
One-way Accumulators:
A Decentralized Alternative

to Digital Signatures
(Extended Abstract)

Josh Benaloh’ and Michael de Mare2

Clarkson University
Giordano Automation

Abstract. This paper describes a simple candidate one-way hash func-
tion which satisfies a quasi-commutative property that allows it to be
used aa an accumulator. This property allows protocols to be developed in
which the need for a trusted central authority can be eliminated. Space-
efficient distributed protocols are given for document time stamping and
for membership testing, and many other applications are possible.

1 Introduction

One-way hash functions are generally defined as functions of a single argu-
ment which (in a “difficult to invert- fashion) reduce their arguments to a pre-
determined size. We view hash functions, somewhat differently here, as functions
which take two arguments from comparably sized domains and produce a result
of similar size. In other words, a hash function is a function h with the property
that h: A x B + C where [A] x IBI k: ICI. There is, of course, no substantial
difference between this view and the traditional view except that this view al-
lows us to define a special quasi-commutative property which, as it turns out,
has several applications.

The desired property is obtained by considering functions h: X x Y + X and
asserting that for all z E X and for all y1,yz E Y,

This property is not at all unusual. Addition and multiplication modulo
n both have this property as does exponentiation modulo n when written as
en(z, y) = xv mod n. Of these, only exponentiation modulo n has the additional
property that (under suitable conditions), the function is believed to be difficult
to invert.
This paper will describe how to use the combination of these two properties

(quasi-commutativity and one-wayness) to develop a one-way uccurnulator which
(among other applications) can be used to provide space-efficient cryptographic
protocols for time stamping and membership testing.

T. Helleseth (Ed.): Advances in Cryptology - EUROCRYPT ’93, LNCS 765, pp. 274-285, 1994.
0 Spnnger-Verlag Berlin Heidelberg 1994

275

2 Definitions

We begin by formalizing the necessary definitions.

Definition 1. A family of one-way hash functions is an infinite set of functions
he: Xe x Ye + Ze having the following properties:

1. There exists a polynomial P such that for each integer t , he(z,y) is com-
putable in time P (t , IzI, Iyl) for all z E Xe and all y E Ye.

2 . There is no polynomial P such that there exists a probabilistic polynomial
time algorithm which, for all sufficiently large t , will when given t, a pair
(z, y) E Xe x &, and a y’ E Yj, find an z‘ E Xe such that he(z,y) = h l (~ ’ , y ’)
with probability greater than l/P(!) when (z, y) is chosen uniformly among
all elements of Xt x Yt and y’ is chosen uniformly from Ye.

Note that the above definition only requires that “collisions” of the form
h(z,y) = h(z’,y’) for given z, y , and y’ are hard to find. That is, given z, y,
y’, it is, in general, hard to find a pmimage z’ such that h(z,y) = h(z’,y’). It
may in fact be easy, given (2, y) E X x Y , to find a pair (z’, y‘) E X x Y such
that h(s ,y) = h(s’,y’). It must, however, be the case that for a given (z,y) pair,
there are relatively few y’ E Y for which an s‘ E X can practically be found
such that h(z,y) = h(z‘,y’).

Note also that this definition does not require that the “hash” value be
smaller than its arguments. However, the hash functions considered here will
have the property that 1x1

It follows from the above definition that a family of one-way hash functions
is itself a family of one-way functions. Work by Naor and Yung ([NaYu89])
and by Rompel ([RompSO]) has shown that one-way hash functions exists if
and only if one-way functions exist which, in turn, exist if and only if secure
signature schemes exist. It has also been shown ([ILL89]) that the existelice
of one-way functions is equivalent to the existence of secure pseudo-random
numb er-generat om.

lYl w 121.

Definition 2. A function f : X x Y + X is said to be quasi-commutative if for
all z E X and for all yl,y2 E Y ,

By considering one-way hash functions for which the range is equal to the
first argument of the domain, i.e. h:X x Y + X , we can exploit the properties
of one-way hash functions which also have the quasi-commutative property.

Definition3. A family of one-way accumulators is a family of one-way hash
functions each of which is quasi-commutative.

