
A Memory Approach to Consistent, Reliable Distributed Shared

Memory

Niels Christian Juul Brett D. Fleisch

Copenhagen Business School University of California

Copenhagen, Denmark Riverside, CA, USA

Abstract

Fault-tolerant distributed shared memory systems

do not always need to support a complete and con-
sistent recovery after a failure. We describe a frame-

work, within which di�erent approaches to, and dif-

ferent degrees of consistency and recoverability can be

understood. The addition of consistent failure recov-

ery may be approached from two di�erent viewpoints:

either by an application-oriented view or a memory-

oriented view. The major characteristics used in our

framework are variations of availability, consistency,
and application support.

This paper explains the basic model, which is used

in Reliable Mirage+, and describes how the frame-

work can be used by other researchers to understand

and classify solutions to the reliable DSM problem.

The model distinguishes a recoverable system, which

must be able to survive any single-site failure, from

a reliable system which also ensures consistency af-

ter the recovery. Since consistency requirements may

impose a high penalty on standard operational perfor-

mance, various relaxed recoverability consistencies are

described by the multi-level model. Recovery under this

model may be accomplished by applications specifying

consistency and availability requirements.

1 Introduction
A serious problem for most distributed shared mem-

ory (DSM) systems is that as the size and number of
participating sites grows, the possibility of a site fail-
ure increases. Our group at the University of Califor-
nia, Riverside has been investigating the issue of Reli-
able Distributed Shared memory from three di�erent
perspectives. First, we have developed a stochastic
model of reliable DSM which is the basis for our an-
alytical work in the area[27]. Second, we have devel-
oped a DSM reliability simulator to help analyze the
e�ects of coherence protocols on reliability. Lastly,
we are extending an experimental DSM system[7, 11]
to incorporate changes to support reliability based
on these approaches and the unifying framework pre-

sented in this paper[10]. This framework identi�es
existing and new solutions that make DSM systems
robust to failure. We de�ne two di�erent approaches
to reliable DSM systems and a multi-level model for
the degree of reliability and consistency supported by
each approach.

This paper focuses on concerns of making DSM
systems reliable and suggests an approach that per-
mits weaker consistency guarantees. In particular,
when compared to sequential consistent DSM systems,
weaker consistency is often motivated by improved
performance. In a similar way, applications may bene-
�t from subscribing to a lower level of robustness with
limited consistency guarantees. For example, consider
a singly linked list stored in DSM. Several processes at-
tempt to enqueue and dequeue items on the linked list.
The failure of any one site does not mean that consis-
tent reliability is needed. If a process attempts to en-
queue or dequeue an item which causes a page fault, it
would be unacceptable for the memory to be inacces-
sible and other processes unable to complete their cor-
responding operations due to the site failure. Whereas
recoverability is required, a strictly consistent reliable
system with additional attendant overheads is not. As
another example, consider a portion of the DSM ad-
dress space acting as a blackboard. In this area of the
address space, agents place and remove information
as it is gathered from real-time sensors. If a site fails
which is updating the blackboard with sensor data,
it may not be necessary to recover the updates with
a strictly reliable consistency scheme. Indeed, in this
type of system, the most recent data gathered from the
sensors should be placed on the blackboard. There-
fore, as long as the blackboard memory is restored,
other agents can place timely data on the blackboard
and continue work.

2 Background

Previous DSM systems[16, 17, 2, 1, 23, 8, 21, 18]
did not address the issue of reliability, mainly be-
cause their size and applications did not require it.



Often, the systems executed applications whose run-
times were short when compared to the mean time
between failures of the system components. The de-
velopment of more powerful networks and worksta-
tions makes DSM feasible for larger|and thus longer
running|parallel programs. Thus, reliability is a key
issue as DSM systems are scaled to larger con�gura-
tions. To provide a reliable DSM system, the system
must be able to cope with failures and continue to
service applications e�ectively.

More recently, recoverability and consistency in re-
liable DSM system have been studied[14, 26, 28, 9, 24]
including studies of speci�c systems like Recoverable

Virtual Memory (RVM)[25, 5],Munin[4], ickp[22], Di-
SOM [20], and Reliable Mirage+[6, 11]. Almost
all studies use, however, an application-oriented ap-
proach.

