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Abstract--The Open Shortest Path First (OSPF) and IS-IS 
routing protocols widely used in today's Internet compute a 
shortest path tree (SPT) from each router to other routers in 
a routing area. Many existing commercial routers recompute 
an SPT from scratch following changes in the link states of the 
network. Such recomputation of an entire SPT is inefficient and 
may consume a considerable amount of CPU time. Moreover, 
as there may coexist multiple SPTs in a network with a set of 
given link states, recomputation from scratch causes frequent 
unnecessary changes in the topology of an existing SPT and may 
lead to routing instability. In this paper, we present new dynamic 
SPT algorithms that make use of the structure of the previously 
computed SPT. Besides efficiency, our algorithm design objective 
is to achieve routing stability by making minimum changes to 
the topology of an existing SPT (while maintaining shortest path 
property) when some link states in the network have changed. 

We establish an algorithmic framework that allows us to charac- 
terize a variety of dynamic SPT algorithms including dynamic ver- 
sions of the well-known Dijkstra, Bellman-Ford, D'Esopo-Pape 
algorithms, and to establish proofs of correctness for these algo- 
rithms in a unified way. The theoretical asymptotic complexity of 
our new dynamic algorithms matches the best known results in the 
literature. 

Index Terms--Routing, shortest path trees. 

I. INTRODUCTION 

I N TODAY'S Internet, each datagram is forwarded by a 
router based on a forwarding table. Routing protocols are 

employed to exchange topology information among routers to 
facilitate the construction of forwarding tables. Examples of 
widely used link-state based routing protocols include Open 
Shortest Path First (OSPF) and IS-IS [22], [16]. With these 
routing protocols, each link is associated with a cost (weight) 
and routers exchange link state information so that each 
router in a routing area (e.g., an OSPF area) has a complete 
description of the network topology. Using the link costs, each 
router computes a path with minimum cost from itself to each 
other router in the area, yielding a shortest path tree (SPT). 
The corresponding SPT is then used to build a forwarding table 
which contains routing information for forwarding a datagram 
to its destination along the shortest path. 
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When the topology in a routing area changes (e.g., a link 
fails, recovers, or changes its routing cost), every router in the 
area is notified of the change. After updating the corresponding 
topology changes in its data structure, each router recomputes 
its SPT. In most of today's commercial routers, this recompu- 
tation is done by deleting the current SPT and recomputing it 
from scratch by using the well-known Dijkstra algorithm [7]. 

Usually, after some changes in the link states, the topology of 
the new SPT does not differ significantly from the old one. (In 
fact, most often it does not change at all.) Static algorithms that 
recompute the SPT from scratch are clearly inefficient because 
they do not take advantage of available information about the 
outdated SPT. Such recomputation can consume a considerable 
amount of CPU time, preventing other critical routing functions 
from being executed. Thus, it is desirable to compute the SPT 
using as little CPU time as possible. 

To cope with the complexity of SPT computation, the tradi- 
tional approach has been simply to limit the size of the routing 
area (e.g., an OSPF area). In fact, it has been recommended that 
the size of an OSPF area be limited to 200 routers, based on 
the cost of the SPT computation [17]. Today, most router ven- 
dors limit the OSPF area to a size between 50 and 500 routers. 
However, there is a growing interest among network operators 
to increase the size of a routing area in order to increase redun- 
dancy and optimize routing. By reducing the complexity of the 
SPT computation and thus eliminating this performance bottle- 
neck, a larger routing area can be allowed. 

Another drawback of using static SPT algorithms is that there 
may coexist multiple routes of the same shortest distance from 
one router to another; by recomputing a new SPT from scratch, 
a router may unnecessarily choose a different route of the same 
minimum distance to forward its packets. This in turn may cause 
the router to change many entries in its forwarding table fre- 
quently, increasing the risk of routing errors or router failures. 

In addition to redundant updates in forwarding tables, unnec- 
essary changes in the SPT also cause undesirable fluctuation of 
traffic load on a given route. (For an excellent discussion on in- 
stability of other routing protocols in the Internet, see [15], [20].) 

In this paper, we will explore a rich class of algorithms that 
can dynamically update the SPT following changes in the link 
states. These dynamic algorithms use information of the out- 
dated SPT and update only the part of the SPT that is affected by 
the change. Our design objectives for these dynamic algorithms 
are twofold. The first objective is to minimize the computational 
complexity required to update an SPT. The second objective is 
to maintain routing stability by making minimal changes to the 
topology of an existing SPT. 
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The purpose of our work is restricted to dynamic SPT algo- 
rithms that can be used in link-state protocols. Our algorithms 
need to be executed in a centralized processor and require a 
complete topology database (such as the link-state database in 
OSPF). There are other routing algorithms in the literature [12], 
[23] which use tree-like structures. However, these algorithms 
are distributive and operate under very different assumptions. 
Comparisons and analogies between such distributed routing al- 
gorithms and algorithms where all path calculation is central- 
ized (like ours) are beyond the scope of this paper. 

Unlike previous work on dynamic SPT algorithms that is 
based on the static Dijkstra algorithm only, we shall present 
an algorithmic framework that also yields dynamic versions of 
other well-known static SPT algorithms such as Bellman-Ford 
and D'Esopo-Pape. This framework allows us to characterize 
dynamic SPT algorithms in a unified way and to establish proofs 
of correctness for these algorithms. In particular, within our 
framework, we propose two different incremental methods to 
transform static algorithms into new dynamic algorithms. The 
first method when applied to the Dijkstra algorithm yields a dy- 
namic algorithm similar to existing ones [11], [10], [14]. The 
first method can also be used to transform other static algo- 
rithms (i.e., Bellman-Ford) into their dynamic versions. The 
second incremental method yields new dynamic algorithms that 
are faster on average. Furthermore, with the second incremental 
method, the resulting dynamic algorithm will make the min- 
imum number of changes to the SPT topology following a link- 
state update, thus improving routing stability. 

In the next section, we shall further discuss some prior 
works. Section III introduces graph-theoretic definitions and 
notations to be used in the paper. In Section IV, we describe 
our algorithmic framework by way of a basic algorithm for 
computing an SPT. Section V explains how the well-known 
static SPT algorithms can be characterized in our algorithmic 
framework. Sections VI and VII describe two specific methods 
for implementing the basic algorithm, which convert static 
algorithms into dynamic algorithms. Section VIII discusses 
theoretical bounds on the asymptotic computational complexity 
of each specific dynamic algorithm. Concluding remarks are 
given in Section IX. The proofs of the theoretical results are 
presented in the Appendix. 

II.  RELATED WORKS 

The problem of routing in data networks has been a subject 
of continual research interest for the past two decades [1], [4], 
[12], [131, [21], [231, [261, [28] and many routing protocols have 
been studied and used in practical networks [6], [18], [22], [25], 
[30]. The stability issues in Internet routing have attracted much 
attention [15], [20]. In fact, our interest in dynamic SPT algo- 
rithms was partly motivated by the problem of routing instability 
in the Internet. 

