
4. Variations on Threaded Code 

The previous example assumed a stack was used as 
the basic discipline for data. Actual ly  this assumption 
is unnecessary. The threaded code service routines can 
pass or receive data according to any convent ion;  they 
may even be passed parameters  if desired. The param-  
eters o f  a routine can immediately follow the threaded 
link to the routine. As each is used by the service 
routine, the link pointer  can be incremented to step 
th rough  the parameters.  Fo r  example, on the PDP-11 
a two-parameter  rout ine  to copy  a word  A to a word  B 
could look like this: 

C A L L :  COPY l 
A threaded code 
B 

C O P Y :  M O V ' @  (R) + , @  (R) + . 
J M P  @ (R) + service routine 

We have presented the concept  o f  threaded code in 
its mos t  basic form. There are numerous  time and space 
opt imizat ions which could be made.  Fo r  example, it 
can easily be determined whether a given service 
routine R is always followed by the same other service 
routine S. I f  so, then R can end with a j u m p  directly 
to S, leaving one less link to thread.  Moreover  in m a n y  
cases the rout ine for R can be placed immediately 
before the rout ine for S, thereby eliminating the need 
for any j u m p  at all. This clearly saves both  space and 
time. 

In  a practical  applicat ion it may  be expedient to 
write some sections in threaded code and some in hard  
code, provided that  shifting between modes  is rapid. 

5. Conclusions 

We have shown that  under certain circumstances 
threaded code provides an attractive alternative to 
hard  code, saving space at little cost  in time. 
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Abstract: Efficient algorithms are presented for partitioning a 
graph into connected components, biconnected components and 
simple paths. The algorithm for partitioning of a graph into simple 
paths is iterative and each iteration produces a new path between 
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edges, each algorithm requires time and space proportional to 
max (V, E) when executed on a random access computer. 
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Description 
Graphs arise in many different contexts where it is necessary 

to represent interrelations between data elements. Consequently 
algorithms are being developed to manipulate graphs and test them 
for various properties. Certain basic tasks are common to many 
of these algorithms. For example, in order to test a graph for 
planarity, one first decomposes the graph into biconnected com- 
ponents and tests each component separately. If one is using an 
algorithm [4] with asymptotic growth of V log(V) to test for 
planarity, it is imperative that one use an algorithm for partition- 
ing the graph whose asymptotic growth is linear with the number 
of edges rather than quadratic in the number of vertices. In fact, 
representing a graph by a connection matrix in the above case 
would result in spending more time in constructing the matrix 
than in testing the graph for planarity if it were represented by a 
list of edges. It is with this in mind that we present a structure for 
representing graphs in a computer and several algorithms for simple 
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Fig. 1. Flowchart ~ r  connected components algorithm. 
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operations on the graph, These include dividing a graph into con- 
nected components, dividing a graph into biconnected compo- 
nents, and partitioning a graph into simple paths. The algorithm 
for division into connected components is well known [7]. The 
description of an algorithm similar to the biconnected components 
algorithm has just appeared [6]. For a graph with V vertices and E 
edges, each algorithm requires time and space proportional to 
max(V, E). 

Standard graph terminology will be used throughout this dis- 
cussion. See for instance [2]. We assume that the graph is initially 
given as a list of pairs of vertices, each pair representing an edge 
of the graph. The order of the vertices is unimportant; that is, the 
graph is unordered. Labels may be attached to some or all of the 
vertices and edges. 

Our model is that of a random-access computer with standard 
operations; accessing a number in storage requires unit time. We 
allow storage of numbers no larger than k max(V, E) where k is 
some constant. (If the labels are large data items, we assume that 
they are numbered with small integer codes and referred to by their 
codes; there are no more than k max(V, E) labels.) It is easy to 
see and may be proved rigorously that most interesting graph pro- 
cedures require time at least proportional to E when implemented 
on any reasonable model of a computer, if the input is a list of 
edges. This follows the fact that each edge must be examined once. 