3 Failure Impact on DSM Systems
Many DSM systems share by coupling each appli-

cation's private memory together with a library im-
plementation of DSM. Mirage+ provides a memory
that is potentially shared by all processes on a site
and across sites, subject to protection constraints. Al-
though both systems must be able to recover and to
continue to operate, the failure impact for each can
be quite di�erent. The former need only cater to sin-
gle a�ected applications (and their DSM), whereas the
later must take a more holistic approach to DSM re-
covery. These later systems must a�ect recovery for
all sharing applications a�ected.

A robust DSM system must be able to survive any
single-site failure. There are two major areas where
site failures cause problems for a DSM system. First,
the system internals may be compromised by the loss
of necessary global system state information. This in-
cludes part of the DSM directory state and part of
the user data stored in DSM. Second, user applica-
tions may be compromised because state information
from an application may be lost or rolled back incon-
sistently.

A recoverable DSM system must be able to recover
all user and system data. It is, however, not always
necessary to provide a consistent recovery for user
data in the DSM and the application. A reliable DSM
should support user applications that survive failures
consistently. This additional support can be either
transparent to the application or can be o�ered as a
set of tools that can be used by applications. To im-
plement fully reliable applications, the implementation
of a reliable DSM must preserve a consistent picture
of the shared memory (the global data) and provide
mechanisms for the processes of a failed site to be re-

covered consistently (process state and private data).
Furthermore, tools that ensure consistency with exter-
nal data including input/output, e.g., by using process
checkpoints , are needed.

In some DSM schemes, redundant copies of the
shared memory are more easily obtained. A system
with an eager or competitive update protocol[1, 13,
3, 12] has extra copies that could be used for re-
covery in most cases, whereas a system using a lazy

update protocol would not have the same amount of
up-to-date copies. Even competitive update protocols
may be vulnerable to single copy instances. In write-

invalidate systems[15, 19, 8, 7], the lack of multiple
copies in the network is more probable since a write-
invalidate DSM system designates one site to hold the
write-access-right and data for parts of the global ad-
dress space. The loss of that site introduces a gap in
the global shared memory address space. A recover-
able write-invalidate DSM system must ensure recov-
ery from such a loss. In release and entry consistent
systems, data in shared memory need not be lost when
a failure occurs. Instead these systems must be able to
recover from the loss of any currently held, unreleased
locks at the failed site.

Memory access presents another problem: sites re-
questing shared memory expect to access the data
eventually. There are two types of systems pertinent
to the design of a reliable DSM system. In the �rst
type of system, a user process requesting a page is
blocked after requesting the page and that process is
never resumed if a critical site fails. This is a non-

timeout page fault system. In the second type of sys-
tem, a user process requesting a page is blocked for a
time and eventually re-requests the page if it is not re-
ceived after a given time interval. This type of system
is a client-retry page fault system. The assumption
of whether clients will be allowed to retry their fault
requests inuences the design of the reliable DSM sys-
tem considerably.

4 Reliability and Consistency Models
We have designed a framework to model the dif-

ferent solutions to achieve various degrees of robust-
ness and consistency across failures in DSM systems.
The framework is based upon two di�erent approaches
to robustness and consistency: A memory-oriented

and an application-oriented approach. For both, a
multi-level model with increasing constraints on con-
sistency is presented. Whereas our research group
has taken a memory-oriented design approach, most
other researchers have taken the application-oriented
approach.

The two approaches to robust DSM systems are



A
pplication perspective

M
em

ory perspective

A1

A2

A3
M4

M3

M2

M1

Reliable
transactions processes

Fault-tolerant

Reliable shared memory directory

Fault-
tolerant

applications

Reliable
shared memory

Recoverable
shared memory

Shared stable
storage

Fault-tolerant applications

Figure 1: A Top-down or Bottom-up Approach to Re-
liability

outlined in Figure 1. Both are illustrated as multi-
level models but their levels are asymmetric. The ap-
plication approach starts from the top with the goal of
running applications in a fault-tolerant manner(A3).
That goal can be reached by using reliable transactions
or individual, fault-tolerant processes (A2) combined
with consistency requirements. In turn, reliable trans-
actions and fault-tolerant processes are built using a
consistent shared stable storage (A1). In contrast, the
memory approach starts from the bottom with a re-
liable directory service for shared memory (M1). At
the second level, data recovery is added to achieve
a recoverable shared memory (M2). With additional
consistency mechanisms, reliable shared memory (M3)
is achieved at level three. To provide fault-tolerance
at the application level (M4), recovery of the state of
the distributed application stored outside the shared
memory must also be provided consistently.

