN, UptoN, and

11

Step Action (memory-oriented part of algorithm) Shared memory access

P1. Scan through the battle �eld searching for a

new shot by our adversary.

Read entire own �eld mul-

tiple times.

P2. Acknowledge the shot by writing 'hit' or 'miss'

at the location of the adversary's shot in the

battle �eld.

Write once to one place on

own �eld.

P3. Shoot into our adversary's battle �eld. Write once to one place on

other �eld.

P4. Wait for our adversary to write a 'hit' or 'miss'

value at the location of our shot.

Multiple reads of one place

in other �eld.

Figure 3: The Memory Access Pattern of the Central Loop in Battleship Simulation

RandN. Each of these applications starts with a page containing all zeros and writes uncom-

pressable values to the page. EachN writes to each n
th byte in the page. UptoN writes to

the �rst n bytes of the page. RandN writes n randomly chosen bytes to the page. We ran

these applications for di�erent values of n.

RandN simulates arbitrary writes throughout a page. It also helps simulate the e�ects of

false sharing which occurs in many applications. UptoN simulates DSM applications which

allocate some amount of memory less than one 4K page. For example, UptoN with N equal

to 128 simulates a DSM application which allocates a 128 byte block of shared data. The

remaining bytes in the shared page remain unused, the result of internal fragmentation.

EachN simulates accesses to the columns of an array when using row major ordering such as

zeroing out an array in memory or writing the result of a matrix multiply.

The Battleship Simulation, a version of the Milton Bradley board game, is a very use-

ful application to exercise DSM. The battleship simulation features two competitors. Each

player acts as an adversary attempting to destroy the other by shooting into a battle �eld

in shared memory. Our implementation has each competitor execute as a separate process.

Synchronization between the two processes uses the memory system itself.

The simulation works as follows: each competitor scans the battle�eld repeatedly until

they locate a shot made by their adversary, which is then acknowledged by writing either

'hit' or 'miss' in the playing �eld. The competitor then shoots into the battle �eld and waits

for the other party to acknowledge the shot. This process repeats until one player gets a

sequence of shots that constitutes a \win". At that time the simulation concludes. Figure 3

shows the algorithm in detail.

Matrix multiply is another application which exercises DSM. Unlike Battleship, which is

a worst case application for two sites, the matrix multiply program runs well under DSM.

To test the behavior of our system, especially the cost of communication, we ran several

experiments on di�erent matrices choosing sizes which produced compute-bound executions

and I/O bound executions (See Figure 6).

The matrix multiplication algorithm computes C := A � B on integer arrays. In our

experiments we used between two and seven sites. The �rst site loads the A and B arrays,

instructs the other site(s) to perform the multiplication on their portion of the array, and

then collects the results. We divided the work evenly among the remaining sites by having

them work on a band of rows (e.g., for a 240�240 matrix with six workers, each site handled

a band of 40 rows in the matrix). We used a separate shared memory segment to synchronize

the starting process and the workers.

12

Figure 4: The E�ect of Compression on Remote Page Fault Time

(a) scrambling every N'th byte, (b) scrambling the �rst N bytes, and (c) scrambling N bytes at random.

Extra elements were added for padding at the end of each row to eliminate the e�ect

of false sharing for matrices larger than 120 � 120. This padding required some additional

transmission time, but this was less than the time lost to false sharing.

5.3 Performance of EachN, UptoN, and RandN

To test the performance of Mirage+'s codec we ran the EachN, UptoN, and RandN ap-

plications. The results appear in Figure 4. If EachN stores an uncompressable byte every

eight bytes, it will produce a data block which cannot be compressed. Mirage+'s RLE codec

needs at least two adjacent double words in order to compress anything. At N=10 the codec

performs poorest. At this point the codec has to process a large part of the 4K bu�er before

determining that it cannot compress the data below the 75% point. At N=11 the compression

time is still high, but the codec achieves a 75% compression ratio so it saves the transmission

13

P1 Loop read to find new shot

P2 Ack shot

P3 Write a shot

P4 Loop read shot ack

P3 Write a shot

P4 Loop read shot ack

P4 Loop read shot ack (again)

Blocked

Blocked

Blocked

Blocked

P4 Loop read shot ack (again)

P4 Loop read shot ack (again)

Blocked

Blocked

Blocked

P4 Loop read shot ack (again)

P4 Loop read shot ack (again)

P1 Loop read to find new shot

P2 Ack shot

P3 Write a shot

P4 Loop read shot ack

P4 Loop read shot ack (again)

Figure 5: Shared Memory Access Pattern of the Battleship Simulation

of one network message.

