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ABSTRACT 
Dijkstra’s algorithm for finding the length of the longest 

upsequence within a given sequence of numbers is used as the 
basis for a case study in the development of a new sorting 
algorithm. The case study has pedagogic value for several 
reasons: the motivation for each step in the development of the 
algorithm is explained; interesting data structures are introduced; 
the complexity of the algorithm is analyzed using mathematics fa- 
miliar to first year computer science students; the appendices 
provide detailed description of the implementation of the 
algorithm as well as several interesting examples of its use. The 
proposed algorithm merits attention since it uses O(nlogn) com- 
pares in the worst case (actually less than 2nlogn) and O(n) for 
both ordered or nearly ordered and reverse ordered or nearly 
reverse ordered sequences. 

1 .O INTRODUCTION 
We provide a comprehensive and pedagogical description of 

an algorithm development process. The algorithm is new. It uses 
a variety of building blocks from computer science including well 
known techniques such as list merging, and lesser known 
techniques such as the efficient solution of the longest upsequence 
problem, It incorporates a variety of interesting data structures. It 
demonstrates how basic concepts in computer science and 
mathematics are used to develop and demonstrate an interesting 
and respectable algorithm. 

We describe the longest upsequence problem and the elegant 
solution given by Dijkstra [2]. We then propose an extension to 
Dijkstra’s algorithm to develop a sorting algorithm which uses 
O(nlogn) compares in the worst case and O(n) compares for an 
interesting class of data. Substantial analysis of the algorithm is 
demonstrated with respect to compares. The algorithm develop- 
ment provides a good case study for a fist year computer science 
course. 
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2.0 THE LONGEST UPSEQUENCE PROBLEM (LUP) 
Given a sequence s of n elements, an upsequence in s is a 

subsequence of s whose elements appear in s in non decreasing 
order. A subsequence of s is any subset of s in which the original 
order is retained (hence there are T possible subsequences). 
The longest upsequence problem is: 

Give an algorithm which will return the length of the longest 
upsequence of a sequence s. (Note that there may be more than 
one longest upsequence of the same length. For example, the 
sequence [1.3,4,1.3.5] has the following upsequences of length 
4: [1.3,4,51, [1,1,3,51, and [1.3,3.51.) 

A solution with O(nlogn) worst case performance has been 
given by Dijkstra [2] and modifications have been given by 
Dewar, Merritt and Sharir [l]. 

Dijkstra’s algorithm can be described as follows: Elements in 
the original sequence are examined from left to right. As each 
new element is examined it is inserted into the m-sequence, a 
sequence consisting of minimum rightmost elements of upse- 
quences of length 1.2,... New sequence elements are inserted into 
the m-sequence either by being added to the right end (if x is 
larger than the rightmost element of the partial m-sequence) or by 
“bumping” an element already in the m-sequence (where the 
element being bumped is the smallest element in the m-sequence 
which is larger than the new element to be inserted). 

Consider the following example, with input sequence s of 
length 8: s: 8, 1, 6,5,4, 7.2,3 
step1 (insert 8) m:8 
step2 (insert 1) m:l Coump 8) 
step3 (insert 6) m:l 6 (add 6) 
step4 (insert 5) m:l5 (bump 6) 
step5 (insert 4) m: 14 (bump 5) 
step6 (insert 7) m: 14 7 (add 7) 
step7 (insert 2) m: 1 2 7 (bump 4) 
stepS (insert 3) m:l 2 3 (bump 7) 

The length of the longest upsequence is 3 (and m contains the 
minimum rightmost elements of upsequences of length 1.2,3, 
respectively). 

181 



3.0 THE COMPLEXITY OF THE LUP 
Dijkstra uses a binary search technique to determine which 

element of the m-sequence is to be replaced. which makes the 
worst case complexity of the algorithm O(nlogn); without the 
binary search the worst case complexity is O(n*). 

