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Abstract

The range searching problem is a fundamental

problem in computational geometry, with numer-

ous import ant applications. Most research has fo-

cused on solving this problem exactly, but lower

bounds show that if linear space is assumed, the

problem cannot be solved in polylogarithrnic time,

except for the case of orthogonal ranges. k this

paper we show that if one is willing to allow ap-

proximate ranges, then it is possible to do much

better. In particular, given a bounded range Q of

diameter s and c >0, an approximate range query

treats the range as a fuzzy object, meaning that

points lying within distance es of the boundary of

Q either mayor not be counted. We show that in

any fixed dimension d, a set of n points in Rd can

be preprocessed in O(n log n) time and O(n) space,

such that approximate queries can be answered in

O(log n + (l/e)d) time. The only assumption we

make about ranges is that the intersection of a

range and a d-dimensional cube can be answered in

constant time (depending on dimension). For con-
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vex ranges, we tighten this to O(log n + (l/.c)~-l)

time. We also present a lower bound argument

for approximate range searching based on partition

trees of fl(log n + (1/6)d–l ), which implies optimal-

it y for convex ranges. Finally we give empirical ev-

idence showing that allowing small relative errors

can significantly improve query execution times.

1 Introduction.

The range searching problem is among the funda-

mental problems in computational geometry. A set

P of n data points is given in d-dimensional real

space, 11~, and a space of possible ranges is consid-

ered (e.g. d-dimensional rectangles, spheres, halfs-

paces, or simplices). The goal is to preprocess the

points so that, given any query range Q, the points

in P n Q can be counted or reported efficiently.

More generally, one may assume that the points

have been assigned weights, and the problem is to

compute the accumulated weight of the points in

P n Q, wezght(P n Q), under some commutative

semigroup.

There is a rich literature on this problem. In

this paper we consider the weighted counting ver-

sion of the problem. We are interested in applica-

tions in which the number of data points is suf-

ficiently large that one is limited to using only

linear or roughly linear space in solving the prob-

lem. For orthogonal ranges, it is well known that

range trees can be applied to solve the problem

in O (logd–l n) time with O (n log~–l n) space (see

e.g. [12] ). Chazelle and Welzl [7] showed that tri-

angular range queries can be solved in the plane

in O (filog n) time using O(n) space. Matou?iek

[10] has shown how to achieve O(nl-’ld) query



time for simplex range searching with nearly lin-

ear space. This is close to Chazel.le’s lower bound

of O(nl–ll~/ log n) [6] for linear space. For halfs-

pace range queries, Br&mimann, et al. [3] give a

lower bound of fl(nl-zl(~+ll) (ignoring logarithmic

factors) assuming linear space. This lower bound

applies to the more general case of spherical range

queries as well.

Unfortunately, the lower bound arguments de-

feat any reasonable hope of achieving polyloga-

rithmic performance for arbitrary (nonorthogonal)

ranges. This suggests that it may be worthwhile

considering variations of the problem, which may

achieve these better running times. In this pa-

per we consider an approximate version of range

searching. Rather than approximating the count,

we consider the range to be a j%zzy range, and that

data points that are “close” to the boundary of the

range (relative to the range’s diameter) may or may

not be included in the count.

To make this idea precise, we assume that ranges

are bounded sets of bounded complexity. (Thus our

results will not be applicable to halfspace range

searching). Given a range Q of diameter s, and

given c > 0, define Q- to be the locus of points

whose distance from a point exterior to Q is at

least se, and Q+ to be the locus of points whose

distance from a point interior to Q is at most M.

(Equivalently, Q+ and Q- can be defined in terms

of the Minkowski sum of a ball of radius s and

either Q or its complement. ) Define a legal answer

to an e-approximate range query to be weight(P’)

for any subset P’ such that

PnQ-~P’g Pn Q+.

This definition allows for two-sided errors, by fail-

ing to count points that are barely inside the range,

and counting points barely out side the query range.

It is trivial to modify the algorithm so that it pro-

duces one-sided errors, forbidding either sins of

omission or sins of commission (but obviously not

both).

Approximate range searching is probably inter-

esting only for fat ranges. Overmars [11] defines

an object Q to be k-j’ai if for any point p in Q,

and any ball B with p as center that does not fully

contain Q in its interior, the portion of B covered

by Q is at least l/k. For ranges that are not k-

fat, the diameter of the range may be arbitrarily

large compared to the thickness of the range at

any point. However, there are many applications

of range searching that involve fat ranges.