276

3 Motivation

The quasi-commutative property of one-way accumulators h ensures that if one
starts with an initial value x E X, and a set of values y1,y2,. . . , y m E Y, then
the accumulated hash

= h(h(h(’ ’ ’ h(h(h(z, yl), U2 Y3)9 * . . 7 Y m - Z) , Yrn- l) , U r n)

would be unchanged if the order of the y; were permuted.
In addition, the fact that h is a one-way hash function means that given

2 E X and y E Y it is difficult to, for a given y‘ E Y, find an x’ E X such that

Thus, if the values yl, y2, . . . , ym are associated with users of a cryptosystem,
the accumulated hash z of all of the yi can be computed. A user holding a
particular yj can compute a partial accumulated hash B, of all y; with z # j .
The holder of yj can then (presumably at a later time) demonstrate that yj was
a part of the original hash by presenting zj and yj such that B = h(zj9yj). A
user who wishes to forge a particular yf would be faced with the problem of
constructing an XI with the property that I = h(x’,y‘).

This approach does not enable users to hide their individual yj since all of
the yj are necessary to compute the accumulated hash z (although the yj may
themselves be encryptions of hidden information). However, using a one-way
accumulator in this way keeps each user from having to remember all of the yjm

A general application of this basic trick is as an alternative to digital sig-
natures for credential authentication: if all parties retain the result B of the
accumulated hash, then at a later time, any party can present its (yj, z j) pair to
any other party who can then compute and verify h(yj, zj) = z to authenticate
Y j -

It might, of course, be possible for a dishonest user to construct a false pair
(x’, y’) such that h(z’, y‘) = B by combining the various yi in one way or another.
It will, however, be seen in section 5.1 that this is not practical. Other methods
of computing false (d,y’) pairs may also be possible. However, by restricting
the choice of y’, constructing “useful” false pairs can be made impractical.

It should be emphasized that the advantage of this approach over the naive
“save everything you see” approach is simply one of storage. In terms of stor-
age, this protocol is comparable to that of retaining a public-key for a central
authority and using it to verify that yj has been signed by the central author-
ity. However, using the one-way accumulator method can obviate the need for a
central authority altogether.

Two applications of one-way accumulators will be presented in section 5. The
first is a method to construct a time stamping protocol in which participants
can archive and time stamp their documents in such a way as to allow the
time stamped documents to be revealed to others at a later time. A second

The aseertion that the composition formed by applying h many times is one-way is
not strictly the same as asserting that h itself is one-way. This will be addressed in
section 4.

h(z, y) = h (d , y7.3

3

277

application shows how a membership testing system can be constructed without
having to maintain membership lists. In both applications, storage requirements
are minimized without having to rely upon a (potentially corruptible) central
authority.

4 Modular Exponentiation

For any n, the function e,(z, y) = z* mod n is clearly quasi-commutative. The
commonly used RSA assumption ([RSA78]) is that for “appropriately chosenn
n, computing z from en(z,y), y, and, n cannot be done in time polynomial in
1.1 except in an exponentially small number of cases. In [ShamSl], Shamir gives
a proof which, when applied in this context, shows that for these appropriately
chosen n, if root finding modulo n is hard, then the family en constitutes a
family of one-way hash functions. However, even this may not be enough if the
e, are to be used as one-way accumulators. The reason for this is that repeated
application of an e, may reduce the size of the image so much that finding
collisions becomes feasible.

To alleviate this problem, we restrict our n even further than do most.

Definition4. Define a prime p to be safe if p = 2p’ + 1 where p‘ is an odd
prime.

Deflnition5. We define n to be a rigid integer if n = pq where p and q are
distinct safe primes such that lpl = Iql.

It is not hard to see that for n = pq to be a rigid integer larger than 100,
each of p, Q, 9 and must be primes congruent to 5 modulo 6.

4.1 Composition

The advantage of using a rigid integer n = p q is that the group of squares
(quadratic residues) modulo n that are relatively prime to n has the property
that it has size n’ = 99 and the function en,*(z) = z* mod n is a per-
mutation of this group whenever y and n’ are relatively prime. Thus, if the
factorization of n is hidden, “random” exponentiations of an element of this
group are extremely unlikely to produce elements of any proper subgroup. This
means that repeated applications of e,(z,y) are extremely unlikely to reduce
the size of the domain or produce random collisions.

