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Abstract. This paper describes a simple candidate one-way hash func- 
tion which satisfies a quasi-commutative property that allows it to be 
used aa an accumulator. This property allows protocols to be developed in 
which the need for a trusted central authority can be eliminated. Space- 
efficient distributed protocols are given for document time stamping and 
for membership testing, and many other applications are possible. 

1 Introduction 

One-way hash functions are generally defined as functions of a single argu- 
ment which (in a “difficult to invert- fashion) reduce their arguments to a pre- 
determined size. We view hash functions, somewhat differently here, as functions 
which take two arguments from comparably sized domains and produce a result 
of similar size. In other words, a hash function is a function h with the property 
that h: A x B + C where [A]  x IBI k: ICI. There is, of course, no substantial 
difference between this view and the traditional view except that this view al- 
lows us to define a special quasi-commutative property which, as it turns out, 
has several applications. 

The desired property is obtained by considering functions h: X x Y + X and 
asserting that for all z E X and for all y1,yz E Y, 

This property is not at all unusual. Addition and multiplication modulo 
n both have this property as does exponentiation modulo n when written as 
en(z, y) = xv mod n. Of these, only exponentiation modulo n has the additional 
property that (under suitable conditions), the function is believed to be difficult 
to invert. 
This paper will describe how to use the combination of these two properties 

(quasi-commutativity and one-wayness) to develop a one-way uccurnulator which 
(among other applications) can be used to provide space-efficient cryptographic 
protocols for time stamping and membership testing. 
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2 Definitions 

We begin by formalizing the necessary definitions. 

Definition 1. A family of one-way hash functions is an infinite set of functions 
he: Xe x Ye + Ze having the following properties: 

1. There exists a polynomial P such that for each integer t ,  he(z,y) is com- 
putable in time P ( t ,  IzI, Iyl) for all z E Xe and all y E Ye. 

2 .  There is no polynomial P such that there exists a probabilistic polynomial 
time algorithm which, for all sufficiently large t ,  will when given t,  a pair 
(z, y) E Xe x &, and a y’ E Yj, find an z‘ E Xe such that he(z,y) = h l ( ~ ’ , y ’ )  
with probability greater than l/P(!) when (z, y) is chosen uniformly among 
all elements of Xt x Yt and y’ is chosen uniformly from Ye. 

Note that the above definition only requires that “collisions” of the form 
h(z,y) = h(z’,y’) for given z, y ,  and y’ are hard to find. That is, given z, y, 
y’, it is, in general, hard to find a pmimage z’ such that h(z,y) = h(z’,y’). It 
may in fact be easy, given (2, y) E X x Y ,  to find a pair (z’, y‘) E X x Y such 
that h(s ,y)  = h(s’,y’). It must, however, be the case that for a given (z,y) pair, 
there are relatively few y’ E Y for which an s‘ E X can practically be found 
such that h(z,y) = h(z‘,y’). 

Note also that this definition does not require that the “hash” value be 
smaller than its arguments. However, the hash functions considered here will 
have the property that 1x1 

It follows from the above definition that a family of one-way hash functions 
is itself a family of one-way functions. Work by Naor and Yung ([NaYu89]) 
and by Rompel ([RompSO]) has shown that one-way hash functions exists if 
and only if one-way functions exist which, in turn, exist if and only if secure 
signature schemes exist. It has also been shown ([ILL89]) that the existelice 
of one-way functions is equivalent to the existence of secure pseudo-random 
numb er-generat om. 

lYl w 121. 

Definition 2. A function f :  X x Y + X is said to be quasi-commutative if for 
all z E X and for all yl,y2 E Y ,  

By considering one-way hash functions for which the range is equal to the 
first argument of the domain, i.e. h:X x Y + X ,  we can exploit the properties 
of one-way hash functions which also have the quasi-commutative property. 

Definition3. A family of one-way accumulators is a family of one-way hash 
functions each of which is quasi-commutative. 
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3 Motivation 

The quasi-commutative property of one-way accumulators h ensures that if one 
starts with an initial value x E X, and a set of values y1,y2,. . . , y m  E Y, then 
the accumulated hash 

= h( h( h(’ ’ ’ h(h(h(z,  yl), U2 Y3)9 * . . 7 Y m - Z ) ,  Yrn- l ) ,  U r n )  

would be unchanged if the order of the y; were permuted. 
In addition, the fact that h is a one-way hash function means that given 

2 E X and y E Y it is difficult to, for a given y‘ E Y, find an x’ E X such that 

Thus, if the values yl, y2, . . . , ym are associated with users of a cryptosystem, 
the accumulated hash z of all of the yi can be computed. A user holding a 
particular yj can compute a partial accumulated hash B, of all y; with z # j .  
The holder of yj can then (presumably at a later time) demonstrate that yj was 
a part of the original hash by presenting zj and yj such that B = h(zj9yj). A 
user who wishes to forge a particular yf would be faced with the problem of 
constructing an XI with the property that I = h(x’,y‘). 