4.1 The Memory-Oriented Approach

The memory-oriented approach to robust DSM
does not require applications to support fault-
tolerance. Hence, conservative estimates of the need
to checkpoint data consistently are made by the DSM
system.

Level M1 robustness is the basic fault-tolerance
which is always provided. It ensures a sound

DSM system, but consistency of user data is not
ensured. Recovery of the user data in shared
memory is not provided although the integrity
of shared address space is preserved. To provide
this level of service, a reliable directory service is
needed.

Level M2 robustness extends the basic fault-
tolerance with guarantees of recovery of the
shared memory without consistency guarantees

for shared data. A page-oriented DSM system
with this level provides recovery of each page of
the DSM individually. Although all data is recov-
ered at this level, the availability requirements of
the DSM system de�ne whether the recovery may
be done lazily , or eagerly . Eager recovery short-
ens the time where the system is vulnerable to a
second failure at the cost of added recovery la-
tency.

Level M3 robustness adds consistency require-
ments to the shared data. Many variants are
possible depending on the degree of consistency
required. For instance, consistency for a collec-

tion of user data in the shared memory from level
M2 may be enforced by requiring a page-oriented
DSM to recover a number of pages up to all pages,
i.e., the entire shared memory space, consistently.
Thus, this level could potentially guarantee a fully
consistent recovery of the entire user DSM ad-
dress space.

Level M4 robustness extends a fully consistent re-
covery of the user data in DSM by adding recov-
ery and consistency of application processes. The
DSM system may provide upcalls indicating when
applications are to checkpoint or perform check-
points on behalf of the applications. If the ap-
plication is based on general facilities for process
recovery, these facilities can be tailored to cooper-
ate with DSM upcalls. Consistency between the
shared memory and the distributed user applica-
tion provides fault-tolerance for applications .

4.2 The Application-Oriented Approach

The application-oriented approach is also described
by a set of layers. Although it usually considered a
top-down approach, the following description is out-
lined bottom-up as with the memory approach.

Level A1 robustness provides a reliable shared

stable storage in which individual checkpoints
and logs of various processes or transactions are
placed. The storage is guaranteed to survive a site
failure and to be available even if the site remains
unavailable. The individual checkpoints are usu-
ally thought of as internally consistent, whereas
additional mechanisms are needed to ensure con-
sistency across multiple checkpoints which to-
gether constitute a global state. A reliable shared
stable store is often provided by replicated �lesys-
tems or dual-ported disks.



Level A2 robustness provides reliable atomic ac-

tions . These may be described from a transac-
tional or process viewpoint:

� reliable transactions ensure that a transac-
tion is either done or undone at commit and
that consistency is maintained in both cases.

� process reliability ensures that a process and
its local state is maintaining checkpoints and
able to roll back and replay from the last
checkpoint.

This level provides consistency within each trans-
action/process but no global consistency.

Level A3 robustness built on level A2 and ensures
consistency across multiple transactions or pro-
cesses after recovery to ensure a fault-tolerant ap-
plication. This enables a distributed application
to recover a memory consistently after a site-
failure and its processes to resume consistently.
A trend has been to piggyback support for this
level on messages associated with the DSM pro-
tocol.

5 Summary and Conclusions
Reliable Mirage+ is currently operational and

provides robustness at levels M1 and M2. Mirage+

is based upon a distributed directory service for shared
memory pages grouped in segments. Each segment has
a library and each page has a current primary copy at
its clock site. Backup copies are stored at its trailer

site(s). Given a library failure for any segment, a new
library site is elected and all sites having knowledge
about that segment send their directory state to the
new library site. Given a clock site failure for any
page, the trailer site is upgraded to be the clock site.
This provides the basis for level M2 robustness. In our
current implementation, if we lose a page, it is replaced
lazily. In the future, we plan to be aggressive and to
instrument the cost of this change in policy. We have
designed the level M3 robustness from a memory per-
spective and plan to use upcall mechanisms to achieve
level M4.