If x=s[k] is the next element of the input sequence and mu] is 
the rightmost element of the m-sequence, the heart of Dijkstra’s 
algorithm is: 
if mu] c= s[k] 

then n := n + 1; m[n] := s[k]; 
else “establish c such that” 
m[c-11 <= s[k] < m[c]; 
m[c] := s[k] 

end if; 
Binary search uses a divide and conquer approach to find the 

correct placement of a given item within a given sorted list and is 
described in many places, for example [3]. From a pedagogical 
perspective it is interesting to review the mathematics of this 
procedure. The solution to the equation given below provides the 
number of times a given set can be so divided: 

(l/2)% = 1. 
or 2-h = 1. Taking the log of each side using 2 as the base of the 
logarithm and using logn to mean the log of n base 2, the 
following result is obtained: 

log2-‘ + logn = log1 
or -x + logn = 0 

x = logn. 
f%ce there are n elements that need to be inserted, the order of 
complexity for the entire process in the worst case is O(nlogn). 

4.0 DEVELOPMENT OF THE SORTING ALGORITHM 
In the solution to the LUP outlined above, bumped elements 

are discarded. It should be noted that if bumped elements could 
be saved, some useful ordering information would be preserved. 

In the proposed sorting algorithm the m-array produced by 
Dijkstra’s algorithm together with the saved bumped elements 
form something that we could call an m-structure. The building 
of the m-structure is the fist phase of the proposed sort. In the m- 
structure each m[i] is the head of a list and initially set to point to 
nil. If the original m[i] of Dijkstra’s m-array has not been 
“bumped”, then it will continue to point to nil. Otherwise, it will 
be the head of a list of elements that have been “bumped” from 
that position. Such a list shall be referred to as a history queue 
labelled Li, with length li. Clearly, if Li is a history queue its 
corresponding length, li, must be at least 1 (no bumped elements) 
and at most n (every new element bumps the previous one). For 
example, the m-structure produced by applying Dijkstra’s 
algorithm to the sequence 8, 1,6.5,4, 7, 2,3 is: 

Ll L2 L3 
Ill21 31 

8 4 7 
5 
6 

For the case above, the length of the longest upsequence is 3. 
The m-structure would be initialized as an array of 8 lists of 
integers initialized to point to nil. After completion of the first 
phase of the algorithm, three of the lists would not be empty. The 
number of nonempty lists will be referred to as r. Clearly. r will 
be at least 1 (the case for reverse order sequences) and at most n 
(the case for ordered sequences). Here r=3. Note that the m- 
structure not only contains a sorted first row which is the m-array 
of Dijkstra’s algorithm but also a series of history queues which 
are themselves sorted lists. 

The second or sorting phase of the proposed technique will 
involve merging Ll. consisting of the list 1 -> 8 ->nil. with L2, 
consisting of 2 -> 4 -> 5 -> 6 ->nil. to produce the list 1 -> 2 -> 4 - 

> 5 -> 6 -> 8 ->nil. This would then be merged with L3. which 
contains 3 -> 7 ->nil to produce a single list of ordered elements. 

5.0 THE SORTING PHASE 
In discussing the merge operation required to transform the m- 

structure into a single sorted array it is interesting to consider the 
various “shapes” the m-structure can have. In the case of reverse 
ordered data it will consist of a single m[i], namely m[l] pointing 
to a list of ordered elements. The work involved in forming this 
array has been of order n and no further compares are necessary to 
create the final sorted sequence. Every other case will produce an 
m-array with r>l and the question of the best way to merge these r 
history queues is a central issue to be addressed. 

Consider the simple case of merging two lists Ll and L2 of 
ordered data. In general, given lists of length p and q, the largest 
number of compares requited to merge the two lists is we11 known 
(see [3], for example). In the worst case neither list would be 
exhausted early. Since the maximum number of compares in this 
case is always 1 less than the sum of the lengths of the two lists, 
there are p+q-1 compares in the worst case. Consider the merge 
of Ll and L2 which is begun by comparing 3 and 5, 

Ll L2 
3 5 then5and8. 
8 10 then8and10, 

12 15 then 10 and 12, 
17 then 12 and 15. 

andfinally15and17. Thenumberofcomparesis6=4+3-1. 
Furthermore, if it is known that the fit element of Ll is always 
smaller than the fist element of L2 (as is the case in the m- 
structure), the first compare can be avoided and thus the total 
number of compares can be reduced in the worst case to p+q-2. 

