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Consider the following restricted (symmetric or asymmetric) traveling-salesman problem

(TSP): given an initial ordering of the n cities and an integer k > 0, find a minimum-cost

feasible tour, where a feasible tour is one in which city i precedes city j whenever j ≥ i + k

in the initial ordering. Balas (1996) has proposed a dynamic-programming algorithm that

solves this problem in time linear in n, though exponential in k. Some important real-world

problems are amenable to this model or some of its close relatives.

The algorithm of Balas (1996) constructs a layered network with a layer of nodes for

each position in the tour, such that source-sink paths in this network are in one-to-one

correspondence with tours that satisfy the postulated precedence constraints. In this paper

we discuss an implementation of the dynamic-programming algorithm for the general case

when the integer k is replaced with city-specific integers k(j), j = 1, . . . , n.

We discuss applications to, and computational experience with, TSPs with time windows,

a model frequently used in vehicle routing as well as in scheduling with setup, release and

delivery times. We also introduce a new model, the TSP with target times, applicable to

Just-in-Time scheduling problems. Finally for TSPs that have no precedence restrictions, we

use the algorithm as a heuristic that finds in linear time a local optimum over an exponential-

size neighborhood. For this case, we implement an iterated version of our procedure, based

on contracting some arcs of the tour produced by a first application of the algorithm, then

reapplying the algorithm to the shrunken graph with the same k.

(Dynamic Programming, Algorithms, Complexity, Heuristics, Vehicle Routing, Traveling

Salesman Problem)
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1. Introduction

Given a set N of points called cities and a cost cij of moving from i to j for all i, j ∈ N ,

the traveling salesman problem (TSP) seeks a minimum-cost permutation, or tour, of the

cities. If cij = cji the TSP is symmetric, otherwise it is asymmetric. Stated on a directed or

undirected graph G = (N, A) with arc lengths cij for all (i, j) ∈ A, the TSP is the problem

of finding a shortest Hamiltonian cycle in G. It is well known that the TSP is NP-complete,

but some special cases of it are polynomially solvable. Most of these special cases owe their

polynomial-time solvability to some attribute of the cost matrix. Other cases arise when the

problem is restricted to graphs with some particular (sparse) structure. For surveys of the

literature on this topic see Burkard et al. (1997), Gilmore et al. (1985), and Ven der Veen

(1992).

Balas (1996) introduced a class of polynomially solvable TSPs with precedence con-

straints: Given an integer k > 0 and an ordering σ := (1, . . . , n) of N , find a minimum cost

tour, i.e. a permutation π of σ, satisfying π(1) = 1 and

π(i) < π(j) for all i, j ∈ σ such that i + k ≤ j. (1)

Problems in this class can be solved by dynamic programming in time linear in n, though

exponential in k:

Theorem 1.1 (Balas 1996) Any TSP with condition (1) can be solved in time O(k22k−2n).2

So for fixed k, we have a linear-time algorithm for solving TSPs — whether symmetric or

asymmetric — with this type of precedence constraint. Furthermore, the conditions can be

generalized by replacing the fixed integer k with city-specific integers k(i), 1 ≤ k(i) ≤ n−i+1,

i ∈ N . In this case condition (1) becomes

π(i) < π(j) for all i, j ∈ σ such that i + k(i) ≤ j, (1a)

and a result similar to Theorem 1.1 applies (Balas 1996). Frequently occurring practical

problems, like TSPs with time windows, which play a prominent role in vehicle routing

(Solomon 1987), can be modeled using (1a).

Another direction in which the model can be generalized is to require a tour of m < n

cities subject to precedence constraints of the above type, where the choice of cities to be
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included into the tour is part of the optimization process. This type of problem, known as

the Prize Collecting TSP (Balas 1989), serves as a model for scheduling steel rolling mills.

Whenever the problem to be solved can be expressed in terms of the above type of

precedence constraints, the dynamic-programming procedure finds an optimal solution. On

the other hand, for problems that cannot be expressed in this way, the dynamic-programming

procedure finds a local optimum over a neighborhood defined by the precedence constraints.

Note that this neighborhood is exponential in n, i.e. in such cases the algorithm can be used

as a linear-time heuristic to search an exponential size neighborhood exhaustively.

In this paper we discuss several variants of our implementation of the dynamic-programming

algorithm and our computational experience with these variants. The next section (2) briefly

restates the dynamic programming procedure proposed in Balas (1996). This associates with

any given TSP a network such that the tours satisfying condition (1) are in a one-to-one

correspondence with the source-sink paths of the network. Section 3 describes our imple-

mentation of this procedure for the more general case of a TSP with condition (1a). We

construct an auxiliary structure whose main building blocks are problem-independent and

can therefore be generated and stored in advance of attacking any particular instance. Sec-

tion 4 discusses the use of our procedure for solving TSPs with time windows. Section 5

addresses the related problem of TSPs with target times, introduced here for the first time.

Section 6 introduces an iterative version of our procedure for the case when it is used as

a heuristic for solving standard TSPs without precedence constraints. Sections 4-6 con-

tain the results of extensive computational testing and comparisons with the best available

alternative methods. Finally, Section 7 draws some conclusions.

2. The Dynamic-Programming Algorithm

The idea of solving TSPs by dynamic programming is not new. For any TSP, the cost of an

optimal tour segment visiting the cities of a subset M ⊂ N in positions 1 through i− 1 and

visiting city j in position i, can be calculated recursively as

C(M, i, j) = min
`∈M

{C(M \ {`}, i− 1, `) + c`j}.

The difficulty with this is that there are
(

n

i−1

)

different subsets M of N of size i − 1, and

as i grows, the number of such subsets grows exponentially. It is the precedence constraints

involving k that make it possible to eliminate this exponential growth in the case of TSPs
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satisfying condition (1), and to express each such M by a pair of subsets whose joint size is

bounded by k. To be specific, for any permutation π and any position i in the tour defined

by π, the set M of cities visited in positions 1 through i− 1 can be expressed as

M := ({1, . . . , i− 1} \ S+(π, i)) ∪ S−(π, i),

where {1, . . . , i− 1} is the set of the first i− 1 cities in the initial ordering σ, while S−(π, i)

is the set of cities numbered i or higher but visited in a position lower than i, and S+(π, i)

is the set of cities numbered below i but not visited in a position higher than i; i.e.,

S−(π, i) := {h ∈ N : h ≥ i, π(h) < i},

S+(π, i) := {h ∈ N : h < i, π(h) ≥ i}.

The reason that this representation is economical, is that for all π satisfying condition

(1),

|S−(π, i)| = |S+(π, i)| ≤ bk/2c

i.e. the set of the first i − 1 cities in a tour, for any i, is represented by at most k entries.

It is this characteristic of the problem at hand that allows us to overcome the “curse of

dimensionality” that dynamic programming usually entails.

It is well known that dynamic-programming recursions can be expressed as shortest-path

problems in a layered network whose nodes correspond to the states of the dynamic program.

Accordingly, the method proposed in Balas (1996) associates with a TSP satisfying (1), a

network G∗ := (V ∗, A∗) with n + 1 layers of nodes, one layer for each position in the tour,

with the home city (city 1) appearing at both the beginning and the end of the tour, hence

both as source node s (the only node in layer 1) and sink node t (the only node in layer n+1)

of the network. The structure of G∗, to be outlined below, is such as to create a one-to-one

correspondence between tours in G satisfying condition (1) (to be termed feasible) and s− t

paths in G∗. Furthermore, optimal tours in G correspond to shortest s− t paths in G∗.

