
4. Variations on Threaded Code

The previous example assumed a stack was used as
the basic discipline for data. Actual ly this assumption
is unnecessary. The threaded code service routines can
pass or receive data according to any convent ion; they
may even be passed parameters if desired. The param-
eters o f a routine can immediately follow the threaded
link to the routine. As each is used by the service
routine, the link pointer can be incremented to step
th rough the parameters. Fo r example, on the PDP-11
a two-parameter rout ine to copy a word A to a word B
could look like this:

C A L L : COPY l
A threaded code
B

C O P Y : M O V ' @ (R) + , @ (R) + .
J M P @ (R) + service routine

We have presented the concept o f threaded code in
its mos t basic form. There are numerous time and space
opt imizat ions which could be made. Fo r example, it
can easily be determined whether a given service
routine R is always followed by the same other service
routine S. I f so, then R can end with a j u m p directly
to S, leaving one less link to thread. Moreover in m a n y
cases the rout ine for R can be placed immediately
before the rout ine for S, thereby eliminating the need
for any j u m p at all. This clearly saves both space and
time.

In a practical applicat ion it may be expedient to
write some sections in threaded code and some in hard
code, provided that shifting between modes is rapid.

5. Conclusions

We have shown that under certain circumstances
threaded code provides an attractive alternative to
hard code, saving space at little cost in time.

Acknowledgments. The FORTRAN IV compiler for
DEC'S PDP-11 has been written to generate threaded
code. In the course of tha t project many improvements
have been suggested by those associated with it. Of
part icular value to the au thor have been the ideas of
R o n a l d Brender, David Knight , Louis Cohen, Nick
Pappas , and H a n k Spencer.

Received June 1971 ; revised December 1972

372

Algor i thms
L.D. Fosdick and
A.K. Cline, Edi tors

Submittal of an algorithm for consideration for publica-
tion in Communications of the ACM implies unrestricted
use of the algorithm within a computer is permissible.

Copyright © 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of'this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Algorithm 447

Efficient Algorithms for Graph
Manipulation [H]
John H o p c r o f t and Robe r t Tar jan [Recd. 24 M a r c h
1971 and 27 Sept. 1971]
Cornel l University, I thaca, N Y 14850

Abstract: Efficient algorithms are presented for partitioning a
graph into connected components, biconnected components and
simple paths. The algorithm for partitioning of a graph into simple
paths is iterative and each iteration produces a new path between
two vertices already on paths. (The start vertex can be specified
dynamically.) If V is the number of vertices and E is the number of
edges, each algorithm requires time and space proportional to
max (V, E) when executed on a random access computer.

Key Words and Phrases: graphs, analysis of algorithms, graph
manipulation

CR Categories: 5.32
Language: Algol

Description
Graphs arise in many different contexts where it is necessary

to represent interrelations between data elements. Consequently
algorithms are being developed to manipulate graphs and test them
for various properties. Certain basic tasks are common to many
of these algorithms. For example, in order to test a graph for
planarity, one first decomposes the graph into biconnected com-
ponents and tests each component separately. If one is using an
algorithm [4] with asymptotic growth of V log(V) to test for
planarity, it is imperative that one use an algorithm for partition-
ing the graph whose asymptotic growth is linear with the number
of edges rather than quadratic in the number of vertices. In fact,
representing a graph by a connection matrix in the above case
would result in spending more time in constructing the matrix
than in testing the graph for planarity if it were represented by a
list of edges. It is with this in mind that we present a structure for
representing graphs in a computer and several algorithms for simple

This research was carried out while the authors were at Stan-
ford University and was supported by the Hertz Foundation and
by the Office of Naval Research under grant number N-00014-67-
A-0112-0057 NR-44-402. Reproduction in whole or in part is
permitted for any purpose of the United States Government.

Communications June 1973
of Volume 16
the ACM Number 6

Fig. 1. Flowchart ~ r connected components algorithm.

e
I Empty Stack. I
Number s t a r t p o i n t , put on s t a c k .

L ®
¥

No (Edge out of top po in t on s t ack?)

I Yes

I Delete edge from graph, [
add to c u r r e n t connected component.

No (Head of edge new poin t?)

I Yes

[Number new p o i n t , put on s t a c k . [

+
l

[One po in t in s t~ck* No , I
+

~s there an unnumbered point?) No

operations on the graph, These include dividing a graph into con-
nected components, dividing a graph into biconnected compo-
nents, and partitioning a graph into simple paths. The algorithm
for division into connected components is well known [7]. The
description of an algorithm similar to the biconnected components
algorithm has just appeared [6]. For a graph with V vertices and E
edges, each algorithm requires time and space proportional to
max(V, E).