To the best of our knowledge, the earliest work on dynamic 
SPT algorithms that appears in the literature is [27]. The work 
proves a lower-bound complexity for the worst-case scenario. 
The first efficient dynamic SPT algorithm that we know of is 
discussed in [18]. This algorithm is very similar to the First In- 

cremental Dijkstra algorithm presented in our paper, though the 
work [18] contains no analytical proofs nor simulation results. 

Two semidynamic algorithms to update SPTs are presented 
in Franciosa et al. [9]. Each semidynamic algorithm handles 
the case when the change in an edge weight is either positive 
or negative. The algorithms are dynamic versions of the Dijk- 
stra algorithm, but can only handle integer edge weights. The 
paper only analyzes the worst-case complexity of the algorithm 
in terms of the total size of the graph rather than the number 
of nodes whose distances have changed (denoted by ~Sa in this 
paper). Therefore, the complexity cannot be shown to be better 
than that of a static algorithm. 

Frigioni et al. [1 l], [10] present an algorithm similar to the 
one in [9] but it allows the edge weights to be nonintegers. The 
algorithm is also a dynamic version of the Dijkstra algorithm. It 
is quite similar to our First Incremental Dijkstra algorithm; the 
main difference is that our algorithm optimizes the initialization 
procedure. The complexity of the algorithm in [101 is analyzed 
in terms of the number of nodes whose distance attributes to the 
source change. Their algorithm also introduces some optimiza- 
tion for cases where there is a large number of edges (where the 
node degree is not bounded) in order to bound the worst-case 
complexity in such cases. 

III .  DEFINITIONS AND NOTATIONS 

We now define some notation to be used in the rest of the 
paper. We assume that the reader is familiar with basic graph 
theoretic definitions. Let ~ = ('12, g) denote a directed graph 
where 12 is the set of nodes and g is the set of edges in the graph. 
Let Source (G) E 12 denote the root or source node of G. 

For each directed edge e E g, we use W(e) to denote the 
weight (distance) associated with e, S(e) and E(e) to denote 
respectively the source node and the end node of e. The length or 
distance of a directed path is the sum of weights of the edges on 
the path. Given a set of nodes N" C_ 12, we associate with it two 
sets of edges: I (N')  = {e E g I E(e) E .A/} (the set of edges 
directed into the nodes in A[) and 0(N') = {e E £ I S(e) E 
N'} (the set of edges directed out of the nodes in N'). These 
parameters only depend on the topology of the network, and 
their values do not change during the execution of the algorithm. 

A rooted tree T is a subgraph of ~ such that Source (G) is in 
T and every node in T is reachable from Source(G) through 
a unique directed path using only edges in 7-. A node x is a 
parent node of y in 7" if x is the source node and y is the end 
node of an edge in 7-. We associate with each node n in a tree 
7- the following attributes: P(n, 7-) is the parent node of n and 
D(n, 7-) is the distance attribute ofn.  Since 7- is a tree, invoking 
P(n, 7-) recursively determines a unique path from Source (G) 
to any node in 7-. 

The descendents of a node n in 7- are all the nodes that are 
reachable by n. We use B(n, 7-) to denote a subset that in- 
cludes n and some descendents of n in tree 7-. As we will see 
later, an execution of our algorithm involves the distance update 
of the subset B(n, 7-) for various nodes n. The different ways 
the subset B(n, 7-) can be chosen for each node n will lead to 
different incremental methods for computing the SPT. For ex- 
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ample, B(n, 7-) can be chosen to be simply n itself, the children 
(the next generation) of  n with itself, or all its descendents with 
itself in tree T .  Specifically, the notation Bmax(E(e), 4-), which 
is always used in the initialization of the algorithm denotes the 
set including the end node of edge e and all its descendents in 
4-. 

An SPT in G is a rooted tree such that the length of every path 
from Source (Q) to every node in G is minimized. Since there 
can be different paths of  the same minimum length between two 
nodes, an SPT in G is not unique. However, it follows from the 
definition that the length of the path from Source (~) to any 
node n • G in any SPT is unique. 

IV. ALGORITHMIC FRAMEWORK 

In this section, we present a broad class of algorithms that 
can compute an SPT from a source node to every other node 
in the graph. This class of algorithms is presented in a unified 
framework as the basic algorithm. Depending on the initial- 
ization procedure (see below), the basic algorithm includes as 
special cases some well-known static SPT algorithms, such as 
Bellman-Ford,  Dijkstra, and D 'Esopo-Pape  as well as their dy- 
namic versions. (The proof of  correctness of  the basic algorithm 
in computing an SPT will be presented later, in the Appendix.) 

A tree data structure, denoted by 4-, is maintained by the basic 
algorithm to keep track of an existing potential SPT. In partic- 
ular, every node n in the graph ~, along with its parent attribute 
P(n, 4-) and distance attribute D(n, T) is present in 4-. This 
data structure 4- changes progressively during the computation, 
and when the execution of the algorithm is completed, it will 
represent an SPT. 

In addition to the data structure 4-, the basic algorithm also 
maintains a list Q that contains a subset of nodes and their parent 
and distance attributes temporarily. In particular, each element 
in Q is of  the form {n, (p, d)}, where p and d respectively 
denote the parent of  n and the potential distance of n from 
the source node with respect to some tree. The instruction EN- 
QUEUE(Q, {n, (p, d)}) adds one more element to Q; if node n 
is already in Q with attributes Pold and dotd, the new attributes 
(p, d) will replace the old ones only if the new distance d is less 
than dora. At any instant, only one set of  attributes is maintained 
for each node in Q. When an EXTRACT(Q) instruction is exe- 
cuted, a single element (to be defined by a specific algorithm) 
is selected and removed from Q. Different implementations of  
ENQUEUE(Q, {n, (p, d)}) and EXTRACT(Q) in the basic algo- 
rithm yield different specific algorithms to be later discussed. 

The basic algorithm also makes use of  arithmetic using the 
symbol for infinity (oo). By this term, we refer to any number 
that is much larger than the distance of the longest path in the 
network. It is also the largest number we can have. On most 
computers, this term would be the largest number that can be 
held by a variable type. For example if we perform the arithmetic 
operation o o -  x -  oo, the result would be - x. On the other hand, 
since no number can be larger than oo, oo + x - oc = 0. 

The basic algorithm contains an initialization procedure (step 
1) and an iterative loop (steps 2-4). The following pseudocode 

formally describes the algorithm. An informal description of the 
algorithm will follow after the pseudocode. 

