DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 00, 0000

Computing Near-Optimal Solutions to
Combinatorial Optimization Problems

DAVID B. SHMOYS

May 18, 1995

ABSTRACT. In the past few years, there has been significant progress in our
understanding of the extent to which near-optimal solutions can be effi-
ciently computed for NP-hard combinatorial optimization problems. This
paper surveys these recent developments, while concentrating on the ad-
vances made in the design and analysis of approximation algorithms, and
in particular, on those results that rely on linear programming and its gen-
eralizations.

In the past few years, there have been major advances in our understanding
of performance guarantees for approximation algorithms for NP-hard combina-
torial optimization problems. Most notably, after twenty-five years of essentially
no progress, a new technique has been developed for proving that certain ap-
proximation algorithms are unlikely to exist. Partially in response to this de-
velopment, there have also been significant recent advances in the design and
analysis of approximation algorithms. In this survey, we will outline a few of the
areas in which progress has been made, and suggest directions in which there is
still interesting work to be done.

The central definition of this survey is that of a p-approzimation algorithm for
an optimization problem: a polynomial-time algorithm that delivers a feasible
solution of objective function value within a factor of p of optimal. The study
of approximation algorithms predates the theory of NP-completeness. Some
early results, such as the proof due to Vizing (1964) that a graph always has

1991 Mathematics Subject Classification. Primary 90C27, 68Q25,05C85; Secondary 68Q05,
90C05.

Research partially supported by NSF grant CCR-9307391, NSF PYI grant CCR-8896272
with matching support from UPS, Sun, Proctor & Gamble, and DuPont, and by the Na-
tional Science Foundation, the Air Force Office of Scientific Research, and the Office of Naval
Research, through NSF grant DMS-8920550

©0000 American Mathematical Society
0000-0000/00 $1.00 + $.25 per page

2 DAVID B. SHMOYS

an edge coloring with at most one more color than the maximum degree, were
not even algorithmically stated, but still contain all of the ideas needed to give
an interesting approximation algorithm. Graham (1966), in studying a particu-
lar scheduling problem, more explicitly stated the goal of analyzing an efficient
heuristic from the perspective of its worst-case error bound, or more positively
stated, its performance guarantee. The seminal work of Johnson (1974a, 1974b),
reacting to the recent discovery of the theory of NP-completeness, crystallized
the perspective that one approach to coping with the intractability of a problem
is to design and analyze approximation algorithms.

Johnson (1974a,1974b) considered a variety of problems that have become,
over the intervening years, some of the central questions of the area, including
the bin-packing problem, maximum clique problem, the minimum vertex coloring
problem, the maximum satisfiability problem, and the set covering problem. As
we now understand much more clearly, these problems are all equivalent, in
that they are NP-complete, and yet are very different in the extent to which
good approximation algorithms exist for them. It is illuminating to consider the
concluding questions posed by Johnson (1974b):

Are there O(logn) coloring algorithms? Are there any clique
finding algorithms better than O(n¢) for all € > 07 ... What
is it that makes algorithms for different problems behave in the
same way? Is there some stronger kind of reducibility than the
simple polynomial reducibility that will explain these results...”
While it must have been natural to suspect that some of these questions would
be hard to answer, it is unlikely that the true difficulty of even the easiest of
these questions was suspected at the time. For example, more than a decade
elapsed before the 2-approximation algorithm given for the general maximum
satisfiability problem was improved upon at all.

This survey is not intended to be a comprehensive account of the progress
of those twenty years. Instead, we will focus on a few of the central issues and
problems, and try to outline some of the main ideas that have been recently
introduced. In particular, in describing the algorithmic advances, we will try to
emphasize the role of linear programming and its generalizations in the design
and analysis of approximation algorithms.

1. Probabilistic Proofs and Approximation Algorithms

Over the past several years, one of the fundamental threads of research in
computational complexity theory has been to give randomized characterizations
of deterministic complexity classes. For example, we now know that PSPACE is
exactly the class of languages accepted by interactive proof systems and NEXP
is exactly the class accepted by 2-prover interactive proofs. The culmination
of this line of research was a new and surprising characterization of NP, which
was in part motivated by the recently discovered connection between hardness of

COMPUTING NEAR-OPTIMAL SOLUTIONS 3

approximation results and randomized characterizations. We shall not attempt
to give a complete description of the development of this important line of re-
search, since this has been excellently surveyed by Johnson (1992). However, in
this section we will give a brief overview of this area and its connection to the
complexity of computing near-optimal solutions.

Let |z| denote the length of a string . A language L is in NP if there is a
polynomial p(n) and a polynomial-time verifying algorithm V'(z, y) that satisfies
two conditions: (1) if ¢ € L, then there is a (proof) y for which |y| < p(]z|) such
that V outputs “yes”; (2) if € L, then for every (proof) y for which |y| < p(]z])
V outputs “no”. More informally, the verifier can be convinced (by the correct
proof) that # € L in such a way that he is never fooled. Extending work of Arora
& Safra (1992), Arora, Lund, Motwani, Sudan, & Szegedy (1992) proved that
the following is an equivalent definition: the verifier tosses r = O(log|z|) coins
to determine £ = O(1) bit positions ¢ € {1,2,...,p(]z|)}; then, by examining =
and only those positions of the proof the verifier answers “yes” or “no” in such
a way that: (1) if @ € L, then there is a (proof) y for which |y| < p(|z|) such
that V outputs “yes” for all outcomes of the coin tosses; (2) if « € L, then for
every (proof) y for which |y| < p(|z|), V outputs “no” for more than half of the
outcomes of the coin tosses. Since this verifier is allowed to use O(logn) random
bits, and to access O(1) positions of the proof, the class of languages recognized
by such probabilistic verifiers is denoted PCP(logn,1). Thus, the theorem of
Arora, Lund, Motwani, Sudan, & Szegedy can be stated: NP=PCP(logn,1).
Due to its special properties, such a proof that x € L has sometimes been called
a holographic proof.

Feige, Goldwasser, Lovész, Safra, & Szegedy (1991) observed an interesting
connection between complexity class characterizations of this sort and approx-
imation algorithms. To understand the essence of this connection consider the
following optimal proof problem, defined by a probabilistic verifier V' for an NP-
complete language L: for any input z, find a “proof” so as to maximize the
number of the 2" coin tosses that lead the verifier to output “yes”. If x € L,
then for the correct proof, the verifier accepts for all of its 2" coin tosses. How-
ever, if z € L, then for any proof, fewer than 2”1 coin tosses lead to acceptance.
Hence, any 2-approximation algorithm for the optimal proof problem can be
used to decide if x € L by merely checking if the proof found for input « has at
least 27~! coin tosses that lead to acceptance. Since this checking can be done in
polynomial time, we have a polynomial-time algorithm for L, and hence P=NP.
In other words, no 2-approximation algorithm exists unless P=NP.

Of course, the optimization problem defined above is not a particularly natural
one. It would be nice if we could use the same philosophy for specific combi-
natorial optimization problems. Feige et al. first applied this method to the
mazimum cliqgue problem: given a graph G = (V, E), find a subset S of pairwise
adjacent vertices so as to maximize |S|. In fact, some of the strongest hardness-
of-approximation results have been subsequently obtained for this problem: there

4 DAVID B. SHMOYS

exists an € > 0 such that no |V|*approximation algorithm exists unless P=NP.
We shall defer a more detailed discussion of results for this problem until Section
9.

For some combinatorial optimization problems, it is possible to efficiently
find solutions that are arbitrarily close to optimal. A polynomial approzima-
tion scheme for an optimization problem is a family of algorithms A,, such that
for each p > 1, A, is a p-approximation algorithm. However, for many prob-
lems, there is no polynomial approximation scheme known, and until recently,
no evidence to suggest that none exists.

Consider the mazimum 3-satisfiability problem (MaX 3-SAT): given a collec-
tion of clauses, each of which is the or of at most 3 literals, that is, Boolean
variables and their negations, assign the values true or false to each of the n
variables so as to maximize the number of clauses that are made true by this
assignment. As a corollary of the fact that NP=PCP(logn,1), Arora et al.
obtained a striking result for this problem: they showed that no polynomial
approximation scheme for the MAX 3-SAT problem exists unless P=NP.

We next outline this result, which can be viewed as an encoding of the unnat-
ural optimization problem discussed above as a MAX 3-SAT problem. Consider
the probabilistic verifier for some NP-complete language L; we will show that
there is a constant é > 0 such that for any z, we can construct in polynomial-
time a MAX 3-SAT instance ¢ satisfying: (1) if & € L, then ¢ has an assignment
satisfying all of its clauses; and (2) if € L, then any assignment does not satisfy
a 6 fraction of ¢’s clauses.

If we can compute such a ¢, then we can prove that for any p < 1/(1 —§8)
no p-approximation algorithm exists, unless P=NP. Let m denote the number
of clauses in ¢. If x € L, then the optimum value is m, and the approximation
algorithm must find an assignment that satisfies more than m(1l — §) clauses.
However, if 2 & L, then no such assignment exists. This yields a polynomial-
time algorithm to decide if ¢ € L, and hence P=NP.

We next explain how to compute ¢. The expression ¢ has a variable z; for
each bit ¢ of a supposed holographic proof that z € L. Each assignment to all of
the Boolean variables z; can be interpreted as a potential holographic proof: z; is
true if and only if the ¢th bit of the proofis 1. Let o denote a possible outcome for
the r coin tosses. We first construct an expression ¢, that is satisfiable exactly
when the verifier accepts, given that ¢ is the outcome of the coin tosses. Given o,
we can compute (in polynomial time) the k bits of the holographic proof that the
verifier will examine. There are 2¥ possible values for these bits, and each either
causes the verifier to accept or reject. Since 2¥ is a constant, we can compute, in
polynomial time, which of these assignments causes the verifier to accept. Each
of accepting assignments can be encoded by a Boolean expression that is the and
of the appropriate k literals: for each bit ¢ of the holographic proof examined,
include z; or —z; depending on whether the bit is 1 or 0, respectively. We can
then encode all of the accepting values as a Boolean expression which is the or

COMPUTING NEAR-OPTIMAL SOLUTIONS 5

of terms, one term for each setting of the & bits that leads the verifier to accept.
This expression can be converted to a 3-SAT expression ¢,, albeit one with
K = 22" clauses. However, since k is a constant, so is K. The MaX 3-SaT
instance ¢ is the and of the expressions ¢, for all possible . Since r = O(logn),
there a polynomial number of possible coin tosses o, and so ¢ has been computed
in polynomial time.

We show that ¢ has the claimed properties. Clearly, if € L, then each
expression ¢, is made true by setting the variables according to the holographic
proof for z; property (1) holds. If # & L then for any potential holographic
proof, more than half of the possible values for ¢ lead the verifier to reject. In
other words, for any assignment of all Boolean variables z;, more than half of
the Boolean expressions ¢, are not made true by this assignment. If ¢, is false,
at least 1 clause is not satisfied, which is a 1/K fraction of its clauses. Thus, for
any assignment for Boolean variables z;, at least a 1/(2K) fraction of ¢’s clauses
are false. If we set § = 1/(2K), we see that property (2) is also satisfied.

This construction is quite inefficient: the value of p for which one can prove
that no p-approximation algorithm for MAX 3-SAT exists is extremely small.
However, in subsequent work there has been substantial progress on improving
this constant. Bellare, Goldwasser, Lund, & Russell (1993) showed that for any
p < 113/112, if there exists a p-approximation algorithm, then P=NP. More
recently, Bellare & Sudan (1994) further improved this value to 74/73. We shall
discuss the complementary algorithmic results for this problem in Section 3.

Although the result of Arora et al. for the MAX 3-SAT problem is of great
importance in and of itself, the consequences of this work are greatly magni-
fied in conjunction with earlier work of Papadimitriou & Yannakakis (1991).
Papadimitriou & Yannakakis observed that for many simple optimization prob-
lems, the state of the art circa 1991 was roughly the following: virtually any
naive algorithm delivers a solution of value within a constant, most often 2,
of optimal; no algorithm with better performance guarantee is known; there
is no known complexity-theoretic evidence to support the supposition that no
polynomial approximation scheme exists. Among the problems exhibiting this
behavior were the maximum 3-satisfiability problem, the minimum vertex cover
problem, and the maximum cut problem. In view of the success of the theory
of NP-completeness, they sought an analogous notion of completeness, where
proving that no polynomial approximation scheme exists for one complete prob-
lem implies the same result for each complete problem. Not only did they derive
such a theory, which they called MA XSNP-completeness, but the result of Arora
et al. completed the agenda, since it proved that no polynomial approximation
scheme exists (assuming PZNP) for a MAXSNP-complete problem, the maxi-
mum 3-satisfiability problem.

In the remainder of this section, we briefly sketch the main components of the
framework proposed by Papadimitriou & Yannakakis (1991). The first element is
the notion of reducibility from problem II; to Il5; here we wish to define a notion

6 DAVID B. SHMOYS

that allows us to conclude that if II; does not have a polynomial approximation
scheme, then neither does IIy. An L-reduction consists of two polynomial-time
computable functions: f maps an instance z of II; into an instance of f(x) of I,
whereas g maps a feasible solution s for the instance f(z) of Iz into a feasible
solution g(s) for z; let O P11y, (I) denote the optimal value of II; for a given input
I; we require that there be a constant « such that OPTi,(f(2)) < «OPT, (2);
finally, we require that there be a constant 8 such that the absolute value of the
deviation from optimality of g(s) is at most § times the absolute deviation from
optimality of s.

We show that if there exists a polynomial approximation scheme for II5, then
there must be one for II; as well. Equivalently, we wish to show that, using
a polynomial approximation scheme for Il;, we can derive, for any 6 > 0, a
polynomial-time algorithm for II; where the absolute deviation from optimality
is at most §OPTy,. Given an input z, we compute f(z), apply a (1 + €)-
approximation algorithm to this instance of Il to get a feasible solution s, and
finally compute g(s), which is the output. The absolute deviation from optimal-
ity of s is at most €OPTi,(f(z)), which is at most aeOPTi,(z). Hence, the
absolute deviation from optimality of g(s) is at most SaeOPTiy, (z). If we set
€ = 6/(af), we have attained the desired goal.