Standard graph terminology will be used throughout this dis-
cussion. See for instance [2]. We assume that the graph is initially
given as a list of pairs of vertices, each pair representing an edge
of the graph. The order of the vertices is unimportant; that is, the
graph is unordered. Labels may be attached to some or all of the
vertices and edges.

Our model is that of a random-access computer with standard
operations; accessing a number in storage requires unit time. We
allow storage of numbers no larger than k max(V, E) where k is
some constant. (If the labels are large data items, we assume that
they are numbered with small integer codes and referred to by their
codes; there are no more than k max(V, E) labels.) It is easy to
see and may be proved rigorously that most interesting graph pro-
cedures require time at least proportional to E when implemented
on any reasonable model of a computer, if the input is a list of
edges. This follows the fact that each edge must be examined once.

It is very important to have an appropriate computer repre-
sentation for graphs. Many researchers have described algorithms
which use the matrix representation of a graph [1]. The time and
space bounds for such algorithms generally are at least V ~ [3]
which is not as small as possible if E is small. (In planar graphs for
instance, E < 3 V -- 3.) We use a list structure representation of a
graph. For each vertex, a list of vertices to which it is adjacent is
made. Note that two entries occur for each edge, one for each of
its end points. A cross-link between these two entries is often useful.
Note also that a directed graph may be represented in this fashion;

373

if vertex v~ is on the list of vertices adjacent to vl, then (vl, v~) is
a directed edge of the graph. Vertex vx is called the tail, and vertex
u2 is called the head of the edge.

A directed representation of an undirected graph is a repre-
sentation of this form in which each edge appears only once; the
edges are directed according to some criterion such as the direction
in which they are transversed during a search. Some version of this
structure representation is used in all the algorithms.

One technique has proved to be of great value. That is the
notion of search, moving from vertex to adjacent vertex in the
graph in such a way that all the edges are covered. In particular
depth-first search is the basis of all the algorithms presented here.
In this pattern of search, each time an edge to a new vertex is dis-
covered, the search is continued from the new vertex and is not
renewed at the old vertex until all edges from the new vertex are
exhausted. The search process provides an orientation for each
edge, in addition to generating information used in the particular
algorithms.

Detailed Description of the Algorithms
Algorithm for finding the connected components of a graph. This

algorithm finds the connected components of a graph by perform-
ing depth-first search on each connected component. Each new
vertex reached is marked. When no more vertices can be reached
along edges from marked vertices, a connected component has been
found. An unmarked vertex is then selected, and the process is
repeated until the entire graph is explored.

The details of the algorithm appear in the flowchart (Figure 1).
Since the algorithm is well known, and since it forms a part of the
algorithm for finding biconnected components, we omit proofs of
its correctness and time bound. These proofs may be found as
part of the proofs for the biconnected components algorithm. The
algorithm requires space proportional to max(V, E) and time pro-
portional to max(V, E), where V is the number of vertices and E
is the number of edges of the graph.

Algorithm for finding the biconnected components of a graph.
This algorithm breaks a graph into its biconnected components by
performing a depth-first search along the edges of the graph. Each
new point reached is placed on a stack, and for each point a record
is kept of the lowest point on the stack to which it is connected
by a path of unstacked points. When a new point cannot be reached
from the top of the stack, the top point is deleted, and the search
is continued from the next point on the stack. If the top point
does not connect to a point lower than the second point on the
stack, then this second point is an articulation point of the graph.
All edges examined during the search are placed on another stack,
so that when an articulation point is found the edges of the cor-
responding biconnected component may be retrieved and placed
in an output array.

When the stack is exhausted, a complete search of a connected
component has been performed. If the graph is connected, the
process is complete. Otherwise, an unreached node is selected as a
new starting point and the process repeated until all of the graph
has been exhausted. Isolated points are not listed as biconnected
components, since they have no adjacent edges. They are merely
skipped. The details of the algorithm are given in the flowchart
(Figure 2). Note that this flowchart gives a nondeterministic
algorithm, since any new edge may be selected in block A. The
actual program is deterministic: the choice of an edge depends on
the particular representation of the graph.

We will prove that the nondeterministic algorithm terminates
on all simple graphs without loops, and we also derive a bound on
the execution time. We will then prove the correctness of the algo-
rithm, by induction on the number of edges in the graph. Note
that the algorithm requires storage space proportional to max(V, E),
where V is the number of vertices and E is the number of edges
of the graph.