UptoN shows that the RLE algorithm works very well at compressing data in shared

memory when the shared object does not consume the entire 4K page. In fact, for objects

less than 3K in length the RLE algorithm will always achieve a 75% compression ratio.

RandN produces results which are almost twice as good as EachN. RandN begins sending

uncompressed pages after about 650 random writes. Assuming a uniform distribution from

the random number generator, this corresponds to one write every 6.3 bytes. In general, this

experiment demonstrates that an application can write to a zeroed page about 600-700 times

and still achieve some compression.

5.4 Performance of the Battleship Simulation

The purpose of this simulation was to provide a worst-case application with which we could

exerciseMirage+ using two sites. The access pattern of our Battleship simulation follows the

algorithm shown in Figure 3. We have implemented the simulation with one shared page for

both competitors. The shared page holds two arrays representing battle �elds. The observed

access pattern for this type of sharing between the two competitors are shown in Figure 5.

Table 5 shows the performance based on whether the simulation runs on one or two sites,

and whether competitors use the system call yield to voluntarily give up the CPU before the

time slice is exhausted, thus permitting another process to execute. When running on one

site, the yield call allows the competitor to �re a shot without waiting for the current time

slice to expire. On one site, the observed behavior with respect to the yield call, as well as

the time spent per iteration of the access pattern, are similar to the observations reported

for Mirage[Fleisch 89b].

14

One site Two di�erent sites

Without yield Using yield Implicit � locks Explicit user locks

490 sec 4 sec 81 sec (51 msec) 48 sec (30 msec)

Table 5: Performance of the Battleship Simulation. Total Run-time.

Average time per turn per player in parenthesis.

The total run of the simulation contains 789 iterations, where each iteration has a shared

memory access pattern as illustrated in Figure 5. Thus, the total run covers 2 � 789 = 1578

executions of the following sequence: a read fault , a page transfer , a write fault , and an

invalidation.

The work done by the simulation is dominated by the execution of this sequence. First,

the read fault is sent to the library site where it is delayed � until the previous writer releases

the page. Second, the page is transferred over the network, at the cost of approximately 20

msec including the request above (See Table 2). Third, the write fault occurs. It is also

delayed � for an upgrade. In half of the instances, the faulting site is not the library site.

Thus, a request is sent to the library site with cost comparable to an invalidation. The request

is performed in parallel with the expiration of �. Finally, in all cases, an invalidation of one

remote site occurs (4.6 msec). Therefore, using �=20 msec, the average time to execute

the access pattern is 20 + 20 + 20 + 4:6 = 64:6 msec. The measurement shown in Table

5 of 51 msec di�ers from the calculated time due to the implementation of timesleep(). In

our implementation, �=20 msec is the smallest period a process can timesleep. However,

the process may be awakened earlier, in which case, the operation ends. Had we required

timesleep retry for a minimum of �, as in another experiment we performed, the measured

execution time would be longer than the expected value.

We conducted several experiments with �=0 msec. Signi�cant page stealing occurred

between processes that had recently received pages, but not yet accessed them. In order to

correct this problem, explicit checks were added to assure that a page was not relinquished

before it has been accessed (for read faults) or written (for write faults). This improved

performance, but added complexity to handle zero-�lled page faults issued from remote sites

when no memory has been allocated for the page (and thus accessed or written) anywhere in

the cluster.

With �=0 msec, and by adding explicit Mirage+ write-lock system calls around the

region where successive writes occur in the program, delays were eliminated due to under-

utilization of the page during the � period. The average time it should take to execute the

access pattern is 20 + 1

2
� 4:6 + 4:6 = 26:9 msec. The measured time for two sites to execute

one iteration of the access pattern in Figure 5 averaged 30 msec.

The relative performance �gures of the battleship simulation running with and without

compression are shown in Figure 6. Note that although the number of RLE messages trans-

mitted is 54% less than the non-compressed number, the overall performance is enhanced

21%. The di�erence is attributed to the codec latency. Compression and decompression

improves throughput by reducing the number of transmitted packets but increases the per-

packet network latency.

5.5 Performance of Matrix Multiply

On our system, the matrix multiply algorithm achieved a near-linear speedup until communi-

cation costs became the signi�cant factor. With compression enabled, we were able to achieve

15

0

1000

2000

3000

4000

5000

6000

7000

Uncompressed
All pages require

four network packets.