Although constructing rigid integers is somewhat harder than constructing
ordinary ‘‘difficult to factor” integers, it is still quite feasible. The process woidd
be to select “random” p‘ congruent to 5 modulo 6 until one is found such that
p’ and 2p’ + 1 are both prime. Approximately one out of every (1 . ~ ’) ~ of the p’
selected will have this property. Once a suitable p‘ has been found, a suitable q’
is selected similarly. This allows n = pq = (2p’ + 1)(29‘ + 1) to be formed witllin
approximately 2(lnp’)’ trials. Thus, if the modulus n is to be approximately 200

digits in length, approximately 10,000 candidates for each of p' and q' would
be expected to be examined before suitable choices are found. This would mean
executing roughly 20,000 primality tests on 100 digit integers - an amount of
work which is not terribly unreasonable.

In some sense, rigid integers may be the hardest of all integers to factor.
Most cryptographic applications which depend upon the difficulty of factoring
suggest that n be chosen as a product of two comparably sized primes p and q
and further suggest that p - 1 and q - 1 each contain large prime factors. Such
n are suitable for our purposes also. However, taking these parameters to the
extreme case in which each of p - 1 and q - 1 have the largest of possible prime
factors (namely (p- 1)/2 and (q - 1)/2) provides additional beneficial properties
which can be exploited by our applications.

4.2 Collisions

The one-way property of one-way accumulators rests not on the difficulty of
finding arbitrary collisions, but rather upon the difficulty of finding collisions
(or alternate preimages) with specific constraints.

If an accumulated hash z , is formed from a given set of values taken modulo
n, a new item y can be forged by finding an x such that z = Z Y mod n. If y is
itself the result of a one-way hash, a prospective forger must, for a y that it can
change but not select, compute a yth root of z modulo n.

This, on the face of it, appears to be as hard as computing roots modulo
a composite n which is believed to be computationally infeasible for large n of
unknown factorization.

There are, however, other factors which may make the task easier for the
prospective forger. First, together with z, the forger is provided with a number
of roots of z modulo n. (These other roots are provided by the values used to
form 2.) Shamir, however, has shown ([ShamSl]) that if basic root computation
is difficult, then the roots ~ ' / ~ l , ~ ' / ~ l , . . . zl/'k are insufficient to compute the
value of zllP unless p is a divisor of R = n,,, ri. Second, the forger may have had
an opportunity to select some of the constituent y out of which the accumulated
hash z was constructed. It is conceivable that a forger may weaken the systeni
by choosing appropriate constituents which will facilitate a subsequent forgery.

We sketch below the result which says that even an actively participating
(dynamic) forger cannot exist unless root finding is computationally feasible.

I

Theorem6. Suppose there exists a polynomial time algorith,m A which when
given x and n and a polynomial number of mots yl, y2,. . . , yk and pre-selected
indices r l , r z , . . . , r k of x such that each yr' mod n = x finds, for a given r ,
a y such that y' mod n = x . Then there exists a polynomiul time algorithm B
which when given 2, n, and p = r / gcd(r, r1r2 - - - rh) will produce (I y such that
y p mod n = x. (In other words, the computation can be duplicated without the
use of the roots y1 , yz, . . . , yk .)
Proof. (sketch)

279

Algorithm 23 can be constructed from algorithm A as follows. Given 2. n, and
p , 23 computes f = ~'1'1".'h mod n and asks A for an rth root of f modulo n by
providing A with the appropriate roots of i which can be easily computed from x
and the ri. A will return a 6 such that 9' mod n = 5. Let g = gcd(r, r1r2.. r k) .