It is very important to have an appropriate computer repre- 
sentation for graphs. Many researchers have described algorithms 
which use the matrix representation of a graph [1]. The time and 
space bounds for such algorithms generally are at least V ~ [3] 
which is not as small as possible if E is small. (In planar graphs for 
instance, E < 3 V -- 3.) We use a list structure representation of a 
graph. For each vertex, a list of vertices to which it is adjacent is 
made. Note that two entries occur for each edge, one for each of 
its end points. A cross-link between these two entries is often useful. 
Note also that a directed graph may be represented in this fashion; 
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if vertex v~ is on the list of vertices adjacent to vl, then (vl, v~) is 
a directed edge of the graph. Vertex vx is called the tail, and vertex 
u2 is called the head of the edge. 

A directed representation of an undirected graph is a repre- 
sentation of this form in which each edge appears only once; the 
edges are directed according to some criterion such as the direction 
in which they are transversed during a search. Some version of this 
structure representation is used in all the algorithms. 

One technique has proved to be of great value. That  is the 
notion of search, moving from vertex to adjacent vertex in the 
graph in such a way that all the edges are covered. In particular 
depth-first search is the basis of all the algorithms presented here. 
In this pattern of search, each time an edge to a new vertex is dis- 
covered, the search is continued from the new vertex and is not 
renewed at the old vertex until all edges from the new vertex are 
exhausted. The search process provides an orientation for each 
edge, in addition to generating information used in the particular 
algorithms. 

Detailed Description of the Algorithms 
Algorithm for finding the connected components of a graph. This 

algorithm finds the connected components of a graph by perform- 
ing depth-first search on each connected component. Each new 
vertex reached is marked. When no more vertices can be reached 
along edges from marked vertices, a connected component has been 
found. An unmarked vertex is then selected, and the process is 
repeated until the entire graph is explored. 

The details of the algorithm appear in the flowchart (Figure 1). 
Since the algorithm is well known, and since it forms a part of the 
algorithm for finding biconnected components, we omit proofs of 
its correctness and time bound. These proofs may be found as 
part of the proofs for the biconnected components algorithm. The 
algorithm requires space proportional to max(V, E) and time pro- 
portional to max(V, E), where V is the number of vertices and E 
is the number of edges of the graph. 

Algorithm for finding the biconnected components of a graph. 
This algorithm breaks a graph into its biconnected components by 
performing a depth-first search along the edges of the graph. Each 
new point reached is placed on a stack, and for each point a record 
is kept of the lowest point on the stack to which it is connected 
by a path of unstacked points. When a new point cannot be reached 
from the top of the stack, the top point is deleted, and the search 
is continued from the next point on the stack. If  the top point 
does not connect to a point lower than the second point on the 
stack, then this second point is an articulation point of the graph. 
All edges examined during the search are placed on another stack, 
so that when an articulation point is found the edges of the cor- 
responding biconnected component may be retrieved and placed 
in an output array. 

When the stack is exhausted, a complete search of a connected 
component has been performed. If  the graph is connected, the 
process is complete. Otherwise, an unreached node is selected as a 
new starting point and the process repeated until all of the graph 
has been exhausted. Isolated points are not listed as biconnected 
components, since they have no adjacent edges. They are merely 
skipped. The details of the algorithm are given in the flowchart 
(Figure 2). Note that this flowchart gives a nondeterministic 
algorithm, since any new edge may be selected in block A. The 
actual program is deterministic: the choice of an edge depends on 
the particular representation of the graph. 

We will prove that the nondeterministic algorithm terminates 
on all simple graphs without loops, and we also derive a bound on 
the execution time. We will then prove the correctness of the algo- 
rithm, by induction on the number of edges in the graph. Note 
that the algorithm requires storage space proportional to max(V, E), 
where V is the number of vertices and E is the number of edges 
of the graph. 

Let us consider applying the algorithm to a graph. Referring 
to the flowchart, every passage through the YES branch of block A 
causes an edge to be deleted from the graph. Each passage through 
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the NO branch of block B causes a point to be deleted from the 
stack. Once a point is deleted from the stack it is never added to the 
stack again, since all adjacent edges have been examined. Each 
edge is deleted from the stack of edges once in block C. Thus the 
blocks directly below the YES branch of block A are executed at 
most E times, those below the NO branch of block B at most V 
times, and the total time spent in block C is proportional to E. 
Therefore there is some k such that for all graphs the algorithm 
takes no more than k max( V, E) steps. A more explicit time bound 
may be calculated by referring to the program. 