The Basic Algorithm 
STEP i: Initialization 

'(A) Static Version 

V(n • 
P(n, ~7~) +- @ 
D(n, 7-) ~- oo 

ENQUEUE (Q, {Source 

(B) Dynamic Version 
ists) 

Case 1 (Edge e increases 

A): 
W(e) +- W(e) + A 
if e is in 4- 

Vn • # ~- Bmax(Eie)~ ~) 
D(n, 4-) +- D(n, 7-) + m 

distance* / 
/* of each descendent of E(e) 

A*/ 
Ve' • I(Af) ./* Consider 

rected into /* 

(0), (¢, 0)}) 

(an outdated SPT ex- 

its weight by 

/* Increase 

and itself by 

all edges di- 

/* all descendents of E(e) and itself*/ 
if D(E(e0, 4-) > D(S(e'), "77-) q- W(e') 

/* if the increased distance of a node 

is*/ 
/* larger than its distance in another 

path * / 
newdist = D(S(et), i] 0 + W(e 0 /* c h o o s e  * /  

/* the smaller distance as the new poten- 
tial distance */ 

ENQUEUE(Q, {E(et), (S(e ') ,  newdist)}) 
/* update the node with the new distance 
and * / 

/* new parent in the list Q*/ 

Case 2 (Edge e decreases its weight by 
A): 

W(e) +-- W(e)^-- 
if D(S(e), <D(E(e), 4-) /* if the */ 
/* reduced weight of e yields a smaller 
distance for E(e) */ 
~ '  ~-- [D(S(e), 4-) q- W(e)] - D(E(e), 4-) 

/* Keep track of the difference */ 
P(E(e), 4-) ~- S(e) /* set the parent at- 
tribute * / 

/* of the end node */ 
Vn E ~/: Bmax(E(e), 4-) 

D(n, 4-) +-D(n,  T ) + n '  /* R e d u c e  t h e  * /  
/* distance of each descendent of E(e) and 

itself */ 
/* by the difference */ 
Ve' 6 0(JV') /* Consider all edges directed 
out * / 

/* of the descendents of E(e) and itself */ 
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if D(E(e')~ 9) > D(S(e')~ 9) +W(e') /* if the 
*/ 

/* reduced distance of a node also reduces 
the distance */ 

/* of another node */ 
newdis t  ~- D(S(e')~ T) + W(e') /* choose * / 

/* the smaller distance as the new poten- 
tial distance */ 

ENQUEUE (Q, {E(e'), (S(e'),  newdist)}) 
/* update the node with the new distance 

and new */ 
/* parent in the list Q */ 

STEP 2: Node Selection 
if Q = 0  

Terminate 
else 

{y, (x, d)} ~ EXTRACT (~) /* select and */ 
/* remove an element from the list */ 

~ (d- D(y~ 9)) /* compute the difference 
*/ 

/* between new and old distances of the 
selected node */ 

if A > 0 /* if there is no improvement in 
distance */ 

Go to Step 2 /* discard this informa- 
tion • / 

/* and go back to step 2 to extract an- 
other node */ 
P(y~ 9) ~ m /* otherwise, update the 
parent */ 

/* attribute of the selected node */ 
]~ +-- B(y~ 9) /* consider the selected node 
and */ 

a selected subset of its descendents */ 

STEP 3: Distance Update 
Vn E A/" 

D(n, 9) +- D(n, 9) + A /* update the distance 
of */  

/* the selected node and each descendent 
considered */ 

STEP 4: Node Search 

Ve 6 0(Af) /* consider all edges directed 
out of the */ 

/* selected subset of nodes */ 
if D(E(e)~ 9) > D(S(e)~ 9)+W(e) /* if the */ 

/* reduced distance of a selected node 
also reduces */ 

/* the distance of another node */ 
newdist +- D(S(e), 9) + W(e) /* choose the */ 

/* smaller distance as the new potential 
distance */ 

ENQUEUE ( e ,  {E(e), (S(e), newdist}) 
/* update the node with the new distance 

*/ 

/* and new parent in the list ~ */ 

Go to Step 2 

A. Informal Discussion of the Algorithm 

To help understand the basic algorithm, here we shall give a 
brief description of  its executions. As the execution is the same 
for the static versions and the dynamic versions after initializa- 
tion, we shall only discuss the dynamic version, since the ini- 
tialization of  the static version is trivial. 

First, the goal of  the initialization phase is to identify those 
nodes that may be affected by the change in the link state. The 
potentially affected nodes are those that are no longer connected 
to the root through the same shortest path as before. Moreover, 
in the initialization, we only want to select a minimal set of such 
nodes whose changes in distance will be subsequently propa- 
gated to their descendents in the original tree, which can be up- 
dated. 

In case 1, after updating the changed edge e with the new 
increased weight, we check if the edge is in the existing SPT. 
If  it is, we select its end node E(e) and all descendent nodes of  
E(e) that are reachable in the existing SPT. All such nodes will 
be included in a set Af for further updating. The intuition is that 
the set A/" covers all the affected nodes. Now for each node that 
is attached to a link directed into a node in Af, we compute the 
potential distance newdist by adding the distance of the parent 
node and the weight of  the edge connecting the two nodes. 

In case 2, after updating edge e with the new decreased 
weight, we update the distance of  all its descendents (the set 
Af) using the same difference change 6'. For every edge e 
originating from nodes in Af we compute the potential new 
distance newdist of its end node E(e) by adding the distance of  
its source node S(e) and the new weight W(e). If  this potential 
new distance is in fact smaller than the old distance of E(e), the 
node E(e) is inserted in the list Q. 

After the initialization step, we extract from the list Q in step 
2 any element (the exact procedure is determined by the specific 
algorithm). This selected node is then updated (if the new distance 
is better) with its new parent indicated in Q and the structure of 9 
is modified accordingly to reflect the new child-parent relation. 
Moreover, in step 3, the selected node together with any (to be 
specified by the method used) of its descendent nodes (denoted 
by the set Af) in the existing tree 9 will now have their correct 
distances updated as their old distances incremented by A. 

Finally, in step 4, we consider each node E(e) that is attached 
to an edge e directed out of a node S(e) in A/'. If  the potential 
new distance newdist of E(e) [which is equal to W(e) plus the 
distance of  S(e)] is smaller than its old distance, we then en- 
queue in the list Q the node E(e). After this step is completed, 
the execution of  steps 2 and 3 will be repeated until the list Q is 
empty. 

At each iteration, a new node and possibly some of its de- 
scendents are updated with a better distance and a better parent 
that reflects that distance. In this manner a change in a link-state 
will propagate along the old SPT until a new valid SPT is con- 
structed. 

B. Multiple Link Weight Changes 

When there are several link weight changes occurring at once, 
it is always possible to run the algorithm sequentially for each 
weight changed. However, some optimization can be achieved 
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by updating several of these changes together. Even though a 
separate initialization needs to be done for every weight change, 
the main body of the algorithm needs to be executed only twice. 
We now describe how such optimization can be realized. 

First of all, we initialize all the weight increases. For each 
link whose weight increases, the first four lines of the code for 
Case 1 are executed. This ensures that all the affected nodes have 
updated their distance attributes in 3 .  Then, we execute the next 
four lines of the code in Case 1 for a set .M that includes all the 
nodes previously updated. This ensures that all the necessary 
nodes are enqueued in the list Q. The rest of the algorithm (steps 
2-4) is then executed in a normal way. 

After the SPT is updated with all the weight increments, we 
update it again for all the weight decrements. As before, the 
first six lines of the initialization (Case 2) are executed for each 
weight decrement, and then the last four lines are executed with 
a set .M which includes all the nodes previously updated. After 
the initialization, the rest of the algorithm (steps 2-4) is executed 
normally. 

W. SPECIAL CASES OF THE BASIC ALGORITHM 

Here we will show how the best-known static algorithms can 
be viewed as special cases of our basic algorithm. For these 
cases, the static version of the initialization procedure in our 
basic algorithm is used. The branching function B(n, T) in the 
static case is defined as 

B(n, T) = {n} Vn E V. (1) 

In this way, the new SPT is constructed in T by changing the at- 
tributes of one node at a time during each iteration. This method 
is used in several well-known static algorithms for computing 
the SPT. The only differences between these algorithms consist 
in the different ways in which the temporary list Q is imple- 
mented. 