There are a number of reasons that this formu-

lation of the problem is worth considering. It is

well known that what seems to make range queries

“hard” to solve are the points that are near the

boundary of the range. However, there are many

applications where data are imprecise, and ranges

themselves are imprecise. For example, the user

of a geographic information system that wants to

know how many single family dwellings lie within a

60 mile radius of Manhattan, maybe quite happy

with an answer that is only accurate to within a few

miles. Also range queries are oft en used as part of

an initial filtering process to very large data sets,

after which some more complex test will be applied

to the points within the range. In these applica-

tions, a user maybe quite happy to accept a coarse

filter that runs faster. The user is free to adjust the

value of c to whatever precision is desired (without

the need to apply preprocessing again), with the

understanding that a tradeoff in running times is

involved.

In this paper we show that by allowing approx-

imate e ranges, it is possible to achieve significant

improvements in running times, both from a the-

oretical as well as practical perspective. We show

that (for fixed dimension) after O (n log n) prepro-

cessing, and with O(n) space, e-approximate range

queries can be answered in time O(log n + I/cd).

Under the assumption that ranges are convex, this

can be strengthened to O(log n + l/#-l). Some of

the features of our method are

●
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●
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The data structure and preprocessing time are

independent of the space of possible ranges

and c. We only assume that in constant time

(depending on dimension) it is possible to de-

termine whether there is a nonempty intersec-

tion between the inner and outer ranges (Q-

and Q+) and a cube.

Space and preprocessing time are free of expo-

nential factors in dimension. Space is O (dn)

and preprocessing time is O (dn log n). (As-

suming the binarized version of the data struc-

ture, discussed in Section 2.)

The algorithms are quite simple. The data



●

structure is a variant of the well-known quad-

tree data structure.

Our experimental results show that even for

uniformly distributed points in dimension 2,

there is a significant improvement in the run-

ning time if a small approximation error is al-

lowed. Furthermore, on average the effective

emor (defined in Section 5) committed by the

algorithm is much smaller than the allowed er-

ror, e.

We also present lower bound of fl(log n + I/ed-l ),

for the complexity of answering e-approximate

range queries assuming a partition tree approach

for cubical range in fixed dimension. Thus our ap-

proach is optimal under these

vex ranges.

2 The BBD Tree.

assumptions for con-

In this section we describe the data structure from

which queries will be answered. We call this struc-

ture a balanced box-decomposition tree (or BBD

tree) for the point set. The BBD tree is a balanced

variant of a number of well-known data structures

based on hierarchical subdivision of space into rec-

tilinear regions. Examples of this class of struc-

ture include point quadtrees [13], k-d trees [2], or

(unbalanced) box-decomposition tree (also called a

fair-split tree) [1, 4, 8, 14].

Except for the k-d tree, none of these data struc-

tures need be balanced, in the sense that their

depth is not bounded by O(log n). However, all

of these data structures, except the k-d tree sub-

divide space into regions of bounded aspect ratio.

The BBD tree achieves both of these properties.

This is not the first example of such a tree. Arya

et al. [1] showed that balance could be imposed

on a box-decomposition by computing a centroid

decomposition tree or topology tree for the box-

decomposition tree. This idea was also used by

Callahan and Kosaraju to modify the fair-split tree

[5]. The BBD tree is a somewhat more direct im-

plementation of this same idea. We present a brief

description of this structure for the sake of com-

pleteness.

The BBD tree is a balanced 2~-ary tree associ-

ated with a hierarchical subdivision of space into

cells each of O(d) complexity. For our purposes,

a box in Rd is d-dimensional cube with faces or-

thogonal to the coordinate axes. We assume that

all the data points have been scaled to lie within

a d-dimensional unit hypercube H. This can be

done in linear time before preprocessing. Define

a quadtree box to be any box obtained by a finite

number of applications of the following recursive

rules.

H is a quadtree box.

If b is a quadtree box, then so are each of the 2d

boxes of half the side length formed by split-

ting b using d hyperplanes, each orthogonal to

one of the coordinate axes.