The quotients 5 and r'r;.'rk are now relatively prime, and the extended Euclid-
ean algorithm can be used to construct cofactors a and b such that

The desired root zl /P mod n can now be constructed as x l / P mod n = x"tjb mod

x mod n. 0
In short, this theorem shows that (unless general root finding is feasible) an

rth root of a given z modulo n can be computed only if one is given a set of
known roots and indices { (z i , ~ ,) : z:' mod n = z } such that T is a divisor of

It may, however, be possible for a forger to obtain a set of roots such that
the product R of their indices is a multiple of the desired root index. But. it can
be shown that the number of known roots which would have to be provided in
order to have a non-negligible probability of their product being a multiple of
a random number T selected later would be prohibitively large (see [KnTr76]).
Asymptotically, for any polynomial P, it is the case P(Inl) items can be combined
into a single accumulated hash value with extremely high security. Numerically,
even in a worst-case scenario in which an adversary is allowed to select all hash
values (root indices) in advance, a 220 digit n would comfortably allow about
20 million items to be hashed with probability of forgery well below (See
[Brui51], [Mitc68], and [LuWa69].)

A full asymptotic and numerical analysis will be included in the full version
of this paper.

n since (2 " d b) P mod n = x('-''/g)@(b'/g) mod n = 5 (" r / S) Z (k l r z " ' r k / g) mod n =

n Ti.

5 Applications

Two applications are described in this section.

5.1 Time Stamping

Haber and Stornetta ([HaStSO]) describe how documents can be time stamped
by cryptographically chaining documents. By following the links in the chain,
one can later determine where in the sequence a document occurred and thereby
determine the relative positions of any two documents. This process, however.
is somewhat cumbersome since it requires the active cooperation of other par-
ticipants who have documents in the chain. Each link of the chair1 must be
individually reconstructed to relocate the position of a document.

In the same work, Haber and Stornetta also describe a system by which
documents are transmitted to a subset of the participants. The specific subset

280

is determined by the document itself. With the appropriate cooperation of these
participants, one can later substantiate to others that the document was sent at
the claimed time.

Benaloh and de Mare ([BeMaSl]) describe another method using a some-
what different model. They break time into rounds and assume the existence of
broadcast channels (which can be simulated with any of a variety of consensus
protocols - see, for example, [CGMASS], [Fisc83], [Ben083], and [Rabi83]). Be-
naloh and de Mare describe how time stamping can be accomplished without
assumptions of cooperation. Within their model, they show how the amount of
information which must be saved in each round of the protocol can be made pro-
portional to the logarithm of the number of participants in the protocol. They
pose as an open problem the question of whether the amount of information
which must be saved can be made independent of the number of participants.

The time stamping protocol given here essentially solves the question posed
by Benaloh and de Mare. Using modular exponentiation as a one-way accumu-
lator. a simple protocol can be devised.

A Time Stamping Protocol. Before beginning, a rigid integer n is agreed to
by all parties. This n can be supplied by a (trusted) outside source, constructed
by a special purpose physical device, or (perhaps more likely) chosen by joint
evaluation of a circuit for computing such an n which is supplied with ran-
dom inputs by the participants (see [GMW86], [GMW87], [BGW88], [CCD88],
[RaBe89], (Beav891, [BeGo89], [GoLeSO], [MiRaSO], and [BeavSl] for work on se-
cure multiparty computation). Since this n need be selected only once and may
thereafter be used continuously, any extraordinary effort which may be required
to construct such an n may be warranted.

Once n has been selected, a starting value z is agreed upon. This z may,
for instance, be a representation of the current date. From this 2, the value
20 = s2 mod n is formed.

Each of the rn participants takes any document(s) that it wishes to stamp in
a given round and applies an agreed upon conventional one-way hash function
to its document(s) to produce a y such that y < n. Let y1, y2,. . . , ym denote the
set of (conventionally hashed) documents to be stamped in a given round. Let
Y = n:=, yi, and for each j let yi denote the product Y/y j . The time print of
the round x is computed as the accumulated hash

z = z ; m o d n = ((. . . ((~ ~ ' m o d n) ~ ~ m o d n) . . .) ~ m) m o d n .

The j t h participant also computes and maintains the partial accumulated hash

z, = z$ modn

which is also easily computed.
Now, for the j t h participant to demonstrate at a later time that a given

document (which presumably only it saved) has a claimed time stamp, the par-
ticipant need ody produce yj and z j . Anyone can check that x p mod n is equal

281

to the time print z of the round and must therefore accept the time stamp of the
document as legitimate. The claimant can then show that when the conventional
hash function is applied to its document the value yj is produced.