Our implementation has been tested with a vari-
ety of failure scenarios. We introduce arti�cially gen-
erated site failures and code failures (panics) to test
the reliability and resiliency of the DSM system. The
current implementation is robust and handles failures
well.

Our design for Reliable Mirage+ uses the
memory-oriented perspective. One reason for using
this approach is that we have much more autonomy in

providing consistency as memory system designers as
compared to application-oriented fault-tolerance de-
signers. In the latter approach, application processes
will a�ect the memory and may often be required to
roll back.1 These may require cascading rollbacks of
other processes. Although the rollbacks may cascade,
a point may be reached where a rollback is required
for a process over which an application-oriented de-
signer may not have autonomy. Application-oriented
robustness designers must provide hooks to the mem-
ory system to enable consistency when privileged au-
tonomous cooperating applications are used. Our ap-
proach provides a stronger consistency guarantee be-
cause the memory system has autonomy over all of
the state of all memory at all sites. Those processes
over which we do not have autonomy simply ignore
our upcalls.

We believe a memory-oriented approach to consis-
tent recovery is the most promising for reliable DSM.
After all, it is the memory which the consistency con-
straints are aimed at.

Acknowledgements

This research was sponsored by NSF CCR-9209405,
DEC External Research Program, and the Danish Re-
search Council of Natural Science, SNF J.nr. 11-0484.

References
[1] J. K. Bennett, J. B. Carter, and W. Zwaenepoel.

Munin: Distributed shared memory based on type-
speci�c memory coherence. In Proceedings of the 1990
Conf. Principles and Practice of Parallel Program-
ming, pages 168{176, New York, NY, USA, 1990.
ACM Press.

[2] R. Bisiani and M. Ravishankar. PLUS: A distributed
shared-memory system. Technical report, School of
Computer Science, Carnegie Mellon University, 1990.

[3] S. Dwarkadas, P. Keleher, A. L. Cox, and
W. Zwaenepoel. Evaluation of release consistent soft-
ware distributed shared memory on emerging network
technology. In Proceedings of the 20th Annual Inter-
national Symposium on Computer Architecture, pages
244{255, May 1993.

[4] E. N. Ehnozahy, D. B. Johnson, and W. Zwaenepoel.
The performance of consistent checkpointing. In
Proceedings of the 11th Symposium on Reliable Dis-
tributed Systems, pages 39{47, Houston, Texas, USA,
1992. IEEE-CS Press.

[5] M. J. Feeley, J. S. Chase, V. R. Narasayya, and H. M.
Levy. Integrating coherency and recoverability in dis-
tributed systems. In Proceedings of the First Sympo-
sium on Operating Systems Design and Implementa-

1Transactional approaches may vary with respect to the de-

gree they su�er from this problem.



tion (OSDI'94), pages 215{227, Monterey, CA, USA,
Nov. 1994. USENIX.

[6] B. D. Fleisch. Reliable Distributed Shared Mem-
ory. In Proceedings of the Second IEEE Workshop
on Experimental Distributed Systems, pages 102{105,
Huntsville, AL, USA, 1990. IEEE-CS.

[7] B. D. Fleisch, R. L. Hyde, and N. C. Juul. Mirage+:
A kernel implementation of distributed shared mem-
ory on a network of personal computers. Software|
Practice & Experience, 24(10):887{909, Oct. 1994.

[8] B. D. Fleisch and G. J. Popek. Mirage: A coher-
ent distributed shared memory design. In Proceed-
ings of the Twelfth ACM Symposium on Operating
Systems Principles, published in Operating Systems
Review 23(5) Special Issue, pages 211{223, The Wig-
wam, Litch�eld Park, Arizona, USA, Dec. 1989. ACM
Press.

[9] B. Janssens and W. K. Fuchs. Relaxing consistency
in recoverable distributed shared memory. In Proceed-
ings of the Twenty-Third Annual International Sym-
posium on Fault-Tolerant Computing: Digest of Pa-
pers, pages 155{163, June 1994.

[10] N. C. Juul and B. D. Fleisch. A framework for consis-
tency and recoverability in distributed shared mem-
ory. Mirage Research Note 10, Department of Com-
puter Science, University of California, Riverside, CA,
Feb. 1995. Submitted for publication.