RLE Compression
All pages transmitted in

one or two network packets.

48.0 sec

38.0 sec

Packets from pages compressed
to 50% of total.

Packets from pages compressed
to 25% of total

Packets

Figure 6: The E�ect of Compression on Battleship Simulation

RLE Compression reduces the number of packets by 54%, and the total run-time by 21%

Number of sites 2 3 4 5 6 7

Matrix: 60� 60 2.4 1.3 1.3 2.4 2.6 3.7

(with compression) 1.9 1.3 0.8 0.7 0.7 0.7

Matrix: 120� 120 13.9 7.3 5.2 5.8 5.3 5.8

(with compression) 13.4 7.0 5.8 3.7 3.5 2.7

Matrix: 180� 180 46.9 24.2 16.7 14.2 13.0 12.7

(with compression) 46.1 23.5 15.9 12.2 10.1 8.5

Matrix: 240� 240 108.8 55.6 37.7 30.3 25.8 23.4

(with compression) 107.7 54.8 36.7 27.9 22.6 19.4

Matrix: 300� 300 221.6 113.4 77.3 60.4 50.5 43.4

(with compression) 218.2 111.3 74.7 53.4 46.1 38.8

Matrix: 360� 360 378.9 193.3 131.4 101.4 82.7 70.0

(with compression) 376.4 191.3 128.3 97.1 78.3 66.1

Matrix: 420� 420 596.2 305.9 206.9 157.8 128.0 108.8

(with compression) 596.2 302.9 202.9 152.8 123.3 103.4

Matrix: 480� 480 892.2 453.7 305.1 232.1 182.8 159.1

(with compression) 889.8 451.9 301.5 226.8 182.8 152.6

Table 6: Performance of Matrix Multiply

Measured in seconds, �=0 msec, packet blasting enabled, server proc handler.

a linear speedup with one or two additional sites working on each matrix size, assuming all

pages compress to one packet. Table 6 provides the run times for the various experiments we

ran on di�erent matrix sizes. The speed-up of matrix multiply for the smallest and largest

experiments we ran appears in Figure 7.

Figure 7 plots the speed-up obtained when using two through seven sites (one site which

collects the data and one through six worker sites). It shows that in communication intensive

applications (i.e., the 60� 60 experiments), compression may improve performance dramat-

ically. In compute intensive applications, the overall cost of using DSM communication is a

16

Speedup

Worker Sites
(+ 1 coordinator site)

60x60
Compressed

60x60
No Compression

480x480
No Compression

480x480
Compressed

Figure 7: The Speed-up of Matrix Multiply

very small component of the overall cost, in agreement with our observations.

5.6 Performance Implications

The main lesson learned from our experiments is that the page size has a signi�cant impact

on overall performance for DSM systems. We optimized our use of the supplied communica-

tion subsystem by packet blasting and interrupt-level execution of packet reception without

changing the communication subsystem. This reduced the average delay of a remote page

fault from 31.7 msec to 16.7 msec. With compression added, the delay due to a remote page

fault may be as short as 10.5 msec. Although our use of the communication subsystem has

been tuned, we expect that enhancements to the network communication subsystem should

improve performance further. This paper does not address these enhancements since our

DSM system is designed to be a portable system, implemented on top of the basic network

communication subsystem.

6 Related Work

In this section we describe work related to Mirage+. We focus on operating system imple-

mentations of DSM and do not discuss related hardware DSM systems and language/compiler

implementations of DSM.

6.1 Ivy

Li[Li 86a, Li 88] experimented with a coherent shared virtual memory system on a loosely

coupled multiprocessor, the Apollo Domain system[Nelson 84]. Shared data is paged between

processors, some of which have copies of the virtual address space pages. The model assumes

17

a write-invalidate DSM system where ownership of pages can vary from processor to pro-

cessor either statically or dynamically. This work concentrates on consistency problems and

theoretical performance based on experimentation with centralized and distributed managers

to locate the page owner.

In contrast, our work is a kernel implementation in a commercial UNIX system. The model

is based on paged segmentation. It gives the user additional
exibility in memory access and

determining where to place data in memory. A time window mechanism is employed to avoid

possible thrashing, to facilitate performance tuning, and to provide a locking mechanism.

Our performance optimizations, as described in this paper, are not pursued in IVY.