Is Forgery Possible? Before discussing whether or not forgery is possible, we
must defme precisely what forgery means within this context. A participant has
the ability to time stamp many documents per round. These documents might
contain contradictory information or promises. There is nothing, for instance, to
stop a participant from time stamping a large number of predictions about the
world series outcome and then (after the outcome is decided) revealing only the
one time stamped document which correctly predicted the outcome.

Depending on the method of implementation, it might even be possible for a
user who wishes to stamp (hashed) document y to, for example, submit (hashed)
documents u and t~ for stamping where y = uv and then later construct a time
stamp for y out of the time stamps for u and 21. Although this simple ploy
can be remedied by requiring the submission of both pre-hash and post-hash
documents (note that the documents may, of course, also be encrypted before
any hashing to protect their contents), other similar ploys may be possible if the
user knows the document for which a stamp is desired at the time of the stamp.
This, however, does not pose a concern since we allow participants to stamp any
and all documents within any round.

The only claim which we can make about forgery i s that a user cannot produce
a valid time stamp for a document that was not anticipated at the time indicated
6y the stamp. For example, an industrial spy who reads a patent application with
a given date wil l not be able to change the name on the application and forge a
time stamp to indicate an earlier date.

The results of theorem 6, however, show that forging unanticipated docu-
ments is infeasible.

5.2 Membership Testing

Suppose a large group of people (perhaps the attendees of a cryptography con-
ference) want to develop a mechanism which will allow participants to recognize
each other at a later time. Several solutions are possible.

The attendees could simply produce a membership list and distribute the list
amongst themselves. However, this requires each member to maintain a large
and bulky membership list. In addition, if the members do not want outsiders to
know their identities, these membership lists would have to be carefully guarded
by all members. Thus, it is never possible for a member to be identified to a
non-member.

An alternative solution would be for the group to appoint a trusted secre-
tary. The secretary can digitally sign "id cards" for each member arid post its
own public verification key. Each member need only remember its own signed
information and the secretary's public key. At a later time, one member can be
identified to another by providing its own signed id card. Additionally, it is pos-
sible to give the secretary's public key to outsiders so the members can identify

282

themselves to non-members. The problem, of course, is that the secretary must
be trusted to not produce additional “phony” id cards for non-members.

One-way accumulators offer a solution with the advantages of a single trusted
secretary but without the need for such an authority. Each member selects a y j

consisting of its name and any other desired identifying characteristics. A base
x is agreed upon, and the members exchange their information and compute the
accumulated hash value

= h(h(h(‘. * h(h(h(s, Yl),Y2),Y3)9 * * ‘ ,Ym-2),Yrn-l),Ym).

Each member saves the hash function h, its own yj, and the value rj which rep-
resents the accumulated hash of all yi with i # j. For the holder of yj to prove
that it is a member of the group, it need only present the pair (yj, z j) . By veri-
fying that h(yj, zj) = z, any other participant can authenticate the membership
of the holder of yj. Note that it is not even necessary for each participant to
retain the accumulated hash value z since each participant would hold its own
(yj, z j) pair from which z = h(yj, z j) can be easily generated.

Also, non-members can be given the hash function h and the value of the
accumulated hash z. Thus, any member that wishes to can identdy itself to a
non-member without revealing the entire membership list.

In [Merk80], Merkle describes a similar application in which a directory of
public keys is to be jointly maintained. He describes a “tree authentication”
solution to the problem in which each user must retain its own key, a hash
function h, and a number of additional partial hashes which is logarithmic in
the number of participants. By using one-way accumulators, the same properties
can be achieved while reducing to a constant the number of values which must
be retained by each participant.

6 Other Applications, Generalizations, and Further Work
The idea of one-way accumulators can be applied to a variety of other prob-
lems. The special advantage offered by accumulators over signatures is that no
one individual need know how to authenticate/sign/stamp a document or mes-
sage. Thus, a class of applications of one-way accumulators is as a simple and
effective method of forming collective signatures. There seem to be a variety of
cryptographic problems which are closely related to membership testing, and it
seems likely that such problems may be amenable to the approach of one-way
accumulators. Many other applications may also be possible.