A. Bellman-Ford Algorithm 

The simplest way of implementing the list Q is by using a 
FIFO queue. New nodes and their attributes are enqueued at 
bottom of the queue and extracted from the top of the queue. 
When this queueing discipline is used in the static method, it 
gives rise to the Bellman-Ford algorithm [2]. We will refer to it 
as the static Bellman-Ford algorithm. 

B. D'Esopo-Pape Algorithm 

Another way of implementing Q is by using a queue where 
(as in Bellman-Ford's case) nodes are extracted from the top 
of the queue. However, unlike Bellman-Ford's case, a node is 
enqueued at the bottom of the queue only when that node has not 
been enqueued in the list Q before. If some node n has already 
been inserted and extracted from Q, the next time when n is 
inserted in Q it will be at the top. When the static version of the 
initialization procedure is used, this queueing discipline gives 
rise to the D'Esopo-Pape algorithm [3]. We will refer to it as 
the static D'Esopo-Pape algorithm. 

. . . . . . . . . . . . . .  , , . . . .  

.......................... , . . . .  13) 

: 10) ~ 2  ~4  ;~ ! i 

(4 )  ............... ~ 4 . _ 12 .. ....... 9 

Fig. 1. Initialization after a link failure. 

C. Dijkstra Algorithm 

Yet another way of implementing Q is by using a priority 
queue where the node enqueued with the smallest distance at- 
tribute is always extracted first. When the static version of the 
initialization procedure is used, this algorithm is equivalent to 
the Dijkstra algorithm [7]. 

To implement the priority queue, one can use a linked list 
where inserted nodes can be placed anywhere. The node with 
the smallest distance attribute can then be extracted by searching 
through the linked list sequentially. The resulting algorithm will 
be referred to as the static Linear Dijkstra algorithm. A more 
efficient way to implement the priority queue is to use a binary 
heap data structure, and the resulting algorithm in this case will 
be called the static Heap Dijkstra algorithm. 

VI. FIRST INCREMENTAL METHOD 

The four static SPT algorithms presented in the preceding 
section can be transformed into dynamic algorithms by using 
the dynamic version of the initialization procedure of the basic 
algorithm. The branching function B(n, T) = {n} is the same 
as in the static algorithms. 

We call this method the first incremental method and the re- 
suiting algorithms "First Incremental Bellman-Ford," "First In- 
cremental D'Esopo-Pape," "First Incremental Linear Dij kstra," 
and "First Incremental Heap Dijkstra." 

We will illustrate with a number of figures how the first in- 
cremental algorithms work on a simple network. For simplicity, 
we assume each link in the network is bidirectional and has the 
same cost (indicated in bold-face numbers in Fig. 1) in each di- 
rection. In these figures, the solid thick arrows between nodes 
represent the directed edges that are in the current SPT (7"). The 
thin dashed segments represent other edges in the network that 
are not in T. 

Fig. 1 shows how the algorithm is initialized after a link 
failure between nodes 1 and 7 [link (1,7)]. First link (1,7) is 
removed from G. The dotted curve includes the set of nodes 7 9 
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t 4 )  . . . .  .. "~ 

?;>_ 

/ :1 ! 
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, J  

Fig. 2. New SPT using First Incremental Bellman-Ford. 

that are descendents of node 7. These are the nodes that might 
have their distance attributes increased as a result of  the link 
failure. The nodes outside 7 ~ will be unaffected by the link 
failure. The shaded nodes denote the nodes in the germinal 
set (to be defined later in the Appendix when the theoretical 
results are proved) that are initially stored in Q. These nodes 
are necessarily the point of entry into 7 ~ for all potential new 
shortest paths. This initialization procedure is the same for all 
the dynamic algorithms. 

Fig. 2 illustrates how the First Incremental Bellman-Ford al- 
gorithm recomputes the SPT. We assume the link distance is 
the same as in Fig. 1 (except for the failed link) and for sim- 
plicity, the link distance is not indicated in Fig. 2 and subse- 
quent figures referring to the same network. The number next to 
each node represents the order in which that node is extracted 
from Q. Each number is also placed next to the link indicating 
the parent attribute with which it was extracted. Note that in 
Bellman-Ford's  algorithm, the initial order of  extraction from 
Q is arbitrary. Our example indicates that node 14 is the first 
node extracted from Q, and its parent attribute is node 17. The 
next node extracted is node 9 with parent attribute node 4. 

Note that with this algorithm, nodes 11, 12, and 14 are ex- 
tracted more than once. Since a node might be extracted with 
incorrect attributes, it will need to be enqueued and extracted 
again to obtain correct attributes. Also, note that the parent at- 
tribute of  node 13 has changed from node 12 to node 8 in a new 
SPT. This change still gives a correct (but different) SPT. The 
changes that were performed on the tree data structure were un- 
necessary. This algorithm does not alter the SPT structure of  the 
nodes whose distance is not affected by the change. However, 
when there are several possible SPTs, this algorithm cannot 
guarantee that the minimum number of  changes will be made 
in the tree structure. (In fact, the unnecessary routing change in 
this example motivates us to consider more stable dynamic al- 
gorithms using the second incremental method to be discussed 
in the next section.) 

4 

X 2  "'" 

"- 8 12 : 
L.  ... . . . .  

o Iv 
% , /  . 

5 , II 

l i ~ 4 

~ 5  ..... " 
....,..--! 

"*--.•..... I 15 
" 2  ...... 

l 

17 

16 

Fig. 3. New SPT using First Incremental D'Esopo-Pape. 
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Fig. 4. New SPT using First Incremental Dijkstra. 

Fig. 3 shows how the First Incremental D'Esopo-Pape ob- 
tains a new SPT for the same problem• Some nodes are still ex- 
tracted more than once, but the total number of  extractions is 
smaller than in the Bellman-Ford algorithm (10 extractions in- 
stead of  12). In this example, the improvement is caused by the 
heuristics of  D'Esopo-Pape.  When node 11 is enqueued for a 
second time in Q, it receives first priority in Q so that it is ex- 
tracted immediately after with correct attributes. Because node 
11 is extracted earlier (extraction #6 rather than #9), it allows 
for nodes 12 and 14 to have correct attributes the very first time 
they are extracted. 

Fig. 4 shows how the First Incremental Dijkstra algorithm ob- 
tains a new SPT for the same problem. Because of  the order in 
which nodes are extracted (the node with the smallest distance 
attribute first), every node is extracted only once. Therefore, this 
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Fig. 5. Initialization after a kink cost improvement. 

algorithm performs the minimum number of extractions. The 
cost incurred in such an improvement is that some data struc- 
ture is needed in order to search for the node with the smallest 
distance attribute in Q. 