Observe that each quadtree box has sides of length

(1/2)i for some i 20. All the boxes appearing in

our BBD tree are quadtree boxes. Data points can

be thought of as degenerate quadtree boxes of side

length O.

Each node v in the BBD tree is associated with

a region denoted, cell(v). Each cell is the set the-

oretic difference of two quadtree boxes, a bound-

ing box, BB(v), and a (possibly empty) inner box,

lB(v), which is properly contained within BB(v).

The set of data points associated with v, P(v) is

the intersection of P with v’s cell, that is,

P(v) = P n (BB(v) – m(v)).

The size of a node size(v) is the side length of its

bounding box BB(v). Observe that the Euclidean

distance between any two points in a cell of size s

is at most sW, The weight of a node, weight(v),

is the cardinalit y of P(v) (or more generally, the

sums of weights of the points in the cell). We

assume that each node v cent ains the quantities,

B.B(v), 173(v) (and a flag indicating whether HI(v)

is empty), size(v), weight(v).

The root of the tree is associated with the bound-

ing hypercube H, and its inner box is empty.

Leaf nodes are each associated with a single data

point (or generally a small const ant number of data

points), and have no inner box. Internal nodes are

two types, splitting nodes and shrinking nodes, ac-

cording to the way in which they subdivide the as-

sociated cell. Each splitting node v subdivides the

associated cell by splitting its bounding quadtree

box into 2d quadtree boxes each of half the size by
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the process described earlier. These smaller boxes

are associated with each of the 2~ children of v.

By the nature of quadtree boxes, the inner box of

v will either be entirely cent ained within one of v‘s

children, or it will be equal to one of these boxes.

In the former case, the inner box is made the inner

box of the appropriate child cell, and all the other

children have no inner box. In the latter case, the

corresponding child is null (because the associated

region is empty).

Each shrinking node v subdivides the associated

cell by splitting it about a box b which contains the

inner box of v (if any). The two children of v con-

sist of one cell whose bounding box is Bl?(v) and

inner box b, and the other cell whose bounding box

is b and inner box is H?(v). (Note that shrinking

is different from the shrinking operation defined in

[1], because the region between the outer and in-

ner box need not be free of data point s.) These

operations are illustrated in Figure l(a) and (b).
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Figure 1: Splitting and shrinking.

For the purposes of implementation in higher di-

mensions, nodes with 2d children are quite imprac-

tical. This can be overcome by implementing each

split by a series of d consecutive binary splits, each

cutting along a plane orthogonal to a different co-

ordinate axis. The resulting boxes are not neces-

sarily cubes, but they have bounded aspect ratio.

However, for the purposes of describing our algo-

rithms, it is somewhat simpler to think of splitting

as an atomic operation, rather than this alternative

binarized tree.

We claim that for every cell it is possible to apply

a shrinking operation so that each of the resulting

subcells contains at most a fraction of 2~/ (2d+ 1) of

the points in the original cell. To see this, consider

a cell with m points, and consider a sequence of

consecutive splits, starting with the original cell.

After each split, apply the next split to the subcell

with the largest number of points. Repeat until the

largest subcell c has at most 77z2~/(2d+ 1) points. It

is easy to show that at most 7722~/(2~+ 1) points can

lie outside c. Thus, it is always possible to find a

shrinking cell containing a constant fraction of the

points in a given cell. Such a shrinking operation is

called a cent~oid shrink. (The term arises from the

fact that the box c corresponds to finding a centroid

node in the unbalanced box-decomposition tree, as

described in [1].)

However, performing a centroid shrink may re-

sult in two inner boxes within the same bounding

box. Repeated application could result in cells of

arbitrary complexity. To remedy this, whenever a

centroid shrink results in a box which is disjoint of

the existing inner box, we separate these two in-

ner boxes as follows. First, we find the smallest

quadtree box which contains both of these boxes.

We shrink to this box, and then we split this box.

By the minimality of the cent aining box, the two

inner boxes will become inner boxes oft wo different

boxes in the split (or they will be equal to one of

these boxes, in which case the box can be ignored

as a child), This process of separating inner boxes

increases the size and depth of the tree by a con-

st ant factor. However, it has the nice feature that

each cell in the tree consists of a single bounding

box and a (possibly empty) inner box, and so has

complexity O(d).