6.2 Munin

Munin is a distributed shared memory system developed at Rice University[Bennett 89,

Carter 93]. Munin is distinct in that it uses type-speci�c coherence mechanisms. These

mechanisms are part of the run-time system and permit annotations from the user to specify

the coherence mechanism to be used for each object. The authors based their design decisions

on the results of a study of sharing and synchronization behavior in a variety of shared memory

parallel programs[Bennett 90a].

The approach used in Munin is the antithesis of what we are doing in Mirage+. The

Mirage+ experiment is to provide transparency to the System V IPC application designer

concerning DSM application design. Munin makes the programmer aware of these aspects

and requires that the programmer make designations of sharing characteristics before shared

memory applications can expect to execute well. Munin's preliminary experiments with type-

speci�c coherence protocols show that signi�cant performance gains can be realized but that

they are dependent on the characteristics of the parallel application. For example, the Matrix

Multiply shows only a 4% improvement with annotated objects. However, other applications

realized better than 50% execution time improvement.

6.3 Mether

Mether[Minnich 89] is a DSM system that supports inconsistent memory, leaving the respon-

sibility for enforcing consistency to user-de�ned protocols. Mether operates on a cluster of

SUN SPARCStations connected with Ethernet and running SunOS 4.0. DSM under Mether is

implemented through modi�cations to the NSF �le system. Mether maintains one consistent

copy of a given page along with multiple inconsistent copies.

Although it is di�cult to compare the systems directly, it is possible that the optimization

techniques described in this paper could makeMirage+ competitive with systems that relax

coherence and do not use our techniques.

7 Conclusions

This paper has addressed many issues in the design and implementation of a DSM system in

our new environment; the paper relies heavily on our actual experiences with DSM. We have

shown the complexity of the problems in moving memory management between environments

and presented solutions that have work well for Mirage+.

7.1 Results

Our initial implementation ofMirage+ used synchronous communication for each of the four

packets of a page. With a communication overhead of six msec per packet exchanged, the

18

System Remote Page Fault

(msec)

Battleship

Simulation1
Matrix

Multiply2

Mirage (S) 27.5 n/a n/a

Mirage+ (S+H) 31.7 n/a n/a

Mirage+ (S+B) 19.9 48 sec 2.4 sec

Mirage+ (I+B) 16.7 42 sec 2.0 sec

Mirage+ (S+B+C) 10.5/13.5/17.1/21.3 36 sec 1.9 sec

Mirage+ (I+B+C) 10.5/13.5/16.5/18.5 35 sec 1.8 sec

Table 7: Performance Summary
1 Applications are run using explicit user locking and �=0. 260 � 60 matrix running on two sites.

(H)andshake, (B)lasting packets, (I)nterrupt-level/(S)erver-procs, (C)ompression.

total time to fault a page across the network was 31.7 msec. By applying packet blasting,

the page fault time was reduced 37% to 19.9 msec. Thus, we reduced the cost of sending the

last three packets signi�cantly. A further enhancement of running the reception of the �rst

three packets as part of the interrupt handler reduces the cost by 16% to 16.6 msec.

For the applications and tests we have examined, the expected reduced performance

in Mirage+ because of the larger page size and potential for false sharing is more than

compensated by the faster CPU speeds. The larger page size reduces the number of pages

transferred when there is no false sharing. Nonetheless, additional network messages must be

sent to transfer the larger page. The challenging task for the DSM designer is to reduce the

number of network transmissions while accommodating systems that have large page sizes.

With simple compression we have shown up to a 47.2% speed-up and a up to 75% re-

duction in the amount of network tra�c. For our worst case application, the battleship

simulation the speed-up was 21% and the packet reduction for page transfers were 54%. De-

pending on the compression ratio, the page fault time has been reduced to 10.5 msec for a

page that compress into one packet, 13.5 msec for a page that compress into two packets, and

17.1 msec for a page that compress into three packets. A page that cannot be compressed

costs 21.3 msec. Although we pay a penalty for pages that do not compress into less than

three packets, compression has paid o� substantially. Table 7 summarize our results.

7.2 Future Work

We plan to exercise additional Mirage+ applications and report the results. The Mirage+

compression succeeded insofar as it demonstrated the feasibility of compression to improve the

performance of a DSM system. We assume the run length encoding algorithm in Mirage+

compression is not the best choice. We plan to examine di�erent compression algorithms

with a representative set of applications and compare the various performance bene�ts of

each compression technique. Work is currently underway to develop special compression

algorithms which complement Mirage+ memory access patterns and high speed networks.