Let us consider applying the algorithm to a graph. Referring
to the flowchart, every passage through the YES branch of block A
causes an edge to be deleted from the graph. Each passage through

Communications June 1973
of Volume 16
the ACM Number 6

the NO branch of block B causes a point to be deleted from the
stack. Once a point is deleted from the stack it is never added to the
stack again, since all adjacent edges have been examined. Each
edge is deleted from the stack of edges once in block C. Thus the
blocks directly below the YES branch of block A are executed at
most E times, those below the NO branch of block B at most V
times, and the total time spent in block C is proportional to E.
Therefore there is some k such that for all graphs the algorithm
takes no more than k max(V, E) steps. A more explicit time bound
may be calculated by referring to the program.

Suppose the graph G contains no edges. By examining the
flowchart we see that the algorithm, when applied to G, will termi-
nate after examining each point once and listing no components.
Thus the algorithm operates correctly in this case. Suppose the
algorithm works correcly on all graphs with E-1 or fewer edges.
Consider applying the algorithm to a graph G with E edges. Since
the stack of points becomes empty at least once during the opera-
tion of the algorithm, and since the YES branch at block D must
be taken when only two points are on the stack, every edge must
not only be placed on the stack of edges but must be removed in
block C. Consider the first time block C is reached when the algo-
rithm is applied to graph G. Suppose not all the edges in the graph
are removed from the stack of edges in this execution of block C.
Then p, the second point on the stack, is an articulation point
and separates the removed edges from the other edges in the graph.

Let Et be the set of removed edges, let E2 be the set of edges
still on the stack, and let E3 be the set of remaining edges of G.
Let G~ be the subgraph of G made up of the edges from El , and
let G2 = G -- G~. Since G~ and G2 each have at most E-1 edges,
the induction hypothesis implies that the algorithm operates cor-
rectly on both Gt and G2.

Assume that the edges for each vertex in G1 and G~ are listed
in the same order as for G. Consider the sequence of steps taken
when the algorithm is applied to G. The sequence of steps taken on
G2 can be divided into an initial sequence of steps which results
in placing the edges E1 on the stack, followed by the remaining
sequence $2. The sequence of steps taken on G consists of the
sequence S1, followed by the steps taken on G2 with p as the start
point, followed by $2.

The behavior of the algorithm on G is simply the composite
of its behavior on GI and G~; thus the algorithm must operate
correctly on G.

Now suppose that the first time block C is reached, all the
edges of G are removed from the stack of edges. We want to show
that in this case G is biconnected. Suppose that G is not bicon-
netted. Then choose a biconnected component of G which may be
separated by removing some one point p and which does not con-
tain the start point of G. Let the edges making up this component
be subgraph G1 of G; let the remainder of G be G2. The algorithm
operates correctly on Gi and on G2 by assumption. The behavior of
the algorithm on G is a composite of its behavior on GI and on G~.
Assume that the edges for each vertex in G1 and G2 are listed in the
same order as for G. The sequence of steps on G is identical to the
sequence of steps on G1 until an edge of G2 out of vertex p is se-
lected. Then the sequence of steps of G is identical to the sequence
on G2 with start point p. The remaining steps on G are the same
as the remaining steps on G1. But the algorithm reaches block C
once while processing Gi and at least once while processing G~.
This contradicts the fact that the algorithm only reaches block C
once while processing G. Thus G must be biconnected, and the
algorithm operates correctly on G. By induction, the algorithm is
correct for all simple graphs without loops.

Algorithm for finding simple paths in a graph. This algorithm
may be used to partition a graph into simple paths, such that all
the paths exhaust the edges of the graph. Each iteration of the algo-
ri thm produces a new path which contains no vertex twice, and
which connects the chosen startpoint with some other vertex which
already occurs in a path. Total running time is proportional to the
number of edges in the graph. The starting point for each successive
path may be selected arbitrarily. In fact, the initial edge of each

Fig. 2. Flowchart for biconnected components algorithm.

] C h o o s e s t a r t p o l n t , I

®
f

I Empty stack.
Number s t a r t p o i n t , pu t on s t a c k .

b. o
No (Edge ,,tit of top point on stack?

I Yes

~ e l e t e edge f rom g r a p h . Put on s t a c k ,~f e d g e s . I

edge l ower than Add to s t a c k of p o i n t s .
LOWPOINT of top p o i n t Se t LOWPOINT of t he
S:~nliO~O~It°~u;~:r. P;~;~O~: ~:mber of

l
° Q

unnumbered No e q u a l s number of n e x t Yes
p o i n t ? p o i n t on s t a c k ?

Yes[[No [S e t LOWPOINT [Form new b l -
l l o f p] d

e q u a l LOW- component by

~ Let i t be n e w] l l P O I N T of top I d e l e t i n g
s t a r t p o l n t , p o i n t i f l e s s . e d g e s f rom

edge s t a c k
u n t i l f l n d i n l

I blcb c o n n e c t s to
p o i n t be low
n e x t p o i n t
on stack,

f rom s t a c k

(5

successive path may be selected arbitrarily from the set of unused
edges.