By alternating splitting rules, first applying a

split followed by a centroid shrink (and box sep-

aration), and repeating until each cell contains

at most a single point, we produce the balanced

box-decomposition tree (BBD tree). The following

lemma summarizes the main elements of the BBD

tree.

Lemma 1 Given a set of n points in a d-dimen-

sional unit hypercube:

(i) the BBD tree has height O(dlog n),

(ii) each node is associated with a cell of complex-

ity O(d),
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(iii) with every 2 levels of descent in the tree the

size of the associated cells decreases by at least

a factor of 1/2.

The following lemma, which follows from the fact

that cells cannot be too “skinny” will also be of im-

portance. This type of packing lemma is common

to many analyses of box-decomposition trees. The

proof is omitted from this version.

Lemma 2 The number of cells in a BBD tree of

size at least s with pairwise disjoint interiors, and

which intersect a range of diameter 2r is at most

(1+ [;])%

Lemma 3 The number of cells in a BBD tree of

size at least s with pairwise disjoint inten”ors, and

which intersect the boundary of a convez range of

diameter 2r is at most 0(1+ (%1 )d-l.

Lemma 4 The BBD tree can be built in O(n log n)

time and O(n) space.

Proof (Sketch) The construction of the BBD tree

follows largely from the construction described by

Callahan and Kosaraju for the fair-split tree [4].

The only nontrivial step not described there is the

implementation of the centroid shrink. The prob-

lem is that it is not generally possible to bound the

number of split operations needed until the number

of points falls below some constant (for example, if

the points are densely clustered). To do this, it

suflices to determine the smallest quadtree box en-

closing the current set of points at each step. This

can be done in constant time, under the assumption

that the model of computation supports the opera-

tions of exclusive-or, integer logarithm, and integer

division on the coordinates of the data points [1].

Callahan and Kosaraju have shown that this as-

sumption can be overcome with a somewhat more

careful choice of splitting rules [5]. ❑

3 Range Searching Algorithm.

In this section we present the algorithm for answer-

ing range queries using the BBD tree. For simplic-

ity, we consider the case where the query range is a

ball of radius r centered at a query point q, but the

generalization to other types of ranges is straight-

forward. We use the terms inner range and outer

range to refer to the balls of radius r – = r/(1 + c)

and radius r+ = T(1 + e) centered at q. Although

we assume that 6 > 0 for the purposes of analysis,

the algorithm runs correctly even if e = O.

Generalizing range search algorithms for parti-

tion trees, the main idea of the algorithm is to

simply descend the tree and classify nodes as ly-

ing completely inside the outer range or completely

out side the inner range. If a node cannot be clas-

sified we recursively explore its children. The algo-

rithm starts with the root of the tree. Let v denote

the current node being visited.

(1) If cel{v) lies completely inside outer range,

then return( weight(v)).

(2) If celZ(v) lies completely outside inner range

then return(0).

(3) If v is a leaf node, check for each associated

point whether it lies inside the true range.

Return(m), where m is the number of points

that do lie inside.

(4) Otherwise, recursively call the procedure with

the left and right child and return the sum of

the two weights obtained.

The correctness of this simple algorithm is quite

straightforward, and has been omitted from this

version.

The main result of this section is the following

theorem, which establishes the running time of the

range counting algorithm.

Theorem 1 After O (n log n) preprocessing time,

and data structure of size O(n) can be built, so

that given a sphem”cal query range and E > 0, a

(1+ c)-approximate range count can be computed in

O ((log n)+l/cd) time. (Constant factors in prepro-

cessing time and space are linear in d, and constant

factors in query time are on the order of d22d.)

Proof: Preprocessing has already been discussed.

We start with two definitions. A node v is said

to be visited if the algorithm is called with node v

as argument. A node v is said to be ezpanded if

the the algorithm visits the children of node v. We

distinguish between two kinds of expanded nodes

depending on size. An expanded node v for which

size(v) z 2r is large and otherwise it is small. We
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will show that the number of large expanded nodes

is bounded by O (2d log n) and the number of small

expanded nodes is bounded by O ((2ti/e)~). Be-

cause each node can be expanded in O (2d) time, it

will follow that the total running time of the algo-

rithm is 0(2~(2~logn + (2ti/c)~)). A factor of 2d

can be saved in expansion time if the 2d-ary tree is

replaced by a binarized tree described in Section 2,

while adding a factor of d in the depth of the tree

and a factor of d to the expansion time, This yields

a better total time of 0(d22d log n+ d(2ti/e)d). In

either case, the running time is O (log n + 1 /.#) for

fixed d.