Mirage+ reliability is another issue that we are currently addressing. Our goal is to have

a working version of Mirage+ that is tolerant of single site failures using techniques that

could enhance performance and improve reliability.

19

8 Acknowledgements

The �ne-grain pro�ling of the kernel was made possible by a micro-timing function created by

of Noah Mendelsohn of IBM. Cheryl DeMatteis and Carson Ellsworth developed additional

applications to exercise Mirage+.

Thanks to the anonymous referees for asking us to clarify several explanations and stream-

line the presentation. During the revision process we improved overall performance by a

factor of two for some code in the system. Thanks to Cheryl DeMatteis, who also reviewed

the paper.

This research was sponsored by a Joint Study with IBM Corporation and is currently

sponsored by NSF CCR-9209405. Juul was also supported by the Danish Natural Science

Research Council.

A preliminary version of this paper, with early results, has been released as UC, Riverside

Technical Report UCR-CS-93-6[Fleisch 93].

References

[Accetta 86] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M.

Young. Mach: A new kernel foundation for UNIX development. In Proceedings

of the Summer 1986 USENIX Conference, USENIX, June 1986.

[Bell 89a] T. Bell, J. Cleary, and I. Witten. Text Compression. Prentice Hall, Englewood

Cli�s, NJ, USA, 1989.

[Bell 89b] T. Bell, I. H. Witten, and J. G. Cleary. Modeling for text compression. ACM

Computing Surveys, 21(4):557{589, December 1989.

[Bennett 89] John K. Bennett, John B. Carter, and Willy Zwaenepoel. Munin: Shared Memory

for Distributed Memory Multiprocessors. Technical Report COMP TR89-91, Rice

University, April 1989.

[Bennett 90a] John K. Bennett, John B. Carter, andWilly Zwaenepoel. Adaptive software cache

management for distributed shared memory architectures. In Proceedings of the

17th Annual International Symposium on Computer Architecture, pages 125{134,

May 1990.

[Bennett 90b] John K. Bennett, John B. Carter, and Willy Zwaenepoel. Munin: Distributed

shared memory based on type-speci�c memory coherence. In Proceedings of the

1990 Conf. Principles and Practice of Parallel Programming, pages 168{176, ACM

Press, New York, NY, USA, 1990.

[Bisiani 90] Roberto Bisiani and Mosur Ravishankar. PLUS: A Distributed Shared-Memory

System. Technical Report, School of Computer Science, Carnegie Mellon Univer-

sity, 1990.

[Brinch Hansen 73] Per Brinch Hansen. Operating Systems Principles. Prentice-Hall, Englewood

Cli�s, New Jersey, USA, July 1973.

[Carter 89] John B. Carter and Willy Zwaenepoel. Optimistic implementation of bulk data

transfer protocols. In International Conference on Measurement and Modeling

of Computer Systems, Proceedings in: Performance Evaluation Review Volume

17(1), pages 61{6, Berkeley, CA, USA, May 1989.

[Carter 93] John B. Carter. E�cient Distributed Shared Memory Based On Multi-Protocol

Release Consistency. PhD thesis, Rice University, Houston, Texas, USA, Septem-

ber 1993.

[Daley 68] R. C. Daley and J. B. Dennis. Virtual memory processes and sharing in Multics.

Communications of the ACM, 11(5):306{311, May 1968.

20

[Denning 70] Peter J. Denning. Virtual memory. ACM Computing Surveys, 2(3):153{189,

September 1970.

[Dijkstra 72] E. W. Dijkstra. Hierarchical Ordering of Sequential Processes. Academic Press,

New York, NY, USA, 1972.

[Fleisch 89a] Brett D. Fleisch. Distributed Shared Memory in a Loosely Coupled Environment.

PhD thesis, Computer Science Department, University of California, Los Angeles,

CA, USA, September 1989.

[Fleisch 89b] Brett D. Fleisch and Gerald J. Popek. Mirage: A coherent distributed shared

memory design. In Proceedings of the Twelfth ACM Symposium on Operating

Systems Principles, published in Operating Systems Review 23(5) Special Issue,

pages 211{223, ACM SIGOPS, ACM Press, The Wigwam, Litch�eld Park, Ari-

zona, USA, December 1989.