Suppose the graph G contains no edges. By examining the 
flowchart we see that the algorithm, when applied to G, will termi- 
nate after examining each point once and listing no components. 
Thus the algorithm operates correctly in this case. Suppose the 
algorithm works correcly on all graphs with E-1 or fewer edges. 
Consider applying the algorithm to a graph G with E edges. Since 
the stack of points becomes empty at least once during the opera- 
tion of the algorithm, and since the YES branch at block D must 
be taken when only two points are on the stack, every edge must 
not only be placed on the stack of edges but must be removed in 
block C. Consider the first time block C is reached when the algo- 
rithm is applied to graph G. Suppose not all the edges in the graph 
are removed from the stack of edges in this execution of block C. 
Then p, the second point on the stack, is an articulation point 
and separates the removed edges from the other edges in the graph. 

Let Et be the set of removed edges, let E2 be the set of edges 
still on the stack, and let E3 be the set of remaining edges of G. 
Let G~ be the subgraph of G made up of the edges from El ,  and 
let G2 = G -- G~. Since G~ and G2 each have at most E-1 edges, 
the induction hypothesis implies that the algorithm operates cor- 
rectly on both Gt and G2. 

Assume that the edges for each vertex in G1 and G~ are listed 
in the same order as for G. Consider the sequence of steps taken 
when the algorithm is applied to G. The sequence of steps taken on 
G2 can be divided into an initial sequence of steps which results 
in placing the edges E1 on the stack, followed by the remaining 
sequence $2. The sequence of steps taken on G consists of the 
sequence S1, followed by the steps taken on G2 with p as the start 
point, followed by $2. 

The behavior of the algorithm on G is simply the composite 
of its behavior on GI and G~; thus the algorithm must operate 
correctly on G. 

Now suppose that the first time block C is reached, all the 
edges of G are removed from the stack of edges. We want to show 
that in this case G is biconnected. Suppose that G is not bicon- 
netted. Then choose a biconnected component of G which may be 
separated by removing some one point p and which does not con- 
tain the start point of G. Let the edges making up this component 
be subgraph G1 of G; let the remainder of G be G2. The algorithm 
operates correctly on Gi and on G2 by assumption. The behavior of 
the algorithm on G is a composite of its behavior on GI and on G~. 
Assume that the edges for each vertex in G1 and G2 are listed in the 
same order as for G. The sequence of steps on G is identical to the 
sequence of steps on G1 until an edge of G2 out of vertex p is se- 
lected. Then the sequence of steps of G is identical to the sequence 
on G2 with start point p. The remaining steps on G are the same 
as the remaining steps on G1. But the algorithm reaches block C 
once while processing Gi and at least once while processing G~. 
This contradicts the fact that the algorithm only reaches block C 
once while processing G. Thus G must be biconnected, and the 
algorithm operates correctly on G. By induction, the algorithm is 
correct for all simple graphs without loops. 

Algorithm for finding simple paths in a graph. This algorithm 
may be used to partition a graph into simple paths, such that all 
the paths exhaust the edges of the graph. Each iteration of the algo- 
ri thm produces a new path which contains no vertex twice, and 
which connects the chosen startpoint with some other vertex which 
already occurs in a path. Total running time is proportional to the 
number of edges in the graph. The starting point for each successive 
path may be selected arbitrarily. In fact, the initial edge of each 

Fig. 2. Flowchart for biconnected components algorithm. 
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successive path may be selected arbitrarily from the set of unused 
edges. 

The algorithm is highly dependent on the graph being bicon- 
nected. (The biconnected components of a graph are found using 
the previously described algorithm.) In order to find a new path, 
the initial edge is selected and the head of the edge is checked. 
If  this point has never been reached before, a depth-first search is 
begun which must end in a path since the graph is biconnected. 
The search generates a tree-like structure: specifically, it is a tree 
with edges connecting some vertices with their (not necessarily im- 
mediate) ancestors. (We will visualize the tree drawn so that the 
root, which is an ancestor of all points, is at the bot tom of the tree.) 
Enough information is saved from this tree so that  if a point in it 
is reached when building another path, the path may be completed 
without any further search. 