Every node in layer i of G∗ corresponds to a state specifying which city is in position i,

and which cities are visited in positions 1 through i− 1. What makes G∗ an efficient tool is

that the state corresponding to any node can be expressed economically by the following four

entities: i (the position in the tour), j (the city assigned to position i, i.e. having π(j) = i),

S−(π, i) and S+(π, i) (the two sets defined above). The nodes of G∗ can be referenced by

the notation (i, j, S−, S+), where S stands for S(π, i).
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A layer i will be referred to as typical if k + 1 ≤ i ≤ n − k + 1. It was shown in Balas

(1996) that a typical layer contains (k + 1)2k−2 nodes (the first k and last k layers contain

fewer nodes). More importantly, the structure of each layer is the same, in the sense that

the nodes of any layer i can be expressed in terms of i and k only. Consider, for instance,

the TSP with condition (1) and k = 4, and examine the nodes corresponding to the state

where city 10 is assigned to position 12, and the cities visited in positions 1 through 11 are

{1, . . . 9, 12, 13}. This is the node (12, 10, S−, S+), with S− = {12, 13}, S+ = {10, 11}. It is

part of layer 12. However, every typical layer has an analogous node, which can be expressed

as (i, i − 2, {i, i + 1}, {i − 2, i − 1}). For i = 12, this is the above node; and for i = 125,

say, the corresponding node is (125, 123, {125, 126}, {123, 124}). This node expresses the

state where city 123 is in position 125, and the cities visited in positions 1 through 124 are

{1, . . . , 122, 125, 126}.

All the arcs of G∗ join nodes in consecutive layers; namely, a node in layer i, say

(i, j, S−, S+), is joined by an arc of G∗ to a node in layer i + 1, say (i + 1, `, T−, T+), if

the states corresponding to these two nodes can be part of the same tour. When this occurs,

the two nodes are said to be compatible. Compatibility can be recognized efficiently due to

the fact that the symmetric difference between S− and T−, and between S+ and T+, is 0,

1 or 2, depending on the relative position of i, j and S− (see Balas 1996 for details). The

cost assigned to the arc of G∗ joining the two nodes is then cj`, the cost of the arc (j, `) in

the original TSP instance. It can be shown that no node of G∗ has in-degree greater than

k, which bounds the number of arcs joining two consecutive layers by k(k + 1)2k−2, and the

total number of arcs of G∗ by k(k + 1)2k−2n. Since the complexity of finding a shortest s-t

path in G∗ is O(A∗), the complexity of our dynamic programming stated in Theorem 1.1

follows.

Although linear in the number n of cities, our dynamic-programming algorithm, when

applied to an arbitrary TSP as an improvement heuristic, finds a local optimum over a

neighborhood whose size is exponential in n. Indeed, we have

Proposition 2.1 The number of tours satisfying condition (1) is Ω(( k−1
e

)n−1).

Proof. Partition σ \ {1} into consecutive subsequences of size k − 1 (with the last one of

size ≤ k− 1). Then any reordering of σ that changes positions only within the subsequences

yields a tour satisfying (1), and the total number of such reorderings (i.e. feasible tours) is

((k − 1)!)
n−1

k−1 ≥
(

k−1
e

)n−1
.2
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When condition (1) is replaced by (1a), one can build an appropriate network G∗(a) with

properties similar to those of G∗, but with layers V
∗(a)
i that depend on the numbers k(j) for

the cities j such that i− k(j) + 1 ≤ j ≤ i.

3. Implementation

The computational effort involved in solving an instance of our problem breaks up into

(a) constructing G∗, and (b) finding a shortest source-sink path in G∗. Constructing G∗

requires (a 1) identifying the nodes, (a 2) identifying the arcs, and (a 3) assigning costs to

the arcs, of G∗. Here the bulk of the effort goes into (a 1) and (a 2), since the arc costs of G∗

are obtained trivially from those of the original graph G.

But (a 1) and (a 2) can be executed without any other information about the problem

instance than the value of k and n. Further, as explained above, the structure and size of

each typical layer, i.e. node set V ∗

i , k + 1 ≤ i ≤ n− k + 1, is the same; and the structure of

each arc set A∗ ∩ (V ∗

i , V ∗

i+1), k + 1 ≤ i ≤ n− k, (apart from costs) is also the same. Hence it

suffices to generate and store one such node set and the associated set of outgoing arcs, and

use it for all i to which it applies; i.e., n need not be known in advance.

Finally, note that if such a node set (layer) is generated and stored for a value K of k as

large as computing time and storage space allows, then any problem instance with k ≤ K

can be solved by repeatedly using this node set – call it W ∗

K – and the associated arc set,

provided that one finds a way to retrieve the smaller node set V ∗

i from the larger one, W ∗

K ,

constructed beforehand.

We will show below how this can be done efficiently. Furthermore, the technique that

allows this retrieval can be generalized to the case of city-dependent constants k(i), i.e.

to TSPs satisfying condition (1a) and the corresponding network G∗(a). The upshot of

this is that problems of the type discussed here can be solved by constructing an auxiliary

structure in advance, without any knowledge about specific problem instances, and using it

to solve arbitrary problem instances whose constants k (or k(i)) do not exceed the size of

the structure.

We will now describe the auxiliary structure and its properties that allow the retrieval of

the node sets of particular problem instances. Since the problem with a single k for all cities

is a special case of the problem with city-specific k(i), we discuss only the latter one. Let G∗∗

K

denote the network whose layers, other than the first and last, i.e. the source and sink, are
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identical copies of the node set W ∗

K , and whose arcs, other than those incident from the source

or to the sink, are those determined from W ∗

K by the compatibility conditions mentioned in

Section 2. For any problem instance whose constants k(i) satisfy maxi k(i) ≤ K, any s − t

path in G∗(a) corresponds to an s− t path in a graph G∗∗

K with the same number of layers as

G∗(a). The reverse of course is not true, i.e. G∗∗

K contains s − t paths not in G∗(a).

One of the more delicate aspects of our implementation is the method we use to identify

and remove those s − t paths of G∗∗

K that do not belong to G∗(a). To explain this method,

we will illustrate it on an example.

Table 1: Nodes of W ∗

4 and their Compatible Pairs

Compatible
No. Node Label (i, j, S−, S+) Predecessors Successors

1: (i, i, ∅, ∅) 1,3,8,20 1,2,4,9
2: (i, i + 1, ∅, ∅) 1,3,8,20 3,5,10
3: (i, i − 1, {i}, {i− 1}) 2,6,16 1,2,4,9
4: (i, i + 2, ∅, ∅) 1,3,8,20 6,7,11
5: (i, i + 1, {i}, {i− 1}) 2,6,16 8,15
6: (i, i − 1, {i + 1}, {i− 1}) 4,12 3,5,10
7: (i, i, {i + 1}, {i− 1}) 4,12 8,15
8: (i, i − 2, {i}, {i− 2}) 5,7,19 1,2,4,9
9: (i, i + 3, ∅, ∅) 1,3,8,20 12,13,14

10: (i, i + 2, {i}, {i− 1}) 2,6,16 16,17
11: (i, i + 2, {i + 1}, {i− 1}) 4,12 18,19
12: (i, i − 1, {i + 2}, {i− 1}) 9 6,7,11
13: (i, i, {i + 2}, {i− 1}) 9 16,17
14: (i, i + 1, {i + 2}, {i− 1}) 9 18,19
15: (i, i + 1, {i}, {i− 2}) 5,7,19 20
16: (i, i − 2, {i + 1}, {i− 2}) 10,13 3,5,10
17: (i, i, {i + 1}, {i− 2}) 10,13 20
18: (i, i − 1, {i, i + 1}, {i− 2, i− 1}) 11,14 20
19: (i, i − 2, {i, i + 1}, {i− 2, i− 1}) 11,14 8,15
20: (i, i − 3, {i}, {i− 3}) 15,17,18 1,2,4,9

Table 1 lists the nodes of W ∗

K , a layer of G∗∗

K for K = 4, in the notation (i, j, S−, S+) used

before, along with their incoming and outgoing arcs shown in the form of predecessor and

successor lists. Notice that the nodes are ordered so that for h = 1, . . . , K − 1, the nodes of

W ∗

h are contiguous and precede those of W ∗

h+1. Such a nested ordering of the nodes is always

possible, and using it enables us to deal with any problem such that k∗ := max
j

k(j) < K by
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simply ignoring all nodes below those of W ∗

k∗. On the other hand, this ordering does not make

the nodes of V
∗(a)
i , the i-th layer of G∗(a), a contiguous subset of those of W ∗

K , since V
∗(a)
i

does not depend just on k(i), but on several k(j) (those such that i−k(j)+1 ≤ j ≤ i). This

is illustrated in Figure 1 featuring G∗∗

K for K = 4 and n = 9, along with G∗(a) (superimposed,

with shaded nodes) for a TSP with 9 cities satisfying condition (1a) with k(3) = 4 and

k(j) = 3 for all j 6= 3. The figure shows two s−t paths in G∗∗

K , one of which is also an s−t path

in G∗(a), and hence defines a feasible tour for our problem, namely (1, 4, 2, 6, 3, 5, 7, 9, 8, 1),

while the other one contains some nodes not in G∗(a), hence defines a tour that is infeasible:

(1, 3, 2, 5, 7, 4, 8, 6, 9, 1), with 4 + k(5) ≤ 7.