The algorithm is highly dependent on the graph being bicon-
nected. (The biconnected components of a graph are found using
the previously described algorithm.) In order to find a new path,
the initial edge is selected and the head of the edge is checked.
If this point has never been reached before, a depth-first search is
begun which must end in a path since the graph is biconnected.
The search generates a tree-like structure: specifically, it is a tree
with edges connecting some vertices with their (not necessarily im-
mediate) ancestors. (We will visualize the tree drawn so that the
root, which is an ancestor of all points, is at the bot tom of the tree.)
Enough information is saved from this tree so that if a point in it
is reached when building another path, the path may be completed
without any further search.

The flowchart (Figures 3 and 4) gives the details of the algo-
rithm. It is divided into two parts; one for the depth-first search
process and one for path construction using previously gathered
information. We shall prove the correctness of the algorithm and
give a time bound for its operation. To derive the time bound, we
assume that one point is marked old initially, and a different point

374 Communications June 1973
of Volume 16
the ACM Number 6

Fig. 3. Flowchart for pathfinding algorithm (I).

<u d edgo f point~>~° @
!

Yes I (No path exists)

I, °tP t°i:dtg:ei:ePa:t :t::: : I

@~ Yes / P o i n t reached previously?>
\

~umber p o i n t I

l. o
f

edge point?> Unsearched from

Set backward edge IMark edge s e a r c h e d . I
of point to edge |
on pathstack. Set

unreaehed?) <ltead of edge pastpoi~t to tail

of edge . I f LOW- l 1 POINT of p o i n t l ess
than LONPOINT of No Yes
pastpolmt, modify
LOWPOINT and for- Put edge
ward edge of past- Head of edge on path-
point to indicate ol and not stack. Set
edge to point, startpoint? point to

head of
edge .

No

~ Yes
If number of head of

I I 1
Set point to past-

POINT of point, mod- point. Delete
fly LOWPOINT and for- edge from path-
ward edge of point stack .
to i n d i c a t e edge .

I Mark p e i n t s in pa th o l d .
Hark edges in pa th used .

Fig. 4. Flowchart for pathfinding algorithm (ll).

Q
¢ ~ b e r ofpol~t : h e n) ye~

number of s t a r t p o i n t ? ~ s

on p a t h s t a c k , ge t on p a t h s t a e k . Set
p o i n t to head of p o i n t to head of
edge . edge .

~ Y e s Y e S ~ p o i n t l o l d ? ~

l e s s than number
of s t a r t p o t n t ?

©
edge on p a t h -
s t a c k , ge t p o i n t
to head of e d g e .

375

is selected as the initial startpoint. The algorithm is then run re-
peatedly with arbitrary startpoints until all edges are used to form
paths.

Let us consider path generation using depth-first search; that is,
suppose the algorithm is applied and that the head of the first edge
selected is previously unreached. Referring to the flowchart, we see
that the search process is very similar to that used in the bicon-
nectivity algorithm. A search tree is generated, and each edge
examined is either part of the tree or connects a point to one of its
predecessors in the tree. LO WPO1NT is exactly the same as in the
biconnectivity algorithm; it gives the number of the lowest point
in the tree reachable from a given point by continuing out along the
tree and taking one edge back toward the root. The forward edges
point along this path, while the backward edges point back along
the tree branches. We have shown in the correctness proof of the
biconnectivity algorithm that, if the graph is biconnected, LOW-
PO INT of a given point must point to a node which is an ancestor
of the immediate predecessor of the given point. In particular,
LO W P O I N T of the second point in the search tree must indicate
an old point which is not the startpoint. Therefore the algorithm
will find a path containing the initial edge. Note that all points
encountered during the search process must either be old or un-
reached, since every point reached in a previous search either has
had all its edges examined or has been included in a path.

Let us now suppose that the head of the first edge has been
reached previously but is not marked old. Then the forward and
backward pointers, along with the L O W P O 1 N T values, allow the
algorithm to construct a path without further search. First, if the
number of the head of the edge is less than the number of the
startpoint, then following backward pointers will certainly produce
a simple path, since the root of a search tree must be old and each
successive point along a backward path has a lower number and
thus is distinct from the other points in the path. If the initial edge
is part of a search tree and the startpoint is the predecessor of the
second point, then L O W P O 1 N T of the second point must be less
than the number of the startpoint. Following forward edges until
reaching a point numbered lower than the startpoint and then fol-
lowing backward edges will produce a simple path. This is true
since the forward edges point through descendants of the tree,
with the single exception of the edge whose head is a point below
startpoint in the tree. The last case to consider occurs when the
initial edge is not part of a search tree but points from a node to
one of its descendants in a tree. In this case some node in the tree
between the startpoint and the second point of the path must have
a LO WPO1NT value less than the number of the startpoint. If we
follow backward edges until the first such point is reached, then
follow forward edges until a point numbered less than the startpoint
is reached, and finally follow backward edges until an old point is
reached, we will generate a simple path. Note that the first forward
edge taken cannot lead to the previous point because, if it did, the
L O W P O I N T value at the previous point would be less than the
number of startpoint, and the forward edge from this point would
have been chosen instead of the backward edge.