There is a straightforward approach to merging the lists Ll, 
L2, W, LA ,..., Lr. Ll and L2 are merged and then the resulting 
queue is merged with L3 and the resulting queue is merged with 
LA, continuing in this manner until Lr is merged with the result of 
all the previous merges. A bit of reflection reveals that Ll is used 
in all r-l merges. If the m-structure is such that most of the n 
numbers are in Ll then it is clear that this merge operation uses 
O(n*) compares in the worst case. Since there are many good 
sorting algorithms with O(nlogn) compares [3], a O(n2) technique 
for the merge alone is not acceptable. 

A better way to merge the lists is to merge Ll and L2, L3 
and LA. . . . . L(r-I) and Lr and then to do pair-wise merges of the 
merged lists. The complexity for this kind of merge is less 
dependent on the “shape” of the m-stucture. The simplest case 
arises when r is a power of two. Consider the case Ll, L2, L3, 
LA. I-5, L6, L7, L8. Recalling that Ii represents the length of list 
Li, it is clear that the maximum number of compares required to 
merge Ll and L2 is 11+12-2. Similarly, the subsequent merges 
yield the following results for the maximum number of compares 
per merge (“ml=>11+12-2” means that the maximum number of 
compares required to merge Ll and L2 is the sum of their 
respective lengths, 11 and 12, minus 2): 

ml=>ll+l2-2 
m2=>13+14-2 
m3=>15+16-2 
m4=>17+18-2 
m5=>11+12+13+14-2 
m6=>15+16+17+18-2 
m7=>11+12+13+14+15+16+17+18-2 

Ll L2 L3 L4 LS L6 L7 L8 
Jmd Lm2J hJ im4i 

I-mu l-m6 i 
L-.----m71 
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The total number of compares required for the merge is 3n- 
2(7). From the information above it is clear that the number of 
compares in this case is a function of n and not of the “shape” of 
the m-structure. This information can be used to arrive at a 
formula for the number of compares required to merge r lists 
when r is a power of two. 

Since the shape of the m-structure is immaterial in the case that 
r is a power of two, suppose the n elements of the original array 
are evenly divided among r queues where r is a power of two. 
Then each list contains n/r elements and the maximum number of 
compares required to merge any pair is n/r + n/r -2 or 2(n-r)/r. 
Since the first pass requires r/2 such merges the maximum total 
number of compares for the first pass is (2(n-r)/r)(r/2) = n-r 
compares. 

For the second pass, each queue is now of length 2n/r and 
hence the maximum number of compares required to merge two 
such lists is 2n/r + 2n/r -2. Since there are r/2 lists after the first 
pass, r/4 merges are required so the maximum number of 
compares for pass two is(2n/r + 2n/r - 2)(r/4) = (2n - r)/2. 

Similarly, for pass three each queue is of length 4n/r. Since r/8 
merges are required, the maximum total number of compares is 
(4n/r + 4n/r -2)(r/8) = (4n - r)/4. 

For the fourth pass the maximum number of compares is 
(8n - r)/8. 
For the kth pass the maximum number of compares is 
(2k-‘n - r)/2k-‘. 
Adding all of the compares for each pass together the follow- 

ing is obtained: 
If c = the total number of compares up to the kth pass, then 
c= (n-r)/1 + (2n-r)/2 + (4n-r)/4 + (8n-r)/8+...+(2k-‘n-r)/2k-’ 

c= n-r/l + n-r/2 + n-r/4 + n-r/8 + . . . + n-rnk-i 

c= (n+n+...+n) - (r/l + r/2 + r/4 + r/8 + . . . + #-I) 

c= kn - r(1 + l/2 + l/4 + l/8 + . . . + 1/2k-‘) 

c= kn - r(1 - (l/2) k, (sum of a geometric series) 
W) 

c= kn - 2r + 2r2-k (A) 

Under the assumption that r is a power of two let k = log r base 2, 
denoted as logr. Using this value in formula (A) obtained above it 
follows that 

c = nlogr - 2r + 2r2-t”ar 

c = nlogr - 2r + 2r-r* 

c=nlogr-2r +2 

c=nlogr-2(r- 1) 

Note that in the example above the number of compares 
required to merge eight queues was 3n - 2(7). 