In order to avoid examining paths of G∗∗

K that contain nodes not in G∗(a), we use a test.

The k-threshold for a node v := (j, S−, S+) ∈ W ∗

K, denoted kthresh(v), is the smallest

value of k(j) compatible with the condition v ∈ G∗(a). Thus k(j) < kthresh(v) implies

v /∈ G∗(a).

To calculate the k-threshold for a node v := (j, S−, S+) ∈ W ∗

K , we notice that v ∈ G∗(a)

implies that k(j) is larger than the difference between j and all higher-numbered cities visited

before j in the tour. The highest-numbered city visited before j is max(S−), the largest

element of S−, unless S− is empty, in which case no higher-numbered city is visited before j.

From this we have k(j) > max{0, max(S−)− j}, so kthresh(v) = 1 + max{0, max(S−)− j}.

This information by itself does not tell us how to remove every node of G∗∗ not in G∗(a), but

we have the following proposition, which offers the test we need.

Proposition 3.1 Every path in G∗∗ corresponding to an infeasible tour contains at least one

node v := (i, j, S−, S+), such that kthresh(v) > k(j).

Proof. Let π be the permutation for an infeasible tour T . Then there exist two cities, q

and j, such that π(j) > π(q) and q ≥ j + k(j). Let i := π(j), (i.e. j is in the ith position).

Let v := (i, j, S−, S+) be the node used in layer i of G∗∗ for the path corresponding to T .

If q ≥ i, then q ∈ S−, and so:

kthresh(v) = 1 + max{0, max(S−)− j}

≥ 1 + max(S−)− j ≥ 1 + q − j > q − j ≥ k(j).

If q < i, then j < q < i, and so j ∈ S+. Since |S+| = |S−|, S− cannot be empty, and

so max(S−) ≥ i since the elements in S− only come from the set of cities numbered greater
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Figure 1: G∗∗

K and G∗(a) for an Instance with n = 9, k(3) = 4 and k(j) = 3 for j 6= 3
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than or equal to i. This gives:

kthresh(v) = 1 + max{0, max(S−)− j} ≥ 1 + i− j > 1 + q − j > q − j ≥ k(j).2

In Figure 1, the k-threshold of node 16 in layer 6, which is 4, is higher than k(j), which

is 3. (j for node 16 in layer 6 is 4.)

Once W ∗

K has been built for a certain K, any problem instance with k(j) ≤ K for all

j ∈ N can be solved to optimality (with a guarantee of optimality) by finding a shortest

s − t path in the subgraph G∗(a) of G∗∗

k∗, where G∗(a) is the auxiliary graph associated with

the specific problem instance one wants to solve, and G∗∗

k∗ is the graph obtained from G∗∗

K by

removing the nodes of W ∗∗

K \ W ∗∗

k∗ (with k∗ := max
j

k(j)). Extracting the nodes and arcs of

G∗(a) from those of G∗∗

k∗, and putting the appropriate costs on the arcs, does not increase the

complexity of finding a shortest s − t path in G∗(a), which remains linear in the number of

arcs of G∗∗

k∗.

As stated in Section 1, the time complexity of our algorithm is linear in n, but exponential

in k. As is often the case with dynamic-programming algorithms, however, the real bottleneck

for the efficiency of our algorithm is its space complexity. There are two aspects to this issue:

the complexity of storing the auxiliary structure generated in advance, and the complexity

of storing the information needed to construct an optimal tour. We address them in turn.

At first glance, it would seem that the space required to store the auxiliary structure

G∗∗

K , even though we restrict ourselves to a single layer of nodes and its incident arcs, is

O(K(K +1)2K−2). In reality, we can take advantage of the arc structure, which is such that

every node appears on exactly one distinct predecessor list (possibly repeated many times),

and the same is true for the successor lists. For instance, in Table 1, node 8 appears on the

predecessor list for nodes 1, 2, 4 and 9, but for each of these nodes the predecessor list is the

same, namely, 1, 3, 8 and 20. Therefore we store this list once, along with four pointers to

it from nodes 1, 2, 4 and 9. This allows us to store the graph in space O((K + 1)2K−2).

As to the construction of an optimal tour, here the linear dependence on n, which is a

blessing in terms of time complexity, becomes a curse in terms of space complexity. When

we calculate the cost of a shortest path from the source to a given node of G∗∗

K , we need only

the costs of the shortest paths to the nodes of the previous layer; so traversing the auxiliary

graph to find the cost of a shortest s− t path requires only two “levels” of additional storage

for these costs, a space requirement of an additional 2(K + 1)2K−2. However, in order to

recover the shortest path we have identified, we must trace our way backwards through G∗∗

K ,

10



Layer: 1 2 3 i-h i n-1 n n+1

Figure 2: A Path Through G∗∗

K for a Solution Not Very Different from the Initial Tour

which requires that we store, at every node of every layer, which node was the predecessor

with least cost; thus we have a linear space dependence on n. Fortunately, there is a way

to circumvent this feature, by using the typical pattern of the solutions generated by our

procedure.

The easiest way to explain this is by first assuming that the dynamic-programming pro-

cedure finds no improvement over the starting tour, i.e. the initial ordering σ. In this

case a shortest s − t path in G∗∗

K will contain the first node of every layer, corresponding

to (i, j, S−, S+) = (i, i, ∅, ∅). If our algorithm finds some local improvements but otherwise

leaves the initial sequence unchanged, the shortest s − t path in G∗∗

K will traverse the first

node of each layer in those portions where there was no change. We can then store the

shortest s − t path by storing just those path segments that leave the top nodes, which we

will call deviating path segments (DPS); see Figure 2. On the forward pass, a DPS is detected

at its right end, when the optimal arc into the first node of layer i, say, does not come from

the first node of layer i − 1. At this point the DPS is traced back to the point where it

again reaches the top level, say at layer i − h, and is stored along with the value i. When

we reconstruct our tour, we trace backwards, inserting DPSs as needed. For example, if we

encounter three DPSs, one from layer 10 back to layer 6, one from layer 20 back to layer 15,

one from layer 21 back to layer 18, we reconstruct our tour by first including the last DPS

(from 21 to 18) and then including the latest DPS whose right end is at layer 18 or earlier,

which would be the one from layer 10 back to layer 6. We would skip the DPS from layer

20 to layer 15, since it would not be along the optimal path.

Let H denote the length of the longest DPS. The above-described procedure then adds at

most H times the number of DPSs to our running time, but it reduces the space requirement
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from (K +1)2K−1n to (K +1)2K−1H +Hn, where the final term is the space needed to store

at most n DPSs. For the applications of our algorithm as a heuristic for a general TSP (see

Section 6), where problem sizes have reached into the thousands, we have only encountered

one instance where H > 3K, and in this case H < 6K. This allows us to choose a value

of H proportional to K. Note that if we allow for a value of H that is insufficient, this can

be detected by noticing that we run out of space before the DPS returns to the first level.

In such a case, we know not to attempt to reconstruct the tour after obtaining the optimal

value, and we restart the algorithm with a larger allowance for H.

Our code can be found through the internet at http://www.andrew.cmu.edu/~neils/TSP.

4. Time-Window Problems

Consider a scheduling problem with sequence-dependent setup times and a time window for

each job, defined by a release time and a deadline. Or consider a delivery problem, where

a vehicle has to deliver goods to clients within a time window for each client. These types

of problems have been modeled as TSPs with time windows (TSPTW), either symmetric or

asymmetric (see, for instance, Baker 1983 or Solomon 1987).

In such a problem, we are given a set N of cities or customers, a distance dij, a travel

time tij between cities i and j for all pairs i, j ∈ N , and a time window [ai, bi] for each city

i, with the interpretation that city i has to be visited (customer i has to be serviced) not

earlier than ai and not later than bi. If city i is reached before ai, there is a waiting time

wi until ai; but if city i is visited after bi, the tour is infeasible. The objective is to find a

minimum-cost tour, where the cost of a tour may be the total distance traveled (in which

case the waiting times are ignored) or the total time it takes to complete the tour (in which

case the waiting times wi are added to the travel times tij).