[Fleisch 93] Brett D. Fleisch, Randall L. Hyde, and Niels Christian Juul. Moving Distributed

Shared Memory to the Personal Computer: The Mirage+ Experience. Technical

Report UCR-CS-93-6, Department of Computer Science, University of California,

Riverside, CA, USA, June 1993.

[Hoare 74] C. A. R. Hoare. Monitors: An operating system structuring concept. Communi-

cations of the ACM, 17(10):545{57, October 1974.

[Hyde 94] Randall L. Hyde and Brett D. Fleisch. An Analysis of Degenerate Sharing and

False Coherence. Technical Report UCR-CS-94-1, Department of Computer Sci-

ence, University of California, Riverside, CA, USA, January 1994.

[Li 86a] Kai Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis,

Yale University, September 1986.

[Li 86b] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. In

Proceedings 5th ACM SIGACT-SIGOPS Symposium of Principles of Distributed

Computing, pages 229{239, ACM Press, Canada, August 1986.

[Li 88] Kai Li. IVY: a shared virtual memory system for parallel computing. In Proceed-

ings 1988 International Conference on Parallel Processing, pages 94{101, August

1988.

[Li 90] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.

IEEE Computer, 23(5):54{64, May 1990.

[Metcalfe 76] R. M. Metcalfe and D. R. Boggs. Ethernet: distributed packet switching for local

computer networks. Communications of the ACM, 19(7):395{403, 1976.

[Minnich 89] Ronald G. Minnich and David J. Farbar. The Mether system: Distributed shared

memory for SunOS 4.0. In Proceedings of the Summer 1989 USENIX Conference,

pages 51{60, USENIX, Baltimore, Maryland, USA, June 1989.

[Nelson 84] David L. Nelson and Paul J. Leach. The architecture and applications of the

Apollo Domain. IEEE Computer Graphics and Applications, 58{66, April 1984.

[Nelson 91] M. Nelson. The Data Compression Book. M & T Books, Redwood City, CA,

USA, 1991.

[Nitzberg 91] B. Nitzberg and V. Lo. Distributed shared memory: A survey of issues and

algorithms. IEEE Computer, 24(8):52{60, August 1991.

[Popek 81] G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, and G. Thiel.

Locus: A network transparent, high reliability distributed system. In Proceedings

of the Eigth ACM Symposium on Operating Systems Principles, published in

Operating Systems Review 15, pages 169{177, ACM SIGOPS, ACM Press, Paci�c

Grove, CA, USA, December 1981.

21

[Raita 87] T. Raita and J. Teuhola. Predictive text compression by hashing. In Proceedings

of the 10th Annual ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 223{233, ACM, New Orleans, USA, June 1987.

[Ramachandran 88] Umakishore Ramachandran, Mustaque Ahamad, and M. Yousef A. Khalidi. Uni-

fying Synchronization and Data Transfer in Maintaining Coherence of Distributed

Shared Memory. Technical Report GIT-ICS-88/23, Georgia Institute of Technol-

ogy, Atlanta, GA, USA, June 1988.

[Schroeder 90] Michael D. Schroeder and Michael Burrows. Performance of Fire
y RPC. ACM

Transactions on Computer Systems, 8(1):1{17, February 1990.

[Storer 88] J. Storer. Data Compression: Methods and Theory. Computer Science Press,

Rockville, Maryland, USA, 1988.

[Tanenbaum 92] Andrew S. Tanenbaum. Modern Operating Systems. Prentice-Hall, Englewood

Cli�s, New Jersey, USA, 1992.

[Thekkath 93] Chandramohan A. Thekkath and Henry M. Levy. Limits to low-latency com-

munication on high-speed networks. ACM Transactions on Computer Systems,

11(2):179{203, May 1993.

[Walker 83] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg Thiel.

The LOCUS distributed operating system. In Proceedings of the Nineth ACM

Symposium on Operating Systems Principles, published in Operating Systems

Review 17(5), pages 49{70, ACM SIGOPS, ACM Press, Bretton Woods, NH,

USA, October 1983.

[Williams 90] R. Williams. Adaptive Data Compression. Kluwer Books, Norwell, Ma, USA,

1990.

[Ziv 77] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.

IEEE Transactions on Information Theory, 23(3):337{343, May 1977.

[Zwaenepoel 85] Willy Zwaenepoel. Protocols for Large Data Transfers over Local Networks. Tech-

nical Report COMP TR85-23, Department of Computer Science, Rice University,

Houston, Texas, USA, July 1985.

22