Following the exposition in Papadimitriou (1994), we first define a more re-
strictive complexity class, MAXSNPy. A maximization problem II is in the class
MAXSNPy if it can be formulated as

mSaXH(zl, co.,2k) € % :9(G1,Ga, ... G, Sy 21, .o z5) }H,

where the input to II is a set of relations G1,...,G,, over V, a finite universe,
and ¢ is a quantifier-free first-order expression involving the variables z;, the
input, and an r-ary relation S; in words, the optimization problem is to find the
relation that maximizes the number of assignments for z that cause ¢ to hold.
This definition was motivated by the characterization of NP by Fagin (1974) as
all languages that can be formulated in existential second-order logic.

To illustrate this definition, consider the mazimum directed cut problem: given
a directed graph G = (V, A), find a set S C V, so as to maximize the number of
edges (u,v) with u € S but v € S. To cast this problem in the form given above,
we let the vertex set V' be the universe, let G(u,v) be the binary relation over
V that holds exactly when (u,v) € A, and let S be a unary relation over V; we
wish to

mSaX|{(z1,22) € V?:G(21,22) ANS(21) A=S(22)}].

To complete the definition of MAXSNP, we say that any optimization problem
II; is in MAXSNP if there exists a problem Il € MAXSNPg such that II; L-
reduces to IIs. A problem is MAXSNP-hard if every problem in MAXSNP is
L-reducible to it. Finally, a problem is MAXSNP-complete if it is in MAXSNP
and it is MAXSNP-hard.

COMPUTING NEAR-OPTIMAL SOLUTIONS 7

It is not hard to show that the MAX 3-SAT problem is in MAXSNPy;, and
hence in MAXSNP. Papadimitriou & Yannakakis (1991) showed that it is also
complete. There is now a respectably long list of problems known to be MAXSNP-
hard. In addition to the problems mentioned above, the maximum acyclic sub-
graph problem, the traveling salesman problem, the maximum clique problem,
the minimum Steiner tree problem, and the maximum superstring problem (and
in many cases, very restrictive cases of each) are known to be MAXSNP-hard.
Many of these problems will be addressed in detail later in this survey. Recently,
Khanna, Motwani, Sudan, & Vazirani (unpublished manuscript) have argued
that this definition for MAXSNP is the most natural one, since it has as a con-
sequence that MAXSNP is exactly the class of optimization problems that are
approximable within some constant factor.

2. A prototypical example: the vertex cover problem

In this survey, we will emphasize the role of linear programming in the design
and analysis of approximation algorithms. In this section, we will study one
problem, the weighted vertex cover problem, since it serves as a good example for
many of the ways in which linear programming arises in this area. The minimum-
weight vertex cover problem is as follows: we are given a graph G = (V, £) and a
weight w(v) > 0 for each vertex v € V| and we wish to select a subset of vertices
S C V such that u € S or v € S for each edge (u,v) € E, so as to minimize
the total weight of S, w(S) :=)", 5 w(v). Papadimitriou & Yannakakis (1991)
showed that the vertex cover problem is MAXSNP-hard, even if each weight is
1 and the degree of each vertex is bounded by a constant k.

The following is a simple integer programming formulation of the minimum-
weight vertex cover problem:

(1) minimize Z w(v)z(v)

veEV
subject to
(2) z(u)+2z(v) > 1, for each (u,v) € E,
(3) z(v) € {0,1}, foreachwveV.

Let OPTy ¢ (I) denote the optimal value for a given input I. There is a very
simple (to explain) algorithm that always delivers a solution of weight at most
20PTyv¢(I). First, solve the linear relaxation of this integer program; i.e., re-
place equation (3) by

(4) z(v) > 0, for each v € V.

Let z* denote the optimal solution to this linear program. Next, construct an

8 DAVID B. SHMOYS

integer solution z by rounding z* in the most natural way: for each v € V| set
~ 1 ifa*(v) > .5,
6) 20 = {

0 otherwise.

We claim that Z is a feasible solution to the integer program (1)-(3) of weight at
most
23" w(v)z*(v) < 20PTy (D).
veEV

To see that this solution is feasible, observe that the constraint (2) for edge (u, v)
ensures that at least one of z*(u) and 2*(v) is at least .5; hence, at least one of
z(u) and Z(v) will be set to 1. Furthermore, the rounding has the property that
z(v) < 22*(v) for each v € V, and so we obtain the fact that the weight of the
cover corresponding to z is at most 20 PTy ().

This algorithm is the simplest example of a rounding procedure: we find near-
optimal solutions for a particular problem by giving an integer programming
formulation, solving its linear relaxation, and then applying an efficiently com-
putable rounding procedure to produce the desired integer solution.

This is a very simple result, and in its simplicity this algorithm ignores some
of the interesting underlying structure of the problem. When we solve the linear
relaxation we would typically compute an extreme point of the feasible region,
and such extreme points sometimes have a much simpler structure that might
help in designing the rounding procedure. For this problem, it is well known that
any extreme point z* has the property that for each v € V, 2*(v) € {0,.5,1}
(see, for example, Nemhauser & Trotter (1975), Balinski & Spielberg (1969), and
Lorentzen (1966)).

Unfortunately, this fact does not improve the performance guarantee of our
rounding procedure. The additional structure does implicitly help improve the
efficiency of our algorithm, since it is not hard to show that the problem of
finding the minimum {0, .5, 1}-solution can be reduced to the maximum flow
problem; consequently, the linear program can be solved much more efficiently
than an arbitrary linear program. The connection between these relaxations and
approximation algorithms for the minimum-weight vertex cover problem was first
observed by Hochbaum (1982), who gave the first 2-approximation algorithm for
the problem.

The linear relaxation can also be exploited in a less explicit way to design even
more efficient algorithms. Suppose that we design a polynomial-time algorithm
that simultaneously constructs an integer primal solution and a feasible solution
to the dual linear program. Since the value of a feasible dual solution gives a
lower bound on both the optimal linear and integer primal solution values, if
we also know that the value of the primal integer solution is no more than p
times the value of the dual solution, then the algorithm is a p-approximation
algorithm. We will call such an algorithm a primal-dual algorithm.

COMPUTING NEAR-OPTIMAL SOLUTIONS 9

Completing our example of the vertex cover problem, we shall give a simple
primal-dual algorithm, which is due to Bar-Yehuda & Even (1981). To begin,
we formulate the dual linear program:

(6) maximize Z y(e)

ecE
subject to
(7) Z yle) < w(v), foreachv eV,
e€b(v)
(8) ye) > 0, for each e € F,

where 8(v) denotes the set of edges {e € E': e = (u,v)}. For ease of discussion,
let a w-packing be an assignment of values to edges so that the total value of
the edges incident to v is at most w(v). The dual is then to find a w-packing of
maximum total value.

It is instructive to consider the specialization of this problem when w(v) = 1,
for each v € V; that is, the unweighted case. If we just consider integer dual
solutions, then we see that the constraints restrict us to {0,1}-solutions, which
correspond to matchings (i.e., subsets of edges such that no two edges have
a common endpoint). An easy 2-approximation algorithm for the unweighted
vertex cover problem is as follows: find a maximal matching M and output the
vertex cover S consisting of all endpoints of edges in M. (Note that M is only
a mazimal matching, i.e., for any e € E — M, M Ue is not a matching.) To see
that S is a vertex cover, observe that if there is an edge e which is not covered
by one of its endpoints, then e can be added to M to form a matching, which
is a contradiction. The matching is a feasible dual solution, and the solution S
output is exactly a factor of 2 bigger than it. Hence, this is a 2-approximation
algorithm. One does not need linear programming duality to deduce that the
size of the matching is a lower bound on the optimum size of a vertex cover:
each edge in the matching must be covered by a distinct vertex. Observe that
we did not even construct the optimal dual solution, even though that is possible
in polynomial time; the analysis did not require that. In fact, we really wish to
construct as small a maximal matching as possible.

Consider again the weighted version. We wish to design an algorithm anal-
ogous to the one discussed above in the unweighted case. Call a node v tight
for a given feasible dual solution y if its corresponding constraint (7) is satisfied
with equality. Initialize the cover S being constructed to the empty set, the dual
variable y(e) to 0, for each edge e € E, and repeat the following step until all
edges of the graph have been deleted: choose any remaining edge e = (u, v) and
increase its value y(e) as much as possible while maintaining the feasibility of the
current dual solution (i.e., until the first of its endpoints becomes tight); add the
tight node(s) to the cover S; delete the tight node(s) and their incident edges.

10 DAVID B. SHMOYS

There are two main steps to analyze this algorithm: proving that the set
constructed is indeed a vertex cover, and proving that its weight is at most twice
the value of the dual solution constructed. To show that S is a vertex cover at
the end of the algorithm, one need only note that an edge is only deleted when
one of its endpoints is tight, and hence in the cover. Suppose that whenever a
variable y(e) is increased by k, one pays k dollars to each of the endpoints of e.
Thus, the total amount paid to the nodes of GG is exactly twice the value of the
dual solution. Observe that whenever a node v is put in the cover, there must be
exactly w(v) dollars paid to it, since the constraint (7) is tight. We can think of
the algorithm as putting a node v in the cover only when its price w(v) is totally
paid for. Hence, the weight of the nodes placed in the cover is at most the total
amount paid to all nodes, which is twice the value of the dual solution. We have
shown that the primal-dual algorithm is a 2-approximation algorithm. Quite
surprisingly, for any constant p < 2, no p-approximation algorithm is known,
even if all of the weights are 1. It remains a challenging open problem to find
such an algorithm.

3. Randomized and Derandomized Rounding

The definition of the complexity class MAXSNP was motivated by the over-
whelming lack of progress on designing approximation algorithms for a handful
of simple combinatorial optimization problems, such as the vertex cover problem.
For several of these problems, the most naive algorithms remained the ones with
best known performance guarantee. Fortunately, for a few of these problems
there has been some progress, even substantial progress, made in the past few
years.

One paradigm for designing algorithms that has received a great deal of atten-
tion recently is to design a randomized algorithm first, and then “derandomize
it” by, in some sense, simulating the role of the randomization in critical places
in the algorithm. An early example of this approach is implicit in the work
of Johnson (1974b) on the mazimum-weight satisfiability problem, which is a
weighted generalization of the problem considered in Section 1: given a collec-
tion of clauses, each of which is the or of (any number of) literals, as well as
a weight w; for each clause Cj, assign the values true or false to each of the n
variables so as to maximize the total weight of the clauses that are made true by
this assignment.

First consider the following trivial randomized algorithm for this problem: for
each Boolean variable v;, independently set v; to be true with probability 1/2,
and set it to be false with probability 1/2. By the linearity of expectation, the
expected total weight of the resulting assignment is just the sum over all clauses
of the expected weight contributed by each clause. Consider a clause Cj, and
suppose that it has k distinct literals. The random assignment makes this clause
true with probability at least 1 — 27%. Thus, the expected contribution of this

COMPUTING NEAR-OPTIMAL SOLUTIONS 11

clause to the weight of the assignment is at least (1 —27%)w;. Consequently, the
expected weight of the random assignment for an instance in which each clause
has at least k literals is at least (1 —27%) 3", w;. This is clearly within a factor
1/(1 — 27%) of optimal, since the optimum is at most Y, w;. Since k is at least
1, this factor is at most 2.

We will outline a simple approach to obtain the same performance guarantee
deterministically. What we wish to compute is an assignment of total weight that
is at least the expectation. This can be done by the method of conditional prob-
abilities. Observe that for any partial assignment of the variables,; one can easily
compute the conditional expectation of the weight of the assignment formed by
completing the partial one by a random assignment chosen independently and
uniformly. The deterministic algorithm works by assigning an additional variable
in each iteration. Suppose that vi,...,v; are already assigned. We compute the
conditional expectation of this partial assignment first with v; 4, also set to false,
and then again with it set to true. If we set vj4; according to which of these
values is greater, then the conditional expectation at the end of iteration j+1 is
at least the conditional expectation at the end of iteration j. This implies that
the complete assignment derived has weight at least the original (unconditional)
expectation. Thus, this is a 2-approximation algorithm.

The analysis described above also implies that if the input does not con-
tain any clause of length 1, then the algorithm finds an assignment of weight
within a factor of 4/3 of the optimum. Yannakakis (1992) gave an algorithm
that essentially eliminated all clauses of length 1 in a way that preserves the
performance guarantee, and thereby gave a 4/3-approximation algorithm. Goe-
mans & Williamson (1993) later gave a much simpler algorithm with the same
performance guarantee. Their algorithm is based on the idea that the random-
ized algorithm might perform better if, with a little work, one computes for each
variable v;, a more refined probability choice p; with which to set that variable
true.

The more refined probabilities are computed by solving the linear relaxation
of a natural {0, 1}-integer programming formulation of the maximum-weight sat-
isfiability problem. We introduce a {0, 1}-variable z; for each Boolean variable
v; and a {0, 1}-variable z; for each clause Cj; a binary variable set to 1 corre-
sponds to a Boolean variable set to true. For each clause Cy, let T; index the
set of Boolean variables that occur unnegated in Cj, and let F; index the set
of Boolean variables that occur negated in C;. Then, we wish to ensure that a
clause variable z; is set to 1 only if one of the literals in that clause is true:

zi < ij—{—z:(l—x])

JET; JEF;

By letting the objective function be to maximize), w;z;, we obtain an integer
programming formulation of this problem. Let (z*, z*) denote the optimal solu-
tion for the linear relaxation of this integer program in which all variables are

12 DAVID B. SHMOYS

instead bounded between 0 and 1. Independently set each variable v; true with
probability p; = 2} and false with probability 1 — p;. Raghavan & Thompson
(1987) introduced and analyzed this approach of rounding a fractional solution
to a {0, 1}-integer solution by interpreting the fractions as probabilities and per-
forming such a randomized rounding, albeit in the context of a VLSI routing
problem.

We can view w;z; as the contribution of clause C; to the weight of the frac-
tional assignment. A straightforward computation shows that if C; has k literals,
then the expected contribution of clause C; in the assignment found by random-
ized rounding is at least (1—(1—+)¥)w;z}. This quantity is at least (1—1/e)w; 2],
and hence we expect to obtain a solution of weight at least (1 —1/¢)>", w;z],

*

where). w;z; is an upper bound on the optimal weight. Applying the method

2
of conditional probabilities, we obtain an e/(e — 1)-approximation algorithm.

To match the performance guarantee of the result of Yannakakis (1992), Goe-
mans & Williamson (1993) employ a frequently used technique in the design and
analysis of approximation algorithms: combine two complementary algorithms
which have disjoint sets of bad cases, by running both and choosing the better
solution. Observe that the two randomized algorithms already described appear
to have complementary properties: the linear programming approach works best
for short clauses, whereas the uniform approach works best for long ones. More
precisely, if we first toss a fair coin to select which of the two algorithms to run,
then the expected contribution of a clause C; with k literals is at least

[(1=27%) + (1= (1= (1/k)")wizf /2 > 3wz /4.