Here we discuss how the TSPTW can be solved by our approach. We first consider the

total-time criterion. Given an initial ordering of the cities, the time windows can be used

to derive precedence constraints and the problem can be treated as a TSP with condition

(1a): city i has to precede in any feasible tour any city j such that aj + tji > bi. If j0 is

the smallest index such that aj + tji > bi for all j ≥ j0, then we can define k(i) := j0 − i.

Doing this for every i, we obtain a TSP with condition (1a) whose feasible solutions include

all feasible tours for the TSP with time windows [ai, bi]. Since the converse is not necessarily

true, the construction of a shortest path in G∗∗ must be amended by a feasibility check:
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while traversing G∗∗, paths that correspond to infeasible tours (with respect to the upper

limit of the time windows) must be weeded out whereas paths that violate a lower limit of

a time window must have their lengths (costs) increased by the waiting time. This check is

a simple comparison that does not affect the complexity of the algorithm.

The initial ordering can be generated, for instance, by sorting the time windows by their

midpoint. Table 2 shows an example of this, along with the constants k(i) derived from

this ordering. To keep things simple we take all tji to be zero. This is not necessarily an

optimal ordering for minimizing the largest k(i), but it appears to be a good start. From

this ordering, a local search can be used to lower the largest k(i) by moving a time window

to a different location (minimizing the largest k(i) may be NP-complete). In the example,

moving the time window for city 3 after that of city 4 reduces the largest k(i) by 1 (see

Table 3). The important thing to bear in mind is that any initial ordering can be used to

derive precedence constraints from the time windows, and the resulting constants k(i) depend

not only on the time windows, but also on the initial tour. In fact, it is not even necessary

for the initial ordering to represent a feasible tour; given that the values k(i) derived by the

above procedure define precedence constraints satisfied by every feasible tour.

Table 2: Constructing Precedence Constraints from Time Windows

i Time Window k(i)

1 Home City 1

2 [ . ] 3

3 [ . ] 4

4 [ . ] 1

5 [ . ] 3

6 [ . ] 2

7 [ . ] 1

Now since the objective is the minimization of the total time needed to complete the tour,

the time spent in waiting is simply added to the time spent in traveling as a shortest path is

constructed in G∗∗, and thus waiting can be taken into account without any complication:

an optimal solution to the TSP with condition (1a), if feasible with respect to the time

windows, defines an optimal tour for the TSPTW.
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Table 3: Improving the Bound on the Largest k(i)

i Time Window k(i)

1 Home City 1

2 [ . ] 3

3 [ . ] 2

4 [ . ] 3

5 [ . ] 3

6 [ . ] 2

7 [ . ] 1

However, the literature (see, for instance, Baker 1983 or Solomon 1987) typically considers

the TSPTW with the objective of minimizing the distance traveled. This objective is not

affected by waiting time and is therefore different from the first objective even when tij = dij

for all i, j. In order to model this second objective, it is necessary to keep track both of

distance and travel time (with waiting time included). However, this is not enough, since a

tour that waits in one place to gain an advantage in distance, may be unable to satisfy a

time window later in the tour. Figure 2 illustrates this point. The route 1-2-3-4 has distance

6, but requires a time of 9 because there is a wait at city 2. This wait prevents the route

from continuing to city 5 before its window closes. The route 1-3-2-4 has distance 8, but

also has a total time of 8, so this route can continue through city 5. If the algorithm is not

modified to keep this other partial tour, this solution will not be found.

This dilemma was handled in Dumas et al. (1995) by adding a time parameter to

the state. Unfortunately, this addition can cause the number of potential states to grow

with the length of the arcs in the problem. We address this issue by storing only non-

dominated time-distance pairs, and when a state has multiple non-dominated pairs, we

clone the corresponding node. To keep our polynomial bound, we restrict the number of

copies (clones) that can be stored for any state by a constant parameter q, which we call the

thickness of the auxiliary graph. Note that our procedure uses the same auxiliary structure

G∗∗

K built in advance as in the standard case discussed in Section 3, and the cloning of nodes,

when needed, is done in the process of constructing a shortest source-sink path in G∗∗.

If we never generate more than q nondominated time-distance pairs, the algorithm is
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Figure 3: Illustrating the Difficulty of Minimizing Distance Instead of Time

guaranteed to find an optimal solution to the TSPTW with the distance objective. If more

than q pairs are generated, we store only the q best with respect to distance. When this

happens, we can no longer guarantee optimality; but as the computational results below

show, optimal solutions are often found with a graph thickness smaller than that required

for guaranteed optimality.

The largest value of k(i) that we were able to accommodate on the computers available

to us was 17. As discussed in Section 3, this limit is given by space rather than time

considerations. In the case where the precedence constraints implied by the time windows

require values of k(i) too large to make the algorithm practical, the algorithm can still be run

by truncating the auxiliary graphs to smaller values of k(i); but once again, in this case we

can no longer guarantee an optimal solution. In such situations, using the initial sequence

mentioned above may not yield good results; but starting from the heuristic solution of

some other method, the algorithm can often improve that solution. Also, using some other

heuristic between multiple applications of our algorithm has improved our results sometimes.

Next we discuss our computational experience with time-window problems. All of our

results in this and the following sections were obtained with a code written in C and run on

a Sun Ultra I Workstation with 64MB of memory. Where our algorithm could not guarantee

optimality, a simple Or-opt heuristic (Or 1976) was applied, followed by renewed application

of our algorithm.

Using a method similar to that given by Baker (1983), Tama (1990) has generated a
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number of instances of one-machine scheduling problems with set-up times and minimum

makespan objective, formulated as asymmetric TSPs with Time Windows. He kindly made

available to us 13 problem instances, eight 20-city and five 26-city problems, which he was

unable to solve using cutting planes followed by a branch and bound algorithm (Tama 1990).

We ran our algorithm on these problems, using K = 13 and K = 16, with the following

outcome: Of the eight 20-city problems, 7 were proved to be infeasible, and the remaining 1

was solved to optimality. Of the five 26-city problems, 1 was proved to be infeasible, 3 were

solved to optimality, and the remaining 1 was “solved” without a guarantee of optimality

because the required value of K was too high (see Table 4).

Table 4: Asymmetric TSPs with Time Windows (One-Machine Scheduling)

Solution Value (seconds)
Problem Name Required K K = 13 K = 16

(20-city p192358 13 Infeasible∗ (0.36)
problems) p192422 10 Infeasible∗ (0.49)

p192433 12 Infeasible∗ (0.58)
p192452 10 Infeasible∗ (0.47)
p192572 11 Infeasible∗ (0.48)
p192590 12 Infeasible∗ (0.52)
p193489 13 Infeasible∗ (0.96)
p194450 9 936∗ (0.86)

(26-city p253574 16 Infeasible (14.92) Infeasible∗ (8.83)
problems) p253883 18 1188 (3.94) 1188 (36.45)

p254662 16 1140 (4.22) 1140∗ (18.97)
p255522 13 1373∗ (1.81)
p256437 13 1295∗ (1.77)

Notes:
∗indicates that a guarantee of optimality (or a guarantee of the infeasibility of the problem)
was found.