We first show the bound on the number of large

expanded nodes. In the descent through the BBD

tree, the sizes of nodes decrease monotonically.

Consider the set of all expanded nodes of size

greater than 2T. These nodes induce a subtree

in the BBD tree. Let V denote the leaves of this

tree. The cells associated with the elements of V

are pairwise disjoint from one another, and fh.rther-

more they intersect the range (for otherwise they

would not be expanded). It follows from Lemma 2

(applied to the cells associated with V) that there

are at most (1 + [2r/(2r)l )~ = 2d, such boxes. Be-

cause the depth of the tree is O (log n), the total

number of expanded large nodes is O (2d log n), as

desired.

Next we bound the number of small expanded

nodes. First we claim that any node of size less

than Te/ti cannot be expanded. For a node to be

expanded its cell must intersect the inner range of

radius r- = r/(1 + ~) and the complement of the

outer range of radius r+ = r(l + e). Hence the cell

must have diameter of at least T+ – r– 2 m. Since

the diameter of a cell of size s is at most sW, a cell

of size less than re/ti is too small to be expanded.

To complete the analysis of the number of small

expanded nodes, it suffices to count the number of

expanded nodes of sizes from 2r down to r~/&.

Because sizes are powers of 1/2, it suflices to count

the number of expanded nodes of size group (1/2)i,

where i varies over an appropriate e range. Consider

the expanded nodes in the i-th size group. Because

these nodes have the same size, the correspond-

ing cells have pairwise disjoint interiors, and they

overlap the query range. Applying Lemma 2, it fol-

lows that the number of maximal nodes in the i-th

group is (1 + [2i+lrl )d. Thus the total number of

expanded nodes in all the size groups is at most

where a = – lg 2r and h = – lg(m/@. This is

a geometric series, which is dorninat ed as ympt oti-

cally by its largest term,

as desired.

For convex ranges, we can

bound of O((logn) + 1/6’-1)

place of Lemma 2.

4 Lower Bounds

❑

easily show a tighter

by using Lemma 3 in

The method we use in this paper to solve the ap-

proximate range counting problem falls under the

partition tree paradigm. This paradigm is also

commonly used for solving the exact version of this

problem. In the context of exact range counting,

Chazelle and Welzl [7] have developed an interest-

ing lower bound argument for any algorithm that

uses partition trees. In this section we develop

a similar argument for the approximate e problem,

which will establish the optimality of our algorithm

in this paradigm.

We start by reviewing the notion of a partition

tree. We are given a set P of n data points. A

partition tree is a rooted tree of bounded degree in

which each node v of the tree is associated with a

set of points P(v), according to the following rules.

(For simplicity we will assume that the degree is at

least two; it will be easy to see that the argument

we develop here also holds without this assump-

tion. )

(a)

(b)

The leaves of the tree have a one-to-one corre-

spondence with the data points.

The set associated with an internal node v is

formed by taking the union of all the points in

the leaves of the subtree rooted at v.

With each node v we also store its weight(v) de-

fined as the cardinality of the set P(v). Given a
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range Q we can recursively search the partition tree

to count the number of points inside Q as follows.

We start at the root of the tree and initialize a

global variable count to O. At a node v we do the

following.

(a) if P(v) C Q, we add weight(v) to the count.

(b) if P(v) n Q = 0, we do nothing.

(c) Otherwise, we recursively search its children.

It is easy to see that the algorithm correctly

solves the range counting query. Assuming that

the conditions in Step (a) and (b) can be carried

out in O(1) time, the number of nodes visited by

the algorithm accurately reflects its runnin g time.

Chazelle and Welzl [7] have shown that in the worst

case the number of nodes visited is Q(nl ‘lid) for

any partition tree. Using similar techniques, we

show a lower bound on the number of nodes vis-

ited for the approximate version of the problem.

First we modify the above algorithm to solve the

approximate e range counting query. Let Q be the

query range and let Q+ and Q – be the e expan-

sion and contraction of this range, respectively, as

defined in the introduction. For the approximate

range counting problem, we make a few straight-

forward modifications to the search algorithm given

above.

(a) if P(v) c Q+, we add weight(v) to the count.