The flowchart (Figures 3 and 4) gives the details of the algo- 
rithm. It is divided into two parts; one for the depth-first search 
process and one for path construction using previously gathered 
information. We shall prove the correctness of the algorithm and 
give a time bound for its operation. To derive the time bound, we 
assume that one point is marked old initially, and a different point 
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Fig. 3. Flowchart for pathfinding algorithm (I). 
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is selected as the initial startpoint. The algorithm is then run re- 
peatedly with arbitrary startpoints until all edges are used to form 
paths. 

Let us consider path generation using depth-first search; that is, 
suppose the algorithm is applied and that the head of the first edge 
selected is previously unreached. Referring to the flowchart, we see 
that the search process is very similar to that used in the bicon- 
nectivity algorithm. A search tree is generated, and each edge 
examined is either part of the tree or connects a point to one of its 
predecessors in the tree. LO WPO1NT is exactly the same as in the 
biconnectivity algorithm; it gives the number of the lowest point 
in the tree reachable from a given point by continuing out along the 
tree and taking one edge back toward the root. The forward edges 
point along this path, while the backward edges point back along 
the tree branches. We have shown in the correctness proof of the 
biconnectivity algorithm that, if the graph is biconnected, LOW- 
PO INT  of a given point must point to a node which is an ancestor 
of the immediate predecessor of the given point. In particular, 
LO W P O I N T  of the second point in the search tree must indicate 
an old point which is not the startpoint. Therefore the algorithm 
will find a path containing the initial edge. Note that all points 
encountered during the search process must either be old or un- 
reached, since every point reached in a previous search either has 
had all its edges examined or has been included in a path. 

Let us now suppose that the head of the first edge has been 
reached previously but is not marked old. Then the forward and 
backward pointers, along with the L O W P O 1 N T  values, allow the 
algorithm to construct a path without further search. First, if the 
number of the head of the edge is less than the number of the 
startpoint, then following backward pointers will certainly produce 
a simple path, since the root of a search tree must be old and each 
successive point along a backward path has a lower number and 
thus is distinct from the other points in the path. If the initial edge 
is part of a search tree and the startpoint is the predecessor of the 
second point, then L O W P O 1 N T  of the second point must be less 
than the number of the startpoint. Following forward edges until 
reaching a point numbered lower than the startpoint and then fol- 
lowing backward edges will produce a simple path. This is true 
since the forward edges point through descendants of the tree, 
with the single exception of the edge whose head is a point below 
startpoint in the tree. The last case to consider occurs when the 
initial edge is not part of a search tree but points from a node to 
one of its descendants in a tree. In this case some node in the tree 
between the startpoint and the second point of the path must have 
a LO WPO1NT value less than the number of the startpoint. If  we 
follow backward edges until the first such point is reached, then 
follow forward edges until a point numbered less than the startpoint 
is reached, and finally follow backward edges until an old point is 
reached, we will generate a simple path. Note that the first forward 
edge taken cannot lead to the previous point because, if  it did, the 
L O W P O I N T  value at the previous point would be less than the 
number of startpoint, and the forward edge from this point would 
have been chosen instead of the backward edge. 

We thus see that each execution of the pathfinding algorithm 
produces a simple path, assuming that the algorithm is applied to 
a biconnected graph with at least one point which is not the first 
startpoint marked old initially. Since each edge is examined at 
most once in the search section of the algorithm, and since each 
edge is put into a path once, there is a constant k such that the time 
required to execute the algorithm until no edges are unused is less 
than k E  steps, where E is the number of edges in the graph. (Note 
that the number of vertices, V, is less than E if the graph is bicon- 
nected.) Detailed examination of the program will produce a more 
exact time bound. 

Another algorithm for finding simple paths exists. Lempel, 
Even, and Cederbaum [5] have described an algorithm for number- 
ing the vertices of a biconnected graph such that: (i) each number 
is an integer in the range 1 to V, where V is the number of vertices 
on the graph; (ii) vertices 1 and V are jointed by an edge; (iii) for 
all 1 < i < V, vertex i is joined to at least two vertices, one with a 
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higher number and one with a lower number. We may use this algo- 
rithm to partition a graph into simple paths. 

Given a start point and an adjacent end point, number the 
vertices so that the startpoint is 1, the endpoint is V, and the 
numbering satisfies the conditions above. Take edge (1, V) as the 
first path. Given an arbitrary startpoint, find an edge to a higher 
numbered vertex. Continue to find edges to successively higher 
numbered vertices until an old vertex is reached. 