[11] N. C. Juul, B. D. Fleisch, and C. DeMatteis. Reli-
able Distributed Shared Memory. Mirage Research
Note 7, Department of Computer Science, University
of California, Riverside, CA, Dec. 1994. Unpublished
research note on the design of Reliable Mirage+

with multiple consistency levels.

[12] A. R. Karlin. Competitive snooping caching. In Pro-
ceedings of the 27th Annual Symposium on the Foun-
dations of Computer Science, pages 244{254, Oct.
1986.

[13] P. Keleher, S. Dwarkadas, A. Cox,
and W. Zwaenepoel. Treadmarks: Distributed shared
memory on standard workstations and operating sys-
tems. Technical Report COMP TR93-214, Depart-
ment of Computer Science, Rice University, Houston,
Texas, USA, Nov. 1993.

[14] R. Koo and S. Toueg. Checkpointing and roolback-
recovery for distributed systems. IEEE Trans. Softw.
Eng., SE-13(1):23{31, Jan. 1987.

[15] K. Li. IVY: A shared virtual memory system for par-
allel computing. In Proceedings 1988 International
Conference on Parallel Processing, volume 2, pages
94{101, Aug. 1988.

[16] K. Li and P. Hudak. Memory coherence in shared
virtual memory systems. In Proceedings 5th ACM
SIGACT-SIGOPS Symposium of Principles of Dis-
tributed Computing, pages 229{239, Canada, Aug.
1986. ACM Press.

[17] K. Li and P. Hudak. Memory coherence in shared
virtual memory systems. ACM Transactions on Com-
puter Systems, 7(4):321{359, Nov. 1989.

[18] V. Lo. Operating systems implementations of dis-
tributed shared memory. Advances in Computers, 39,
1994.

[19] S. M�oding. Distributed Shared Memory f�ur das
panda-laufzeitsystem. Fachbereich Informatik, Uni-
versit�at Kaiserslautern, Germany, May 1993. (in Ger-
man).

[20] N. Neves, M. Castro, and P. Guedes. A checkpoint
protocol for an entry consistent shared memory sys-
tem. In Proceedings of the 13th ACM Symposium
on Principles of Distributed Computing (PODC'94).
ACM Press, Aug. 1994.

[21] B. Nitzberg and V. Lo. Distributed shared memory:
A survey of issues and algorithms. IEEE Computer,
24(8):52{60, Aug. 1991.

[22] J. S. Plank and K. Li. ickp: A consistent check-
pointer for multicomputers. IEEE Parallel & Dis-
tributed Technology, 2(2):62{67, Summer 1994.

[23] U. Ramachandran, M. Ahamad, and M. Y. A. Kha-
lidi. Unifying synchronization and data transfer in
maintaining coherence of distributed shared memory.
Technical Report GIT-ICS-88/23, Georgia Institute
of Technology, Atlanta, GA, USA, June 1988.

[24] G. G. Richard, III and M. Singhal. Using logging
and asynchronous checkpointing to implement recov-
erable distributed shared memory. In Proceedings of
the 12th Symposium on Reliable Distributed Systems,
pages 86{95, Princeton, New Jersey, USA, Oct. 1993.
IEEE-CS Press.

[25] M. Satyanarayanan, H. H. Mashburn, P. Kumar,
D. C. Steere, and J. J. Kistler. Lightweight recov-
erable virtual memory. ACM Transactions on Com-
puter Systems, 12(1):33{57, Feb. 1994.

[26] M. Stumm and S. Zhou. Fault tolerant distributed
shared memory algorithms. In Proceedings of the
Second IEEE Symposium on Parallel and Distributed
Processing, pages 719{724. IEEE Press, Dec. 1990.

[27] O. E. Theel and B. D. Fleisch. Design and Analysis
of Highly Available and Scalable Coherence Proto-
cols for Distributed Shared Memory Systems based
on Stochastic Modeling. Submitted for publication,
also available as Technical Report THD-BS-1995-02,
University of Darmstadt, Department of Computer
Science, Institute for System Architecture, Germany,
Jan. 1995.

[28] K.-L. Wu and W. K. Fuchs. Recoverable Distributed
Shared Virtual Memory. IEEE Trans. Comput.,
39(4):460{469, Apr. 1990.