As to symmetric TSPs with Time Windows, thirty instances of the RC2 problems pro-

posed by Solomon (1987) that were first studied by Potvin and Bengio (1993) and then

by Gendreau et al. (1995) were run with our algorithm, using q = 15 and K = 12, 15

with the results shown in Table 5. These problems, kindly provided to us by M. Stan,

originate in vehicle-routing problems (also available at http://dmawww.epfl.ch/~rochat/

rochat_data/solomon.html) and are the outcome of a first phase procedure in which clients

are allocated to vehicles (the second phase task being the routing). The extension in the
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Table 5: Symmetric TSPs with Time Windows (Vehicle Routing)

Potvin and Gendreau Required Our Results (CPU seconds)
Problem n Bengio (1993) et al. (1995) K K = 12 K = 15

rc206.1 4 117.85 117.85 (0.03) 3 117.85∗ (0.29)
rc207.4 6 119.64 119.64 (0.16) 5 119.64∗ (0.50)
rc202.2 14 328.28 304.14 (7.76) 13 304.14∗ (2.92)
rc205.1 14 381.00 343.21 (3.58) 7 343.21∗ (2.02)
rc203.4 15 330.33 314.29 (9.88) 12 314.29∗ (3.58)

rc203.1 19 481.13 453.48 (13.18) 13 453.48 (12.19) 453.48+ (96.75)
rc201.1 20 465.53 444.54 (9.86) 6 444.54∗ (2.49)
rc204.3 24 455.03 460.24 (37.86) 22 475.59 (61.28) 466.21 (639.93)
rc206.3 25 652.86 591.20 (22.30) 14 574.42 (17.40) 574.42+ (133.75)
rc201.2 26 739.79 712.91 (23.06) 7 711.54∗ (3.33)

rc201.4 26 803.55 793.64 (19.21) 7 793.63∗ (3.27)
rc205.2 27 796.57 755.93 (23.61) 11 755.93∗ (5.99)
rc202.4 28 852.73 793.03 (36.61) 18 809.29 (23.00) 799.18 (212.46)
rc205.4 28 797.20 762.41 (21.13) 12 760.47∗ (5.25)
rc202.3 29 878.65 839.58 (22.16) 15 837.72 (9.54) 837.72∗ (45.46)

rc208.2 29 584.14 543.41 (67.06) 28 533.78 (59.78) 533.78 (905.16)
rc207.2 31 721.39 718.09 (52.55) 21 701.25 (61.38) 701.25 (703.03)
rc201.3 32 839.76 795.44 (46.91) 7 790.61∗ (4.51)
rc202.1 33 844.97 772.18 (33.65) 20 773.16 (18.42) 772.33 (223.30)
rc203.2 33 843.22 784.16 (49.26) 24 809.14 (33.06) 808.78 (404.42)
with initial tour of length 789.04 from Stan (1997) 32 784.16 (20.84) 784.16 (246.66)

rc204.2 33 686.56 679.26 (53.25) 28 662.16 (77.22) 681.85 (830.17)
rc207.3 33 750.03 684.40 (55.91) 23 746.27 (113.44) 697.93 (1128.64)
with initial tour of length 684.40 from Stan (1997) 32 684.40 (50.31) 684.40 (545.69)
rc207.1 34 797.67 741.53 (47.53) 19 735.82 (70.87) 735.82 (622.47)
rc205.3 35 909.37 825.06 (138.38) 23 825.06 (42.78) 825.06 (384.03)
rc208.3 36 691.50 660.15 (87.25) 35 655.50 (122.29) 659.07 (2472.65)
with initial tour of length 654.27 from Stan (1997) 35 654.27 (197.54) 649.11 (2420.97)

rc203.3 37 911.18 842.25 (50.90) 27 could not find feasible solution
with initial tour of length 842.03 from Stan (1997) 36 834.90 (30.14) 834.90 (373.34)
rc206.2 37 850.47 842.17 (108.03) 16 828.06 (33.92) 828.06 (315.10)
rc206.4 38 893.34 845.04 (100.66) 16 831.67 (46.81) 831.67 (418.59)
rc208.1 38 812.23 799.19 (88.20) 37 852.24 (53.81) 793.61 (1141.24)
rc204.1 46 923.86 897.09 (84.41) 39 could not find feasible solution
with initial tour of length 878.76 from Stan (1997) 45 878.64 (74.82) 878.64 (1061.16)

Notes:
q = 15 for our results
CPU times for Gendreau’s solutions were obtained using a SPARCserver 330 according to Gendreau et al. (1995).
∗value guaranteed to be optimal.
+453.48 was verified to be optimal for rc203.1 with K=13 and q=25 in 15.56 seconds.
+574.42 was verified to be optimal for rc206.3 with K=14 and q=20 in 38.29 seconds.
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names of the problems indicates the route. Here the objective was to minimize total dis-

tance, i.e. occasionally nodes had to be cloned as explained above. Neither Potvin and

Bengio (1993) nor Gendreau et al. (1995) could guarantee the optimality of a solution even

if their solution was optimal. The entry for “Required K” in Table 5 indicates what value

of K would be needed for a guarantee of optimality.

As can be seen from Table 5, our algorithm solved 14 of these problems with a guarantee

of optimality. Of these 14, Potvin et al. (1995) had solved two to optimality and Gendreau

and Bengio (1993) had solved nine to optimality. Of the remaining sixteen problems, our

algorithm fared better than Potvin et al. (1995) thirteen times, equaled Gendreau and

Bengio (1993) once, and fared better than Gendreau and Bengio (1993) eight times. On the

five problems for which we obtained through personal communication (Stan, 1997) feasible

tours, we then used these as initial tours, and we improved those tours in four of these five

instances. Note that the solutions we received from Stan (1997) were often slightly different

than the solution portrayed in the results found in Gendreau et al.(1995). As mentioned

earlier, when a guarantee of optimality was not found, a heuristic based on the Or-opt

heuristic (Or 1976) was applied once, and then our algorithm was applied again. This is why

the computation time can vary widely for problems of roughly the same size (e.g. rc202.1

and rc202.3). Furthermore a worse initial solution might lead to a better final solution if the

Or-opt routine improves the worse solution (e.g. rc204.2).

Table 6: Symmetric TSPs with Time Windows (Vehicle Routing)

Scale Required Our Results (CPU seconds)
Problems Combined n Factor K K = 12 K = 14
rc201.1 & rc201.2 45 2.0 13 1198.74 (31.54) 1198.74+ (129.76)
rc201.1 & rc201.4 45 2.2 12 1263.57∗ (13.43)
rc201.1 & re201.3 51 2.2 13 1420.77 (28.44) 1420.77∗ (65.43)
rc201.2 & rc201.4 51 2.2 13 1512.79 (29.64) 1512.79∗ (65.40)
rc201.2 & rc201.3 57 2.0 14 1531.20 (35.93) 1531.20∗ (83.28)
rc201.3 & rc201.4 57 2.0 14 1699.69 (42.23) 1699.69+ (176.40)

Notes:
q = 15
∗value guaranteed to be optimal.
+1198.74 was verified to be optimal for rc201.1-.2 with K = 13 and q = 18 in 40.10 seconds
+1699.69 was verified to be optimal for rc201.3-.4 with K = 14 and q = 18 in 107.77 seconds

Since all of the problems in Table 5 are quite small (average size of 28 cities), we generated
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larger problems by combining the cities of two problems from the first class (rc201.x). To

make the problem feasible for a single vehicle, every time window was multiplied by a scaling

factor. If the problem was feasible using a scaling factor of 2, this was used. Otherwise, the

scaling factor used was 2.2. Increasing the scaling factor does not affect the time-window

structure in terms of overlaps, but may decrease the number of precedence constraints and

thereby require a larger K. Table 6 shows the results of these problems, having an average

size of 51 cities. Optimal solutions were found in every case with K = 12, but for many,

optimality could not be guaranteed with K less than 14.

Asymmetric time window problems of a much larger size (Ascheuer et al. 1997) were

recently made available at http://www.zib.de/ascheuer/ATSPTWinstances.html. They

are based on real-world instances of stacker-crane-routing problems. The problem names in

principle contain the information on the problem size; where n differs from the number in

the name, this is presumably due to inconsistencies in accounting for the dummy node. Even

though problem sizes extend beyond 200 nodes, because the time windows were tight, the

value of K required by these problems was small. This makes the problem difficult for the

branch and cut code in Ascheuer et al. (1997), which could only solve one of the problems

with more than 70 nodes when allowed to run for 5×d n
100

e CPU hours, but makes the problem

easy for our algorithm. The largest instance for which we could guarantee optimality was a

problem with 151 nodes. Tables 7 and 8 list our results with a value of q = 15, compared

with the lower bounds in Ascheuer et al. (1997) in those cases where optimality was not

guaranteed with our algorithm.

As can be seen from these tables, our procedure performs quite remarkably on this set of

problems. For instances with n ≤ 45, guaranteed optimal solutions were found in less than

a minute in all but three cases. In two of those three cases optimal solutions were found

without a proof of optimality, while in the third case a solution was found within less than

1% of optimality, in less than four minutes. For problems with 55 ≤ n ≤ 151, guaranteed

optimal solutions were found in all but three cases in less than one minute.