This approach does not enable users to hide their individual yj since all of 
the yj are necessary to compute the accumulated hash z (although the yj may 
themselves be encryptions of hidden information). However, using a one-way 
accumulator in this way keeps each user from having to remember all of the yjm 

A general application of this basic trick is as an alternative to digital sig- 
natures for credential authentication: if all parties retain the result B of the 
accumulated hash, then at a later time, any party can present its (yj, z j )  pair to 
any other party who can then compute and verify h(yj, zj) = z to authenticate 
Y j -  

It might, of course, be possible for a dishonest user to construct a false pair 
(x’, y’) such that h(z’, y‘) = B by combining the various yi in one way or another. 
It will, however, be seen in section 5.1 that this is not practical. Other methods 
of computing false (d,y’)  pairs may also be possible. However, by restricting 
the choice of y’, constructing “useful” false pairs can be made impractical. 

It should be emphasized that the advantage of this approach over the naive 
“save everything you see” approach is simply one of storage. In terms of stor- 
age, this protocol is comparable to that of retaining a public-key for a central 
authority and using it to verify that yj has been signed by the central author- 
ity. However, using the one-way accumulator method can obviate the need for a 
central authority altogether. 

Two applications of one-way accumulators will be presented in section 5. The 
first is a method to construct a time stamping protocol in which participants 
can archive and time stamp their documents in such a way as to allow the 
time stamped documents to be revealed to others at a later time. A second 

The aseertion that the composition formed by applying h many times is one-way is 
not strictly the same as asserting that h itself is one-way. This will be addressed in 
section 4. 

h(z, y)  = h ( d ,  y7.3 

3 
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application shows how a membership testing system can be constructed without 
having to maintain membership lists. In both applications, storage requirements 
are minimized without having to rely upon a (potentially corruptible) central 
authority. 

4 Modular Exponentiation 

For any n, the function e,(z, y) = z* mod n is clearly quasi-commutative. The 
commonly used RSA assumption ([RSA78]) is that for “appropriately chosenn 
n, computing z from en(z,y), y, and, n cannot be done in time polynomial in 
1.1 except in an exponentially small number of cases. In [ShamSl], Shamir gives 
a proof which, when applied in this context, shows that for these appropriately 
chosen n, if root finding modulo n is hard, then the family en constitutes a 
family of one-way hash functions. However, even this may not be enough if the 
e, are to be used as one-way accumulators. The reason for this is that repeated 
application of an e, may reduce the size of the image so much that finding 
collisions becomes feasible. 

To alleviate this problem, we restrict our n even further than do most. 

Definition4. Define a prime p to be safe if p = 2p’ + 1 where p‘ is an odd 
prime. 

Deflnition5. We define n to be a rigid integer if n = pq where p and q are 
distinct safe primes such that lpl = Iql. 

It is not hard to see that for n = pq to be a rigid integer larger than 100, 
each of p, Q, 9 and must be primes congruent to 5 modulo 6. 

4.1 Composition 

The advantage of using a rigid integer n = p q  is that the group of squares 
(quadratic residues) modulo n that are relatively prime to n has the property 
that it has size n’ = 99 and the function en,*(z) = z* mod n is a per- 
mutation of this group whenever y and n’ are relatively prime. Thus, if the 
factorization of n is hidden, “random” exponentiations of an element of this 
group are extremely unlikely to produce elements of any proper subgroup. This 
means that repeated applications of e,(z,y) are extremely unlikely to reduce 
the size of the domain or produce random collisions. 

Although constructing rigid integers is somewhat harder than constructing 
ordinary ‘‘difficult to factor” integers, it is still quite feasible. The process woidd 
be to select “random” p‘ congruent to 5 modulo 6 until one is found such that 
p’ and 2p’ + 1 are both prime. Approximately one out of every ( 1 . ~ ’ ) ~  of the p’ 
selected will have this property. Once a suitable p‘ has been found, a suitable q’ 
is selected similarly. This allows n = pq = (2p’ + 1)(29‘ + 1) to be formed witllin 
approximately 2(lnp’)’ trials. Thus, if the modulus n is to be approximately 200 



digits in length, approximately 10,000 candidates for each of p' and q' would 
be expected to be examined before suitable choices are found. This would mean 
executing roughly 20,000 primality tests on 100 digit integers - an amount of 
work which is not terribly unreasonable. 

