Sweeping Lines and Line Segments with a Heap

Julien Basch

Computer Science Department
Stanford University
Stanford, CA 94305

{jbasch,guibas}@cs.stanford.edu

Abstract

Given n line segments in the plane, the Bentley-Ottmann
sweep maintains the exact ordering of the intersections
of the segments with a vertical line, as this line sweeps
the plane from left to right. To accomplish this, every
intersection between two segments must be processed,
and the running time of the sweep can be Q(n?). In
this paper, it is shown how a heap on the intersections
can be maintained during the sweep. This new type of
sweep processes O(n log? n) intersections when sweeping
over lines and O(ny/nlogn) intersections when sweep-
ing over line segments. A lower bound of Q(nlogn) is
also established.

1 Introduction

One of the common introductory problems in geometric
algorithms is that of finding all pairwise intersections in
a family of line segments in the plane. The first non-
trivial solution to this problem was given by Bentley
and Ottmann [BO79], who introduced in 1979 the now
familiar line sweep paradigm. A vertical line is moved
(‘swept’) from the far left to the far right of the plane,
and the exact order of the intersections with the seg-
ments is maintained as the line sweeps along. All ver-
tices in the arrangement of segments are detected in this
process.

From the point of view of the sweep line, the seg-
ments can be viewed as points which move up and down
the line. The Bentley-Ottmann algorithm requires that
we maintain the full sorted list of these points along

*Supported in part by National Science Founda-
tion grant CCR-9623851 and by US Army MURI
grant DAAH04-96-1-0007.

Leonidas J. Guibas*

ometry, 1997.

To appear in the 13th Symposium of Computational Ge-

G.D. Ramkumar

Research & Development Division
Hitachi America Ltd.
3101, Tasman Drive, MS: 120
Santa Clara, CA 95054

ramkumar@hitachi.com

the line and update it as new points are inserted (seg-
ment appearance), old ones are deleted (segment disap-
pearance), and adjacent segments interchange position
(intersection). In the same vein, we may be interested
in maintaining other order-related information of these
points along the sweep line, for example the topmost
point, the k-th point from the top, etc. Since these
variants do not require full sorting of the points dur-
ing the sweep line, we may hope for an algorithm more
efficient than a normal sweep. Indeed, if we just want
to know the topmost point at all times, we can merely
compute the upper envelope of the line segments, and it
is known how to do this in O(nlogn) time for an input
of size n [Her89], irrespective of how many intersections
the segments may have.

But can we actually compute the upper envelope of
the segments using a line sweep method? One possibil-
ity is to put the segments intersecting the sweep line in a
binary heap, where the priority of such a segment is the
vertical coordinate of the intersection with the sweep
line. At any given time, the validity of the heap struc-
ture can be guaranteed by one comparison per edge in
the heap. The set of comparisons is called the certificate
list of the structure. As the priorities of the heap ele-
ments change continuously with time, a comparison will
fail exactly when the two segments involved intersect.
For each edge of the heap, this time can be computed
and put into an event queue, and the sweep can proceed
from event to event exactly as in the case of the Bentley-
Ottman sweep. The processing of an event requires a
swap between the two intersecting segments in the heap.
It also requires the descheduling and rescheduling of at
most four events corresponding to the edges affected by
the swap (Figure 1). A segment insertion in the sweep
line is processed by inserting the segment into the heap,
and rescheduling all events corresponding to edges dis-
turbed by this operation.

What we have described here is a kinetic heap, an
example of a kinetic data structure (a data structure for
continuously changing data) as introduced by Basch,
Guibas, and Hershberger [BGH97]. The kinetic heap
is a data structure for maintaining the maximum of a
collection of continuously changing numbers, where in-
sertion of a new number into the collection, and dele-



Figure 1: At the first position sweep line this figure,
segments b and e are not in the same subtree, hence
their intersection is not scheduled as an event. The first
intersection to be scheduled is bd. At this point, the
heap property is maintained by a swap between b and d.
The events corresponding to the four edges around this
pair are descheduled before the swap and rescheduled
with the new identities of the lines involved after the
swap

tion of an old number from it, are also allowed. Two
other data structures have been proposed for the same
purpose: the heater [BGRI6], and the kinetic tourna-
ment [BGHI7].