We conclude that for time-window problems our approach clearly advances the state of

the art.
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Table 7: Asymmetric TSPs with Time Windows (Stacker-Crane Routing)

Required Our Results (CPU seconds) Lower Bound
Problem n K K = 12 K = 15 from Ascheuer et al. (1997)

rbg010a 11 5 149∗ (0.95)
rbg017 16 7 148∗ (2.51)
rbg017.2 16 11 1071 (9.80)
rbg016a 17 6 179∗ (1.72)
rbg016b 17 12 142∗ (2.71)

rbg017a 18 12 146∗ (3.23)
rbg019a 20 4 217∗ (2.03)
rbg019b 20 9 182∗ (3.42)
rbg019c 20 13 1902 (7.64)
rbg019d 20 5 344∗ (2.39)

rbg021 20 13 1902 (7.82)
rbg021.2 20 13 1822 (9.00)
rbg021.3 20 13 1823 (9.60)
rbg021.4 20 14 1793 (11.52)
rbg021.5 20 15 169 (12.35) 1691 (127.97)

rbg021.6 20 15 147 (14.98) 1341 (161.66)
rbg021.7 20 18 134 (20.79) 133 (224.54) 132∗

rbg021.8 20 19 133 (23.43) 132 (267.26) 132∗

rbg021.9 20 19 133 (24.26) 132 (285.19) 132∗

rbg020a 21 13 2102 (3.59)

rbg027a 28 19 268 (11.28) 268 (137.66) 268∗

rbg031a 32 8 3281 (11.13)
rbg033a 34 9 433∗ (5.66)
rbg034a 35 10 4011 (18.03)
rbg035a 36 9 254∗ (7.67)

rbg035a.2 36 24 187 (73.78) 169 (650.31) 166∗

rbg038a 39 10 466∗ (8.64)
rbg040a 41 10 3861 (20.08)
rbg041a 42 11 4021 (24.57)
rbg042a 43 13 4114 (47.38)

rbg048a 49 35 none found none found 456
rbg049a 50 29 none found 486 (281.50) 420
rbg050a 51 34 441 (107.05) 431 (1123.35) 414∗

rbg050b 51 30 none found 518 (360.97) 453
rbg050c 51 30 none found none found 508

Notes:
q = 15
∗value guaranteed to be optimal
1value verified to be optimal with q = 20 (CPU sec)
rbg017.2 (5.88), rbg021.5 (76.42), rbg021.6 (92.94), rbg031a (7.27),
rbg034a (11.57), rbg040a (13.01), rbg041a (15.63)

2value verified to be optimal with required K
rbg019c (8.52), rbg020a (8.12), rbg021 (8.68)

3value verified to be optimal with required K and q = 20
rbg021.2 (11.35), rbg021.3 (11.83), rbg021.4 (29.09)

4rbg042a was verified optimal with K = 13 and q = 30 (61.94)
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Table 8: Asymmetric TSPs with Time Windows (Stacker-Crane Routing)

Required Our Results (CPU seconds) Lower Bound
Problem n K k = 12 K = 15 from Ascheuer et al. (1997)
rbg055a 56 10 8141 (25.56)
rbg067a 68 10 10481 (29.14)
rbg086a 87 9 1051∗ (18.70)
rbg088a 89 10 1153∗ (22.01)
rbg092a 93 10 10931 (48.13)
rbg125a 126 10 1409∗ (31.93)
rbg132 131 9 13601 (61.28)
rbg132.2 131 17 1085 (137.80) 1083 (1135.49)6 1069
rbg152 151 10 1783∗ (37.90)
rbg152.2 151 17 1628 (216.40) 1628 (1738.56)6 1598
rbg152.3 151 24 1556 (316.50) 1542 (2765.42)6 1526
rbg172a 173 16 1799 (110.64) 1799 (812.17)6 1788
rbg193 192 15 2414 (128.82) 2414 (807.50)4 2388
rbg193.2 192 21 2018 (408.29) 2022 (2138.72)4 1969
rbg201a 202 16 2189 (126.69) 2189 (809.71)4 2158
rbg233 232 15 2689 (153.12) 2689 (975.22)4 2635
rbg233.2 232 21 2190 (446.88) 2193 (2505.86)4 2146
Notes:
q = 15 unless specified
∗value guaranteed to be optimal
1value verified to be optimal with q = 20 (CPU sec)

rbg055a (16.21), rbg067a (18.83), rbg092a (30.33), rbg132 (39.11)
4value obtained with q = 4
6value obtained with q = 6
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5. The Traveling Salesman Problem with Target Times

A new variant of the TSPTW, which we call the traveling salesman problem with target times

(TSPTT), defines a target time for each city, rather than a time window. The objective is to

minimize the maximum deviation between the target time and the actual service time over all

cities. A secondary objective (subject to optimality according to the first objective) may be

the minimization of the total time needed to complete the tour. Applications of this problem

include delivery of perishable items (such as fresh fruit) to places without storage facilities,

or routing a repair vehicle to customers with busy schedules who do not like waiting.

We can solve the TSPTT to optimality with our algorithm, by first constructing windows

of a fixed size d centered at each city’s target time, and then using binary search to find

the smallest d (to within a predetermined accuracy) for which the problem is feasible. This

of course implies repeated applications of the algorithm, but the number of repetitions is

bounded by log2 d, where d is the largest time window one needs to consider. The auxiliary

structure built in advance is again the same as in the standard case, and for each value of d

the problem is solved as a TSPTW with the objective of minimizing the total time needed

for completing the tour.

Table 9 shows the results of using our algorithm on a set of TSPs with Target Times,

where dmin is the smallest d for which the problem is feasible, and cost is the total time

needed to complete the tour. To generate instances of this problem, we used the same

data studied by Potvin and Bengio (1993) and Gendreau et al. (1995), and used the time-

window midpoints for the target times. As can be seen from Table 9, in many cases the

optimal solution was found with a value of K much smaller than that needed to guarantee

optimality, which may indicate that some solutions given to problems without a guarantee

of optimality are optimal. In cases where no guarantee was achieved, the exact value of K

needed for a guarantee is not known. The value in the table is the K required to solve the

problem optimally with the best known feasible d. This is an upper bound on the K required

to find the optimal d, i.e. dmin, because decreasing the time-window diameter may introduce

additional precedence constraints, which in turn may require a smaller (but not a larger) K.

Arc costs for the problems in Table 9 ranged in most cases from 10 to 100 units, and 1 time

unit is required to travel one distance unit.

As the table shows, our procedure found solutions guaranteed to be within 0.01 of opti-

mality in 19 of 30 instances, in most cases in a few seconds, in other cases in a few minutes.
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Table 9: Symmetric TSPs with Target Times

Req’d Results for K = 10 Results for K = 14 Results for K = 17
Problem n K dmin cost sec. dmin cost sec. dmin cost sec.

rc206.1 4 3 22.08∗ 227.04 1
rc207.4 6 1 12.08∗ 309.85 1
rc202.2 14 8 118.12∗ 552.18 2
rc205.1 14 3 53.03∗ 473.12 1
rc203.4 15 11 211.98 598.25 2 211.98∗ 598.25 30

rc203.1 19 14 220.23 610.81 3 220.23∗ 610.81 56
rc201.1 20 5 81.92∗ 611.10 1
rc204.3 24 ≤23 321.52 659.22 7 321.52 659.22 136 321.52 659.21 1122
rc206.3 25 11 145.93 697.63 3 145.93∗ 697.63 51
rc201.2 26 6 99.56∗ 875.73 1

rc201.4 26 7 114.50∗ 891.93 2
rc205.2 27 12 186.27 816.47 5 186.27∗ 816.47 72
rc202.4 28 17 244.41 925.77 6 237.26 900.66 103 237.26∗ 900.66 871
rc205.4 28 11 159.55 883.81 4 159.55∗ 883.81 64
rc202.3 29 8 134.62∗ 889.27 4