To better understand the case when r is not a power of two, an 
example using 5 queues can be investigated. Consider the 
following two possible pair-wise mergings of Ll. L2, L3. L4, L5: 
ml=>11+12-2 Ll L2 L3 L4 L5 
m2=>13+14-2 
m3=>13+14+15-2 

I-mlJ 1~2J 

L m3 1 
m4=>11+12+13+14+15-2 m4J 

the maximum total compares = 2n I- (13+14) - 2(4) 

On the other hand, if the 5 lists are merged in a different 
manner, the following is obtained: 

m 1 =>l 1+12-2 Ll L2 L3 LA L5 
m2=>13+14-2 [ml-l lmzl 
m3=>11+12+13+14-2 Lm3 J 
m4=>11+12+13+14+15-2 /m4 1 

the maximum total compares = 2n + (11+12+13+14-15) - 2(4) 

In this case the shape of the m-structure is relevant, but in any 
case it is clear that the maximum number of compares is less than 
3n - 2(4). 

The result can be arrived at analytically by using result (A) 
from above. If r is not a power of two the number of passes 
required to accomplish the r-l required merges is log p where p is 
defined as the smallest power of two bigger than r. Letting k = 
log p where p is chosen as the smallest power of 2 bigger than r 
(recall we are assuming r is not a power of 2), it follows that log p 
= [Ilog rl] + 1. It is also true that r/p is less than 1. Therefore, (A) 
can be reduced to: 

c = nlogp - 2r + 2(r/p) < nlogp - 2r + 2( 1) = nlogp - 2(r - 1). 
This is already a satisfactory result since it produces the sorted 

array in O(nlogn) compares in any case. It does have one 
problem, however. In the case of sorted data the m-array 
produced would have r equal to n and hence would require nlogn 
+ n - 2n + 2 or nlogn -n + 2 compares to complete the merges. 
Although it is O(nlogn) in the worst case, it is a less than 
satisfying result for inorder data. To alleviate this problem and 
improve the performance of the process in general, an intemredi- 
ate step is introduced between the formation of the original m- 
array and the final merge. This step can best be described as 
follows: 

A) Suppose Dijkstra’s algorithm is applied to the sequence 
0135471021520 

B) The m-structure produced is 
IO 1 1(214\ 71101151201 

35 
Since r=8 is a power of two the maximum number of compares 

required to produce a single list is nlogr - 2(r -1) = lOlog 8 - 2(8- 
1) =10(3)-2(7)=16. 

C) Produce a new m-structure by looking at the pointer of each 
m[i]. If it points to nil let m[i] point to m[i+l]. This procedure 
will yield the following structure which shall be referred to as an 
m*-structure: 

plq-?y 
1 5 10 
2 15 
3 20 

D) The corresponding T value shall be referred to as T*. Since 
r* = 3 we can use the formula for the non-power of two case 
which says the number of compares < nlog p -2(r-1). In this case 
p=4, r=3 and n=10 giving the result that the number of compares 
< lO(log 4) - 2(3-l) = lO(2) - 2(2) = 16. In fact we can compute 
the number of compares to be 

ml=>4+2-2=4 
m2=>6+4-2=8 
total compares = 12 c 16. 
The most important reason for this improvement is in the case 

of sorted data where an m-array such as 1 2 3 4 5 would yield the 
m* -structure 

1 
n 

3” 
4 
5 

which gives the final result requiring no further merging. 
This discussion would seem to imply that the worst case 
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scenario would be an m-structure which is a perfect n/2 by 2 
rectangle since it would have the largest possible r with no hope 
of improvement by arrangement into a m*-structure. That 
intuitive result can be further explored as follows using the 
ordinary methods of the calculus. If we let r be a real number 
then we can study the behavior of the function f(r) = nlogr - 2(r-1) 
realizing that whenever r is a positive integer which is a power of 
two the value of f(r) accurately gives the maximum number of 
compares required for the merge operation. 