This algorithm is clearly correct and looks conceptually simple. 
However, Lempel, Even, and Cederbaum present no efficient im- 
plementation of their numbering algorithm, and the only efficient 
way we have found to implement it requires using the previously 
described pathfinding algorithm in a more complicated form. Thus 
the new algorithm requires time and space proportional to 
max(V, E), but the constants of proportionality are larger than 
those for the implemented algorithm. 

Implementation. The algorithms for finding connected com- 
ponents, biconnected components, and simple paths were originally 
implemented and tested in Algol W. The programs were then 
translated to Algol for publication and tested using the OS/360 
Algol compiler. Auxiliary subroutines were also implemented. Brief 
descriptions of the procedures are provided below. 

ADD2(A, B, STACK, PTR): This procedure adds value A 
followed by value B to the top of stack STACK and increments 
the pointer to the top of the stack (PTR). Stacks are represented as 
arrays; the top of the stack is the highest filled location. 

NEXTLINK(POINT, VALUE): This procedure is used to 
build the structural representation of a graph. It adds VALUE 
to the list of vertices adjacent to POINT. (POINT, VALUE) is an 
edge (possibly directed) of the graph. 

CONNECT( V, E, EPTR, EDGELIST, CO MPONENTS): This 
procedure, given a graph with V vertices and E edges, whose edges 
are listed in EDGELIST, computes the connected components of 
the graph and places the edges of the components in COMPO- 
NENTS. Each component is preceded by an entry containing the 
number of edges E '  of the component. The edges are oriented for 
output according to the direction in which they were searched 
(head first, tail second). 

BICONNECT( V,E,E PTR,EDGELIST, C O M PONENTS) :This 
procedure, given a graph with V vertices and E edges, whose 
edges are listed in EDGELIST, computes the biconnected com- 
ponents of the graph and places them in BICOMPONENTS. Each 
component is preceded by an entry containing the number of 
edges E of the component. The edges are oriented for output 
according to the direction in which they were searched (head first, 
tail second). 

PA THFIND ER( STAR TPT, PA TH PT, COD EVAL UE, PA TH) : 
This procedure, given a list structure representation of a bicon- 
nected graph with certain vertices marked as old, constructs a 
simple path from STARTPOINT to some old vertex, saving 
information to be used in constructing succeeding paths. The new 
path is stored in array PATH. Calling PATHFINDER repeatedly 
may be used to partition the graph into simple paths. 

The procedure PATHFINDER requires that the structural 
representation of the graph be stored as follows. Each edge is 
treated as a pair of directed edges each of which is represented 
by an integer between v + 1 and v + 2 X e. If i l ,  i2, ..., ik are the 
integers corresponding to the edges out of vertex i, then initialize 
NEXT(i) to il, NEXT(ij) to i3+i, 1 _< j < k, and NEXT(k) to 0. If 
the edge ij terminates at vertex l, initialize HEAD(i~) to l. LINK(ij) 
is the integer corresponding to the edge in the other direction. For 
1 < i < v, BACK(i), FORWARD(i), PATHOCDE(i) are initialized 
to 0, LO WPOINT(i) is initialized to v -q- 1, NODE(i) is initialized to 
NEXT(i) and OLD(i) is initialized to FALSE. For v q- 1 < i < 
v q- 2 X e MARK(i) is initialized to FALSE. Before the first call 
of PATHFINDER some nonnull set of vertices must be marked 
as OLD and assigned successive PATHCODE values. CODE- 
VALUE is set equal to the number of vertices marked as OLD. 
If  this is not done the first path cannot end at an OLD vertex. 