rc208.2 29 ≤21 301.41 779.39 6 267.46 762.42 113 267.46 762.42 1072
rc207.2 31 ≤20 241.18 798.50 7 241.18 798.50 126 241.18 798.50 1348
rc201.3 32 5 93.53∗ 869.68 2
rc202.1 33 ≤19 277.38 875.97 7 254.08 864.32 139 254.08 864.32 1337
rc203.2 33 ≤25 387.57 974.42 8 387.57 974.42 174 383.87 972.58 1976

rc204.2 33 ≤30 453.11 781.41 9 434.94 793.15 221 427.36 789.36 2332
rc207.3 33 ≤18 275.88 896.67 8 259.51 880.36 163 259.51 880.36 1793
rc207.1 34 17 234.99 906.66 7 234.99 906.66 139 234.99∗ 906.66 1085
rc205.3 35 15 240.43 965.58 7 240.43 965.58 135 240.43∗ 965.58 1117
rc203.3 37 ≤27 535.94 975.11 9 482.71 957.49 221 403.46 950.40 2452

rc206.2 37 13 202.38 902.06 8 202.38∗ 902.06 136
rc206.4 38 14 204.53 941.35 8 204.53∗ 941.35 156
rc208.1 38 ≤28 449.78 936.43 10 406.04 914.56 242 375.77 899.40 2703
rc208.3 36 ≤24 297.89 824.90 8 285.85 818.67 177 285.85 818.67 2082
rc204.1 46 ≤43 770.78 1078.49 14 658.42 1022.31 335 623.43 966.05 4101

Notes:
∗value guaranteed to be within .01 of the optimum.
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6. Local Search for Arbitrary TSPs

If applied as a heuristic for an arbitrary TSP, our procedure finds a local optimum over

the neighborhood of the starting tour defined by the precedence constraint (1). If applied

repeatedly until there is no change, our procedure finds a tour that is a local optimum

over its own neighborhood defined by (1). Unlike the standard interchange heuristics like

2-opt, 3-opt, etc., where computing time is proportional to the size of the neighborhood, our

procedure finds a local optimum over a neighborhood of size exponential in n, in time linear

in n. (See Johnson and McGeoch 1997 for a comprehensive survey of TSP heuristics.)

In our first tests of the algorithm run as a heuristic for arbitrary TSPs, we experimented

with some 500-city asymmetric TSPs that we produced using the genlarge problem generator,

which Repetto (1996) kindly gave to us and which can generate instances of various kinds

(like those listed in the notes to Table 10). Repetto solved these problems with an open-

ended heuristic approach, where he produces an initial tour by randomly choosing one of the

nearest two neighbors, and then applies his implementation (Repetto 1994) of the Kanellakis

and Papadimitriou (1980) heuristic, an adaptation to asymmetric TSPs of the Lin-Kernighan

(1973) heuristic for the symmetric TSP. We ran Repetto’s code for 1200 seconds and used the

best solution found as the initial tour for our algorithm, which was then run with K = 10, 14

and 17. The results are shown in Table 10.

Table 10: Random versus Almost-Euclidean Asymmetric TSPs:
Percent over Held-Karp Lower Bound

Kanellakis - Our Results (seconds)
Problem Name Papadimitriou K = 10 K = 14 K = 17

500.aa 57.74 no improvement
500.ba 29.45 no improvement
500.ca 4.67 4.61 (13) 4.33 (290) 4.26 (3641)
500.da 3.96 3.29 (14) 2.99 (298) 2.85 (3605)

Notes:
500.aa is a truly random asymmetric TSP.
500.ba is a random symmetric TSP perturbed 2% for asymmetry.
500.ca is a random Euclidean TSP perturbed 2% for asymmetry.
500.da is a random clustered Euclidean TSP perturbed 2% for asymmetry.

While no improvements were obtained for the truly random asymmetric and the ran-

domly perturbed symmetric problems, there were repeated improvements for the random
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Euclidean and clustered random Euclidean problems perturbed for asymmetry, even though

these starting solutions were much better than those for the random instances.

The reason why our algorithm tends to perform better on almost-Euclidean problems

may have to do with the fact that for such problems, if cities i and j are near each other (not

necessarily adjacent) in a tour generated by a good heuristic, then there is a high probability

that the arc connecting these cities has low cost. For arbitrary random instances, there

is no such correlation. Since our algorithm looks at the arcs specified by the precedence

constraint applied to the starting tour, for Euclidean instances these arcs would generally

all have a reasonably low cost, whereas for non-Euclidean problems, many of these arcs

would be of no interest to us. In some sense, there is more overlap of the neighborhood

our algorithms examines and the space of “good tours” when the problem is Euclidean.

Geographic problems are even better suited for our algorithm because cities tend to cluster

in metropolitan areas, which implies precedence constraints of the type (1).

Early tests pointed out a basic weakness in the iterative aspect of our algorithm — and

of course this is a crucial issue when it comes to the use of our procedure as a heuristic.

In our experience, a local optimum is usually found within two to three applications of the

procedure, if not on the first one. After that, some other starting point must be chosen if the

procedure is to be reapplied. Starting every time from a random tour is inefficient. However,

after a while we found a better way of iterating our algorithm; namely, by contracting some

arcs of the tour found by the procedure, and then reapplying it to the shrunken instance: this

has the effect of extending the reach of the precedence constraints beyond the initial value of

K. To do this, we mark the arcs selected for contraction (more below on how the selection

is made), and then contract each set of contiguous marked arcs into a single supernode S in

the case of an asymmetric TSP, or into a pair of supernodes S ′, S ′′ in the case of a symmetric

TSP. Suppose the sequence of arcs to be contracted is (i1, i2), . . . , (im−1, im). In the case of

an asymmetric TSP, the cost of the arc (j, S) from some node j to S is the cost of (j, i1),

whereas the cost of (S, j) is that of (im, j). (Contracting a single arc is of course a special

case, with m = 2.) In the case of a symmetric TSP, we want the contraction to allow for

traversing the contracted segment in either direction. This can be achieved by creating a

pair of supernodes S ′, S ′′, which must be traversed consecutively (i.e. must be adjacent in

any tour). For an arbitrary node j, the costs (lengths) of the arcs to and from S ′ and S ′′ are

defined as c(j, S ′) = c(j, i1), c(S ′, j) = c(i1, j), c(j, S ′′) = c(j, im), c(S ′′, j) = c(im, j). Then

if a tour enters S ′ from a node j and exits S ′′ to a node k, the cost of this tour segment is
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Figure 4: Construction of Supernodes for an Asymmetric TSP

c(j, S ′)+c(S ′′, k) = c(j, i1)+c(im, k); and if it enters S ′′ from a node j and exits S ′ to a node

k, the cost is c(j, S ′′) + c(S ′′, k) = c(j, im) + c(i1, k). The condition that S ′ and S ′′ must be

adjacent in any tour can be imposed, for instance, by placing an artifical node T between

them, joined to each of them in both directions by zero-length arcs, and not joined to any

other node. Figure 4 illustrates the construction.

If we now apply our procedure to the TSP with condition (1) defined on the contracted

graph, with the same K as before, the neighborhood over which we optimize will have been

enriched and the contracted tour may possibly be improved. The resulting locally optimal

tour can then be decontracted to provide a tour for the original graph, better than the one

whose arcs we had contracted.

This way our algorithm can be iterated arbitrarily many times by selecting a random

collection of tour arcs to be contracted at each iteration, and then decontracting them

before the next iteration. We select arcs for contraction randomly, with the probability of

any arc being selected biased towards lower cost. We solve the TSP with condition (1) on

the resulting contracted graph by our algorithm, then decontract the graph and retrieve the

corresponding tour on G. This ends the iteration. Table 11 illustrates the performance of the

iterative contraction procedure — which we call Dynamic Programming with Arc Contraction

— on a collection of TSPLIB problems (http://www.crpc.rice.edu/softlib/tsplib).

DP after 1000 3-opt means that DP is applied to the best of 1000 solutions obtained by
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Table 11: Performance of DP with Iterated Arc Contraction

Percent over Optimum
TSPLIB DP after 1,000 3-opt DP with Arc Contraction
Problem (local optimum) Iterated 20 times (CPU sec)
pr1002 2.59 2.43 (84.43)
u1060 2.04 2.02 (77.45)

pcb1173 2.52 2.28 (102.82)
nrw1379 2.83 2.78 (121.01)

fl1577 1.89 1.83 (118.88)
dl655 3.00 2.96 (130.64)

vm1748 2.55 2.48 (136.94)
rl1889 2.65 2.60 (129.70)

Average 2.51 2.42

starting in each case from a randomized nearest neighbor tour and using 3-opt until a local

optimum is reached. DP in turn is iterated until its local optimum is reached. DP with Arc

Contraction uses as starting solution the result from DP after 1000 3-opt.