On the other hand, Fig. 5 shows how the basic algorithm is 
initialized when edge (1,7) decreases its cost by some A = 8. 
The set of nodes inside the dotted curve (set 7 9 ) will have their 
distance attributes decreased by A, but the SPT structure inside 
79 will remain unchanged. Only the nodes outside of 7 9 might 
have to change parent attributes in order to maintain shortest 
distances from the source node. In this case, the shaded nodes 
can decrease their distance attributes by changing their parent 
attribute to some node in 7 9 (indicated by the thin arrow). Note 
that all SPT paths from 79 to nodes outside 79 must necessarily 
pass through the shaded nodes (in the germinal set). All nodes 
in the germinal set are inserted in the list Q. This initialization 
procedure is the same for all our dynamic algorithms. 

Fig. 6 shows how the First Incremental Dijkstra algorithm re- 
constructs an SPT after the initialization in Fig. 5. Each number 
next to a node represents the order and the parent attribute of 
the extracted node. This algorithm only extracts each node once 
from Q. The shaded nodes have all been visited by the algorithm 
and have had their distance attributes decreased. The nodes out- 
side of 79 that are not shaded are the nodes that could not de- 
crease their distance attributes, and therefore, they are not af- 
fected by the algorithm. 

VII .  SECOND INCREMENTAL METHOD 

Another set of dynamic algorithms can be obtained by 
changing the branching function B(y, T)  used in Step 2 of 
the basic algorithm so that it includes as many descendents 
as possible. For optimization purposes, the only nodes that 
should not be included in B(y, T)  are those that will be directly 
affected by some node extraction from Q (there is no point 
in updating a node that we know will be later updated with a 
smaller distance once it is extracted from Q). Likewise, every 

iiii<ii6~ :": " ~ "  " . . i . .  " . ~  : 

\ 
\ 

\ 

• 

Fig. 6. New SPT using First Incremental Dijkstra. 

node included in B(n, T)  should be removed from Q (there is 
no point in keeping a node with a known nonoptimal distance 
in Q). To specify exactly how the selection of the nodes is 
done, we present the following algorithm that defines the set 
A/" = B(y, T)  in Step 2 of the basic algorithm. The instruction 
DEQUEUE(n, Q) removes node n and its attributes from Q. 
The notation B1 (k, 7-) denotes the set including node k and its 
children in T.  

~- {y} /* the temporary queue starts with 

node y */ 
dV ~ ~- ~ /* the branch set is initially 

empty */ 

step i ) 
if /C = 0 /* if the temporary queue is 

empty * / 
Stop /* done. ]¢ contains the desired 

output * / 

else 
k +- EXTRACT(K~) /* pick any node from the 
*/ 

/* temporary queue */ 
A/ ~-{A/, k} /* add this node to the output 

set * / 

step ii) 
Vn 6 Bl(k, ~) /*for all the immediate chil- 

dren of k */ 
if n 6 Q /* if the child is in the candi- 

date list ~*/ 
if D(n, ~) + ~ _< D(n, ~) /* and if the new 

*/ 

/* flooded distance for the child is 

better * / 
DEQUEUE(n~ ~) /* remove it from */ 

/* the candidate list */ 
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~-- { ~ , n }  /* add the child node n */  
/* to the temporary queue */  

else 

~ {~,n} /* add the child node n */ 

/* to the temporary queue */ 

Go to step i) 

We call this method the second incremental method and 
its four algorithms are referred to as "Second Incremental 
Bellman-Ford," "Second Incremental D'Esopo-Pape,"  
"Second Incremental Linear Dijkstra," and "Second Incre- 
mental Heap Dijkstra." 

The first incremental method changes the attributes of  only 
one node during each iteration. The second incremental method 
is less conservative since at each iteration an entire branch of  
2r changes its attributes. Simulation results also show that the 
extra work performed by the second incremental method pays 
off in terms of  average performance. See [19] for an extensive 
simulation study of  these algorithms. 

For example, Fig. 7 shows how the Second Incremental Dijk- 
stra algorithm obtains a new SPT after the initialization in Fig. 1. 
First, node 7 is extracted from Q with node 2 as its parent at- 
tribute. All the descendents of node 7 have their distance at- 
tributes updated. Then node 8 is extracted with node 5 as its 
parent attribute; all its descendents have their distance attributes 
updated. Finally, node 9 is extracted with node 4 as its parent 
attribute. Each node is extracted at most once from Q (there 
are only three extractions in this case). Nevertheless, because 
of the distance updates, some nodes (8 and 9) are visited more 
than once by the algorithm. The advantage of  this second incre- 
mental method over the first one (shown in Fig. 4) is that even 
though some nodes are visited more than once, many fewer iter- 
ations take place, the list Q is much smaller and simpler, fewer 
search operations are needed, and most visited nodes only re- 
quire a simple distance attribute update. 

Another advantage of the second incremental method is that it 
guarantees that the minimum number of parent attributes will be 
changed. In other words, a link is removed from the current SPT 
tree T only if that link cannot be part of  a n y  possible SPT. This 
result is proved in Theorem 5 in the Appendix. In this example, 
node 13 maintains node 12 as its parent attribute and does not 
change it to node 8 as done in the first incremental method. 

Fig. 8 shows the new SPT calculated by the Second Incre- 
mental Dijkstra algorithm after the initialization stage of  the 
basic algorithm (see Fig. 5). As seen from the figure, a min- 
imum number of  parent attribute changes are made. 

VIII. ALGORITHMIC COMPLEXITY 

Here we will state theoretical bounds for the complexity of  
the dynamic algorithms presented in the preceding sections 
(four dynamic algorithms corresponding to each incremental 
method). The proofs of these theoretical bounds will be given 
in the Appendix. 

The complexity of algorithms is measured in terms of  the 
following: 

• total number of  comparisons made between the distances 
of  two nodes; 

• total number of comparisons made between two elements 
in the list Q; 

• total number of times the nodes are extracted or dequeued 
from the list Q. 

Note that in the worst case, the updated SPT can be com- 
pletely different from the outdated SPT, and the complexity of  
dynamic SPT algorithms is no better (or sometimes even worse) 
than the static algorithms. However, as we discussed earlier, it 
is most often the case that a change in the weight of an edge 
will only yield small changes in the topology of the SPT. Thus, 
it is more useful to measure the complexity of  dynamic SPT al- 
gorithms in terms of parameters that reflect the changes in the 
SPT. 
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Given that there is a change in the weight of some edge, let 
6a denote the minimum number of nodes that must change their 
distance or parent attributes (or both) and @d the minimum 
number of nodes that must change their distance and parent at- 
tributes. Note that the parameters @d and 6d depend only on 
the topology of the network, the current SPT, and the link-state 
change, but not on the algorithm used. They reflect the min- 
imum amount of information needed by any dynamic algorithm 
in order to recompute the SPT. Also, let D max denote the max- 
imum node degree, which corresponds to the maximum number 
of ports any router or switch in the network can have. We will 
evaluate the complexity of our algorithms in terms of these pa- 
rameters. We shall focus on the case where there is a change in 
the weight of only a single link. 

For comparison with the well-known static algorithms, we 
state the following known results regarding their complexity [5]: 

Bellman-Ford 

D'Esopo-Pape 

Linear Dijkstra 

Heap Dijkstra 

Fibonacci Dijkstra 

o(IEI. IVl) 
No Polynomial  Upper Bound  

o(IVl z) 
o(IEI, lglVl) 
o ( I V l -  lglVl + IEI). (2) 

The Fibonacci Dijkstra algorithm uses the data structure 
of a Fibonacci heap to implement the priority queue for Q. 
Although the algorithm has the lowest asymptotic complexity 
among others shown above, it is mostly of theoretical interest 
because of the large constant overhead involved in operating 
Fibonacci heaps [5]. 