We measure the performance of a kinetic data struc-
ture by the number of events that it needs to process.
On a set of n segments in the plane, the heater is a ran-
domized structure that processes O(na(n)logn) events
in expectation, while the kinetic tournament achieves
the same bounds in the worst case.

The kinetic heap is arguably the most natural kinetic
structure for maintaining the maximum. Its analysis,
however, appears to be much less natural than that of its
competitors. The primary reason for this state of affairs
is that there is a complicated dependence between the
exact structure of the heap at a given time and the prior
history of the sweep. Nevertheless, we can show that if
the sweep is done over entire lines (or segments with
the same z-projection), then the number of events is
O(nlog?n) in the worst case. If the sweep is over line
segments, we can only prove the weaker upper bound
of O(ny/nlogn). The best lower bound we can prove is
Q(nlogn) in both cases.

2 Notation

In what follows, we say that a vertex is red if it is pro-
cessed as an event during the sweep, and green other-
wise. Thus, a vertex is red if the two segments that
define it are parent and child in the heap at the time
they intersect. We are interested in bounding the num-
ber of red vertices. For a time ¢, corresponding to a
position of the sweep line, we denote by ¢t~ and tT the
times immediately before and after t.

We assume that the lines or segments are in general

position, so that no two events (intersections or end-
points) occur at the same time, and no three lines or
segments intersect at a common point. We write a <: b
to mean that the line or segment a is below b at time t.

3 Sweeping over lines

We now consider a binary heap sweeping over a set of
n infinite lines. The heap structure remains fixed dur-
ing the sweep, even though the node contents change
over time. The level of a line a at time ¢, denoted by
At(a), is the distance from the node containing a at t to
the bottom level. Thus the level of a line is an integer
between 1 and [Ign]. We denote by A;(a) the highest
level ever attained in the heap by line a, from the initial
time until time ¢.

Lemma 3.1 If ab is a red verter with b <,— a, then

Ae(a) > Ae(b) + 1.

Proof: Consider the last time 7 before ¢ when b was at
its maximum level A;(b). At time 7, line b was in some
node v of of the heap and from then on b only moved
within the subtree U rooted at v. If bis in v at t™,
then a is in the parent of v at that time, and the claim
trivially holds.

Otherwise, as b <, a, line a could not be in U at 7.
Therefore, the path followed by a in the heap from 7
to t~ goes from the complement of U into U, and thus
passes through the parent of v. The conclusion follows.
O

Theorem 3.2 The number of red vertices encountered
during the maintenance of a standard binary heap in a
sweep over n lines is O(nlog®n).

Proof: We use a potential function argument. For a
line @ in the heap, define its potential ¢;(a) at time ¢ to

be
¢e(a) = M(a)(Ne(a) — Me(a)).

The potential of the entire heap is the sum of the poten-
tials of all the lines. Note that this potential is 0 before
the start of the sweep (for every a, Ai(a) = Ai(a)); it
is non-positive for all ¢ (because Ai(a) < :\t(a)) and
at the end of the sweep its absolute value is at most
O(nlog®n). We now show that the occurrence of a red
vertex decreases the total potential by at least 1.
Consider a swap at time ¢ between a parent a and
a child b in the heap. The potential of any line other
than a or b doesn’t change. Also, the quantity S\t_ (a)
doesn’t change, so that the potential change for a is
bit+(a) — ¢y—(a) = = Ay (a).
_ There are two cases for b: either it breaks its current
A record (i.e. A—(b) = A= (b)), or it does not. In
the first case, A,— (b) = A\s—(b) and A+ (b) = Ay (), so
¢s—(b) = ¢+ (b) = 0, and b’s potential doesn’t change.
The decrease in potential is therefore :\t_ (a), which is
at least 1 because a is not on the bottom level before
the swap.



In the second case, the potential of b increases by
Ay— (b), and the net potential change is A,- (b) — A\,- (a),
which is at most —1 by Lemma 3.1. O

4 Sweeping over line segments

The analysis used in the previous section completely
breaks down in the case of line segments, as Lemma 3.1
no longer hold. Instead, we use another potential ar-
gument reminiscent of the one used independently by
several authors [ELSS73, Gus79, EW85] for proving up-
per bounds on the k-level of an arrangement of lines.