Thus, the expected value of at least one of the two random assignments is at
least 3/4 of the optimal value of linear programming relaxation. This implies
that if we run both algorithms and select the better solution, then we obtain a
4/3-approximation algorithm.

Goemans & Williamson (1993) also show that a 4/3-approximation algorithm
can be obtained by a single rounding of the linear programming optimal solution;
rather than interpreting the fractional solution as probabilities directly, they
instead show how to map fractional solutions to probabilities that, when used
for randomized rounding, are expected to yield good solutions. In contrast, the
strongest currently known hardness result, due to Bellare & Sudan (1994), is
that approximating this problem within 74/73 is NP-hard, even if all weights
are 1.

Linear programming relaxations have played a central role in the design and
analysis of approximation algorithms. However, recently there has been strik-
ing success in basing approximation algorithms on more general mathematical
programming tools, such as convex programming. In the mazimum-weight cut
problem, the input consists of an n-vertex graph G = (V, E), where each edge e
has an associated nonnegative weight w(e), and the aim is to find aset S C V| so
as to maximize the value of 37 _, ,y.es,gs w(€). Throughout the remainder

COMPUTING NEAR-OPTIMAL SOLUTIONS 13

of this survey, we shall let §(.5) denote the set of edges in the cut defined by S,
{e=(u,v):ueSv¢gS}

Until recently, the best constant performance guarantee known for this prob-
lem was 2, due to Sahni & Gonzalez (1976). Their algorithm can also be viewed
as a derandomized randomized algorithm. In this case, the randomized algo-
rithm is, for each vertex v, to include v € S independently with probability 1/2.
The expected value of the cut is the sum over all edges e = (u, v) of the product
of its weight w(e) and the probability that exactly one of v and v is in S. Since
this probability is exactly 1/2, the expected weight of the cut found is exactly
> .cr w(e)/2. Since the total weight of the edges in the graph is clearly an upper
bound on the optimal value, the expectation is within a factor of 2 of the weight
of the maximum cut. By applying the method of conditional probabilities, we
obtain the following algorithm: in iteration j = 1,... ,n, we decide whether or
not to put v; € S: compute the additional weight added to the current cut if
vj is added to S or not added to S, and make the decision for v; depending on
which is greater.

One reformulation of the maximum-weight cut problem can be stated as fol-
lows: for each vertex v € V, assign it a value z(v) € {41,—1}, to indicate
whether v isin S or not; given this assignment, the contribution of edge e = (u, v)
to the objective function is w(e)(1 — z(u)z(v))/2.

Goemans & Williamson (1994) gave a randomized approximation algorithm
for the maximum-weight cut problem based on the following relaxation: for each
vertex v, assign it an n-dimensional unit-length vector #(v) so as to maximize
Ze:(u,v)EE w(e)(1—Z(u)-#(v))/2, where ¥y denotes the inner product of & and
§. The algorithm is quite simple: find an optimal solution #* to this relaxation,
and select an n-dimensional unit-length vector # uniformly at random; put those
vertices v in S for which #*(v) - # > 0. More geometrically, we are bisecting
the n-dimensional unit sphere by a hyperplane through the origin, and thereby
separating the unit-length vectors computed by the relaxation into two sets that
determine a cut.

The analysis of this algorithm is also remarkably simple. Let the weight
of the cut found by the algorithm be the random variable W. We wish to
estimate the value of the expectation of WW. By linearity of expectation, this is
Y e=(u,v)ek W(€)Prle € 6(S)]. For each e = (u, v), we can compute Prle € 6(S5)]
by observing that u and v end up on opposite sides of the cut exactly when the
random hyperplane defined by 7 lies “in between” the vectors #*(u) and &*(v);
hence this probability is proportional to the angle defined by these vectors, and is
arccos(Z*(u) - *(v))/m. A straightforward calculation shows that for any y such
that —1 <y <1, arccos(y)/m > a(l —y)/2, where o = mingcg<~(2/7)(0/(1 —
cos)). Hence, the expected weight of the cut found is at least

> aw(e)(l—F(u)- F*(v))/2.

e=(u,v)EE

14 DAVID B. SHMOYS

In other words, the expected weight is at least an « fraction of the optimal value
of this non-linear relaxation, and hence at least an « fraction of the optimal cut
value. It turns out that « is roughly .87856, and so this is within a factor of
1.1393 of the optimal.

To compute an optimal solution to the relaxation, we can introduce one vari-
able y(u,v) for each inner product of unit-length vectors x(u) - z(v). It is not
hard to see that y is of this form exactly when the matrix ¥ = (y(u,v)) is
symmetric positive semidefinite and has y(v,v) = 1 for each v € V. We wish
to maximize a linear objective function in Y subject to these constraints. This
type of mathematical programming problem is usually referred to as a positive
semidefinite program, and can be solved within an additive error of € in time
polynomial in the size of the input and log(1/¢) by, for example, the ellipsoid
algorithm. Although the details are more complicated, this algorithm can also
be derandomized by the method of conditional expectations, and so this yields
a 1.1393-approximation algorithm for the weighted maximum cut problem.

Similar relaxations can also be formulated for the special case of the maximum-
weight satisfiability problem in which each clause has length at most 2. Prior to
the work of Goemans & Williamson (1994), no approximation algorithm with a
performance guarantee superior to that for the general case was known. They
showed that there is a 1.1393-approximation algorithm based on this approach.
Feige & Goemans (private communication) have further strengthened the relax-
ation to give a 1.075-approximation algorithm. Both of these results can also be
applied to yield an incremental improvement on the 4/3 performance guarantee
known for the general case of this problem.

One curious phenomenon should be noted for each of the problems (and their
special cases) that we have studied thus far. The best known performance guar-
antee for the weighted case exactly matches that for the unweighted one. It
would be interesting to know if there is some underlying explanation for this.

4. Centers, Tours, and Steiner Trees

For some problems, a simple p-approximation algorithm can be seen to be
best possible, in the sense that, for any p’ < p, no p’-approximation algorithm
exists unless P=NP. One such problem is the minimum p-center problem. The
input consists of an integer p, and an n x n symmetric distance matrix C' = (¢;5)
that satisfies the triangle inequality (i.e., ¢;; + cjr > cix, for each ¢, j, k) where
¢;j specifies the distance between each pair of points ¢,j in {1,2,...,n}: for any
selection S C V of designated centers, the radius of S is the minimum distance
r such that each point is within r of some point in S; the aim of the p-center
problem is to select a set S of size p so as to minimize its radius.

Hochbaum & Shmoys (1985) gave a simple 2-approximation algorithm for
the p-center problem. First consider a decision version of the problem, where
a radius r is also given, and you wish to decide if there exist p points to select

COMPUTING NEAR-OPTIMAL SOLUTIONS 15

of radius r. Clearly, by performing a bisection search over the O(n?) possible
values of the optimal value, one can use an algorithm that solves the decision
problem to find the optimal radius. We give a relaxed version of such a decision
algorithm, that either outputs correctly that no solution of radius r exists, or
else finds a set of p points of radius 2r. By performing a bisection search for
an appropriate value of r, such a relaxed decision procedure immediately yields
a 2-approximation algorithm. A different 2-approximation algorithm for this
problem was also given by Dyer & Frieze (1985).

Consider the following algorithm: repeatedly choose one of the remaining
points ¢, add 7 to S, and delete all points whose distance from ¢ is at most 27.
At the end of this process, if the size of the set S exceeds p, output that no
set of size p and radius r exists, and otherwise output S. It is clear that if S
is output, then it has radius at most 2r, since the algorithm was designed so
that this must happen. We must only show that if there is a set S* of size at
most p and radius at most 7, then the algorithm outputs a set S of size at most
p. Suppose there is such a set $*, and assign each point to its closest point in
S5*. Thus, we have partitioned the points into at most p parts, S7,...,S;. The
algorithm can select at most one point ¢ from each part S7, since the selection
of ¢ causes all remaining points in S to be deleted. Hence, at most p points are
selected by the algorithm.

Hsu & Nemhauser (1979) observed that if there exists a p-approximation
algorithm with p < 2, then P=NP. To see this, consider the dominating set
problem, which is NP-complete: given a graph G = (V, E) and an integer p,
decide if there exists a set S C V of size p, such that each vertex is either in S,
or adjacent to a vertex in S. Given an instance of the dominating set problem,
we can define an instance of the p-center problem by setting the distance between
adjacent vertices to 1, and non-adjacent vertices to 2: there is dominating set of
size p if and only if the optimal radius for this p-center instance is 1. Furthermore,
any p-approximation algorithm with p < 2 must always produce a solution of
radius 1 if such a solution exists, since any solution of radius p < 2 must actually
be of radius 1.

For combinatorial optimization problems defined on a distance metric, it is
of interest to consider specific metrics, such as the L1, Ly, or L, norms, and
ask whether superior performance in such a special case is possible. For each
of these cases, it is known that no p-approximation algorithm for the p-center
problem exists unless P=NP, for all p < pg, where py is a particular value
less than 2 that depends on the metric; for example, for the Euclidean case,
po = V2+ /3 (Mentzer (unpublished manuscript), Feder & Greene (1988)).
However, for none of these cases is a p-approximation algorithm with p < 2
known, and we conjecture that such algorithms exist.

A natural generalization of the problem is to relax the restriction that the
distance matrix be symmetric. This turns out to be a non-trivial generaliza-
tion, and essentially nothing is known about performance guarantees for this

16 DAVID B. SHMOYS

extension.

In the remainder of the section, we will discuss two other optimization prob-
lems defined on points in a given distance metric: the traveling salesman problem
and the minimum Steiner tree problem. For each, we will discuss the known re-
sults in the symmetric case with triangle inequality, discuss improvements for
special metrics, and then consider the asymmetric case.

In the traveling salesman problem (TSP), the aim is to find a cyclic permu-
tation of the points 7, so as to minimize y ,_; cin(i); let OPTrsp(C) denote
the optimal tour length. Rosenkrantz, Stearns, & Lewis (1977) showed that the
following is a 2-approximation algorithm: maintain a tour 7" on a subset of the
points, initially a single point; iteratively find the point ¢ ¢ 1" that is closest
to some point j € T, and insert ¢ into 7" after 5. The analysis is based on the
observation that the algorithm uses a sequence of pairs (i, j) that exactly mim-
ics Prim’s minimum spanning tree algorithm, and it is not hard to show that
the increase in tour cost in each iteration is at most 2¢;;. Since the optimal
value of the minimum spanning tree is at most OPTrsp(C), the algorithm is a
2-approximation algorithm.

Christofides (1976) gave the only known improvement to this algorithm. First
consider the following alternative 2-approximation algorithm: find a minimum
spanning tree, and take two copies of each edge to form an Eulerian graph;
find an Eulerian tour, and order the vertices as they are first encountered on
this tour. By the triangle inequality, the cost of the cyclic permutation found
is no more than the total cost of the Eulerian graph, which is clearly at most
20PTrgp(C). This “double-tree” algorithm can be improved by augmenting
a minimum spanning tree 7' to a less expensive Eulerian graph. Christofides
observed that a minimum-cost perfect matching M on the vertices of odd degree
in T has cost at most OPTpgp(C)/2, since an optimal tour on those vertices
can be partitioned into two perfect matchings. Hence, the cyclic permutation
computed from an Eulerian tour of the union of T and M has cost at most
3/2(0OPTrsp(C)).

Papadimitriou & Yannakakis (1993) gave the first evidence that obtaining
near-optimal solutions for the TSP is hard, by showing that the TSP is MAXSNP-
hard, even when restricted to symmetric instances with each ¢;; € {1,2}. There-
fore, a corollary of the result of Arora, Lund, Motwani, Sudan, and Szegedy
(1992) is that no polynomial approximation scheme for the TSP with triangle
inequality exists, unless P=NP. Of course, this does not imply that a similar
result holds for any of the specialized metrics discussed above: Li, Lg, or L.
Remarkably, no stronger performance guarantees are known for these special
cases, nor is there evidence that no polynomial approximation scheme exists.
It is possible that we simply do not have the technical dexterity in manipulat-
ing L-reductions that we have acquired for ordinary polynomial-time reductions.
If this is true, one might expect that completeness results will be proven for
these special metrics. However, it would be very nice if it were possible to take

COMPUTING NEAR-OPTIMAL SOLUTIONS 17

advantage of the additional geometric structure so as to design a polynomial
approximation scheme for these cases.

The asymmetric TSP (with triangle inequality) appears to be substantially
harder than the symmetric case. The best known algorithm, due to Frieze,
Galbiati, & Maffioli (1982), works by finding an optimal assignment (i.e., find a
permutation = that minimizes) ;_; Cir(i)) With each ¢;; = oot if 7 is cyclic, then
this solution is output; otherwise, one node is selected from each cycle, and the
algorithm is called recursively on this subset of nodes, which is of size at most
n/2. Since the optimal assignment for any subset is no more than the complete
optimal tour, and the depth of recursion is log, n, this is a log, n-approximation
algorithm. It is tempting to conjecture that this is asymptotically optimal, but
the optimists among us continue to hope (and to try to prove) otherwise.

In considering the symmetric TSP, while no approximation algorithm better
than Christofides’ algorithm is known, there is reason to believe that better
algorithms do exist. If we consider the input to be the complete graph K, =
(V, E) where each edge e has cost ¢(e), then we can formulate the following linear
relaxation of the problem:

(9) minimize Z c(e)z(e)

eeFE
subject to
(10) Z z(e) = 2, foreachwv eV,
e€b(v)
(11) E z(e) > 2, foreach SCV,S#0,
e€b(S)
(12) z(e) > 0, foreacheeFE.

Wolsey (1980) showed that the value of this linear program is always at least 2/3
of the optimum TSP value. Alternate proofs of this fact are given by Goemans
& Bertsimas (1993) and Shmoys & Williamson (1990). The latter is based on
showing that Christofides’ algorithm always produces a tour of length within
a factor of 3/2 of this relaxation. In contrast to Christofides’ algorithm, the
analysis of the ratio between this linear optimum and the integer optimum is
not known to be tight. In fact, it is widely conjectured that the true worst-case
ratio is 4/3.