We thus see that each execution of the pathfinding algorithm
produces a simple path, assuming that the algorithm is applied to
a biconnected graph with at least one point which is not the first
startpoint marked old initially. Since each edge is examined at
most once in the search section of the algorithm, and since each
edge is put into a path once, there is a constant k such that the time
required to execute the algorithm until no edges are unused is less
than k E steps, where E is the number of edges in the graph. (Note
that the number of vertices, V, is less than E if the graph is bicon-
nected.) Detailed examination of the program will produce a more
exact time bound.

Another algorithm for finding simple paths exists. Lempel,
Even, and Cederbaum [5] have described an algorithm for number-
ing the vertices of a biconnected graph such that: (i) each number
is an integer in the range 1 to V, where V is the number of vertices
on the graph; (ii) vertices 1 and V are jointed by an edge; (iii) for
all 1 < i < V, vertex i is joined to at least two vertices, one with a

Communications June 1973
of Volume 16
the ACM Number 6

higher number and one with a lower number. We may use this algo-
rithm to partition a graph into simple paths.

Given a start point and an adjacent end point, number the
vertices so that the startpoint is 1, the endpoint is V, and the
numbering satisfies the conditions above. Take edge (1, V) as the
first path. Given an arbitrary startpoint, find an edge to a higher
numbered vertex. Continue to find edges to successively higher
numbered vertices until an old vertex is reached.

This algorithm is clearly correct and looks conceptually simple.
However, Lempel, Even, and Cederbaum present no efficient im-
plementation of their numbering algorithm, and the only efficient
way we have found to implement it requires using the previously
described pathfinding algorithm in a more complicated form. Thus
the new algorithm requires time and space proportional to
max(V, E), but the constants of proportionality are larger than
those for the implemented algorithm.

Implementation. The algorithms for finding connected com-
ponents, biconnected components, and simple paths were originally
implemented and tested in Algol W. The programs were then
translated to Algol for publication and tested using the OS/360
Algol compiler. Auxiliary subroutines were also implemented. Brief
descriptions of the procedures are provided below.

ADD2(A, B, STACK, PTR): This procedure adds value A
followed by value B to the top of stack STACK and increments
the pointer to the top of the stack (PTR). Stacks are represented as
arrays; the top of the stack is the highest filled location.

NEXTLINK(POINT, VALUE): This procedure is used to
build the structural representation of a graph. It adds VALUE
to the list of vertices adjacent to POINT. (POINT, VALUE) is an
edge (possibly directed) of the graph.

CONNECT(V, E, EPTR, EDGELIST, CO MPONENTS): This
procedure, given a graph with V vertices and E edges, whose edges
are listed in EDGELIST, computes the connected components of
the graph and places the edges of the components in COMPO-
NENTS. Each component is preceded by an entry containing the
number of edges E ' of the component. The edges are oriented for
output according to the direction in which they were searched
(head first, tail second).

BICONNECT(V,E,E PTR,EDGELIST, C O M PONENTS) :This
procedure, given a graph with V vertices and E edges, whose
edges are listed in EDGELIST, computes the biconnected com-
ponents of the graph and places them in BICOMPONENTS. Each
component is preceded by an entry containing the number of
edges E of the component. The edges are oriented for output
according to the direction in which they were searched (head first,
tail second).

PA THFIND ER(STAR TPT, PA TH PT, COD EVAL UE, PA TH) :
This procedure, given a list structure representation of a bicon-
nected graph with certain vertices marked as old, constructs a
simple path from STARTPOINT to some old vertex, saving
information to be used in constructing succeeding paths. The new
path is stored in array PATH. Calling PATHFINDER repeatedly
may be used to partition the graph into simple paths.