A. First Incremental Method 

The following summarizes the complexity of the dynamic 
SPT algorithms derived using the first incremental method: 

Bellman-Ford 

D'Esopo-Pape 

Linear Dijkstra 

Heap Dijkstra 

Fibonacci Dijkstra 

O(D . . . .  • ~ )  

No Polynomial  Upper Bound  

O ( ~  + D . . . .  .6d) 

O ( D m a x  • 6 d "  lgSd) 

O(Sd • lgSd + D . . . .  • 6d). (3) 

The complexity of the initialization is just the number of 
edges visited during step 1 of the basic algorithm because this 
stage does not involve queueing or searching operations. In Case 
2 of the initialization procedure (when an edge decreases its 
weight), ]B . . . .  (E(e))] < 6d. Therefore, the initialization com- 
plexity is always bounded by O ( D  . . . .  • 6d), which is always less 
than the complexity of the rest of the algorithm. 

However, in Case 1 of the initialization procedure (when an 
edge increases its weight), ]B . . . .  (E(e))l >_ 6d. Therefore, in 
rare cases, the initialization complexity might be higher than 
that of steps 2--4. If we want to obtain a strict linear complexity 
bound, we need to slightly modify the initialization procedure 
so that only the nodes that must change distance attributes are 
included in the set .hr. The initialization complexity after such a 
modification is then bounded by O (Dm~x " 8d), which is always 
less than the complexity of the rest of the algorithm. 

The following pseudocode illustrates how the set N" can be 
obtained in O ( D  . . . .  • 6d) time if our algorithm keeps track 
of all the possible shortest paths. Keeping track of all shortest 
paths can be easily achieved with an additional small constant 
overhead [O(D . . . .  ) times more space] in the algorithm. This 
is done by adding an alternative parent attribute to every node 
in Q or 7- whenever an alternative shortest path is found [when 
O (E(e), ~ )  = n e w d i s t  in Step 4 of the basic algorithm or when 
D(n, T )  + A = D(n, Q) in step ii), see Section VII]. 

Jc +-- {v} 

P + - - 0  
step (A) 

if }C=@ 

Goto step (C) 

else 

k ~-- EXTRACT(K) 

N ~ -  {H, k} 
step (B) 

Vn 6 Bl(k, T)  
if n has an unmarked alternative parent 

mark k in node n 

else 

IC ~- {r ,  n} 
if k is the alternative parent of some 

node n 

mark k in node n 

if all parent and alternative parents 

are marked in n 

unmark everything in n 

Go to step (A) 

step (C) 

Vn E P 
P(n, ~) = any unmarked alternative parent 

of n 

remove the marked alternative parents of 

n 

Because in practice IB . . . .  (E(e)) I hardly exceeds 6d by much, 
this modification is not needed in practical cases. The modifica- 
tion is given mainly to obtain a better theoretical bound on the 
complexity of the initialization procedure. 

B. Second Incremental Method 

The following summarizes the complexity of some dynamic 
algorithms that can be derived using the second incremental 
method: 

Bellman-Ford 

D'Esopo-Pape 

Linear Dijkstra 

Heap Dijkstra 

O ( D  . . . .  • ~ )  

No Polynomial  Upper Bound  

O ( S p d S d  + ~ " D . . . . .  " 5d )  

O ( ~ '  D . . . .  • 5d " lgSd) 
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Fibonacci Dijkstra O(ra. lg 64 + 7 • Dmax " ~d) (4) 

where 3' denotes the redundancy factor, which represents the av- 
erage time that each node is visited by the algorithm. This factor, 
although very close to 1 in practice, can take values between 1 
and 6pa. 

Since in theory the term 3" can be as large as ~pd, the 
worst-case asymptotic complexity of the second incremental 
algorithm is worse than that of  the first incremental algorithm. 
However, since in practice, there are very good reasons to 
believe that 7 is very close to one, in practice the algorithms 
in the second incremental method generally outperform those 
in the first incremental method. The simulation results in [19] 
show how 3" is generally small and why the second incremental 
method performs well. 

IX. CONCLUSION 

We have presented new dynamic algorithms for computing 
an SPT in a directed graph. Our dynamic algorithms are derived 
using a unified algorithmic framework, under which the best 
known SPT algorithms (static or dynamic) can also be derived 
as special instances. Within this algorithmic framework, we 
have proposed two specific approaches that transform known 
static SPT algorithms to new dynamic ones. These new 
dynamic algorithms have theoretical asymptotic complexity 
bounds that match the best known results. Among all the 
dynamic algorithms we studied, the algorithms using the first 
incremental method give rise to the best theoretical worst-case 
time bounds, while those using the second incremental method 
give rise to the best practical or average running times. The 
most promising algorithm for practical purposes is the Second 
Incremental Dijkstra algorithm. Its novelty is that it provably 
minimizes the number of  link changes in the SPT. 

APPENDIX 

PROOFS OF THEORETICAL RESULTS 

A. Correctness of the Basic Algorithm 

We will first show that the basic algorithm correctly computes 
a new SPT for the case where only one edge in the network 
changes its weight. We will then indicate how the proof can 
be extended to the case where multiple edges can change their 
weights. 

Recall from Section III that the SPT for a given G is not 
unique. Let S be the set of SPTs in ~. For every 7- C S,  the dis- 
tance attribute D(n, 7-) contains the shortest distance between 
node n and Source(G). Note that even though the SPT is not 
unique, the distance attributes in 7- C S are identical, and hence 
D(n, 7-) is unique. 

Lemma 1: In each stage of the basic algorithm, if 
d = D(n,2?) ¢ ec, d is the length of  the path in 2? be- 
tween node n and Source(F). 

Proof" In the static version of  initialization, the only finite 
distance attribute belongs to the source (= 0). In the dynamic 
version of initialization, every node n in 2? has a distance at- 
tribute equal to the length of the path in 2? between n and the 
source.  

During steps 2-4, a new distance attribute for some node n is 
updated in 27 by adding the distance attribute of  n ' s  new parent 
to the weight of the edge between the parent and n. Therefore, 
the new distance attribute represents the length of  the some path 
in 2? from the source to n going through the new parent node.•  

Lemma 2: In the basic algorithm, 7- always maintains a tree 
structure. 

Proof" It is clear that at the end of  initialization, 27 main- 
tains a tree structure. During steps 2-4 of the basic algorithm, 
every node in 27 has a distance that is smaller than the distance 
of  any of its descendents. The only time when the structure of  
27 can change is during step 2 when a node n selected from the 
list Q changes parent in 2?. However, for the node n to be se- 
lected from Q, the new parent must have a smaller distance than 
n. Therefore, the parent of  n cannot be a descendent of n and 
hence there cannot be any cyclic path in 2?. Moreover, each node 
in 2? has only one parent. Thus, 2? maintains a tree structure. • 

Lemma 3: The basic algorithm will terminate. 
Proof" A node n and its new attributes can only enter Q if 

the new distance attribute is smaller than the distance attribute 
for n in 2?. Because there are only a finite number of paths from 
the source to each node, using Lemma 2 and Lemma 1 we know 
that the distance attribute for some particular node can only im- 
prove a finite number of  times. In other words, a node can only 
enter Q a finite number of  times. Since at least one node is se- 
lected and removed from Q in each iteration, the algorithm must 
terminate. • 

For convenience, we introduce the following definition: 
Definition 1: A node n is said to be consolidated at some step 

of  the algorithm if its attributes in 2? will not change further in 
the execution of  the algorithm. 