Further comments may be found in the program listings below. 
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Algorithm 
procedure add2 (a, b, stack, ptr); 

value a, b; integer a, b, ptr; integer array stack; 
comment Procedure adds values a and b to stack stack and in- 

creases stack pointer ptr by 2; 
begin 

ptr := ptr -~- 2; stack[ptr -- 1] := a; stack[ptr] := b 
end of add2; 
procedure nextlink (point, val); 

value point, val; integer point, val; 
comment Procedure adds directed edge (point, val) to structural 

representation of a graph. Global variables are described as fol- 
lows. head[v+ 1 :v+2 Xe] and next[1 :v+2  Xe] contain the struc- 
tural representation of the graph, freenext is the current last 
entry in next array; 

begin 
freenext := freenext q- 1; next[freenext] := next[point]; 
next[point] := freenext; head[freenext] := va/ 

end of nextlink; 
integer procedure min(a, b); 

value a, b; integer a, b; 
comment Procedure computes the minimum of two integers; 
if a < b then rain := a else rain := b; 
procedure connect (v, e, cptr, edgelist, components); 

value v, e; integer v, e, cptr; 
integer array edgelist, components; 

comment Procedure finds the connected components of a graph. 
The parameters are described as follows, v and e are the number 
of vertices and edges of the graph, edgelist[l:2Xe] is the initial 
list of edges of the graph, components[1 : 3Xe] is the list of edges 
for each component. The list of edges for each component is pre- 
ceded by an entry giving the number of edges of the compo- 
nent. cptr is a pointer to the last entry in components. The global 
variables are described as follows, head[vWl:v+2×e] and 
next[l:v+2Xe] contain the structural representation of the 
graph, freenext is the last entry in the array next. The local 
variables are described as follows, number[l:v+l] is used for 
numbering the vertices during the depth first search, code con- 
rains the current highest vertex number, point is the current 
vertex being examined during the search, v2 is the next vertex 
to be examined during the search, oldptr contains the position 
in components to place the value of the next component. The 
global procedures are add2 and nextlink. A recursive depth- 
first search procedure is used to examine connected components 
of the graph; 

begin 
integer array number [1 :v-F 1]; 
integer code, point, v2, oldptr, i; 
procedure connector (point, oldpt) ; 

value point, oldpt; integer point, oldpt; 
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comment This recursive procedure finds a connected component 
using a depth-first search. The parameters are described as fol- 
lows. point is the startpoint of search, oldpt is the previous 
startpoint. Global variables are the same as for connect. The 
global procedures are add2; 

comment Examine each edge out of point; 
for i = i while next[ point] > 0 do 
begin 

comment v2 is head of edge. Delete edge from structural repre- 
sentation; 

v2 :=  head[next[point]]; 
next[point] := next[next[point]]; 
comment Has this edge been searched in the other direction? 

If so, look for another edge; 
if (number[v2] < number[point]) /~ (v2~oldpt) then 
begin 

comment Add edge to components; 
add2(point, v2, components, cptr) ; 
comment Determine if a new point has been found; 
if number[v2] = 0 then 
begin 

comment New point found. Number it; 
number[v2] := code := code q- 1; 
comment Initiate a depth-first search from the new point; 
connector(v2, point) 

end 
end 

end; 
comment Construct the structural representation of the graph; 
freenext :=  v; 
for i := 1 step 1 until v do next[i] : = 0; 
for i :=  1 step 1 until e do 
begin 

comment Each edge occurs twice, once for each endpoint; 
nextlink(edgelist[2 Xi--  1], edgelist[2 Xi]); 
nextlink (edgelist[ 2 X i], edgelist[ 2 X i -  1]) 

end; 
comment Initialize variables for search; 
cptr := O; point := 1; 
for i := I step 1 until v -F 1 do number[i] := 0; 
for i := i while point < v do 
begin 

comment Each execution of connector searches a connected 
component. After each search, find an unnumbered vertex 
and search again. Repeat until all vertices are investigated; 

number[point] := code := 1; 
oldptr : = cptr : = cptr -~- 1 ; 
connector(point,O); 
comment Compute number of edges of components; 

components[oldptr] : = (cptr-oldptr) +2 ;  
for i := i while number[point] ~ 0 do point := point + 1 

end 
end; 
procedure biconnect(v, e, bptr, edgelist, bicomponents); 

value v, e; integer v, e, bptr; 
integer array edgelist, bicomponen/s; 

begin 
comment Procedure finds biconnected components of a graph. 