Motivated by this example, we define a p-estimation algorithm to be a poly-
nomial-time algorithm that produces a value that is at most the optimal value,
and is always within a factor of p of it. As opposed to algorithms that find optimal
solutions or values, there is no known (polynomial-time) equivalence between
finding near-optimal solutions and estimating the optimal value with the same
performance guarantee. All known non-existence results about approximation
algorithms are actually for the non-existence of an estimation algorithm. It would
be interesting to show, for example for the TSP, that there is a p-estimation

18 DAVID B. SHMOYS

algorithm, and yet for some p’ > p, no p’-approximation algorithm exists unless
P=NP. Or alternatively, it would be remarkable to find a kind of self-reducibility
that allows us to show that the two types of guarantees are equivalent.

In the minimum Steiner tree problem, we are given a subset of terminals
T C V along with a metric defining the distance between any two points in
V. The objective is to choose a connected subgraph that spans the terminals
of minimum total cost. The set V' need not be finite, such as in the Euclidean
case where V is the entire Euclidean plane. There is a simple 2-approximation
algorithm known for an arbitrary metric. Compute a minimum spanning tree
on the complete graph Gr defined by the terminal set 7'; that is, do not use the
Steiner points V — T at all. To see that this is a 2-approximation algorithm, we
bound the length of the minimum spanning tree in Gp by showing that Gp has a
connected spanning subgraph of length at most the twice the cost of the optimal
Steiner tree. In fact, we construct a TSP-like tour of this cost: we convert
the optimal Steiner tree into a tour of its terminals by using a “double-tree”
traversal.

Zelikovsky (1993) provided the breakthrough that showed how to make non-
trivial use of Steiner points in designing an approximation algorithm with a
better performance guarantee. Take any three terminals u, v, w € T, and com-
pare the length of the minimum spanning tree on Gp to the sum of the length
of the minimum Steiner tree connecting just u, v, and w, and the length of the
minimum spanning tree once u, v, and w have been contracted to one point.
If the former is larger, then clearly we can construct a better Steiner tree by
combining the 3-terminal Steiner tree with the minimum spanning tree for the
smaller problem. The difference between these two values is called the gain
of {u,v,w}. Zelikovsky’s algorithm repeatedly contracts triples of terminals,
choosing the triple with the greatest gain, until no triple with positive gain ex-
ists. The resulting Steiner tree is constructed from the minimum spanning tree
on the remaining terminals, combined with the Steiner trees associated with each
contraction along the way. The analysis of the algorithm consists of two parts:
that an optimal sequence of contractions yields a Steiner tree of value within a
factor of 5/3 of the optimal Steiner tree length; and the sequence of contractions
found by this greedy approach has a total gain that is at least half of the optimal
total gain. Consequently, this algorithm is an 11/6-approximation algorithm.

For Zelikovsky’s algorithm to run in polynomial time, it is necessary to com-
pute a minimum Steiner tree on 3 points in polynomial time in the given metric.
While there are metrics for which this is not possible, for each of the metrics
given above, or any setting for which V is finite, this computation can be done
in polynomial time. Berman & Ramaiyer (1992) extend Zelikovsky’s scheme,
incorporating optimal Steiner trees on more points to yield improved perfor-
mance guarantees. For example, by using 4-tuples it is possible to derive a
16/9-approximation algorithm.

In one of the earliest papers on computational aspects of the minimum Steiner

COMPUTING NEAR-OPTIMAL SOLUTIONS 19

tree problem, Gilbert & Pollak (1968) conjectured that the minimum spanning
tree was always of length within a factor of 2/4/3 of the length of the optimal
Steiner tree, whenever the metric is given by points in the Euclidean plane. Du
& Hwang (1990) recently proved this conjecture. Hwang (1976) showed that for
rectilinear distances in the plane; this ratio is always at most 3/2. When ana-
lyzed in these restricted metrics, Zelikovsky’s algorithm can be shown to improve
on known results in both cases. Du, Zhang, & Feng (1991) showed that this algo-
rithm is a p-approximation algorithm with p < 2/4/3 for Euclidean case, but did
not give an explicit value for p. Zelikovsky and Berman & Ramaiyer (1992) inde-
pendently showed that it is an 11/8-approximation algorithm for the rectilinear
case. The latter paper also generalized the algorithm to get improved bounds;
for example, again using 4-tuples yields a 97/72-approximation algorithm.

Bern & Plassman (1989) showed that the Steiner tree problem is MAXSNP-
hard in the metric in which each distance is either 1 or 2. As for the TSP, this still
leaves open the question about whether there exists a polynomial approximation
scheme for the geometrically defined metrics. To define an asymmetric Steiner
tree problem, one can consider the setting in which there also is a specified root
terminal, and you wish to find a branching in which each terminal is reachable
from the root. It is not hard to show that there is a simple approximation
preserving reduction from the set covering problem, and hence a polynomial-
time algorithm with performance guarantee o(logn) is not likely to exist (see
Section T).

5. Nasty gaps

The connection between probabilistic proofs and hardness results for approx-
imation questions has greatly aided our understanding of the extent to which
near-optimal solutions can be obtained for certain combinatorial optimization
problems. However, there are many other problems for which this approach
does not yet seem to be relevant. Of particular interest are those problems for
which there is a constant p-approximation algorithm known, and for some p’ < p,
it is possible to prove by elementary methods that no p’-approximation algorithm
exists unless P=NP. In this section, we will discuss a few examples of this kind.

In the problem of scheduling identical parallel machines subject to precedence
constraints, we are given a collection of jobs {1,2,...,n} and m machines, where
job j has a processing requirement of p; time units, and there is a partial order <
on the jobs, where j < k requires that job j complete its processing by the time
job k starts. Each job must be assigned to one machine to be processed without
interruption for its specified amount of time. Each machine can be assigned
at most one job at a time. The aim is to find a schedule for all jobs so as to
minimize the maximum job completion time.

One of the earliest results on approximation algorithms deals with this model.
Graham (1966) showed that the following is a 2-approximation algorithm: the

20 DAVID B. SHMOYS

jobs are listed in any order that is consistent with the precedence constraints,
and whenever a machine becomes idle, the next job on the list with all of its
predecessors completed is assigned to that machine; if no such job exists, then
the machine is left idle until the next machine completes a job. Let OPTyrs(I)
denote the optimal value for an instance I.

To show that the schedule produced is no more than twice the optimal length,
we will partition the schedule into two classes of time intervals; for each, it will
be easy to see that its total length is at most OPTyrs(I). Construct a chain C
(backwards) in the partial order < as follows: start with the job that finishes
last in the schedule, select its predecessor in < that finishes last, and iterate
this process until the new job identified does not have any predecessors in <.
Consider the time during which a job in C is being processed. Since C is a chain,
the total length of these intervals is at most OPTyrs(I). However, at any other
time, no machine is idle, since the next job in the chain is already available to
be processed, all of its predecessors having been completed. Since the total time
in which no machine is idle is at most OPTjrs(I), this completes the analysis.

Lenstra & Rinnooy Kan (1978) showed that, even if each job j has processing
requirement p; = 1, j = 1,...,n, deciding if there is a schedule of length 3 is
N P-complete. This implies that for any p < 4/3, no p-approximation algorithm
exists unless P=NP. However, deciding if there is a schedule of length 2 is quite
easy, and hence no stronger bound can be proved via this approach. It would
be a considerable advance in the theory of using probabilistic proofs to prove
hardness results for approximation problems if it could be used to improve upon
the lower bound of 4/3.

Another example of a problem with a “nasty gap” is the following problem of
scheduling unrelated parallel machines: if job j is assigned to machine ¢, then it
requires p;; units of processing time; each job must be assigned to exactly one
machine; the completion time of a machine is the total processing time of the
jobs assigned to it. We wish to find an assignment that minimizes the maximum
completion time of any machine; we shall call this the length of the assignment.
The best known approximation algorithm for this problem is due to Lenstra,
Shmoys, & Tardos (1990), which relies on a deterministic rounding approach to
find solutions within a factor of two of optimal.

We can formulate the problem of deciding if there exists an assignment of
length at most 7" as the following integer program:

(13) sz’jl‘ij < T foreach i =1,...,m,
i=1
(14) ZIZ] = 1, for each j =1,...,n,
i=1

(15) z;; € {0,1}, foreachi=1,...,m, j=1,... n.

COMPUTING NEAR-OPTIMAL SOLUTIONS 21
To obtain a linear relaxation, replace the constraint (15) by

(16) Tij = 0, ifpij > T,
(17) zy; > 0, foreachi=1,... m, j=1,... n.

If the linear relaxation does not have a feasible solution, then clearly no integer
solution exists. Otherwise, find an extreme point z*. Potts (1985) observed that
this solution has at most m + n non-zeroes, and hence at most m of the jobs are
scheduled fractionally. He used this observation, for a weaker linear relaxation,
to obtain a 2-approximation algorithm if the number of machines is a constant.

Lenstra, Shmoys & Tardos (1990) showed that &* can be rounded to a good
assignment. Intuitively, we would like to do this so that each machine is assigned
at most one of the fractionally scheduled jobs; since z* > 0 implies that p;; < T,
this ensures that the length of the rounded assignment is at most 27". This linear
program is a generalized flow problem, and well-known properties of extreme
points for the generalized flow problem can be used to show that such a matching
of fractionally assigned jobs and machines must exist. Furthermore, the matching
can be found by a simple procedure that runs in O(m+n) time. This procedure
can be converted into a 2-approximation algorithm for the optimization version
of the problem, by performing a bisection search for the minimum 7" such that
the linear relaxation has a feasible solution.

Lenstra, Shmoys, & Tardos (1990) also proved that for any p < 3/2, no p-
approximation algorithm exists unless P=NP. In fact, the hardness result holds
if, for each job j, its processing time on any machine is either p; or co. It
would be nice to show that, perhaps starting with this special case, that there
are algorithms with a matching performance guarantee. As for the problem
of scheduling on identical parallel machines subject to precedence constraints,
it seems difficult to improve the lower bound based on the new randomized
characterization of NP.

We conclude this section with other deterministic rounding results, for a gen-
eralization of the problem of scheduling unrelated parallel machines. In the
generalized assignment problem, when job j is assigned to machine 7, it not only
adds p;; to the load on this machine, but it incurs a cost ¢;; as well. Now we
wish to decide if there is an assignment of length 7" and total cost C. Similar
rounding procedures for this problem were given independently by Trick (1991)
and Lin & Vitter (1992). We shall outline the result of Lin & Vitter (1992),
which shows how to compute, for any ¢ > 0, an assignment of total cost (1+¢€)C
and length (24 1/¢)T, assuming that one of total cost C' and length 7" exists.

The integer programming formulation consists of the constraints (13)-(15)
plus

i=1j=1

22 DAVID B. SHMOYS

We first check if the linear relaxation where constraints (15) are replaced by (16)
and (17) has a feasible solution. If not, then no assignment of cost at most C
and length at most 7" exists. Otherwise, let z* denote a feasible solution. In this
fractional assignment, each job j incurs a cost ¢; = > 1o ¢ij z7;,7=1,...,n. Let
C denote the set of pairs (7, j) such that ¢;; > (1+¢€)¢;; let w; = Z(z’,j)gc z7;, the
fraction of job j that is assigned relatively cheaply in the fractional assignment.
Note that w; > €/(1+ €).
Consider a new fractional assignment z, where

oo el i) EC
“ 0 if (4,7) € C.

Since we have just zeroed out some components of z* and rescaled, z clearly

satisfies (14). Furthermore, since w; > ¢/(1+¢€) for each j =1,... ,n,
(19) sz’ji‘ij <(1+41/e)T, foreachi=1,...,m.
ji=1

Applying the rounding theorem of Lenstra, Shmoys, & Tardos (1990) to Z, we
get a solution of total cost at most 2?21(1 +e€)¢; < (14 ¢€)C and length at most
(24 1/e)T. Lin & Vitter (1992) also give several other applications of this type
of rounding technique, which they call filtering.

Shmoys & Tardos (1993) give an improved rounding technique that rounds
any feasible solution in polynomial time to an assignment of cost at most C' and
length at most 27". The rounding is done by finding a minimum-cost matching
in an associated bipartite graph. The graph is constructed so as to guarantee
that any matching has the property that the associated assignment has length at
most 277; furthermore, the cost of the matching is equal to the total cost of the
assignment. The existence of a good rounding is proved by exhibiting a fractional
matching of cost C'. Thus, by the theorem of Birkhoff and Von Neumann there
must also exist an integer matching of cost at most C. The fractional matching
is easily derived from the feasible solution to the linear relaxation.

6. Primal-dual algorithms for network design problems

Approximation algorithms are often based on linear programming by design-
ing a primal-dual approximation algorithm: that is, we simultaneously construct
an integer primal solution and a dual solution so that their values are provably
close to each other. In Section 2, we gave an example of how such an approach
can be used for the vertex cover problem. In that case, the primary motivation
was to improve the efficiency of the approximation algorithm. However, in many
cases the most effective approximation algorithms are based on this approach.

Primal-dual algorithms have been particularly successful for network design
problems. In the minimum-cost survivable network design problem, we are given
an undirected graph G = (V, E) where each edge e € E has a given cost ¢(e) > 0,

COMPUTING NEAR-OPTIMAL SOLUTIONS 23

and for each pair of nodes u and v, there is a specified connectivity requirement
r(u,v); the aim is to find a minimum-cost subgraph G’ = (V, E’) such that there
are r(u,v) edge-disjoint paths between each pair u,v € V.

This problem is a common generalization of a number of combinatorial opti-
mization problems. For many of these, the requirements are defined implicitly
by node-connectivity requirements: for each v € V, there is a value r(v), and
r(u,v) = min{r(u),r(v)}. For example, if r(v) = 1 for each v € V, then we
merely require a minimum-cost connected subgraph; in other words, this is the
minimum spanning tree problem. More generally, if r(v) = k for each v € V| then
we are looking for the minimum k-edge-connected network. If each r(v) € {0, 1},
then this is the minimum Steiner tree problem; a node v with r(v) = 1 is a ter-
minal, whereas one with r(v) = 0 is a Steiner node. There has been a great deal
of research on these and other special cases, and we shall not attempt to survey
this literature. We shall focus instead on results from one particular thread of
research that has attempted to use a natural linear programming relaxation to
obtain good performance guarantees for these problems.

Goemans and Bertsimas (1993) consider the following linear relaxation of the
survivable network design problem in the case when r(u,v) = min{r(u), r(v)}:

(20) minimize Z c(e)z(e)

eeFE
subject to
21 z(e) > max r(u,v), foreachSCV,S#0,
@) P a0 2 e ;
(22) z(e) > 0, for each e € E.