Lemma 4: If  node n is enqueued in Q with its distance at- 
tribute dmin equal to its shortest distance from the source, after 
a finite number of  steps, node n will be consolidated with its 
distance attribute drain. 

Proof" By Lemma 3, we know that n will be eventually 
extracted from Q before the algorithm terminates. Since a node 
can enter Q only when its distance can be reduced, node n with 
its shortest distance dmin cannot re-enter Q. In other words, n 
will be eventually consolidated. • 

Lemma5: If  node n is consolidated with its shortest distance, 
all descendents of n with respect to any SPT will be consoli- 
dated with their shortest distances. 

Proof" It suffices to prove the statement for all children 
(next generation) nodes of n in any SPT since we can then secly 
the result recursively for all descendents. Let n / be any of  ns 
children nodes connected to n via edge e in any SPT. Since n 
is consolidated with its shortest distance dmln, the value dmin -k- 
W(e) must be the shortest distance of  n/. 

After node n is consolidated with its shortest distance dminj 
during step 3, its child n ~ will either have an updated distance 
drain q- W(e) or be examined in step 4 of  the algorithm. In the 
former case, n ~ cannot improve its distance further and will be 
consolidated. In the latter case, n '  will enter the list Q with 
distance dmin + W(e), and according to Lemma 4, n ~ will also 
be consolidated eventually. • 

We now define what a germinal set is in order to proceed with 
the rest of  the proof. 
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Definition 2: Let 79 be the set of nodes whose distance to the 
root through some path defined by some current rooted tree 9 
is larger than the minimum distance. We define a germinal set 
A with respect to a current tree 9 to be any set of nodes whose 
descendents with respect to any valid SPT include all nodes in 
79. 

Lemma 6: Suppose at some instant in the execution of the 
basic algorithm, the tree data structure 9 is not an SPT. If all 
nodes in any germinal set A (with respect to current tree 9 )  
are enqueued in the list Q with their shortest distances, iterating 
through steps 2-4 of the basic algorithm will result in 9 repre- 
senting an SPT. 

Proof" According to Lemma 5, the nodes in 79 (as ex- 
plained in Definition 2) will be consolidated with their shortest 
distances. Since all distance attributes are distances of real paths 
(Lemma 1), no distance attribute can be less than the optimal 
distance. Therefore, the distance attributes of nodes not in 79 are 
their shortest distances, and they are already consolidated with 
their shortest distances. Hence, when all nodes are consolidated, 
9 represents an SPT. • 

Any germinal set of nodes serves as "seeds" to (re)construct 
an entire SPT. The correctness of the basic algorithm then fol- 
lows by proving that the initialization of the algorithm enqueues 
a germinal set of nodes ¢4 with their shortest distances in the list 
Q. 

Lemma 7: The initialization of the basic algorithm enqueues 
a germinal set of nodes with their shortest distances in the list 
Q. 

Proof" When the algorithm starts from scratch (static 
version), the initialization enqueues only Source(G) (with the 
shortest distance being 0). Since any node is a descendent of 
the source node Source(G) with respect to any SPT tree, any 
set containing Source(G) is a complete germinal set. 

Now consider the dynamic version of the initialization. Sup- 
pose an edge e in 9 (the original SPT) increases its weight by 

and suppose that the distance of each node Bm~(E(e), T) 
has been updated with an increase of 2x. After the update, let 
79~ be the set defined in Lemma 6. Note that 79q- is a subset 
of Bm~x(E(e), T) containing those nodes each of which can 
find a shorter path from the source without passing through 
e. These alternative paths must pass through nodes in 7~ = 
Bmax(E(e)~ 9)  that can decrease their distance label in 9 by 
choosing a parent p ~ ~ .  The set A of all such nodes is a com- 
plete germinal set and will be enqueued with their shortest dis- 
tances after the initialization procedure. 

On the other hand, suppose the weight of an edge e in 9 
decreases. The set 79~- then consists of nodes each of which can 
find a shorter path from the source through the edge e. The nodes 
in ~ = Bmax(E(o)~ ~V) are first removed from 79¢ by updating 
their new distance attributes (the parent attribute remains the 
same). The remaining nodes in 79 are not in 7-¢, but their shortest 
paths must pass through nodes in 7¢. The set of nodes not in T¢ 
that can decrease their distance label by selecting a parent in 7-¢ 
is therefore a complete germinal set and will be enqueued with 
their shortest distances after the initialization procedure. • 

Theorem 1: Upon termination of the basic algorithm, 9 rep- 
resents an SPT with all nodes in G which are reachable from 
Source(F). 

Proof" From Lemma 3 we know that the basic algorithm 
will terminate. From Lemma 7 we know that after initialization, 
Q will contain a complete germinal set. According to Lemma 6 
the basic algorithm will compute an SPT. • 

To show that the basic algorithm also works when multiple 
edge weights are changed at once (see end of Section IV), 
we need to show that the set of enqueued nodes after the 
extended initialization procedure also constitutes a complete 
germinal set. 

For the case where there are multiple edge weight increments, 
during initialization, every node in 79~- (same meaning as in 
Lemma 7) is first updated with a larger distance attribute. Then, 
all the nodes in D 4- that can get a smaller distance attribute 
through a parent outside of the updated area 7-¢ will be enqueued 
in Q. Since all the new alternative paths must pass through these 
enqueued nodes, they form a complete germinal set. 

For the case where there are multiple edge weight decre- 
ments, it is sufficient to observe that any node that is affected by 
the changes (ultimately decrements its distance from the source) 
must be a descendent (in one of the new SPT tree) of the end 
node of one of the edges whose weights have been reduced. 
Since the set of these end nodes is a complete germinal set, the 
set which includes all their direct descendents that can improve 
their distance (and are enqueued in Q) must also be a complete 
germinal set. 

B. Algorithmic Complexity 

1) First Incremental Method." 
Theorem 2: The First Incremental Bellman-Ford algorithm 

has a complexity of O(Dm~x • ~) .  
Proof" Let T~a denote the set of ~a nodes whose distance 

attributes must change. The nodes in 7~d are extracted in cycles. 
After extraction cycle i, each visited node in 7~d has a distance 
attribute that is not more than the length of the shortest of all 
paths from the source that have at most i hops inside in 7~d. 
Since the shortest path has at most (~a - 1) hops in 7~a, the 
distance attribute of each nodes in T~d cannot change after ex- 
traction cycle (~d -- 1). Each extraction cycle involves at most ~a 
nodes (only nodes in 7~d will enter Q). After a node extraction, 
at most Dm~x edges will be visited. Therefore, the complexity 
of this algorithm is O(Omax • ~d2). • 

TO derive the complexity for the dynamic Dijkstra algorithms, 
we first prove the following lemmas. 