While the arc-contraction procedure offers a good way to iterate our procedure with-

out starting every time from scratch — an alternative made unattractive by the relatively

high cost of our procedure in comparison to simpler heuristics — nevertheless the dynamic-

programming procedure iterated by arc contraction cannot by itself beat the best interchange

procedures, like iterated Lin-Kernighan (1973). On the other hand, we noticed that no mat-

ter how good a solution these other procedures are able to find, as long as that solution is

not optimal, our procedure usually is able to improve upon it. Furthermore, the amount

of improvement seems to depend very little, if at all, on the quality of the solution. To

illustrate this, in Table 12 we present the improvement (in % of solution value) found by DP

with Arc Contraction after running for one minute, when applied to the best tour found by

3-opt after 1000, 5000 and 10,000 iterations, respectively. The numbers are averages over all

TSPLIB instances in the given range (http://www.crpc.rice.edu/softlib/tsplib).

All this suggests the idea of combining the dynamic-programming procedure with an

interchange heuristic and applying them in an alternating fashion. The promise of combin-

ing in this way local search procedures based on different neighborhood definitions can be

expected to depend on how different — or, mathematically speaking, how close to orthog-

onal — those neighborhoods are. To be more specific, consider combining our procedure
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Table 12: Improvement (%) Obtained in One Minute when Starting
from Best 3-opt Tour after Specified Number of Iterations

Problem size range 1000 it. 5000 it. 10,000 it.
500 ≤ n ≤ 999 0.116 0.143 0.076

1000 ≤ n ≤ 1499 0.170 0.203 0.182
1500 ≤ n ≤ 3038 0.239 0.189 0.195
Overall average 0.177 0.193 0.168

with 3-opt interchange. The dynamic-programming procedure finds a local optimum over

a neighborhood whose size is exponential in n (Proposition 2.1), whereas the neighborhood

searched for the execution of one 3-interchange is of size O(n3). To calculate the overlap

between the two neighborhoods, we note that a 3-opt interchange applied to a tour of a

TSP with condition (1) has to consider a neighborhood of size O(K3n). In other words, the

intersection of the two neighborhoods is a tiny fraction of the smaller one of the two. This

suggests that such a combination might be pretty powerful.

In order to test this idea, we asked Gerhard Reinelt for the tours he obtained with

the iterated Lin-Kernighan (1973) algorithm he used for the results of Jünger et al. (1995).

Unfortunately those tours are no longer available, but Reinelt (1997) kindly sent us ten tours

that are actually of higher quality than those in Jünger et al. (1995). We used these tours as

starting solutions for the following algorithm, which we will call DPC: Our dynamic program

routine (DP) is run until a local optimum is reached, then a simple 3-opt routine is run until

a local optimum is reached. These two are alternated until the solution is optimal in both

neighborhoods. At this point, the dynamic-programming routine with the arc contraction is

run for a specified time.

Of the ten tours sent to us by Reinelt, there were seven on problems from the set we were

studying. Of these, there were four that were not within 0.01% of the optimum. For these

tours, our algorithm found improvements to three out of four instances in less than fifteen

seconds of CPU time, as shown in Table 13.

Recently, the state-of-the-art chained Lin-Kernighan (CLK) code of Applegate et al.

(1997) was made publicly available. This is a sophisticated implementation of the algorithm

by Martin et al. (1992). We ran that code on the 22 symmetric TSPLIB problems between

1000 and 3500 nodes for 1000 and 10000 “kicks” (a “kick” is an attempt to push a solution
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Table 13: Improving Near-Optimal Tours with DPC

Per cent over optimum
Problem Reinelt’s tour Our improved tour (CPU time)
rl1323 0.377 0.372 (5.07)
fl1400 0.263 No Improvement
d1655 0.034 0.031 (8.07)
d2103 0.067 0.062 (10.39); 0.041 (38.17)

Notes:
DPC was run with k = 8 for one hour of CPU time.

out of a local optimum). We then applied DPC to the resulting tours with K = 6, 8 and 10.

In ten of the 22 instances, we found improvements over the solution obtained by the CLK

code after 1000 kicks with each value of K, and in over half of these cases, an improvement

was found on the first iteration of DP with the DPC algorithm. However, outside of this

initial surge, the rate of gain from DPC did not exceed that of continuing the CLK code, with

one notable exception mentioned below. In four of the 22 instances, we found improvements

to the solution obtained by CLK after 10,000 kicks with each value of K, and in each case

an improvement was found as a result of the first iteration of DP within DPC. At this point,

the CLK code was no longer finding improvements consistently (in fewer than half of the

22 instances were improvements found between the 5,000th and 10,000th kick). In one of

these four cases, the CLK code had found no additional improvements after the 1,000th kick,

probably because the solution was a mere 0.0004% above optimal. However, our code was

able to find, in less than a second, an improvement that led to an optimal solution that the

CLK code failed to find over the next 9000 kicks, which took over 200 seconds on the same

machine. The details of the cases based on tours found after 10,000 kicks are in Table 14.

Table 14: Using the CLK solution as starting tour for DPC

Percent over optimum
CLK after Our improvements with K = 6 (CPU time)

Problem 10,000 kicks First iteration of DP Additional improvements with DPC
rl1304 0.0004 optimal (0.52)
d1655 0.0338 0.0225 (0.67) none

vm1748 0.1408 0.1405 (0.70) none
rl1889 0.1254 0.1238 (0.76) 0.1147 (11.15)
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Table 15: CLK with and without DP after the 10,000th kick

Percent over optimum
CLK alone with CLK with 10,000 kicks + DP + CLK with

Problem 11,000 kicks 20,000 kicks 1,000 kicks 10,000 kicks
rl1304 optimal optimal optimal optimal
dl655 0.0338 0.0113 0.0225 0.0225

vm1748 0.1408 0.1144 0.1385 0.1385
rl1889 0.1242 0.1147 0.1238 0.0847

Since most of the improvements came on the first iteration of DP within DPC, we won-

dered about using a single iteration of DP (less than one second with K = 6), and then

feeding the resulting tour back to CLK for 1,000 and 10,000 additional kicks in those cases

where the solution was not yet optimal. We then compared these results with running the

CLK code for 11,000 and 20,000 kicks respectively (see Table 15). For problem rl1304, the

optimal solution was found much more quickly by combining the algorithms. In the other

three cases, there was always a short-term benefit (compare the additional 1,000 kicks after

DP with 11,000 kicks alone), and there was a long-term benefit in one of the three cases

(compare the additional 10,000 kicks after DP with 20,000 kicks). This makes us believe that

using DP to “kick” a solution periodically (more than once) would be effective in enough

instances to warrant the addition of this feature to CLK. We plan to incorporate this idea

into a version of CLK code in the near future.

7. Conclusions

We have discussed an implementation of a linear-time dynamic-programming algorithm for

solving TSPs with a special type of precedence constraints.

We have applied our procedure to solving TSPs with time windows, originating in schedul-

ing problems with setup, release and delivery times, in truck delivery problems, and in

stacker-crane routing. We present extensive computational evidence for our claim that on

these classes of problems our procedure brings an improvement to the state of the art.

We have formulated a new type of TSP with a time-related objective, the TSP with target

times, with important potential applications, and demonstrated that our algorithm can solve

optimally problems of realistic size in this class. We don’t know how other algorithms would
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perform on this class.

Finally, for TSPs without precedence constraints or time windows, we have shown how to

use our algorithm as a local search procedure that finds in linear time a local optimum over

an exponential-size neighborhood. For this purpose we developed an iterative version of our

algorithm, Dynamic Programming with Arc Contraction. Although by itself this algorithm is

outperformed by the most sophisticated version of chained Lin-Kernighan (1973) procedure,

on the other hand it is often able to improve in its first iteration upon the best solution found

by the latter in 10,000 iterations. This and other evidence points to the potential usefulness

of combining these two approaches based on sharply differing neighborhood definitions.
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