Their main result is to show a strong structural property of this linear program
whenever the edge costs satisfy the triangle inequality: e(u, v)+c(v, w) > ¢(u, w)
for each u, v, w € V. The property is called the parsimonious property and it is
as follows: for any subset of nodes D, if we add the constraints

(23) E z(e) = max r(u,v), foreach u € D,
veEV —u
e€b(u)

then the optimal value is unchanged. The parsimonious property can be used
to show that the ratio between the cost of the Steiner tree produced by the
minimum spanning tree heuristic and the linear programming relaxation is less
than 2.

Goemans & Bertsimas (1993) also consider the variant of the survivable net-
work design problem in which the network constructed may contain multiple
copies of each edge. They give a natural extension of the Steiner tree heuris-
tic for the case when the connectivity requirements are of the form r(u,v) =
min{r(u),7(v)}. Let rmax denote the value maxy yev r(u,v). The algorithm
works in 7% phases, where in phase ¢ = 1, ... Fyax, the algorithm augments

24 DAVID B. SHMOYS

the connectivity on the subset of nodes V; = {v € V : r(v) > i}, by running
the Steiner tree heuristic with the set of terminals given by V;. They prove that
if there are k distinct values r(v), v € V, then this is a min{2k, 2H(rmax) }-
approximation algorithm where H(k) = 14+1/24+1/3+---4+1/k is the harmonic
function.

The idea of using a primal-dual approach in this context was introduced by
Agrawal, Klein, and Ravi (1991), who gave a 2log rmax-approximation algorithm
for the same problem, but where the connectivity requirements need not be of
the restricted form. The algorithm uses scaling techniques to satisfy one bit
of the connectivity requirements at a time. The core of the algorithm is a 2-
approximation algorithm for the problem with each r(u,v) € {0, 1}, which can
be viewed as a Steiner forest problem: there are sets of terminals 11,75, ... ,7},
and we wish to find the minimum-cost forest such that each set 7; is contained
in some connected component of the forest.

Goemans & Williamson (1992) give a very elegant generalization that explic-
itly relies on a linear programming formulation to give a primal-dual algorithm
that is in much the same spirit as primal-dual algorithms for polynomially solv-
able combinatorial optimization problems, such as the minimum-cost perfect
matching problem. They consider problems specified by the integer program

(24) minimize Z c(e)z(e)

eeFE
subject to
(25) Y oxle) > f(S), for each S C V, S # 0,
e€s(S)
(26) z(e) € {0,1}, for each e € F|

for a broad class of {0,1}-functions f, which they call proper functions. A proper
function must satisfy two properties: f(S) = f(V — S) for each S C V, and if
A and B are disjoint, then f(A U B) < max{f(A), f(B)}. In addition to the
{0,1}-problems discussed above, this framework also captures, for example, the
s — t shortest path problem and minimum 7-join problem.

In order to explain this algorithm, we first formulate the dual of its linear
programming relaxation:

(27) maximize Z F(S)y(S)
SCcV

subject to

(28) Z y(S) < c(e), foreachee€E,

S:e€8(S)
(29) y(S)

v

0, for each S C V,S £ 0.

COMPUTING NEAR-OPTIMAL SOLUTIONS 25

The primal-dual algorithm maintains the following invariant: there is a partition
of the node set C, such that the current primal solution is a forest with com-
ponents given by C. The initial primal solution is the empty set, so that each
part in C is initially just a single vertex. A feasible dual solution is maintained
throughout; initially each y(S) = 0. Each iteration of the algorithm selects one
edge (u,v) that connects two distinct components, and then merges the two
components. The edge is selected in the following way. Each component C' of
C for which f(C) = 1 is considered active; that is, the current primal solution
is infeasible with respect to C. To select the new edge to be added, we set
y(C) — y(C) + & for each active component C, where § is set to be the largest
value that maintains dual feasibility. Consequently, this change causes one of the
constraints (28) to be satisfied with equality. This tight constraint determines
the new edge to be added to the primal solution. When there are no active com-
ponents, we consider each edge that has been included in the solution in reverse
order, and discard each that is not necessary for the remaining solution to be
feasible. Some intuition behind this clean-up phase can be gained by considering
the algorithm in the case that it is computing a shortest s — ¢ path: the algo-
rithm grows single-source shortest-path trees from s and ¢ until the two trees
meet; then each edge which is not on this s — ¢ path is deleted.

Another application of this result is to obtain a faster approximation algo-
rithm for the minimum-cost perfect matching problem for costs that satisfy the
triangle inequality. Although this matching problem can be solved in polynomial
time, the best known algorithm for it runs in O(n?) time on dense graphs. In con-
trast, the algorithm presented above can be implemented to run in O(n?logn)
time on dense graphs. To capture the matching problem, consider f(S) which is
defined to be 0 if |S| is even, and 1 if |S| is odd. The resulting primal solution
will not necessarily be a matching; the algorithm finds a forest in which each
component has an even number of nodes. However, each component can be con-
verted into a matching of no greater cost by considering the tour of these nodes
found by shortcutting a “double-tree” traversal, and then, as in the analysis of
Christofides’” algorithm, choosing the cheaper of the two matchings formed by
taking alternate edges in the tour.

Goemans & Williamson (1992) also apply their result to the network design
problem given by any proper function, where each edge may be included any
number of times; this yields a 2H(rmax)-approximation algorithm in this setting.
Aggarwal & Garg (1994) show how to obtain a performance guarantee of 2H(k),
where k denotes the number of nodes v for which f(v) is positive.

Although we have seen quite a number of results for the survivable network
design problem when multiple copies of each may be included, this problem has
fewer applications than the variant in which each edge can be included at most
once. It appears to be much harder to obtain good results for this variant, and
we shall now focus on describing the results known for it. The first step was due
to Klein & Ravi (1993), who gave a 3-approximation algorithm for the network

26 DAVID B. SHMOYS

design problem for all proper functions with range {0, 2}.

Williamson, Goemans, Mihail, and Vazirani (1993) gave the first approxima-
tion algorithm for arbitrary proper functions. Their algorithm incrementally
builds a feasible solution by adding edges in a series of ry,,x phases, where each
phase is one execution of the {0,1}-algorithm described above. A cut S is defi-
cient if the number of edges of §(S) that are in the current solution is less than
the requirement for that cut, f(.S). In each phase, we target the deficient cuts by
formulating a {0,1}-problem given by a function A(S) which is 1 exactly when S
is deficient. The {0,1}-algorithm delivers a solution that is within a factor of 2 of
the overall optimum, and so the algorithm is a 2ry,x-approximation algorithm.
Unfortunately, A need not be a proper function, but it can be shown to be an
uncrossable function, for which Williamson et al. also give a 2-approximation
algorithm. In several particular cases, the algorithm can be shown to have a
stronger performance guarantee; for example, if f(S) € {0, 1,2} for all S, then it
is a 3-approximation algorithm. Gabow, Goemans, and Williamson (1993) give
a more efficient implementation of this approach.

It turns out that the algorithm of Williamson et al. can be improved in a
rather simple way. Let the deficiency of a cut S be the number edges of §(S5)
that must still be added to the current solution to bring the number of edges
to be at least f(S). Let A be the maximum deficiency of a cut. Goemans,
Goldberg, Plotkin, Shmoys, Tardos, and Williamson (1994) propose that in each
phase, only the cuts with deficiency A be targeted; that is, h(S) is set to 1 for
only those cuts. By arguing that the optimum value for this {0,1}-problem is at
most the overall optimum divided by A, they show that this yields a 2H(rmax)-
approximation algorithm. It remains an interesting question whether there ex-
ists an approximation algorithm with a constant performance guarantee for this
problem.

Khuller & Vishkin (1992) give a simple 2-approximation algorithm for the
case in which r(v) = k for each v € V' (that is, the minimum-cost k-connected
subgraph). The idea of the algorithm is quite simple; replace each undirected
edge (u,v) by two directed edges, (u,v) and (v,u), each of cost equal to the
cost of the undirected edge. Choose an arbitrary root node v and find % disjoint
branchings into v of minimum total cost, as well as a minimum-cost family of
k disjoint branchings out of v. Include an (undirected) edge in the solution if
either directed copy is used in either solution. It is not hard to see that this is
a feasible solution, and since the cost of either family of branchings is a lower
bound on the optimum, this is a 2-approximation algorithm. A natural first
step towards a constant performance guarantee for the network design problem
specified by proper functions would be to consider the Steiner version of the
k-connected subgraph problem, that is, r(v) € {0, k} for each v € V.

Hochbaum & Naor (unpublished manuscript) consider another special case,
in which the proper function f(S) has the property that |S| > p = f(S) = 0,
and give an O(logp)-approximation algorithm for this case.

COMPUTING NEAR-OPTIMAL SOLUTIONS 27

7. Logarithmic performance guarantees

For quite a number of NP-hard combinatorial optimization problems, no ap-
proximation algorithm is known that has a constant performance guarantee. The
next best alternative is to give an approximation algorithm in which the per-
formance guarantee is a slowly growing function of the input size. One natural
class of guarantees is when the problem can be solved within a logarithmic or
polylogarithmic factor of optimal. In this section, we shall present several results
of this type.

In the minimum-cost set covering problem, we are given a family of sets
F ={51,52,...,5nm} where S; C {1,...,n}, i =1,...,m, and non-negative
costs ¢;, ¢ = 1,...,m, and we wish to select a subset 7' C F such that
Usex'S = {1,...,n}, so as to minimize the total cost of the sets in F'. Consider
the following greedy algorithm: we iteratively build a set cover by selecting an
additional set in each iteration until the union includes all elements {1,... n};
in each iteration, we compute the marginal cost of covering a new element for
each set: the ratio of its cost to the number of its elements that were not in the
union of the sets already selected; we choose the set S; for which the marginal
cost is smallest, and include it in the cover.

Johnson (1974a) and Lovasz (1975) independently showed that the greedy
algorithm is an H(n)-approximation algorithm for the case in which each cost
¢; is 1, where the harmonic function H(n) is at most 1 + lnn. Chvétal (1979)
showed that it also is an H(n)-approximation algorithm in the case of arbitrary
non-negative costs. In fact, the greedy algorithm can be viewed as a primal-dual
algorithm. If one considers the natural linear programming relaxation of this

problem,
(30) minimize Ecimi
i=1
subject to
(31) E z, > 1, foreach j =1,...,n,
ijES;
(32) z, > 0, foreachi=1,...,m,
then its dual is
(33) maximize Zyj
=1
subject to
(34) Zyj < ¢, foreachi=1,...,m,
JES:
(35) yi > 0, foreach j=1,... n.

28 DAVID B. SHMOYS

As the greedy algorithm constructs an integer primal solution, we can view it as
computing a dual solution as well: if the element j is first covered in the iteration
in which S; is selected and the associated marginal cost is ¢; /k, then set y; = ¢; /.
It is clear that by setting the dual variables in this way, the dual objective
function value is exactly equal to the cost of the set cover computed. However,
this dual solution is not feasible. The crux of the performance guarantee is that
if we set y; instead to ¢;/(k(n)), then this is a feasible dual solution.

Lund & Yannakakis (1993) have given the first significant evidence that no
approximation algorithm for the unweighted set cover problem can perform sub-
stantially better than the greedy algorithm. Using a result of Feige & Lovész
(1992), they showed that if there exists a plog, n-approximation algorithm with
p < .25, then NPCDTIME(nP°Y 1°6 ") (In comparison, the constant for the
greedy algorithm is roughly p = .7.) Bellare, Goldwasser, Lund, & Russell (1993)
showed that non-approximability results for the unweighted set cover problem
can be obtained based on weaker complexity assumptions: they showed that
no constant performance guarantee exists unless P=NP, and they showed that,
unless NPCDTIME(n!8 18 %) there does not exist a plog, n-approximation al-
gorithm for any p < .125. There are several problems known to be equivalent
to the set covering problem, in terms of the performance guarantees that can be
obtained. Most interesting among these is the minimum dominating set problem.

One of the most important recent breakthroughs in obtaining approximation
algorithms with a (poly)logarithmic performance guarantee is for the problem of
finding balanced cuts in graphs. Given an undirected graph G = (V, E), a cut
S C V is B-balanced if min{|S|, |S|} > B|V|, where S denotes V — S. If we are
given G along with a nonnegative cost ¢(e) for each e € E, the minimum-cost
(G-balanced cut is to find a S-balanced cut S so as to minimize EeEé(S) c(e). The
seminal paper of Leighton & Rao (1988) showed how to obtain, for any constants
B < 1/3 and € > 0, a B-balanced cut that has cost O(logn) times the cost of
an optimal (5 + €)-balanced cut. Leighton & Rao also demonstrated that this is
a fundamental primitive in the design of approximation algorithms, by giving a
broad range of applications of this algorithm to a variety of other optimization
problems.

The approximation algorithm of Leighton & Rao that finds balanced cuts is
based on an algorithm to find good gquotient cuts. More precisely, we instead
focus on finding a set S C V, so as to minimize ZeEé(S) c(e)/ min{|S|,|S|}.
Observe that if we have any algorithm to find a “good” cut in a graph, we can
use this repeatedly to find a 1/3-balanced cut S as follows. In iteration ¢, find a
cut S;, and add the smaller of S; and S; to the current cut S, thereby deleting
these vertices from the remaining graph. Since the smaller of S; or S; always
has at most half the vertices, we can be sure that at some point the current cut
S has between |V|/3 and 2|V|/3 vertices; that is, it is 1/3-balanced; when this
happens, the algorithm terminates. By trying to find a minimum quotient cut
in each iteration, we are adopting a greedy strategy in much the same way as

COMPUTING NEAR-OPTIMAL SOLUTIONS 29

we found good solutions for the set covering problem. Unfortunately, finding
the minimum quotient cut is an NP-hard problem, but finding an O(logn)-
approximation algorithm for it suffices to prove the theorem about balanced
cuts given above.

In fact, Leighton & Rao actually focus on another cut problem, in which
the objective is to find a cut that minimizes -, 5, c(e)/{|S]|S|}. As far as
approximation algorithms are concerned, this new problem is asymptotically
equivalent to the quotient cut problem, since the max{|S|,|S|} varies by less
than a factor of 2 over all cuts S. The advantage of dealing with this new
objective is that it is the combinatorial dual of a multicommodity flow problem,
where we wish to send one unit of flow between each pair of vertices subject
to joint capacity constraints c¢(e) for each e € E, and it is this connection that
drives their approximation algorithm.