The procedure PATHFINDER requires that the structural
representation of the graph be stored as follows. Each edge is
treated as a pair of directed edges each of which is represented
by an integer between v + 1 and v + 2 X e. If i l , i2, ..., ik are the
integers corresponding to the edges out of vertex i, then initialize
NEXT(i) to il, NEXT(ij) to i3+i, 1 _< j < k, and NEXT(k) to 0. If
the edge ij terminates at vertex l, initialize HEAD(i~) to l. LINK(ij)
is the integer corresponding to the edge in the other direction. For
1 < i < v, BACK(i), FORWARD(i), PATHOCDE(i) are initialized
to 0, LO WPOINT(i) is initialized to v -q- 1, NODE(i) is initialized to
NEXT(i) and OLD(i) is initialized to FALSE. For v q- 1 < i <
v q- 2 X e MARK(i) is initialized to FALSE. Before the first call
of PATHFINDER some nonnull set of vertices must be marked
as OLD and assigned successive PATHCODE values. CODE-
VALUE is set equal to the number of vertices marked as OLD.
If this is not done the first path cannot end at an OLD vertex.

Further comments may be found in the program listings below.

References
1. Fisher, G.J. Computer recognition and extraction of planar
graphs from the incidence matrix. IEEE Trans. in Orcuit Theory
CT-13, (June 1966), 154-163.
2. Harary, F. Graph Theory. Addison-Wesley, Reading, Mass.,
1969.
3. Holt, R., and Reingold, E. On the time required to detect
cycles and connectivity in directed graphs. Comput. Sci. TR 70-33,
Cornell U. Ithaca, N.Y.
4. Hopcroft, J., and Tarjan, R. Planarity testing in v log v steps,
extended abstract. Stanford U. CS 201, Mar. 1971.
5. Lempel, A., Even, S., and Cederbaum, I. An algorithm for
planarity testing of graphs. Theory of Graphs: International
Symposium: Rome, July 1966. P. Rosenstiehl (Ed.) Gordon and
Breach, New York, 1967, pp. 215-232.
6. Paton, K. An algorithm for the blocks and cutnodes of a
graph. Comm. ACM 14, 7(July 1971), 428-475.
7. Shirey, R.W. Implementation and analysis of efficient graph
planarity testing. Ph.D. diss., Comput. Sci. Dep., U. of Wisconsin,
Madison, Wis., 1969.

Algorithm
procedure add2 (a, b, stack, ptr);

value a, b; integer a, b, ptr; integer array stack;
comment Procedure adds values a and b to stack stack and in-

creases stack pointer ptr by 2;
begin

ptr := ptr -~- 2; stack[ptr -- 1] := a; stack[ptr] := b
end of add2;
procedure nextlink (point, val);

value point, val; integer point, val;
comment Procedure adds directed edge (point, val) to structural

representation of a graph. Global variables are described as fol-
lows. head[v+ 1 :v+2 Xe] and next[1 :v+2 Xe] contain the struc-
tural representation of the graph, freenext is the current last
entry in next array;

begin
freenext := freenext q- 1; next[freenext] := next[point];
next[point] := freenext; head[freenext] := va/

end of nextlink;
integer procedure min(a, b);

value a, b; integer a, b;
comment Procedure computes the minimum of two integers;
if a < b then rain := a else rain := b;
procedure connect (v, e, cptr, edgelist, components);

value v, e; integer v, e, cptr;
integer array edgelist, components;

comment Procedure finds the connected components of a graph.
The parameters are described as follows, v and e are the number
of vertices and edges of the graph, edgelist[l:2Xe] is the initial
list of edges of the graph, components[1 : 3Xe] is the list of edges
for each component. The list of edges for each component is pre-
ceded by an entry giving the number of edges of the compo-
nent. cptr is a pointer to the last entry in components. The global
variables are described as follows, head[vWl:v+2×e] and
next[l:v+2Xe] contain the structural representation of the
graph, freenext is the last entry in the array next. The local
variables are described as follows, number[l:v+l] is used for
numbering the vertices during the depth first search, code con-
rains the current highest vertex number, point is the current
vertex being examined during the search, v2 is the next vertex
to be examined during the search, oldptr contains the position
in components to place the value of the next component. The
global procedures are add2 and nextlink. A recursive depth-
first search procedure is used to examine connected components
of the graph;

begin
integer array number [1 :v-F 1];
integer code, point, v2, oldptr, i;
procedure connector (point, oldpt) ;

value point, oldpt; integer point, oldpt;

376 Communications June 1973
of Volume 16
the ACM Number 6

comment This recursive procedure finds a connected component
using a depth-first search. The parameters are described as fol-
lows. point is the startpoint of search, oldpt is the previous
startpoint. Global variables are the same as for connect. The
global procedures are add2;

comment Examine each edge out of point;
for i = i while next[point] > 0 do
begin

comment v2 is head of edge. Delete edge from structural repre-
sentation;

v2 := head[next[point]];
next[point] := next[next[point]];
comment Has this edge been searched in the other direction?