Lemma 8." Given any SPT T, let 7 ~  n be any tree containing 
nodes with the N smallest distance attributes. Also let ./V~ewN 
denote the set of nodes not in T ~  n but adjacent to nodes in 

N T~in. Using the Dijkstra algorithm, every node n C .A/"N 
n e w  

N chooses a parent node p E T~i n such that its distance attribute 
D(p, TmNin)N + W(n, p) is minimized. The node n with the 
smallest distance attribute in .M~e wN has the (N + 1) smallest 
distance attribute in any SPT. 

Proof" The distance attribute of every node in any SPT T 
is larger than that of any of its ancestor nodes. If nN+l is the 
node with the ( N +  1) smallest distance attribute for any T E S, 
the parent of nN+l must be in N ~V~i n . Therefore, nN+l must be in 

N N'~e w and its distance attribute in NNw must be the same as that 
N in 7- E S. The other nodes in A/n~ew will have a distance attribute 
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that is at least their distance attribute in 7-. Therefore, nN+l  is 
the node in A/~w with the smallest distance attribute. • 

L e m m a  9: In the Dijkstra algorithms, i fa  node n is extracted 
from Q, it will not re-enter Q before the termination of the al- 
gorithm. 

Proof" The proof is by induction. It can be shown that after 
the initialization, the first node to be extracted from Q has its 
distance attribute equal to its shortest distance, and thus it will 
not re-enter Q. We now assume that the set of  nodes Afcxt ex- 
tracted previously have shortest distance attributes. At any time, 
Q includes all the nodes adjacent to nodes in .N'cxt. Each node 
n E Q has the parent in .N'ext such that its distance attribute 
is minimized. According to Lemma 8, the next node extracted 
will have a shortest distance attribute. By induction, every node 
extracted must have a shortest distance, and therefore cannot 
re-enter Q. 

Theorem 3: The First Incremental Linear Dijkstra algorithm 
has a complexity of O(b~ + Dm~× • ~d), the First Incremental 
Heap Dijkstra has a complexity of  O ( D  ..... • ~d • Igra), and 
the First Incremental Fibonacci Dijkstra has a complexity of 
O(8d • lg~d + D . . . .  • ~ d ) -  

Proof" After the initialization, Q contains all the nodes that 
can improve their distance attribute by choosing a parent with a 
shortest distance attribute. From Lemma 9, we know that when a 
node is extracted from Q it will never re-enter Q. Therefore there 
will be a maximum of bd extractions. After each extraction all the 
edges leaving the extracted node are visited, which in turn will 
update the distance attribute of some node in Q. 

Since there are at most 6d nodes in Q, extracting a node 
from Q takes O(~d) complexity with linear search and O(lg~Sd) 
complexity with binary and Fibonacci heaps. Updating a dis- 
tance attribute in Q takes O(1) complexity with a regular list 
and a Fibonacci heap, while requiring O (lg~Sd) complexity with 
a binary heap. Therefore, the complexity of First Incremental 
Linear Dijkstra is O(~5~ + D . . . .  • ~Sd), that of  First Incremental 
Heap Dijkstra is O ( D  . . . . .  • bd • lg~Sd), and that of  First Incre- 
mental Fibonacci Dijkstra is O(~d " lg~d + D ..... • ~Sd). • 

2) Second Incremental  Method: 

Theorem 4: The Second Incremental Bellman-Ford algo- 
rithm has a complexity of O ( D  . . . .  " 6~z). 

Proof" As in the proof of Theorem 2, we will denote as 
7~a the set of ~d nodes whose distance attributes must change. 
After extraction cycle i, each visited node in 7~a has a distance 
attribute that is not more than the length of  the shortest of  all 
paths from the source that have at most i hops inside in 7~d. As in 
the first incremental case at most 8~ nodes will be extracted from 
Q. However in the second incremental case, after extracting one 
node, the algorithm might visit at most all the edges (Dm~x • 6d) 
in 7~d. Therefore the complexity of this algorithm is O(Dm~x  " 

• 

L e m m a  10: In the Second Incremental (Linear or Heap) 
Dijkstra algorithm, only the nodes (Spd of them) whose parent 
attribute must necessarily change are extracted exactly once 
from Q. 

Proof" Every node inserted in Q (step 4) must be outside 
the branch B(y, T) ,  while its parent in Q is inside the branch. 
Therefore, any node n inserted in Q must have a parent attribute 
in Q that is different from that in T.  

Let 79 be the set of nodes that have been consolidated with 
optimal distance attributes in 'T. At any time after initializa- 
tion, Q contains all nodes adjacent to nodes in 79 that can im- 
prove their distance attribute by changing the parent attribute 
in T to some node in 79. According to Lemma 8, the nodes 
extracted from Q will be consolidated with incrementing dis- 
tance attributes. 

Furthermore, when node n is extracted from Q with a 
shortest distance attribute d, every other node with shortest 
distance attribute less than d has already been consolidated. 
Since n was not dequeued from Q, the segment between n 
and P(n, T)  cannot be part of  an SPT. Therefore, node n must  

change its parent attribute to the new one contained in Q. • 
Theorem 5: The Second Incremental (Linear or Heap) Dijk- 

stra algorithm obtains a new valid SPT in T ,  while modifying 
the minimum number of  parent attributes in ~v. 

Proof" During initialization, the only nodes that change 
parent attributes are the descendent of  the rr~odified edge and the 
descendents of  the incrementing edge (in 7-) that can maintain 
the same distance attribute by adopting an alternative parent. 

During the rest of the algorithm, a parent attribute can be 
changed only when a node is extracted from Q. According to 
Lemma 10, only the nodes that have a parent in T different from 
every parent in T E S will change the parent attributes. • 

Theorem 6: The complexity of  the Second Incremental 
Linear Dijkstra algorithm is O(rpa6a + 7 " D . . . .  • ~d), that of 
Second Incremental Heap Dijkstra is O("/• D . . . .  • 6d " lg~d), 
and that of Second Incremental Fibonacci Dijkstra is 

O(rd • lg~Sd + 7 " Dmax " ~d). 
Proof" According to Lemma 10, only 8pal nodes will be 

extracted from Q. After a node extraction at most 8d nodes will 
be visited. Therefore the total number of  edges visited is 7 • 
Dmax • ~Sd, where 7 is at worst ~Spd. 

For Second Incremental Linear Dijkstra, an extraction re- 
quires O(rd)  complexity while an update or removal requires 
O(1) complexity. Therefore the total complexity is O(~pd~d  -~- 

7"Dm~× "~Sd). For Second Incremental Heap Dijkstra, every oper- 
ation on Q has cost O(lg~Sd). In the worst case, some operations 
might be done on Q every time a node is visited. Therefore the 
complexity is O (7" D . . . .  • ~Sd'lg~Sd). For the Second Incremental 
Fibbonacci Dijkstra, an extraction or removal requires O(lg~d) 
while an update only requires O(1) complexity. Therefore, its 
total complexity is O(Sd • lgSd + 7" D . . . .  • ~'d). • 
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