Before giving a more detailed discussion of the way in which finding near-
optimal balanced cuts and multicommodity flows are related, we shall discuss
a couple of the applications of finding well-balanced cuts. One of the principle
motivations was to give efficient simulations of PRAMs on arbitrary networks.
The fact that the performance guarantee of the approximation algorithm is loga-
rithmic is crucial in this setting, since this makes it possible for the simulation’s
running time to remain polylogarithmic. We shall, however, focus instead on
applications to specific combinatorial optimization problems.

In the minimum cut linear arrangement problem, we are given a graph GG, and
the aim is to index the n vertices {1,2,...,n} so as to minimize the maximum
of |6(5)| for all cuts S of the form {1,2,...,5}. Let OPTr(G) denote the
value of the optimal solution for a given graph G. The following is an O(log2 n)-
approximation algorithm for this problem, that works by divide-and-conquer:
find a (good) 1/3-balanced cut S, order all of the vertices of S before the ver-
tices of S, and recurse on each of S and S to compute the rest of the order.
Observe that G has a 1/2-balanced cut of value at most OPTp4(G): take the
optimal solution to the minimum cut linear arrangement problem, and consider
the cut given by S = {1,2,...,|n/2]}. Hence the initial call produces a cut with
O(logn)OPTr4(G) edges. If we consider any cut S = {1,2,... 5} with respect
to the final order computed, each edge in é(S) is contributed by some level £ of
the recursion, and the number of edges from each level £ is O(logn)OPTr A(G).
The balancing condition ensures that there are O(logn) levels of recursion.

Similar divide-and-conquer strategies drive each of the applications of finding
balanced cuts to derive approximation algorithms. Another nice application
given by Leighton & Rao is to obtain an O(log2 n)-approximation algorithm for
the minimum-cost feedback arc set problem: given a directed graph G = (V, 4),
where each arc a € A has an associated nonnegative cost ¢(a), find a set of arcs
F C A such that the graph G = (V, A — F) is acyclic, so as to minimize the
total cost of the arcs in F',) . c(a). The analogous directed cut is to find arcs
to delete such that the resulting graph is divided into well-balanced strongly

30 DAVID B. SHMOYS

connected components, which might, at first glance, appear less natural. Klein,
Agrawal, Ravi & Rao (1990) later gave other applications, most notably, for
the problem of computing good pivoting strategies in Gaussian elimination to
minimize fill-in.

In the remainder of this section, we wish to briefly sketch the ideas behind
these results, and in particular explore the connection between such cut prob-
lems and multicommodity flow. For illustrative purposes, we focus on a closely
related cut problem, which we shall call the minimum-cost multicut problem. We
are given a graph G = (V, E) where each edge ¢ € E has a non-negative cost ¢(e),
along with £ pairs of nodes (s1,t1), ..., (sk,tr); we wish to partition the vertices
into any number of parts, V1,..., V], such that s; and ¢; are in different parts, for
each ¢ =1,... k, so as to minimize the total cost of edges with endpoints in dif-
ferent parts. If k = 1, this is the standard minimum cut problem, for undirected
graphs. A combinatorially dual problem is the mazimum multicommodity flow
problem: given the same input, find a flow f; between s; and ¢; of value v; such
that, for each edge e, the total flow on e, Ele fi(e), is at most ¢(e), so as to
maximize the total flow value, Zle vi. Once again, if £ = 1, this is the standard
maximum flow problem. Of course, in this case, there is the celebrated max-flow
min-cut theorem of Ford & Fulkerson (1956), that states that the value of the
maximum flow is equal to the value of the minimum-cost cut. This theorem does
not generalize to larger k. However, the weak duality relationship still holds: if
there is a multicut of cost «, then clearly any multicommodity flow has value at
most .

The minimum-cost multicut problem is NP-hard. The maximum multicom-
modity flow problem is a linear program, and hence can be solved in polynomial
time. Note, however, that unlike the single commodity flow problem, there need
not exist an optimal solution to this linear program that is integral. The lin-
ear programming dual of the maximum multicommodity flow problem can be
explained as follows. Imagine the input graph G as a system of pipes, corre-
sponding to the edges, where the cross section of the pipe corresponding to edge
e has area equal to c(e). For each edge e, there is a nonnegative dual variable
£(e) which can be viewed as the length of the corresponding pipe. Thus, the
total volume W of the pipe system is) . c(e)f(e). Suppose that there is a
multicommodity flow of total value v. Let d; denote the length of the shortest
path (with respect to £) between the source s; and its corresponding sink ¢;; then
each unit of flow between s; and ¢; must use a total volume of d; as it travels.
Hence, if we specify the length function in units such that min; d; = 1, then it is
clear that the value of a maximum multicommodity flow v* is at most the total
volume W. The dual linear program is to compute the length function £ (scaled
such that min; d; = 1) so that the total volume of the system is minimized.
By the duality theorem of linear programming, the value v* of the maximum
multicommodity flow is equal to the minimum volume W*.

Garg, Vazirani, & Yannakakis (1993) give an algorithm that takes as input a

COMPUTING NEAR-OPTIMAL SOLUTIONS 31

pipe system of volume W, and computes a multicut of cost O(logk)W. Since
we can compute a pipe system of the optimal volume W* in polynomial time,
we can then obtain a multicut of cost O(log k)W* = O(log k)v*. However, since
v* is a lower bound on the cost of the minimum multicut, we see that this yields
an O(log k)-approximation algorithm for the minimum-cost multicut problem.

We next sketch the procedure to compute a multicut, given a pipe system
of volume W with a particular length function ¢. In iteration [, the algorithm
computes a subset of vertices V; such that V; does not contain both s; and ¢;, for
each e = 1,... k, and for at least one of these pairs, s; and ¢;, contains exactly
one of s; and ¢;. These vertices are deleted, and this yields a smaller pipe
system induced by the remaining vertices. The algorithm continues to partition
the remaining vertices until all source-sink pairs are separated by the current
multicut. In each iteration, choose some s; and #; that are still unseparated.
Consider a sphere of some fixed radius r around s; in the pipe system: more
precisely, take that part of the pipe system that is within distance r of s; with
respect to £. The part of the multicut V; chosen in this iteration is the set of
vertices that are inside the sphere for a judicious choice of radius r. Imagine
adding a point “volume” of value W/k at s;; then r is set to the smallest value
such that 21n(2k) times the volume inside the sphere is greater than the total
cost of the cut defined. A straightforward computation shows that r < 1/2,
and hence no source-sink pair is contained within the sphere: each such pair is
at least distance 1 apart. Thus, the algorithm eventually produces a multicut.
This calculation involves the solution of a differential equation: observe that the
value of the cut defined by the sphere of radius r is the derivative of the volume
contained as a function of r. Finally, the total cost of the multicut found can be
bounded iteration by iteration: the edges added to the multicut in each iteration
have cost at most 2In(2k) times the volume of the sphere. The total volume of
the pipe system is at most W, and the total of the “point” volumes added is at
most W, and so the total cost of the multicut is at most 4 In(2k)W.

Since the publication of the paper by Leighton & Rao (1988), there has been
a great deal of work in extending their work to more general settings. The reader
is referred to the survey of Tardos (1993) for an annotated bibliography of these
results. Very recently, Chung & Yau (1994) claim to have obtained a polynomial-
time algorithm based on different techniques that produces a 1/3-balanced cut of
cost within a constant factor of the optimal (1/3+¢)-balanced cut. It remains an
interesting problem to derive true approximation algorithms for these problems,
in the sense that the cut produced has cost close to the optimal cut with the
same balance restriction. Furthermore, for the various cut problems discussed
above, as well as the applications of them, no non-trivial lower bounds are known
for the performance guarantees that can be obtained.

32 DAVID B. SHMOYS

8. Approximations Algorithms with Small Absolute Error Bounds

In the preceding sections, we have primarily focused on the design and anal-
ysis of p-approximation algorithms. For some problems, this is not the most
appropriate type of performance guarantee.

For example, consider the bin-packing problem: we are given n pieces with
specified sizes a1,as,...,a,, such that 1 > a; > as > -+ > a, > 0; we wish to
pack the pieces into bins, where each bin can hold any subset of pieces of total size
at most 1, so as to minimize the number of bins used. To decide if two bins suffice
is exactly the partition problem, and hence is NP-complete. Thus, there cannot
exist a p-approximation algorithm for any p < 3/2 unless P=NP. However,
consider the First-Fit-Decreasing algorithm, where the pieces are packed in order
of decreasing size, and the next piece is always packed into the first bin in which
it fits. If FFD(I) denotes the number of bins used by this algorithm on input
I, and OPTpp(I) denotes the number of bins used in the optimal packing, then
Johnson (1974a) proved that FFD(I) < (11/9)OPTgp(I) + 4 for any input
I. Yue (1991) has subsequently claimed that FFD(I) < (11/9)OPTgp(I) + 1,
which, incidentally, implies that it is a 3/2-approximation algorithm.

Thus, significantly stronger results can be obtained by relaxing the notion
of the performance guarantee to allow for small additive terms. In fact, it is
completely consistent with our current understanding of complexity theory that
there is an algorithm that always produces a packing with at most OPTgp(I)+1
bins.

Why is it that we have bothered to mention hardness results of the form,
“there does not exist a p-approximation algorithm unless P=NP” if such a result
can be so easily circumvented? The reason is that for all of the weighted problems
that we have discussed, any distinction between the two types of guarantees
disappears; any algorithm guaranteed to produce a solution of value at most
pOPT + ¢ can be converted to a p-approximation algorithm. Each of these
problems has a natural rescaling property: for any input I and any value &, we
can construct an essentially identical instance I’ such that the objective function
value of any feasible solution is rescaled by . Such rescaling makes it possible to
blunt the effect of any small additive term ¢ < k in the guarantee, and make it
effectively 0. Observe that the bin-packing problem does not have this rescaling
property; there is no obvious way to “multiply” the instance in a way that does
not blur the combinatorial structure of the original input. (Think about what
happens if you construct a new input that contains two copies of each piece of
I

Thus, whenever we consider designing approximation algorithms for a new
combinatorial optimization problem it is important to consider first whether the
problem does have the rescaling property, since that will indicate what sort of
performance guarantee to hope for.

There are nice examples of NP-hard optimization problems for which approx-

COMPUTING NEAR-OPTIMAL SOLUTIONS 33

imation algorithms are known that always deliver solutions of value within 1
of optimal: the edge coloring problem and the minimum max-degree spanning
tree problem. In the edge coloring problem we are given an undirected graph
G = (V,E), and we wish to assign a color to each edge of G so that no two
edges with a common endpoint are assigned the same color, so as to minimize
the number of colors used.

Vizing (1964) showed how to color each graph G with A(G)+ 1 colors, where
A(G) is the maximum number of edges incident to a vertex. Since A(G) colors
are certainly needed, this algorithm never uses more than one additional color
beyond what is optimal. Much later, Holyer (1981) showed that this problem
is NP-hard; in fact, he showed that recognizing whether a graph can be edge-
colored with three colors is NP-hard, and hence no p-approximation algorithm
exists for any p < 4/3, unless P=NP.

There is still an interesting open question concerning edge coloring: does
there exist an analogous algorithm for multigraphs? It is possible that linear
programming can provide an analogue of the result of Vizing (1964). Let M
denote the set of all matchings in a given multigraph G = (V| E), and consider
the following linear relaxation of the edge coloring problem:

(36) minimize Z z(M)
MeM
subject to
(37) Z z(M) > 1, foreachecF,
MeM:
eeM
(38) z(M) > 0, foreach M e M.

Seymour has conjectured that the optimal value of this linear program is at most
1 off from the integer optimum. Of course, even if his conjecture were true, we
are asking for something stronger: we would like a polynomial-time algorithm
to find such a coloring. Incidentally, even though this linear program has an
exponential number of variables it can still be solved by the ellipsoid algorithm,
since the separation algorithm required to solve its dual is just a maximum-cost
matching algorithm.

In the minimum maz-degree spanning tree problem, we are given a graph G,
and wish to find a spanning tree 7' of G such that A(7") is minimized. Since
deciding if there is a spanning tree of maximum degree 2 is just the Hamiltonian
path problem, there does not exist a p-approximation algorithm for this problem
for any p < 3/2, unless P=NP. However, Fiirer and Raghavachari (1992) gave
an elegant algorithm that always produces a spanning tree of maximum degree
within 1 of optimal.

We return now to the bin-packing problem. The best known approximation
algorithm, due to Karmarkar & Karp (1982), who build on work by Fernan-

34 DAVID B. SHMOYS

dez de la Vega & Lueker (1981), delivers a solution that uses OPTgp(I) +
O(log?(OPTgp(I))) bins. This is a rather surprising result, and relies on linear
programming in an interesting way.

Suppose that we group pieces of identical size, so that there are b; pieces
of the largest size s1, bs of the second largest size ss, ..., b, pieces of the
smallest size s,,. We shall describe an integer programming formulation due
to Eisemann (1957). Consider the ways in which a single bin can be packed.
One of these packings can be described by an m-tuple (¢1,...,%y), where t;
indicates the number of pieces of size s; included. We shall call such an m-
tuple a configuration if), t;s; < 1. There might be an exponential number of
configurations. For example, if s, > 1/k, then the number of configurations can

k .
be upper-bounded by (m]_:). Let N denote the number of configurations,
and let 73,...,7Tn be a complete enumeration of them, where #;; denotes the

jth component of T;. This suggests the following formulation:

N
(39) minimize Z zj
j=1
subject to
N
(40) Ztijrj > b, foreachi=1,... m,
ji=1
(41) z; € N, foreachj=1,...,N.

This formulation was introduced in the context of designing practical algorithms
to find optimal solutions to certain bin-packing problems.

We shall first present an algorithm that, for any given € > 0, finds a packing
with at most (1 4+ €)OPTpp(I) + O(p(1/¢€)) bins, where p is some polynomial
function. Suppose that we find an optimal extreme point of the linear relaxation
of this formulation. It must have at most m non-zero components, and so if
we simply round up this solution, then we have obtained an integer solution of
size at most OPTpp(I) + m. Since m is the number of distinct piece sizes, the
name of the game in using this formulation is to first round the instance so as
to reduce m.

To implement this approach, we must also be able to solve the linear program.
Fernandez de la Vega & Lueker (1981) observed that it is easy to ignore small
pieces of size at most €/2, since they can be added later to the packing in a
way that certainly does not introduce too much error. This implies that there
are O(mz/e) variables; hence the linear program for the remaining pieces can be
solved in polynomial time.