If so, look for another edge;
if (number[v2] < number[point]) /~ (v2~oldpt) then
begin

comment Add edge to components;
add2(point, v2, components, cptr) ;
comment Determine if a new point has been found;
if number[v2] = 0 then
begin

comment New point found. Number it;
number[v2] := code := code q- 1;
comment Initiate a depth-first search from the new point;
connector(v2, point)

end
end

end;
comment Construct the structural representation of the graph;
freenext := v;
for i := 1 step 1 until v do next[i] : = 0;
for i := 1 step 1 until e do
begin

comment Each edge occurs twice, once for each endpoint;
nextlink(edgelist[2 Xi-- 1], edgelist[2 Xi]);
nextlink (edgelist[2 X i], edgelist[2 X i - 1])

end;
comment Initialize variables for search;
cptr := O; point := 1;
for i := I step 1 until v -F 1 do number[i] := 0;
for i := i while point < v do
begin

comment Each execution of connector searches a connected
component. After each search, find an unnumbered vertex
and search again. Repeat until all vertices are investigated;

number[point] := code := 1;
oldptr : = cptr : = cptr -~- 1 ;
connector(point,O);
comment Compute number of edges of components;

components[oldptr] : = (cptr-oldptr) +2 ;
for i := i while number[point] ~ 0 do point := point + 1

end
end;
procedure biconnect(v, e, bptr, edgelist, bicomponents);

value v, e; integer v, e, bptr;
integer array edgelist, bicomponen/s;

begin
comment Procedure finds biconnected components of a graph.

The parameters are described as follows, v and e are the num-
ber of vertices and edges of the graph, edgelist[l:2Xe] is the
initial list of edges of the graph, bicomponents[1:3 Xe] is the list
of edges for each component found. Each component is pre-
ceded by an entry giving the number of edges of the com-
ponent, bptr is a pointer to the last entry of bicomponents. The
global variables are described as follows, head[v-Fl:v+2Xe]
and next[1 :v-t-2 Xe] contain the structural representation of the
graph, freenext is the last entry in the array llext. The local
variables are described as follows, number[1 : v+ l] is an array
used for numbering the vertices during the depth-first search.
code is the current highest vertex number, edgestack[l:2Xe]

is used for storage of edges examined during search, eptr is
a pointer to last entry in edgestack, point is the current point
being examined during search, v2 is the next point to be ex-
amined during search, newlowpt is the lowpoint for the bi-
connected part of graph above and including v2. oldptr is
pointer to position in bicomponents to place a value of next
component. The global procedures are min, add2, and next-
link. A recursive depth-first search procedure is used to divide
the graph. The lowest point reachable from the current point
without going through previously searched points is calculated.
This information allows determination of the articulation
points and division of the graph;

integer array number[l :v+ 1], edgestack[1:2 Xe];
integer code, eptr, point, v2, newlowpt, oldptr, i;
procedure biconnector (point, oldpt, lowpoint);

integer point, oldpt, lowpoint;
comment Recursive procedure to search a connected component

and find its biconnected components using depth-first search.
The parameters are described as follows, point is the startpoint
of the search, oldpt is the previous startpoint, lowpoint is the
lowest point reachable on a path found during search. The
global variables are the same as for biconnect. The global
procedures are min and add2;

comment Examine each edge out of pobtt;
for i := i while next[point] > 0 do
begin

comment v2 is the head of the edge. Delete edge from structural
representation;

integer v2;
v2 := head[next[point]];
next[point] := next[next[point]];
comment If the edge has been searched in the other direction,

then look for another edge;
if (number[v2] <number[point]) /~ (v2~oldpt) then
begin

comment Add edge to edgestack;
add2 (point, v2, edgestack, eptr);
if number[v2] = 0 then
begin

comment New point found. Number it;
number[v2] "= code := code + 1;
comment Initiate a depth-first search from the new point;
newlowpt : = v -~- 1;
biconnector (v2, point, newlowpt);
comment Note that although the global variable v2 is

changed, its value is restored upon exit from this pro-
cedure. Recalculate lowpoint;

lowpoint := min(lowpoint, newlowpt) ;
if newlowpt >_ number[point] then
begin

comment point is an articulation point. Output edges
of component from edgestack;

oldptr := bptr := bptr -F I;
for i := i while number[edgestack[eptr-1]] >

number[point] do
begin

add2(edgestack[eptr- 1], edgestack[eptr], bicom-
ponents, bptr) ;

eptr := eptr -- 2
end;
comment Add last edge;
add2(point, v2, bicomponents, bptr);
eptr := eptr -- 2;
comment Compute number of edges of component;
bicomponents[oldptr] := (bptr-oldptr) + 2

end
end
else
begin

377 Communications June 1973
of Volume 16
the ACM Number 6

comment New point not found. Recalculate lowpohzt;
lowpoint := min(Iowpoint, number[v2])