(b) if P(v) n Q- =0, we do nothing.

(c) Otherwise, we recursively search its children.

Define the visiting numbeT of a partition tree as

the maximum number of nodes visited by the above

algorithm over all query ranges. We show a lower

bound of log n + (l/~)d-l on the visiting number

of any partition tree. First, we modify some of the

definitions of Chazelle and Welzl [7] to apply to

the approximate problem. We say that a set P(v)

is stabbed if neither P(v) c Q+ nor P(v) n Q- = 0

is true. In other words, P(w) contains both a point

inside Q – and a point outside Q+. We define the

stabbing number of a spanning path as the maxi-

mum number of edges on the path (each edge is a

set of its two end points) that are stabbed. Here

the maximum is computed over all query ranges.

Along the lines of Lemma 3.1 in [7], we can easily

establish the following.

Lemma 5 If T is any paTtition tTee foT P, then

theTe ezists a spanning path whose stabbing number’

does not exceed the visiting numbeT of T.

We will now exhibit a point set in d dimensions

and a set of query ranges such that any span-

ning path will have a stabbing number of at least

1/#-1 with respect to one of the query ranges.

We assume that the dimension d is fixed. Con-

sider a unit hypercube [0, 1]~ divided into a reg-

ular grid consisting of kd cells of equal size. We

choose k = [1/(46)1 and use e’ = l/k to denote the

grid spacing. The data set consists of one point

located at each of the vertices of the grid, which

gives a total of fl(l/ed) points. The query ranges

in our set are balls in the L~ metric of radius

unity. The centers of these balls are located along

the d principal axis at distances from the origin of

–1 + e’/2, –1 + 3d/2, . . . . –e’/2, respectively. This

gives a total of O (d/c) query ranges. Now consider

any spanning path on the set of points P. From

the construction it is straightforward to show that

every edge on this spanning path is stabbed by at

least one query range. Thus the number of st abbed

edges on the spanning path equals the total number

of edges on the path which is 0(1 /6d). Dividing this

by the total number of query ranges implies that

a query range stabs on average $2(1 /(ded-1 ) ) edges

of the spanning path. Therefore there must exist a

query range which stabs fl(l/(d~d-l)) edges. Thus

the stabbing number of any spanning path exceeds

this quantity. Combining this with Lemma 5 gives

us a lower bound on the visiting number of parti-

tion trees.

We next show a fl(log n) lower bound on the

visiting number of any partition tree. Consider a

set of n distinct data points and a set of n query

ranges consisting of -L+ ball centered at each of

these points. The radius of these balls is chosen to

be sufficiently small so that the (1 + e) expansion

of the ball contains no other point. It is easy to

see that the ball centered at p stabs the point sets

corresponding to every proper ancestor of p. Since

there must be a leaf at depth !l(log n), this gives a

lower bound on the number of nodes whose point

sets are stabbed by the ball centered at the point

associated with the leaf. All such nodes are visited

by the algorithm, hence this is also a bound on the

visiting number of the partition tree. Combining

178



this with the results of the last paragraph, we have

the following lower bound on the visiting number of

any partition tree. In fact, the lower bound holds

even under the restriction to Lm balls.

Theorem 2 For the set of query ranges consisting

of balls in the Lw metric, the visiting number of

any partition tree exceeds fl(log n + 1/cd-l).

The theorem implies the optimality of our al-

gorithm in the partition tree paradigm for convex

ranges, and near opt imalit y for the more general

class of query ranges discussed in the introduction.

5 Experimental Results

To establish the validity of our claims empirically,

we implemented our algorithm and tested it on a

number of data sets of various sizes, various distri-

butions, and with various sizes and types of ranges.

To enhance performance, we implemented a vari-

ation of the data structure described in Section 2.

First, we implemented the binarized version of the

tree mentioned in this section (each node has two

children rather than 2d), Second, we did not always

split boxes through the midpoint, but used a some-

what more sophisticated decomposition method,

called the fair-split rule [1]. Intuitively, this split-

ting rule attempts to partition the point set of each

box as evenly as possible, subject to maintaining

boxes with bounded aspect ratio. Finally, our de-

composition process attempted to avoid centroid

shrinking whenever it was not warranted. The rea-

son is that there are optimization that can be per-

formed at splitting nodes that are not possible at

shrinking nodes. As long as the fair-split rule pro-

duced trees whose depth was within a constant fac-

tor of logz n, we did not introduce centroid shrink-

ing, and for the data sets we tested it was never

neeed.