Lemma 4.1 The number of red vertices processed dur-
ing the maintenance of a standard binary heap in a
sweep over n line segments is O(ny/nlogn).

Proof: Let us order the n segments by increasing slope,
and denote by r(s) the rank of a segment s in this or-
dering. Let H(v) be the subtree rooted at a node v, and
let 7.(v) be the rank of the segment in node v at time ¢.

For a node v in the heap, define its potential ¢:(v)
at time ¢ to be:

b)) = Y relw).

rEH(v)

In other words, the potential of a node is the sum of
the ranks of all segments in the subtree rooted at that
node. The potential of the entire heap is the sum of the
potentials of all the nodes of the heap. It is 0 at both
ends of the sweep (when the heap is empty).

If two nodes p, v are parent and child, a swap of their
contents at ¢ changes the potential by r,— (u) — r,— (v),
which is at most n. In a binary heap, a segment inser-
tion/deletion is implemented by O(log n) swaps and an
insertion/deletion at the bottom of the heap. This se-
quence of operation change the potential by O(nlogn).
Hence, during the entire sweep, the total potential in-
crease due to endpoints is O(n? log n).

Let R be the set of red vertices. When v € S is
processed, the potential can only decrease, as it is the
higher ranked segment that goes up one level in the
heap, and it will always remain non-negative. Hence,
if we denote by §(v) the absolute difference in rank be-
tween the two segments that define a vertex v, we have:

Z 5(v) < O(n’logn) .

vER

Therefore, for any fixed B, the number of vertices v €

S with 6(v) > B is O("%ﬂ). Moreover, there are at
most nB vertices with §(v) < B. Choosing appropri-
ately B = v/nlogn gives the desired bound. O

5 Lower bound

We describe an arrangement of n lines where the num-
ber of red vertices seen while sweeping with a heap is
Q(nlogn). Place each line so that it is tangent to an

upward facing parabola. Each line appears on the upper
envelope exactly once. In particular, a line that starts at
the bottom of the heap has to appear at the root at the
time it is on the upper envelope. This cannot be done
in less than logn swaps. As there are n/2 lines that
start at the bottom of the heap. As a swap increases
the level of only one line at a time, the total number of
swaps generated by this arrangement is Q(nlogn).

6 Conclusion

In this paper, we established bounds on the number of
events that need to be processed to maintain a heap
while sweeping over an arrangement of lines and line
segments. As the kinetic heap is the most natural struc-
ture to maintain the extremum of a set of points moving
along a line, we would like to see the bounds tightened
and extended to the case of algebraic curves or arcs of
low degree.

References

[BGH97] J. Basch, L. J. Guibas, and J. Hershberger.
Data structures for mobile data. In 8th Sym-
posium on Discrete Algorithms, pages 747—
756, 1997.
[BGRY6] J. Basch, L.J. Guibas, and G.D. Ramkumar.
Reporting red-blue intersections between con-
nected sets of line segments. In J. Diaz and
M. Serna, editors, Algorithms — ESA ’96,
LNCS 1136, pages 302-319, sep 1996.
J. L. Bentley and T. A. Ottmann. Algorithms
for reporting and counting geometric intersec-
tions. IEEE Trans. Comput., C-28:643-647,
1979.
[ELSS73] P. Erdds, L. Lovdsz, A. Simmons, and
E. Straus. Dissection graphs of planar point
sets. In J. N. Srivastava, editor, A Survey of
Combinatorial Theory, pages 139-154. North-
Holland, Amsterdam, Netherlands, 1973.
H. Edelsbrunner and E. Welzl. On the num-
ber of line separations of a finite set in the
plane. J. Combin. Theory Ser. A, pages 15—
29, 1985.
D. Gusfield. Bounds for the parametric span-
ning tree problem. In Proc. Humbolt Conf.
on Graph Theory, Combinatorics and Com-
puting, pages 173-183, 1979.
J. Hershberger. Finding the upper envelope
of n line segments in O(n logn) time. Inform.
Process. Lett., 33:169-174, 1989.

[BOT79]

[EW85]

[GusT9]

[Her89]