end
end

end;
comment Construct the structural representation of the graph;
freenext :--- v;
for i := 1 step 1 until v do next [i] := 0;
for i := 1 step 1 until e do
begin

comment Each edge occurs twice, once for each endpoint;
nextlink (edgelist [2)< i - - 1], edgelist [2)< i]);
nextlink (edgelist [2 X i], edgelist [2)< i - - 1])

end;
comment Initialize variables for search;
eptr : = O ; b p t r : = O;point := 1; v2 := O;
for i := 1 step 1 until v d- 1 do number[i] := O;
for i : = i while point < v do
begin

comment Each execution of biconnector searches a connected
component of the graph. After each search, find an unnum-
bered vertex and search again. Repeat until all vertices are
examined;

number[point] := code := l; newlowpt := v d- 1;
biconnector(point, v2, newlowpt) ;
for i := i while number[point] -a ~ 0 do point := point q- 1

end
end;
procedure pathfinder (startpoint, pathpt, codevalue, path);

integer startpoint, pathpt, codevalue;
integer array path;

begin
comment Procedure finds disjoint paths with arbitrary starting

points in a biconnected graph. The points of each path are
listed in the array path. The following variables are assumed
global, next[l:v-l-2Xe], head[v-l-l:vq-2Xe] and link
[vWl:vq-2>(e] define the graph using singly linked edge
lists and a set o f cross reference pointers, old[1 :v] and mark
Iv-F1 :vq-2×e] indicate used points and edges, pathcode[1 :v]
is the consecutive numbering of the points, lowpoint[l:v],
forward[1 :v] and backtl :v] give information saved f rom depth-
first search, node[1 :v] gives the next unsearched edge f rom each
point;

integer point, pastedge, edge, pastpoint, v2, i;
path[l] := startpoint;
comment Choose initial edge;
edge := next[startpoint];
for i := i while (if edge=O then false else mark[edge])

do edge := next[edge]:
begin

comment No unused edge and thus no path exists:
next[startpoint] := O;pathpt := 0:
go to done

end;
next[startpoint] := next[edge]; path[2] := edge;
point := head[edge]; pathpt := 2;
if old[point] then go to path found;
if forward[point] ~ 0 then
begin

comment Use previously found information to build a path.
forward, back, lowpoint describe trees investigated using
depth-first search;

if pathcode[startpoint] > patlwode[point] then
go to nextback;

nextmark:
if patheode[startpoint] > lowpoint[pobtt] then
begin

next forward:
edge := Jbrward[point]; pohlt := head[edge];

pathpt : = pathpt q- 1; path[pathpt]: = edge;
if old[point] then go to pathfound;
if pathcode[startpoint] > pathcode[pohlt]

then go to nextback;
go to next forward

end;
edge := back[point]; point := head[edge];
pathpt := pathpt + 1; path[pathpt] := edge;
if old[point] then go to path found else

go to nextmark;
nextback:

edge := back[po#tt]; point := head[edge];
pathpt := pathpt q- 1; path[pathpt] := edge;
if old[point] then go to path found else

go to nextback
end;
comment Use depth-first search to find a path. Save informat ion

describing search tree;
nextpoint :

codevalue := codevalue + 1; pathcode[point] := codevalue;
nextedge:

edge := node[point];
for i : = i while edge = 0 do
begin

back[point] := link[path[pathpt]];
pastpoint := head[back[point]];
if (forward[pastpoint] = O) V

(lowpoint[point] < lowpoint[pastpoint]) then
begin

forward[pastpoint] := path[pathpt];
lowpoint[pastpoint] := lowpoint[point]

end;
point := pastpoint; pathpt := pathpt - 1; edge := node[point]

end;
node[point] := next[edge]; v2 := head[edge];
if pathcode[v2] = 0 then
begin

point := v2; pathpt := pathpt + 1;
path[pathpt] := edge; go to nextpoint

end;
if old[v2] /k (v2~startpoint) then
begin

pathpt := pathpt + 1; path[pathpt] := edge;
go to path found

end;
if (forward[point]=O) ~/ (pathcode[v2] < lowpoint[po#lt]) then
begin

forward[point] := edge; lowpoint[point] := pathcode[v2]
end;
go to nextedge;
comment Path found. Convert stack of edges to list of points in

path. Mark all edges and points in path;
path found:
for i := 2 step 1 until pathpt do
begin

edge := path [i]; point := head[edge];
forward[point] := back[point]: = 0; old[point] := true;
mark[link[edge]] := mark [edge] := true;
path [i] := point

end;
done:
end

378 Communicat ions June 1973
o f Volume 16
the A C M Number 6