We ran our program for approximate range

counting for e ranging from O (exact searches) to

0.5. Our experiments were conducted for data

points drawn from a number of distributions. Due

to space limitations, only the following two are pre-

sented in this paper.

Uniform: Each coordinate was chosen uniformly

from the interval [0, I].

ClusNorm: Ten points were chosen from the uni-

form distribution over the unit hypercube and

a Gaussian distribution with standard devia-

tion 0.05 centered at each.

For each distribution we generated data sets

ranging in size from 26 = 64 to 216 = 65,536. Ex-

periments were run in dimensions 2 and 3, and the

query ranges were either L2 balls (circles) or Lm

balls (squares). Due to space limitations, we only

show the results for dimension 2 and for circular

ranges. We tested radii, ranging in size from 1/256

to 1/2. For each experiment, we fixed 6 and the ra-

dius of the query balls and measured a number of

statistics, averaged over 1,000 queries. The center

of the query ball was chosen from the same distri-

bution as the query points.
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Figure 2: Number of nodes visited vs. e, Uniform

distribution.
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Figure 3: Number of nodes visited vs. e. Clustered

normal distribution.

In Figures 2 and 3, for each of the distributions,

we show the number of nodes visited as a function

of the accuracy of approximation, 6, for 65,536 data
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point. Since the algorithm does a constant amount

of work for each node visited, the average num-

ber of nodes visited accurately reflects its running

time. (We also measured floating point operations,

and found that in dimension 2 on the average there

were from 10 to 20 floating point operations for

each node visit ed. ) The key observation is that as

e increases (even to relatively small values in the

range from 0.05 to O.1), there are significant im-

provements in running time (factors as high as 10

to 1, and often around 4 to 1) for larger ranges.

As e grows, the running times tend to converge,

irrespective of radius. Improvements for smaller

ranges were not as significant, because the running

times on small ranges are uniformly small. Re-

sults for square ranges were similar, and results in

3-space were similar, although the improvements

were not quite as dramatic.
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Figure 4: Number of nodes visited vs. number of

data points. Uniform distribution.
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Figure 5: Number of nodes visited vs. number of

data points. Clustered normal distribution.

In Figures 4 and 5 we show the number of nodes

visited as a function of the number of data points.

Note that the z-axis is given on a log scale. The

key observation is that, as c increases, the running

times show a decreasing dependence on the num-

ber of data points. We also ran the experiments

for smaller values of radius, and observed that the

decrease of dependence occurs, but for larger val-

ues of e or n. Results with square ranges and in

3-space showed a similar behavior.

We measured one interesting statistic, called e~-

fective error or effective epsilon. Consider a range

of radius r and a point at distance r’. If r’ < r

but the point was classified as being outside the

range, the associated misclassification error is de-

fined to be the relative error, (r – #)/r’ ; and if

T’ > T but the point was classified as being inside

the range, the associated misclassification e?’?’m is

(r’ – r)/T. By definition, there can be no classifica-

tion error greater than e. But the algorithm may

be doing better than this. To see how much better

it is doing, we measured this relative error for ev-

ery misclassified point, and averaged this over all

the points which were eligible for misclassification

(that is, points lying in the difference of the outer

and inner ranges). This quantity is the e~ective

error of the query. If no points were eligible for

misclassification, then this quantity is zero.
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Figure 6: Effective error vs. e. Uniform distribu-

tion.

In Figures 6 and 7 we show the effective errors

as a function of e, for 65,536 data points. The key

observation is that effective error appears to vary

almost linearly with c (depending on distribution,

dimension, and other factors). In dimension 2, ef-

fective errors were frequently less than O,06e, and

in all distributions effective error was never greater
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Figure 7: Effective error vs. ~. Clustered normal

distribution.

than O.le. These bounds were observed across alJ

distributions tested, for both circular and square

ranges, and in both dimensions 2 and 3. This ex-

plains in part, one of the reasons that we ran ex-

periments with such large values of e. Even with e

as large as 0.5 (allowing a maximum 5070 error), we

were often observing much smaller effective errors

in the range of 1.570 to 37’0.
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