The parameters are described as follows, v and e are the num- 
ber of vertices and edges of the graph, edgelist[l:2Xe] is the 
initial list of edges of the graph, bicomponents[1:3 Xe] is the list 
of edges for each component found. Each component is pre- 
ceded by an entry giving the number of edges of the com- 
ponent, bptr is a pointer to the last entry of bicomponents. The 
global variables are described as follows, head[v-Fl:v+2Xe] 
and next[1 :v-t-2 Xe] contain the structural representation of the 
graph, freenext is the last entry in the array llext. The local 
variables are described as follows, number[1 : v+ l ]  is an array 
used for numbering the vertices during the depth-first search. 
code is the current highest vertex number, edgestack[l:2Xe] 

is used for storage of edges examined during search, eptr is 
a pointer to last entry in edgestack, point is the current point 
being examined during search, v2 is the next point to be ex- 
amined during search, newlowpt is the lowpoint for the bi- 
connected part of graph above and including v2. oldptr is 
pointer to position in bicomponents to place a value of next 
component. The global procedures are min, add2, and next- 
link. A recursive depth-first search procedure is used to divide 
the graph. The lowest point reachable from the current point 
without going through previously searched points is calculated. 
This information allows determination of the articulation 
points and division of the graph; 

integer array number[l :v+  1], edgestack[1:2 Xe]; 
integer code, eptr, point, v2, newlowpt, oldptr, i; 
procedure biconnector (point, oldpt, lowpoint); 

integer point, oldpt, lowpoint; 
comment Recursive procedure to search a connected component 

and find its biconnected components using depth-first search. 
The parameters are described as follows, point is the startpoint 
of the search, oldpt is the previous startpoint, lowpoint is the 
lowest point reachable on a path found during search. The 
global variables are the same as for biconnect. The global 
procedures are min and add2; 

comment Examine each edge out of pobtt; 
for i := i while next[point] > 0 do 
begin 

comment v2 is the head of the edge. Delete edge from structural 
representation; 

integer v2; 
v2 :=  head[next[point]]; 
next[point] := next[next[point]]; 
comment If the edge has been searched in the other direction, 

then look for another edge; 
if (number[v2] <number[point]) /~ (v2~oldpt) then 
begin 

comment Add edge to edgestack; 
add2 (point, v2, edgestack, eptr); 
if number[v2] = 0 then 
begin 

comment New point found. Number it; 
number[v2] "= code := code + 1; 
comment Initiate a depth-first search from the new point; 
newlowpt : = v -~- 1; 
biconnector (v2, point, newlowpt); 
comment Note that  although the global variable v2 is 

changed, its value is restored upon exit from this pro- 
cedure. Recalculate lowpoint; 

lowpoint := min(lowpoint, newlowpt) ; 
if newlowpt >_ number[point] then 
begin 

comment point is an articulation point. Output edges 
of component from edgestack; 

oldptr := bptr := bptr -F I; 
for i := i while number[edgestack[eptr-1]] > 

number[point] do 
begin 

add2(edgestack[eptr- 1], edgestack[eptr], bicom- 
ponents, bptr) ; 

eptr := eptr -- 2 
end; 
comment Add last edge; 
add2(point, v2, bicomponents, bptr); 
eptr := eptr -- 2; 
comment Compute number of edges of component;  
bicomponents[oldptr] := (bptr-oldptr) + 2 

end 
end 
else 
begin 
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comment New point  not  found. Recalculate lowpohzt; 
lowpoint :=  min(Iowpoint, number[v2]) 

end 
end 

end; 
comment Construct  the structural representation of  the graph; 
freenext :--- v; 
for i :=  1 step 1 until v do next [i] :=  0; 
for i :=  1 step 1 until e do 
begin 

comment Each edge occurs twice, once for each endpoint;  
nextlink (edgelist [2 )< i - -  1 ], edgelist [2 )< i] ); 
nextlink (edgelist [2 X i], edgelist [2 )< i - -  1 ]) 

end; 
comment Initialize variables for search; 
eptr : = O ; b p t r : =  O;point := 1; v2 := O; 
for i :=  1 step 1 until v d- 1 do number[i] :=  O; 
for i : = i while point < v do 
begin 

comment Each execution of  biconnector searches a connected 
component  of  the graph. After each search, find an unnum- 
bered vertex and search again. Repeat  until all vertices are 
examined; 

number[point] :=  code :=  l; newlowpt :=  v d- 1; 
biconnector(point, v2, newlowpt) ; 
for i :=  i while number[point] -a ~ 0 do point :=  point q- 1 