Fernandez de la Vega & Lueker (1981) present a linear grouping scheme to
reduce the number of distinct piece sizes. This scheme works as follows, and
is based on a parameter k, which will be set later. Group the pieces of the

COMPUTING NEAR-OPTIMAL SOLUTIONS 35

given input [as follows: the first group consists of the k largest pieces, the next
group consists of the next &k largest pieces, and so on, until all pieces have been
placed in a group. The last group contains h pieces, where h < k. The rounded
instance I’ is constructed by discarding the first group, and for each other group,
rounding the size of its pieces up to the size of its largest piece. It is easy to see
that

OPTBP(I/) < OPTBP(I) < OPTBP(II) + k;

significantly, we can quickly transform any packing of I’ into a packing of I
using at most k additional bins (for the discarded pieces). The number of dis-
tinct piece sizes is less than n/k, where n is the number of pieces; if we set
k = [eSIZE(I)] where SIZE(I) = > ,a; < OPTgp(I), then we see that
n/k < 2/€¢?. Consequently, if we group the pieces in this way, solve the linear
program, and then round up this solution, we obtain a packing that uses at most
(1+¢)OPTgp(I)+2/¢* + 1 bins. Furthermore, the number of constraints and
variables of the linear program is now just a constant (that depends exponentially
on 1/e).

Karmarkar & Karp (1982) improve both the running time of this general
approach, and its performance guarantee. The more technical improvement is
the former, where they show how the ellipsoid algorithm can be used to approxi-
mately solve this linear program within an additive error of 1 in time bounded by
a polynomial in m and log(n/a,). This implies that the approximation scheme
described above can now be implemented to run in time bounded by a polynomial
in 1/¢ and the size of the input. More significantly, they give a more sophisti-
cated grouping scheme that implies much stronger performance guarantees. We
will show how to use this scheme to obtain algorithm that finds a packing with
OPT(I) + O(log>(OPT(I))) bins. Note that we can assume, without loss of
generality, that a, > 1/SIZE(I), since smaller pieces can again be packed later
without changing the order of magnitude of the absolute error.

The geometric grouping scheme works as follows: process the pieces in order
of decreasing size; close the current group whenever its total size is at least 2,
and then start a new group with the next piece. Let 7 denote the number of
groups, let GG; denote the ith group, and let n; denote the number of pieces in
G;. Observe that for : =2,... ,r—1, we have that n; > n;_1. As before, from a
given input I we form a new instance I’, where a number of pieces are discarded
and packed separately. For each i = 2,3,...,r — 1, we put n;_; pieces in I’
of size equal to the largest piece in G;. We discard G, G, and the n; — n;_1
smallest pieces in Gy, 1 =2,...,r— 1.

First of all, it should be clear that any packing of the rounded instance I’ can
be used to pack those pieces of the original instance that were not discarded.
We will sketch the proof of two further properties of this scheme: the number
of distinct piece sizes in I’ is at most SIZE(I)/2; and the total size of all
discarded pieces is O(log SIZE(I)). The first is easy: each distinct piece size in
I’ corresponds to one of the groups G, ... ,Gr_1; each of these groups has size

36 DAVID B. SHMOYS

at least 2, and so there are at most SIZE(I)/2 of them. To prove the second
property, suppose, for the moment, that each group G; has at most one more
piece than the previous group G;_;. To bound the total size of the discarded
pieces, the total size of each group is at most 3, and so the total size of G; and
G, is at most 6. Furthermore, the size of the smallest piece in group G; is at
most 3/n;. Since we discard a piece from G;, i = 2,...,r — 1, only when G;
is the first group that has n; pieces and we discard its smallest piece, the total
size of these discarded pieces is at most 27;1 3/j. However, since each piece has
size at least 1/SIZE(I), n, < 3SIZE(I), and so the total size of the discarded
pieces is O(log SIZE(I)). An amortized version of this argument can be used to
show that the same bound holds even if the group sizes are not so well behaved.

The geometric grouping scheme can be used to design an approximation algo-
rithm that always finds a packing with OPTgp(I) + O(logz(OPTBp(I))) bins.
This algorithm uses the geometric scheme recursively. The algorithm applies
the grouping scheme, packs the discarded pieces using the First-Fit-Decreasing
algorithm (or virtually any other simple algorithm), solves the linear program
for the rounded instance, and rounds this solution down to obtain a packing of a
subset of the pieces. This leaves some pieces unpacked, and these are handled by
a recursive call until the total size of the remaining pieces is less than a specified
constant.

Let I denote the original instance, let I’ denote the instance on which the
first linear program is solved, and let I; and I denote the pieces packed based
on the integer part of the fractional solution and those left over for the recursive
call, respectively. The key to the analysis of this algorithm is that

LP(I)+ LP(I,) < LP(I') < LP(I) < OPTgp(1).

This implies that the only error introduced in each level of recursion is caused
by the discarded pieces. Since I is the leftover corresponding to the fractional
part of the optimal solution, its total size is at most the number of constraints
in the linear program, which is the number of distinct piece sizes in I’; this is
at most SIZE(I)/2. Hence the size of the instance decreases by a factor of 2
in each level of recursion, and so there are O(log SIZE(I)) levels. In each of
these levels, we use O(log SIZE(I)) bins to pack the discarded pieces, and so
we obtain the claimed bound.

It would be very interesting to show that the bin-packing problem cannot
be approximated within an additive error of 1 (assuming that P#NP), and the
recent progress gives new hope that such a modest goal might be achieved. On
the other hand, it seems entirely possible that there exists an algorithm with
constant absolute deviation from optimal. In fact, even without any rounding,
it is nontrivial to construct instances for which the optimal value of the linear
programming formulation differs from the optimal integer value by more than 1,
and no result replacing the 1 by a 2 is currently known.

COMPUTING NEAR-OPTIMAL SOLUTIONS 37

9. Beyond Approximation

In the quarter century that performance guarantees for approximation al-
gorithms were actively studied, no two problems more completely typified our
frustration in making substantial progress than the maximum clique problem
and the minimum vertex coloring problem. And for no two problems have the
implications of the theorem that NP=PCP(logn, 1) been more dramatic.

For the maximum clique problem, Johnson (1974b) proposed a simple greedy
heuristic. A clique K is constructed by repeatedly placing a vertex v of maximum
degree in K, and deleting v and each vertex not adjacent to v, until the entire
graph is deleted. Johnson (1974c) showed that if the graph can be vertex colored
with k colors, then it delivers an independent set of size O(log; n), where n
denotes the number of vertices in the input graph. Boppana & Halldérsson
(1992) gave an O(n/ log® n)-approximation algorithm, and this is the best result
known to date. Let OPTk(G) denote the size of the maximum clique in G.

Although the maximum clique problem is purely combinatorial, it does have a
rescaling property. For any graph G and constant &, we can construct the graph
G’ by taking s disjoint copies of G and then adding an edge between each pair of
vertices that arise from different copies of G. Clearly, OPTk(G') = kOPTk(G),
and for any clique of size k in G’, it induces a clique of size k/k in one of
the original copies. This implies that there is no need to consider asymptotic
performance guarantees for the maximum clique problem that introduce lower
order error terms.

Garey & Johnson (1976) developed a graph composition technique to show
that if there exists a p-approximation algorithm for the maximum clique problem
for some constant p, then there exists a polynomial approximation scheme. Let
G? be the graph formed by composing a graph G with itself, in the sense that
each node of G is replaced by a copy of GG, and there is an edge between any
pair of nodes in copies of G that correspond to adjacent nodes in G. Note that
OPTk(G?) = OPTk(G)?, and that given a clique of size k? in G? one can
efficiently find a clique of size k in G. By applying a p2-approximation algorithm
to G2, we get a set of size OPTk(G)?/p?, which can then be used to find a
clique in G of size OPTk(G)/p. By repeatedly applying this technique, we get
the claimed result.

This was the state of the art prior to the work of Feige, Goldwasser, Lovasz,
Safra, & Szegedy (1991), who scaled down the characterization of NEXP of
Babai, Fortnow, & Lund (1991) to show that the maximum clique problem does
not have a 2-approximation algorithm (and hence a polynomial approximation
scheme) unless NPCDTIME(n©(°81987)) Arora & Safra (1992) strengthened
this theorem to rely on the assumption PZNP. Arora, Lund, Motwani, Sudan, &
Szegedy (1992) showed that there exists an € > 0 such that no n¢-approximation
algorithm exists unless P=NP.

Although we will not give the details, we will at least indicate the connection

38 DAVID B. SHMOYS

between holographic proofs and the clique problem. As in Section 1, consider a
probabilistic verifier for an NP-complete language L. Build a graph as follows:
for each of the 2" outcomes of the coin tosses and each of the 2% possible values
of the k£ holographic proof positions examined, check if this combination leads
the verifier to accept, and if so, construct a vertex corresponding to this pair;
two vertices are adjacent if the associated values of the proof are consistent
(i.e., if the two random strings cause the same bit of the proof to be examined,
then the assumed value of that bit must be the same for both vertices). If the
input & € L, then the existence of a good holographic proof implies that there
is a clique K of size 2": for each outcome o for the coin tosses, let the vertex
corresponding to ¢ along with the correct bits of the holographic proof be in K.
On the other hand, we will show that if there is a clique K of size larger than
27~1 then there exists a holographic proof for which at least 2"~! coin tosses
cause the verifier to accept. By the correctness of the verifier, that implies that
z € L. We can construct this holographic proof unambiguously by extracting
the values as specified by the description of the vertices in K. (Some bits of the
proof may be unspecified by this, but they can be chosen arbitrarily). Since the
coin tosses corresponding to vertices in K must all be distinct, there are at least
| K| coin tosses that cause the verifier to accept. If there is a 2-approximation
algorithm for the clique problem, we could distinguish between the cases when
the maximum clique size is at least 27, and when it is at most 2”1, and hence
decide whether z € L in polynomial time, which implies that P=NP.

It is interesting to note that Berman & Schnitger (1992) observed that the
existence of an n®-approximation algorithm for the clique problem, for some
constant € > 0, would yield a randomized polynomial approximation scheme
for each problem in MAX SNP. Alon, Feige, Wigderson, & Zuckerman (unpub-
lished manuscript) have recently derandomized this construction; consequently,
the impossibility result of Arora, Lund, Motwani, Sudan, & Szegedy for the max-
imum clique problem could be derived directly from their result on the maximum
satisfiability problem.

The state of the art for the vertex coloring problem prior to 1991 had not
been much better than for the maximum clique problem. For the vertex col-
oring problem, a corollary of the NP-completeness of 3-colorability is that no
p-approximation algorithm can exist with p < 4/3. The minimum vertex color-
ing problem can also be shown to have a rescaling property by applying simple
graph composition techniques. Garey & Johnson (1976) use a more intricate
composition technique to prove that an asymptotic performance guarantee less
than 2 would imply that P=NP.

Johnson (1974c) gave the first nontrivial performance guarantee, by consid-
ering the following algorithm: until all vertices are deleted, repeatedly find an
independent set (using the analogue of greedy algorithm given above for the com-
plementary problem, the maximum clique problem), color it with a new color,
and delete it from the graph. The bound for the independent set algorithm

COMPUTING NEAR-OPTIMAL SOLUTIONS 39

implies that O(n/logn)OPTc(G) colors are used, where OPT¢(G) denotes the
optimal number of colors for G.

Wigderson (1983) observed that a graph G with OPT¢(G) = 3 can be col-
ored with O(y/n) colors by the following simple algorithm: while the maximum
degree node v has degree at least y/n, color the (bipartite) neighborhood of v
with 2 (unused) colors, delete the colored nodes and repeat; color the remaining
graph with \/n additional colors by repeatedly coloring a node with some color
not used at one of its neighbors. Since the first phase can proceed for only /n
iterations, only 34/n colors are used in total. By using the same idea to recur-
sively color a k-colorable graph G, i.e.; applying the approximation procedure for
(k — 1)-colorable graphs until the maximum degree is sufficiently small, Wigder-
son improved Johnson’s bound to O(n(loglogn)?/(logn)?)OPTc(G). There has
been little subsequent improvement: after considerable effort, the best perfor-
mance guarantee currently known is only O(n(loglogn)?/(logn)?) (Halldérsson,
1993).

For 3-colorable graphs, Blum (1991) improved Wigderson’s algorithm, and
gave a quite complicated algorithm that uses “only” O(n?’/spolylogn) colors.
Recently, there has been a further step forward in this direction by Karger,
Motwani, & Sudan (unpublished manuscript), who rely on an extension of the
maximum cut algorithm of Goemans & Williamson (1994) to obtain a coloring
with O(n1/4 log n) colors. They define a relaxation of the coloring problem called
a vector k-coloring: each vertex v is assigned an n-dimensional unit vector #(v)
such that for any two adjacent vertices u and v, Z(u) - #(v) < —1/(k — 1). The
aim is find a vector k-coloring for as small a value of k as possible. It is not hard
to show that any ordinary vertex coloring with k& colors can be used to derive a
vector k-coloring, by relying on the fact that there always exist k vectors whose
pairwise inner products are all —1/(k — 1).

We give next the algorithm to round the vector k-coloring into a true coloring.
This rounding relies on an intermediary relaxation of a coloring, where at most
n/3 edges are permitted to have identical colors at their endpoints. Such a
near-coloring must have a graph induced on n/3 nodes with a proper coloring,
and so we can recursively find a good coloring on the remaining graph. Let A
denote the maximum degree of the graph. The near-coloring is found by choosing
t = 1+ logg A random hyperplanes, which divide the unit sphere into at most
2! regions. The vector k-coloring is rounded to a near-coloring by assigning
one color to the vectors in each region. In fact, this algorithm has a somewhat
weaker performance guarantee than the one claimed above, but Karger, Motwani,
& Sudan give a more sophisticated rounding technique to obtain a coloring with
O(n'*logn).

Lund & Yannakakis (1993) showed that the problems of obtaining near-
optimal cliques and near-optimal coloring were intimately connected. In essence,
they showed that there is an approximation preserving reduction from the max-
imum clique problem (restricted to graphs of the sort just constructed by the

40 DAVID B. SHMOYS

proof above) to the minimum vertex coloring problem. Consequently, there ex-
ists an € > 0 such that no n®-approximation algorithm for vertex coloring exists,
unless P=NP. As with the constant lower bounds for problems in MAXSNP, the
specific values for ¢ implied by the proofs were initially extremely small and have
steadily improved. Most recently, Bellare & Sudan (1994) showed that ¢ = .166
is sufficient for the maximum clique problem, and that ¢ = .0714 is sufficient for
the minimum vertex coloring problem. The principle open question remaining is
whether there exists some € < 1 such that an n®-approximation algorithm does
exist for each of these two problems.