In some sense, rigid integers may be the hardest of all integers to factor. 
Most cryptographic applications which depend upon the difficulty of factoring 
suggest that n be chosen as a product of two comparably sized primes p and q 
and further suggest that p - 1 and q - 1 each contain large prime factors. Such 
n are suitable for our purposes also. However, taking these parameters to the 
extreme case in which each of p - 1 and q - 1 have the largest of possible prime 
factors (namely (p- 1)/2 and ( q -  1)/2) provides additional beneficial properties 
which can be exploited by our applications. 

4.2 Collisions 

The one-way property of one-way accumulators rests not on the difficulty of 
finding arbitrary collisions, but rather upon the difficulty of finding collisions 
(or alternate preimages) with specific constraints. 

If an accumulated hash z ,  is formed from a given set of values taken modulo 
n, a new item y can be forged by finding an x such that z = Z Y  mod n. If y is 
itself the result of a one-way hash, a prospective forger must, for a y that it can 
change but not select, compute a yth root of z modulo n. 

This, on the face of it, appears to be as hard as computing roots modulo 
a composite n which is believed to be computationally infeasible for large n of 
unknown factorization. 

There are, however, other factors which may make the task easier for the 
prospective forger. First, together with z, the forger is provided with a number 
of roots of z modulo n. (These other roots are provided by the values used to 
form 2.) Shamir, however, has shown ([ShamSl]) that if basic root computation 
is difficult, then the roots ~ ' / ~ l ,  ~ ' / ~ l , .  . . zl/'k are insufficient to compute the 
value of zllP unless p is a divisor of R = n,,, ri. Second, the forger may have had 
an opportunity to select some of the constituent y out of which the accumulated 
hash z was constructed. It is conceivable that a forger may weaken the systeni 
by choosing appropriate constituents which will facilitate a subsequent forgery. 

We sketch below the result which says that even an actively participating 
(dynamic) forger cannot exist unless root finding is computationally feasible. 

I 

Theorem6. Suppose there exists a polynomial time algorith,m A which when 
given x and n and a polynomial number of mots yl, y2,. . . , yk and pre-selected 
indices r l , r z , . .  . , r k  of x such that each yr' mod n = x finds, for a given r ,  
a y such that y' mod n = x .  Then there exists a polynomiul time algorithm B 
which when given 2, n, and p = r /  gcd(r, r1r2 - - - rh) will produce (I y such that 
y p  mod n = x. (In other words, the computation can be duplicated without the 
use of the roots y1 , yz, . . . , yk .) 
Proof. (sketch) 
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Algorithm 23 can be constructed from algorithm A as follows. Given 2. n, and 
p ,  23 computes f = ~'1'1".'h mod n and asks A for an rth root of f modulo n by 
providing A with the appropriate roots of i which can be easily computed from x 
and the ri. A will return a 6 such that 9' mod n = 5.  Let g = gcd(r, r1r2.. r k ) .  

The quotients 5 and r'r;.'rk are now relatively prime, and the extended Euclid- 
ean algorithm can be used to  construct cofactors a and b such that 

The desired root zl /P mod n can now be constructed as x l / P  mod n = x"tjb mod 

x mod n. 0 
In short, this theorem shows that (unless general root finding is feasible) an 

rth root of a given z modulo n can be computed only if one is given a set of 
known roots and indices { ( z i , ~ , )  : z:' mod n = z }  such that T is a divisor of 

It may, however, be possible for a forger to obtain a set of roots such that 
the product R of their indices is a multiple of the desired root index. But. it can 
be shown that the number of known roots which would have to be provided in 
order to  have a non-negligible probability of their product being a multiple of 
a random number T selected later would be prohibitively large (see [KnTr76]). 
Asymptotically, for any polynomial P, it is the case P( Inl) items can be combined 
into a single accumulated hash value with extremely high security. Numerically, 
even in a worst-case scenario in which an adversary is allowed to select all hash 
values (root indices) in advance, a 220 digit n would comfortably allow about 
20 million items to be hashed with probability of forgery well below (See 
[Brui51], [Mitc68], and [LuWa69].) 

A full asymptotic and numerical analysis will be included in the full version 
of this paper. 

n since ( 2 " d b ) P  mod n = x('-''/g)@(b'/g) mod n = 5 ( " r / S ) Z ( k l r z " ' r k / g )  mod n = 

n Ti. 