end 
end; 
procedure pathfinder (startpoint, pathpt, codevalue, path); 

integer startpoint, pathpt, codevalue; 
integer array path; 

begin 
comment Procedure finds disjoint paths with arbitrary starting 

points in a biconnected graph. The points of  each path are 
listed in the array path. The following variables are assumed 
global, next[l:v-l-2Xe], head[v-l-l:vq-2Xe] and link 
[vWl:vq-2>(e] define the graph using singly linked edge 
lists and a set o f  cross reference pointers, old[1 :v] and mark 
Iv-F1 :vq-2×e]  indicate used points and edges, pathcode[1 :v] 
is the consecutive numbering of  the points, lowpoint[l:v], 
forward[1 :v] and backtl :v] give information saved f rom depth- 
first search, node[1 :v] gives the next unsearched edge f rom each 
point; 

integer point, pastedge, edge, pastpoint, v2, i; 
path[l] :=  startpoint; 
comment Choose initial edge; 
edge :=  next[startpoint]; 
for i :=  i while (if edge=O then false else mark[edge]) 

do edge :=  next[edge]: 
begin 

comment No unused edge and thus no path exists: 
next[startpoint] :=  O;pathpt :=  0: 
go to done 

end; 
next[startpoint] :=  next[edge]; path[2] :=  edge; 
point :=  head[edge]; pathpt :=  2; 
if old[point] then go to path found; 
if forward[point] ~ 0 then 
begin 

comment Use  previously found information to build a path. 
forward, back, lowpoint describe trees investigated using 
depth-first search; 

if pathcode[startpoint] > patlwode[point] then 
go to nextback; 

nextmark: 
if patheode[startpoint] > lowpoint[pobtt] then 
begin 

next forward: 
edge :=  Jbrward[point]; pohlt :=  head[edge]; 

pathpt : = pathpt q- 1; path[pathpt]: = edge; 
if old[point] then go to pathfound; 
if pathcode[startpoint] > pathcode[pohlt] 

then go to nextback; 
go to next forward 

end; 
edge :=  back[point]; point :=  head[edge]; 
pathpt :=  pathpt + 1; path[pathpt] :=  edge; 
if old[point] then go to path found else 

go to nextmark; 
nextback: 

edge :=  back[po#tt]; point :=  head[edge]; 
pathpt :=  pathpt q- 1; path[pathpt] :=  edge; 
if old[point] then go to path found else 

go to nextback 
end; 
comment Use  depth-first search to find a path. Save informat ion 

describing search tree; 
nextpoint : 

codevalue :=  codevalue + 1; pathcode[point] :=  codevalue; 
nextedge: 

edge :=  node[point]; 
for i : = i while edge = 0 do 
begin 

back[point] :=  link[path[pathpt]]; 
pastpoint :=  head[back[point]]; 
if (forward[pastpoint] = O) V 

(lowpoint[point] < lowpoint[pastpoint]) then 
begin 

forward[pastpoint] :=  path[pathpt]; 
lowpoint[pastpoint] :=  lowpoint[point] 

end; 
point :=  pastpoint; pathpt :=  pathpt - 1; edge :=  node[point] 

end; 
node[point] :=  next[edge]; v2 := head[edge]; 
if pathcode[v2] = 0 then 
begin 

point :=  v2; pathpt :=  pathpt + 1; 
path[pathpt] :=  edge; go to nextpoint 

end; 
if old[v2] /k (v2~startpoint) then 
begin 

pathpt :=  pathpt + 1; path[pathpt] :=  edge; 
go to path found 

end; 
if (forward[point]=O) ~/ (pathcode[v2] < lowpoint[po#lt]) then 
begin 

forward[point] :=  edge; lowpoint[point] :=  pathcode[v2] 
end; 
go to nextedge; 
comment Path found.  Convert  stack of  edges to list of  points  in 

path. Mark all edges and points  in path;  
path found: 
for i :=  2 step 1 until pathpt do 
begin 

edge :=  path [i]; point :=  head[edge]; 
forward[point] :=  back[point]: = 0; old[point] :=  true; 
mark[link[edge]] :=  mark [edge] :=  true; 
path [i] :=  point 

end; 
done: 
end 
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