It remains a tantalizing open problem to give an algorithm that colors 3-
colorable graphs with O(logn) colors. The best lower bounds are quite far from
this level too. Khanna, Linial, & Safra (1993) show that it is not possible to give
an algorithm that always uses 4 colors, unless P=NP.

A cknowledgments I would like to thank the people who have given me com-
ments on preliminary versions of this paper: Leslie Hall, Dorit Hochbaum, David
Johnson, Philip Klein, Jon Kleinberg, Paul Martin, Rajeev Motwani, Joel Wein,
David Williamson, and Neal Young.

REFERENCES

1. M. Aggarwal and N. Garg (1994). A scaling technique for better network design. In Proceed-
ings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 233—239.

2. A. Agrawal, P. Klein, and R. Ravi (1991). When trees collide: an approximation algorithm
for the generalized Steiner problem in networks. In Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing, pages 134-144. To appear in SIAM J. Comput.

3. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy (1992). Proof verification
and hardness of approximation problems. In Proceedings of the 83rd IEEE Symposium on
Foundations of Computer Science, pages 14-23.

4. S. Arora and S. Safra (1992). Probabilistic checking of proofs. In Proceedings of the 33rd
IEEE Symposium on Foundations of Computer Science, pages 2—13.

5. L. Babai, L. Fortnow, and C. Lund (1991). Non-deterministic exponential time has two-
prover interactive protocols. Computational complexity 1, 3—-40.

6. M. Balinski and K. Spielberg (1969). Methods for integer programming: algebraic, combi-
natorial, and enumerative. In J. Aronofsky, editor, Progress in Operations Research, III,
pages 195-292. Wiley, New York.

7. R.Bar-Yehudaand S. Even (1981). A linear time approximation algorithm for the weighted
vertex cover problem. J. Algorithms 2, 198-203.

8. M. Bellare, S. Goldwasser, C. Lund, and A. Russell (1993). Efficient probabilistically check-
able proofs and applications to approximation. In Proceedings of the 25th Annual ACM
Symposium on Theory of Computing, pages 294-304.

9. M. Bellare and M. Sudan (1994). Improved non-approximability results. In Proceedings of
the 26th Annual ACM Symposium on Theory of Computing, pages 184-193.

10. P. Berman and V. Ramaiyer (1992). Improved approximations for the Steiner tree problem.
In Proceedings of the 8rd Annual ACM-SIAM Symposium on Discrete Algorithms, pages
325-334.

11. P. Berman and G. Schnitger (1992). On the complexity of approximating the independent
set problem. Information and Computation 96, 77-94.

12. M. Bern and P. Plassman (1989). The Steiner problem with edge lengths 1 and 2. Inform.
Process. Lett. 32, 171-176.

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

26.

27.

28.

29.

30.

31.

32.

33.

34.

COMPUTING NEAR-OPTIMAL SOLUTIONS 41

. A. L. Blum (1991). Algorithms for approzimate graph coloring. PhD thesis, MIT, Cam-
bridge, MA.

R. B. Boppana and M. M. Halldérsson (1992). Approximating maximum independent sets
by excluding subgraphs. BIT 32, 180-196.

N. Christofides (1976). Worst case analysis of a new heuristic for the travelling salesman
problem. Technical Report 338, Graduate School of Industrial Administration, Carnegie-
Mellon University, Pittsburgh, PA.

F. R. K. Chung and S. T. Yau (1994). A near optimal algorithm for edge separators. In
Proceedings of the 26th Annual ACM Symposium on Theory of Computing, pages 1-8.
V. Chvatal (1979). A greedy heuristic for the set covering problem. Math. Oper. Res. 4,
233-235.

D.-Z. Du and F. K. Hwang (1990). An approach for proving lower bounds: solution of
Gilbert-Pollak’s conjecture on Steiner ratio. In Proceedings of the 31st Annual IEEE Sym-
posium on Foundations of Computer Science, pages 76-85.

D.-Z. Du, Y. Zhang, and Q. Feng (1991). On better heuristic for Euclidean Steiner mini-
mum trees. In Proceedings of the 32nd Annual IEEE Symposium on Foundations of Com-
puter Science, pages 431-439.

M. Dyer and A. Frieze (1985). A simple heuristic for the p-center problem. Oper. Res. Lett.
3, 285-288.

K. Eisemann (1957). The trim problem. Management Science 3, 279-284.

R. Fagin (1974). Generalized first-order spectra, and polynomial-time recognizable sets. In
R. Karp, editor, Complezity of Computations, AMS Symposia in Applied Mathematics 7,
AMS, 43-73.

T. Feder and D. H. Greene (1988). Optimal algorithms for approximate clustering. In
Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pages 434—
444.

U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy (1991). Approximating clique
is almost NP-complete. In Proceedings of the 32nd IEEE Symposium on Foundations of
Computer Science, pages 2—12.

. U. Feige and L. Lovasz (1992). Two-prover one-round proof systems: their power and their
problems. In Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
pages 733-744.

W. Fernandez de la Vega and G. S. Lueker (1981). Bin packing can be solved within 1 + ¢
in linear time. Combinatorica 1, 349-355.

L. R. Ford, Jr. and D. R. Fulkerson (1956). Maximal flow through a network. Canadian
J. Math 8, 399-404.

A. M. Frieze, G. Galbiati, and F. Maffioli (1982). On the worst-case performance of some
algorithms for the asymmetric traveling salesman problem. Networks 12, 23-39.

M. Firer and B. Raghavachari (1992). Approximating the minimum degree spanning tree
to within one from the optimal degree. In Proceedings of the 3rd Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 317-324.

H. N. Gabow, M. X. Goemans, and D. P. Williamson (1993). An efficient approxima-
tion algorithm for the survivable network design problem. In Proceedings of the 8rd MPS
Conference on Integer Programming and Combinatorial Optimization, pages 57—74.

M. R. Garey and D. S. Johnson (1976). The complexity of near-optimal graph coloring. J.
Assoc. Comput. Mach. 23, 43-49.

N. Garg, V. V. Vazirani, and M. Yannakakis (1993). Approximate max-flow min-(multi)cut
theorems and their applications. In Proceedings of the 25th Annual ACM Symposium on
Theory of Computing, pages 698-707.

E. N. Gilbert and H. O. Pollak (1968). Steiner minimal trees. SIAM J. Appl. Math. 16,
1-29.

M. X. Goemans and D. J. Bertsimas (1993). Survivable networks, linear programming
relaxations, and the parsimonious property. Math. Programming 60, 145-166.

42

35

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.
47.
48.

49.

50.

51.

52.

53.

54.

55.

56.

DAVID B. SHMOYS

. M. X. Goemans, A. V. Goldberg, S. A. Plotkin, D. B. Shmoys, E. Tardos, and D. P.
Williamson (1994). Improved approximation algorithms for network design problems. In
Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
223-232.

M. X. Goemans and D. P. Williamson (1992). A general approximation technique for
constrained forest problems. In Proceedings of the 3rd Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 307-316. To appear in SIAM J. Comput.

M. X. Goemans and D. P. Williamson (1993). A new 3/4-approximation algorithm for
MAX SAT. In Proceedings of the 3rd MPS Conference on Integer Programming and Com-
binatorial Optimization, 313-321. To appear in STIAM J. on Discrete Math..

M. X. Goemans and D. P. Williamson (1994). .878-approximation algorithm for MAX
CUT and MAX 2SAT. In Proceedings of the 26th Annual ACM Symposium on Theory of
Computing, pages 422—431.

R. L. Graham (1966). Bounds for certain multiprocessing anomalies. Bell System Tech. J.
45, 1563-1581.

M. M. Halldérsson (1993). A still better performance guarantee for approximate graph
coloring. Inform. Proc. Lett. 45, 19-23.

D. S. Hochbaum (1982). Approximation algorithms for set covering and vertex cover prob-
lems. SIAM J. Comput. 11, 555—556.

D. S. Hochbaum and D. B. Shmoys (1985). A best possible approximation algorithm for
the k-center problem. Math. Oper. Res. 10, 180-184.

I. Holyer (1981). The NP-completeness of edge-coloring. SIAM J. Comput. 10, 718-720.
W. L. Hsu and G. L. Nemhauser (1979). Easy and hard bottleneck location problems.
Discrete Appl. Math. 1, 209-216.

F. K. Hwang (1976). On steiner minimal trees with rectilinear distance. SIAM J. Appl.
Math. 30, 104-114.

D.S. Johnson (1974a). Fast algorithms for bin-packing. J. Comput. System Sci. 8, 272-314.
D. S. Johnson (1974b). Approximation algorithms for combinatorial problems. J. Comput.
System Sci. 9, 256-278.

D. S. Johnson (1974c). Worst case behavior of graph coloring algorithms. In Proceedings
of the 5th Southeastern Conference on Combinatorics, Graph Theory, and Computing,
pages 513-527. Utilitas Mathematica Publishing, Winnipeg, Ont.

D. S. Johnson (1992). The NP-completeness column: an ongoing guide. J. Algorithms 13,
502-524.

N. Karmarkar and R. M. Karp (1982). An efficient approximation scheme for the one-
dimensional bin-packing problem. In Proceedings of the 23rd Annual IEEE Symposium on
Foundations of Computer Science, pages 312-320.

S. Khanna, N. Linial, and S. Safra (1993). On the hardness of approximating the chromatic
number. In Proceedings of the 2nd Israeli Symposium on Theory and Computing Systems,
pages 250-260.

S. Khuller and U. Vishkin (1992). Biconnectivity approximations and graph carvings. In
Proceedings of the 24th Annual ACM Symposium on Theory of Computing, pages 759-770.
P. Klein, A. Agrawal, R. Ravi, and S. Rao (1990). Approximation through multicommodity
flow. In Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer
Science, pages 726-737. To appear in Combinatorica.

P. Klein and R. Ravi (1993). When cycles collapse: a general approximation technique
for constrained two-connectivity problems. In Proceedings of the 8rd MPS Conference on
Integer Programming and Combinatorial Optimization, pages 39—55.

T. Leighton and S. Rao (1988). An approximate max-flow min-cut theorem for uniform
multicommodity flow problems with applications to approximation algorithms. In Proceed-
ings of the 29th Annual IEEE Symposium on Foundations of Computer Science, pages
422-431.

J. K. Lenstra and A. H. G. Rinnooy Kan (1978). The complexity of scheduling under
precedence constraints. Operations Res. 26, 22—-35.

57

58.

59.

60.

61.

62.

63.
64.

66.

67.

68.

69.

70.

71.

72.

73.
74.

76.

77.

78.

79.

80.

COMPUTING NEAR-OPTIMAL SOLUTIONS 43

. J. K. Lenstra, D. B. Shmoys, and E. Tardos (1990). Approximation algorithms for schedul-
ing unrelated parallel machines. Mathematical Programming 46, 259-271.

J. H. Lin and J. S. Vitter (1992). e-approximations with minimum packing constraint
violation. In Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
pages 771-782.

L. C. Lorentzen (1966). Notes on covering of arcs by nodes in an undirected graph. Tech-
nical Report ORC 66.16, University of California, Berkeley.

L. Lovasz (1975). On the ratio of optimal integral and fractional covers. Discrete Math.
13, 383-390, 1975.

C. Lund and M. Yannakakis (1993). On the hardness of approximating minimization prob-
lems. In Proceedings of the 25th Annual ACM Symposium on Theory of Computing, pages
286-293.

G. L. Nemhauser and L. E. Trotter, Jr. (1975). Vertex packing: structural properties and
algorithms. Math. Programming 8, 232—-248.

C. H. Papadimitriou (1994). Computational complezity. Addison Wesley, Reading, MA.
C. H. Papadimitriou and M. Yannakakis (1991). Optimization, approximation, and com-
plexity classes. J. Computer Sys. Sciences 43, 425—440.

. C. H. Papadimitriou and M. Yannakakis (1993). The traveling salesman problem with
distances one and two. Math. Oper. Res. 18, 1-11.

C. N. Potts (1985). Analysis of a linear programming heuristic for scheduling unrelated
parallel machines. Discrete Appl. Math. 10, 155—-164.

P. Raghavan and C. D. Thompson (1987). Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica 7, 365-374.

D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II (1977). An analysis of several heuristics
for the traveling salesman problem. STAM J. Comput. 6, 563-581.

S. Sahni and T. Gonzalez (1976). P-complete approximation problems. J. Assoc. Comput.
Mach. 23, 555-565.

D. B. Shmoys and E. Tardos (1993). An improved approximation algorithm for the gener-
alized assignment problem. Mathematical Programming 62, 461-474.

D. B. Shmoys and D. P. Williamson (1990). Analyzing the Held-Karp TSP bound: a
monotonicity property with application. Information Proc. Lett. 35, 281-285.

E. Tardos (1993). Approximate min-max theorems and fast approximation algorithms for
multicommodity low problems. In Summer School on Combinatorial Optimization, pages
43-53.

M. A. Trick (1991). Scheduling multiple variable-speed machines. Unpublished manuscript.
V. G. Vizing (1964). On an estimate of the chromatic class of a p-graph (in Russian).
Diskret. Analiz 3, 23-30.

. A. Wigderson (1983). Improving the performance guarantee for approximate graph color-
ing. J. Assoc. Comput. Mach. 30, 729-735.

D. P. Williamson, M. X. Goemans, M. Mihail, and V. V. Vazirani (1993). A primal-dual
approximation algorithm for generalized Steiner network problems. In Proceedings of the
25th Annual ACM Symposium on Theory of Computing, pages 708-717. To appear in
Combinatorica.

L. A. Wolsey (1980). Heuristic analysis, linear programming, and branch and bound. Math.
Programmaing Stud. 13, 121-134.

M. Yannakakis (1992). On the approximation of maximum satisfiability. In Proceedings of
the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1-9. To appear in
J. Algorithms.

M. Yue (1991). A simple proof of the inequality FFD(L) < 11/90PT(L)+ 1, VL, for the
FFD bin-packing algorithm. Acta Mathematicae Applicatae Sinica 7, 321-331.

A.7Z. Zelikovsky (1993). An 11/6-approximation algorithm for the network Steiner problem.
Algorithmica 9, 463-470.

ScHooL OF OPERATIONS RESEARCH AND INDUSTRIAL ENGINEERING, CORNELL UNIVERSITY,

ITHACA, NY 14853

E-mail address: shmoys@cs.cornell.edu