David Naccache has observed that the function en,c = zycy-l mod n is quasi-
commutative for all constants c. This is a direct generalization of the function
e,(x,y) = xu modn = en,l(x,y) used within this paper. A possible advantage
of this more general form is that it facilitates the use of efficient Montgomery
processors.* Naccache also observes that the Dixon polynomial generating fimc-
tion

‘ Montgomery processors can, for certain constants c which depend solely upon n,
compute the modular product abc mod n as quickly a6 ordinary processors can com-
pute the integer product ab.

283

is quasi-commutative. It is not known whether these functions have appropriate
one-way proper ties.

Clearly the existence of one-way accumulators implies the existence of one-
way functions. The question of whether or not the existence of one-way accu-
mulators is implied by the existence of arbitrary one-way functions is an area
for future research. No relationship is known between the existence of one-way
accumulators and that of one-way trap-door functions.

A related open question is that of whether a candidate one-way accumulator
can be found which does not have a trap-door. There is no apparent reason why
this should not be possible, and such a function could alleviate the need for the
secure multiparty computation required to select an appropriate modulus n for
the function en(z, y) = zg mod n.

Acknowledgements

The authors would like to express their thanks to Narsim Banavara, Lau-
rie Benaloh, Ernie Brickell, Joshua Glasser, David Greenberg, Kevin McCurley,
David Naccache, Janice Searleman, Satish Thatte, Dwight Tuistra, and anoiiy-
mous reviewers for their helpful comments and suggestions regarding this work.
The authors would also like to express their thanks to Paul Giordano.

References

[Beavgl]

[Beav89]

[BeGo89]

[BeMaSl]

[Ben0831

Beaver, D. “Efficient Multiparty Protocols Using Circuit Random-
ization.” Advances an Cryptology - Crypto ’91, ed. by J. Feigenbaum
in Lecture Notes in Computer Science, vol. 576, ed. by G. Goos and
J. Hartmanis. Springer-Verlag, New York (1992), 420932.
Beaver, D. ‘Multiparty Protocols Tolerating Half Faulty Processors.”
Advances in Cryptology - Crypto ’89, ed. by G. Brassard in Lecture Notes
in Computer Science, vol. 435, ed. by G. Goos and J. Hartmanis. Springer-
Verlag, New York (1990), 560-572.
Beaver, D. and Goldwaeeer, S. “Multiparty Computation with Faulty
Majority.” Proc. 30ih IEEE Symp. on Foundations of Computer Science,
Research Triangle Park, NC (0ct.-Nov. 1989), 468-473.
Benaloh, J. and de Mare, M. “Efficient Broadcast Time-Stamping.”
Clarkson University Department of Mathematics and Computer Science

Ben-Or, M. “Another Advantage of Free Choice: Completely Asynchru-
nous Agreement Protocols.” Proc. Znd ACM Symp. on Principles of Dis-
tributed Computing, Montreal, PQ (Aug. 1983), 27-30.

TR 91-1. (Aug. 1991).

284

[BGW88] Ben-Or, M., Goldwasser, S., and Wigderson, A. “Completeness The-
orems for Non-Cryptographic Fault-Tolerant Distributed Computation.”
Proc. 20’* ACM Symp. on Theory of Computation, Chicago, IL (May

de BruUn, N. “The Asymptotic Behaviour of a Function Occurring in
the Theory of Primes.” Journal of the Indian Mathematical Society 15.

C h a u m , D., CrBpeau, C., and Damgird, I. “Multiparty Uncondition-
ally Secure Protocols.” Proc. 20at ACM Symp. on Theory of Computation,
Chicago, IL (May 1988), 11-19.