5 Applications 

Two applications are described in this section. 

5.1 Time Stamping 

Haber and Stornetta ([HaStSO]) describe how documents can be time stamped 
by cryptographically chaining documents. By following the links in the chain, 
one can later determine where in the sequence a document occurred and thereby 
determine the relative positions of any two documents. This process, however. 
is somewhat cumbersome since it requires the active cooperation of other par- 
ticipants who have documents in the chain. Each link of the chair1 must be 
individually reconstructed to relocate the position of a document. 

In the same work, Haber and Stornetta also describe a system by which 
documents are transmitted to a subset of the participants. The specific subset 
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is determined by the document itself. With the appropriate cooperation of these 
participants, one can later substantiate to others that the document was sent at 
the claimed time. 

Benaloh and de Mare ([BeMaSl]) describe another method using a some- 
what different model. They break time into rounds and assume the existence of 
broadcast channels (which can be simulated with any of a variety of consensus 
protocols - see, for example, [CGMASS], [Fisc83], [Ben083], and [Rabi83]). Be- 
naloh and de Mare describe how time stamping can be accomplished without 
assumptions of cooperation. Within their model, they show how the amount of 
information which must be saved in each round of the protocol can be made pro- 
portional to the logarithm of the number of participants in the protocol. They 
pose as an open problem the question of whether the amount of information 
which must be saved can be made independent of the number of participants. 

The time stamping protocol given here essentially solves the question posed 
by Benaloh and de Mare. Using modular exponentiation as a one-way accumu- 
lator. a simple protocol can be devised. 

A Time Stamping Protocol. Before beginning, a rigid integer n is agreed to 
by all parties. This n can be supplied by a (trusted) outside source, constructed 
by a special purpose physical device, or (perhaps more likely) chosen by joint 
evaluation of a circuit for computing such an n which is supplied with ran- 
dom inputs by the participants (see [GMW86], [GMW87], [BGW88], [CCD88], 
[RaBe89], (Beav891, [BeGo89], [GoLeSO], [MiRaSO], and [BeavSl] for work on se- 
cure multiparty computation). Since this n need be selected only once and may 
thereafter be used continuously, any extraordinary effort which may be required 
to construct such an n may be warranted. 

Once n has been selected, a starting value z is agreed upon. This z may, 
for instance, be a representation of the current date. From this 2, the value 
20 = s2 mod n is formed. 

Each of the rn participants takes any document(s) that it wishes to stamp in 
a given round and applies an agreed upon conventional one-way hash function 
to its document(s) to produce a y such that y < n. Let y1, y2,. . . , ym denote the 
set of (conventionally hashed) documents to be stamped in a given round. Let 
Y = n:=, yi, and for each j let yi denote the product Y/y j .  The time print of 
the round x is computed as the accumulated hash 

z = z ; m o d n =  ( ( . . . ( ( ~ ~ ' m o d n ) ~ ~  m o d n ) . . . ) ~ m ) m o d n .  

The j t h  participant also computes and maintains the partial accumulated hash 

z, = z$ modn 

which is also easily computed. 
Now, for the j t h  participant to demonstrate at a later time that a given 

document (which presumably only it saved) has a claimed time stamp, the par- 
ticipant need ody produce yj and z j .  Anyone can check that x p  mod n is equal 
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to the time print z of the round and must therefore accept the time stamp of the 
document as legitimate. The claimant can then show that when the conventional 
hash function is applied to its document the value yj is produced. 

Is Forgery Possible? Before discussing whether or not forgery is possible, we 
must defme precisely what forgery means within this context. A participant has 
the ability to time stamp many documents per round. These documents might 
contain contradictory information or promises. There is nothing, for instance, to 
stop a participant from time stamping a large number of predictions about the 
world series outcome and then (after the outcome is decided) revealing only the 
one time stamped document which correctly predicted the outcome. 

Depending on the method of implementation, it might even be possible for a 
user who wishes to stamp (hashed) document y to, for example, submit (hashed) 
documents u and t~ for stamping where y = uv and then later construct a time 
stamp for y out of the time stamps for u and 21. Although this simple ploy 
can be remedied by requiring the submission of both pre-hash and post-hash 
documents (note that the documents may, of course, also be encrypted before 
any hashing to protect their contents), other similar ploys may be possible if the 
user knows the document for which a stamp is desired at the time of the stamp. 
This, however, does not pose a concern since we allow participants to stamp any 
and all documents within any round. 