For a given n, the maximum number of compares is a function 
of r given by 

f(r) = nlogr - 2(r - 1) 
f(r) = nlogr - 2r + 2 

If r = 1 the number of compares required for the merge 
operation is 0. If r = n the maximum number of compares is 
nlogn -2n + 2. To investigate critical points of this function 
consider taking derivatives. f’(r) = n/r - 2. Setting this equal to 0 
we obtain r = n/2. f”(r) = -n/3. Since this is always negative the 
critical point at r=n/2 is a relative maximum. 

6.0 CONCLUSION 
The sorting procedure described above consists of: 
1) the creation of an m-structure, an extension of Dijkstra’s 

algorithm for finding the LUP; 
2) the transformation of the m-structure into an m*-structure as 

described above: 
3) the pair-wise merge of the queues of the m*-structure. 
It is a relatively efficient method of sorting all kinds of data. It 

has a lovely symmetry in that it treats ordered and reverse ordered 
sequences (and nearly ordered and reverse ordered sequences) 
equally well, performing the sort in O(n) compares. Other cases 
have O(nlogn) compares, with the maximum number of compares 
less than 2nlog n. We have described the motivation for various 
parts of this algorithm in some detail, as well as the results of 
various design decisions. The inventive process uses a creative 
data structure, motivates a binary search, and compares different 
merge techniques, Complexity is discussed on an intuitive level 
and is supported with fairly elementary mathematics. The result 
is a case study which can be used either to demonstrate the 
development process of an algorithm or to enrich/reinforce the 
basic concepts of a first year course in computer science. 
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The algorithm described above has been coded in Pascal. Copies 
of the code may be obtained from Cecilia Nauck. 

APPENDIX: EMPIRICAL DATA 

Sample output from several runs of the program are given below. 
Special test cases have been used and the trace has been set so that 
the different steps of the algorithm are shown. 

Example: n = 8 
01354792 

compares needed to form history queues = 13 
heads point to 0 1 2 4 7 9 

1) 0 
2) 1 
3) 2 3 
4) 4 5 
5) 7 
6) 9 

after transfotmation: 
1) 0123 
2) 4 5 
3) 7 9 

total number of compares = 21 

Example: n = 8 
12345678 

compares needed to form history queues = 7 
headspointto 12345678 

1) 1 
2) 2 
3) 3 
4) 4 
5) 5 
6) 6 
7) 7 
8) 8 

after transformation: 
1) 12345678 

total number of compares = 7 

Example: n = 8 
87654321 

compares needed to form history queues = 14 
heads point to 1 

1) 123456789 
after transfotmation: 

1) 123456789 
total number of compares = 14 

For n=8,64,128.256, and 5 12, four runs of the LUPSORT 
program were performed using random numbers generated by a 
RandomGenerator program. A summary of the results obtained is 
given below: 

n=8 nlogn=24 
average total compares needed to form history queues = 13 
average total compares needed for sort = 22 

n=64 nlogn=384 
average total compares needed to form history queues = 258 
average total compares needed for sort = 509 

n=128 nlogn=896 
average total compares needed to form history queues = 615 
average total compares needed for sort = 1276 
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n=256 nlogn=2048 
average total compares needed to form history queues = 1399 
average total compares needed for sort = 2833 

n=5 12 nlogn=4608 
average total comapres needed to form history queues = 3 138 
average total compares needed for sort = 6601 

In the last four of the five cases the total number of compares 
required for the sort is between nlong and 2nlogn. In the first case 
the total is less than nlogn. 