[CGMA85] Chor, B., Goldwasser, S. , Micali, S., and Awerbuch, B. “Verifiable
Secret Sharing and Achieving Simultaneity in the Presence of Faults.”
Proc. 26th IEEE Symp. on Foundations of Computer Science, Portland,

Denning, D. Cryptography and Data Security, Addison-Wesley, Reading,
Massachusetts (1982).
Fischer, M. “The Consensus Problem in Unreliable Distributed Sys-
tems”, Proc. 1983 International FCT- Conference, Borgholm, Sweedtm
(Aug. 1983), 127-140. Published as Foundations of Computation Theory,
ed. by M. Karpinski in Lecture Notes in Computer Science, vol. 158, ed. by
G. Goos and J. Hartmanis. Springer-Verlag, New York (1983).
Goldreich, O., Micali, S., and Wigderson, A “Proofs that Yield Noth-
ing but Their Validity and a Methodology of Cryptographic Protocol
Design.” Proc. 2Vh IEEE Symp. on Foundations of Computer Science,
Toronto, ON (Oct. 1986), 174-187.
Goldreich, O., Micali, S., and Wigderson, A “HOW to Play Any Men-
tal Game or A Completeness Theorem for Protocols with Honest Major-
ity.” Proc. 19“ ACM Symp. on Theory of Computation, New York, NY
(May 1987), 218-229.
Goldwasser, S. and Levin, L. “Fair Computation of General Functions
in Presence of Immoral Majority.” Advances in Cryptology -- Crypto ’90,
ed. by A. Menezes and S. Vanstone in Lecture Notes in Computer Science,
vol. 537, ed. by G. Goos and J. Hartmanis. Springer-Verlag, New York

Haber, S. and Stornetta, W. “How to Time-Stamp a Digital Docu-
ment.” Jounol of Cryptology 9. (1991), 99-112.
Knuth, D. and Trabb Pardo, L. “Analysis of a Simple Factorization
Algorithm.” Theoretical Computer Science 3. (1976), 321-348.
Impagliazso, R., Levin, L., and Luby, M. “Pseudorandom Generation
from One-way Functions.” Proc. 21“ ACM Symp. on Theory of Compu-
tation, Seattle, WA (May 1989), 12-24.
van de Lune, J. and Wattel, E. “On the Numerical Solution of a
Differential-Difference Equation Arising in Analytic Number Theory.”
Mathematics of Computation 29. (1969), 417421.
Merkle, R. ”Protocols for Public Key Cryptosystems.” Proc. 1980 Symp.
on Security and Privacy, IEEE Computer Society (April 1980), 122-133.
Micali, T. and Rabin, T. “Collective Coin Tossing Without Assump-
tions nor Broadcasting.” Advances in Cryptology - Crypto ’90, ed. by
A. Menezes and S. Vanstone in Lecture Notes in Computer Science,

1988), 1-10.
[BruiSl]

(1951), 25-32.
[CCDSS]

OR (Oct. 1985), 383-395.
[Denn82]

[Fisc83]

[GMW86]

[GMW87]

[GoLegO]

(1991), 77-93.
[HaStSO]

(Kn-761

[ILL891

[LuWa69]

[MerkSO]

[MiRaSO]

285

vol. 537, ed. by G. Goos and J. Hartmanis. Springer-Verlag, New York

Mitchell, W. "An Evaluation of Golomb's Constant.' Mathematics of
Computation 22. (1968), 411415.
Naor, M. and Yung, M. "Universal One-way Hash Functions aud their
Cryptographic Applications." Proc. 21*' ACM Symp. on Theory of Com-
putation, Seattle, WA (May 1989), 3343.
Rabin, T. and Ben-Or, M. "Verifiable Secret Sharing and Multiparty
PrOtOCOlS with Honest Majority." Proc. 21" A C M Symp. on Theory of
Computation, Seattle, WA (May 1989), 73-85.
Rabin, M. "Randomized Byzantine Generals." Proc. 24'' IEEE Symp.
on Foundations of Computer Science, Tucson, AZ (Nov. 1983), 403409.
Rompel, J. "One-way Functions are Necessary and Sufficient for Secure
Signatures." Proc. 22"d ACM Symp. on Theory of Computation. Balti-
more, MD (May 1990).
Rivest, R., Shamir, A., and Adlernan, L. "A Method for Obtaining
Digital Signatures and Public-key Cryptosystems." Comm. A C M 21, 2
(Feb. 1978), 120-126.
Shamir, A. -On the Generation of Cryptographically Strong Pseudo-
Random Sequences." Proc. ZCALP, (1981).

(1991), 253-266.
[Mitc68]

[NaYu89]

[RaBe89]

[Rabi83]

[FlompSO]

[MA781

[ShamSl]