The only claim which we can make about forgery i s  that a user cannot produce 
a valid time stamp for a document that was not anticipated at the time indicated 
6y the stamp. For example, an industrial spy who reads a patent application with 
a given date wil l  not be able to change the name on the application and forge a 
time stamp to indicate an earlier date. 

The results of theorem 6, however, show that forging unanticipated docu- 
ments is infeasible. 

5.2 Membership Testing 

Suppose a large group of people (perhaps the attendees of a cryptography con- 
ference) want to develop a mechanism which will allow participants to recognize 
each other at a later time. Several solutions are possible. 

The attendees could simply produce a membership list and distribute the list 
amongst themselves. However, this requires each member to maintain a large 
and bulky membership list. In addition, if the members do not want outsiders to 
know their identities, these membership lists would have to be carefully guarded 
by all members. Thus, it is never possible for a member to be identified to a 
non-member. 

An alternative solution would be for the group to appoint a trusted secre- 
tary. The secretary can digitally sign "id cards" for each member arid post its 
own public verification key. Each member need only remember its own signed 
information and the secretary's public key. At a later time, one member can be 
identified to another by providing its own signed id card. Additionally, it is pos- 
sible to give the secretary's public key to outsiders so the members can identify 
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themselves to non-members. The problem, of course, is that the secretary must 
be trusted to not produce additional “phony” id cards for non-members. 

One-way accumulators offer a solution with the advantages of a single trusted 
secretary but without the need for such an authority. Each member selects a y j  

consisting of its name and any other desired identifying characteristics. A base 
x is agreed upon, and the members exchange their information and compute the 
accumulated hash value 

= h(h(h(‘. * h(h(h(s, Yl),Y2),Y3)9 * *  ‘ ,Ym-2),Yrn-l),Ym). 

Each member saves the hash function h, its own yj, and the value rj which rep- 
resents the accumulated hash of all yi with i # j. For the holder of yj to prove 
that it is a member of the group, it need only present the pair (yj,  z j ) .  By veri- 
fying that h(yj, zj) = z, any other participant can authenticate the membership 
of the holder of yj. Note that it is not even necessary for each participant to 
retain the accumulated hash value z since each participant would hold its own 
(yj, z j )  pair from which z = h(yj, z j )  can be easily generated. 

Also, non-members can be given the hash function h and the value of the 
accumulated hash z. Thus, any member that wishes to can identdy itself to a 
non-member without revealing the entire membership list. 

In [Merk80], Merkle describes a similar application in which a directory of 
public keys is to be jointly maintained. He describes a “tree authentication” 
solution to the problem in which each user must retain its own key, a hash 
function h, and a number of additional partial hashes which is logarithmic in 
the number of participants. By using one-way accumulators, the same properties 
can be achieved while reducing to a constant the number of values which must 
be retained by each participant. 

6 Other Applications, Generalizations, and Further Work 
The idea of one-way accumulators can be applied to a variety of other prob- 
lems. The special advantage offered by accumulators over signatures is that no 
one individual need know how to authenticate/sign/stamp a document or mes- 
sage. Thus, a class of applications of one-way accumulators is as a simple and 
effective method of forming collective signatures. There seem to be a variety of 
cryptographic problems which are closely related to membership testing, and it 
seems likely that such problems may be amenable to the approach of one-way 
accumulators. Many other applications may also be possible. 

David Naccache has observed that the function en,c = zycy-l  mod n is quasi- 
commutative for all constants c. This is a direct generalization of the function 
e,(x,y) = xu modn = en,l(x,y) used within this paper. A possible advantage 
of this more general form is that it facilitates the use of efficient Montgomery 
processors.* Naccache also observes that the Dixon polynomial generating fimc- 
tion 

‘ Montgomery processors can, for certain constants c which depend solely upon n, 
compute the modular product abc mod n as quickly a6 ordinary processors can com- 
pute the integer product ab. 
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is quasi-commutative. It is not known whether these functions have appropriate 
one-way proper ties. 

Clearly the existence of one-way accumulators implies the existence of one- 
way functions. The question of whether or not the existence of one-way accu- 
mulators is implied by the existence of arbitrary one-way functions is an area 
for future research. No relationship is known between the existence of one-way 
accumulators and that of one-way trap-door functions. 

A related open question is that of whether a candidate one-way accumulator 
can be found which does not have a trap-door. There is no apparent reason why 
this should not be possible, and such a function could alleviate the need for the 
secure multiparty computation required to select an appropriate modulus n for 
the function en(z, y) = zg mod n. 
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