INFORMS Journal on Computing
Vol. 8, No. 1, Winter 1996

0899-1499/ 96 /0801-0001 $01.25
© 1996 INFORMS

FEATURE ARTICLE

o= m

Toward an Experimental Method for Algorithm Simulation

CATHERINE C. McGEOCH / Department of Mathematics and Computer Science, Amherst College, Amherst, MA 01002;
Email: ccm@cs.amherst.edu

(Received: July 1994; revised: January 1995, May 1995; accepted: October 1995)

This feature article surveys issues arising in the design, devel-
opment, and execution of computational experiments to study
algorithms. An algorithm is viewed here as an abstract model of
an implemented program: experiments are performed to study
the model, and new insights about the model can be applied to
predict program performance. Issues related to choosing per-
formance measures, planning experiments, developing soft-
ware tools, running tests, and analyzing data are considered.
Some hazards and difficulties of computational research that
arise particularly in the context of algorithmic problems are also
surveyed.

A multitude of practical questions confronts the scientist
who undertakes an experimental study of one or more al-
gorithms. What should I measure? How many data points
should I gather? How should I analyze the data? Can I trust
the results? Will I learn anything useful?

The answers, of course, depend upon the particular prob-
lem being studied and upon the goals of the research project.
Researchers in the natural sciences have available an exten-
sive lore of laboratory techniques to guide the development
of rigorous and conclusive experiments. This has not been
the case in algorithmic research, however, perhaps because
algorithm analysis has long been viewed as primarily a
deductive science.

However, as the power of this kind of research has be-
come evident in recent years, more sophisticated experimen-
tal studies have appeared, and interest in methodology has
grown. In support of these trends, this feature article de-
scribes some aspects of a proposed methodology for exper-
imentation on algorithms. The goal here is to collect and
disseminate the experiences of scientists active in this field,
and thereby to contribute to a growing lore of experimental
research on algorithms. We can move forward by adopting
the successful strategies—and avoiding the mistakes—of
others.

This feature article is not about doing computational ex-
periments to compare programs. The experiments consid-
ered here study properties of algorithms, which are abstract
mathematical objects. However, these distinct problem areas
are closely related. Figure 1 illustrates a common paradigm
of simulation research. We have some complex real-world

process (say an economic system), and we wish to predict
how the process will behave in future situations. It is not
possible to test the process directly, perhaps because we do
not know what future situations will arise, but we do want
to understand how it responds in various scenarios. We
develop a mathematical model that captures important prop-
erties of the process. If we can analyze the model—that is,
derive a mathematical statement that answers sufficiently
the questions motivating the study—then we are done. If the
model cannot be analyzed, we implement a simulation pro-
gram and run computational experiments on the simulation
program. The experimental results produce insights about
the model and, by extension, about the real-world process.

For our purposes, the real-world process is an application
program running in a particular computing environment
and solving problems for real input instances. The abstract
mathematical model is an algorithm: here we use the word
algorithm in a very broad sense that allows wide variations
in the kinds of properties that are incorporated (more about
this later). When the algorithm cannot be analyzed suffi-
ciently, a simulation program is developed and experiments
are run. The simulation program may in fact be identical to
the application program, but we shall treat them as concep-
tually different objects.

What do we gain by making this distinction between
application programs and simulation programs? The power
of simulation lies in the complete control the scientist has
over the experimental environment. We can design experi-
ments to test specific hypotheses, we can change perfor-
mance measures as needed, and we can open up the black
box of the simulation program and probe ils internal mech-
anisms. In contrast, the scientist who studies application
programs in situ must take care that the tests themselves do
not affect the results, and must sacrifice some degree of
control over the experiment.

Why do we base mathematical models of application
programs on algorithms? Because algorithmic models cap-
ture most of the mechanisms and properties that determine
program performance. Certainly it is widely recognized that
an algorithm, in the traditional sense of the word, provides

Subject classifications: Computational experiments, algorithm design, algorithm development.



McGeoch

Simulation
Program

Figure 1. The Paradigm of Simulation Research.

only a very rough indication of program performance: low
level implementation details can have a far greater impact
on performance than algorithmic modifications. Therefore,
in this feature article, we extend the definition of the word
algorithm to include environment-specific details. That is,
algorithmic models of programs can vary according to their
level of instantiation.

A minimally instantiated algorithm (such as simulated
annealing) contains few implementation details and is prob-
ably more properly called an algorithm template. A more
instantiated algorithm may incorporate basic implementa-
tion strategies (such as whether to use a stack or queue for a
given data structure); an even more instantiated algorithm
may specify programming tricks that give constant-factor
speedups. A highly instantiated algorithm might describe
details specific to a particular programming language or
computer architecture.

The discussion in this feature article concentrates on the
right half of Figure 1. That is, we focus on problems of
simulating algorithms: developing software tools, designing
efficient experiments, avoiding errors, and analyzing the
data. Issues arising in the left side of Figure 1 are not
addressed here. In particular, the considerable problems of
developing and validating sufficiently predictive models of
performance are mentioned only briefly.

Section 1 surveys previous work, introduces some nota-
tion, and presents a small example study to illustrate several
points raised in later sections. Section 2 considers issues
arising at various stages in the simulation process. Section 3
surveys difficulties and hazards of simulation research on
algorithms—in some cases the difficulties can be eliminated,
and in some cases they can only be reduced. Section 4
presents concluding remarks.

No background in statistics or probability theory is as-
sumed here beyond familiarity with terms such as mean,
expectation, density function, and correlation. Definitions of
these standard terms can be found in any introductory text-
book on statistics (such as [31], [40], and [62]). Familiarity

with the terminology and notation of algorithm analysis at
about the level of an undergraduate course is also assumed
(see, for example, [26] or [71]).

1. Computational Experiments in Context

In order to provide a context for further discussions, this
section surveys related work, establishes some notation, and
presents a small computational study of an algorithm to
illustrate the notation and some ideas developed in later
sections.

1.1. Building a Reference Shelf

Methodological issues of algorithm simulation intersect
with several disciplines, including operations research, the-
oretical computer science, performance analysis, simulation,
statistics, data analysis, and scientific visualization. There is
no shortage of information sources; rather, the difficulty is in
sorting through this enormous literature to find works most
immediately applicable to algorithmic problems.

To assist with this winnowing process, this section sur-
veys articles and texts most relevant to algorithmic simula-
tion. This is a beginner’s reading list that errs on the side of
brevity rather than completeness. More extensive bibliogra-
phies can be found in the cited survey articles.

General resources. Until very recently there have been few
mainstream publication outlets for research on methodolog-
ical issues of algorithm simulation. Much of the lore gath-
ered here has been developed by participants in mini-ses-
sions and workshops such as [30], [45], [47], [48], [58], and
[65]. Many of the anecdotes in the following pages were
exchanged during coffee breaks at workshops like these.

A good source of ideas and practical advice for doing
simulation experiments is the annual Proceedings of the Win-
ter Simulation Conference, although this conference focuses
primarily on discrete event simulation. The December 1994
issue of the Annals of Operations Research is entirely devoted
to papers on simulation methodology. The INFORMS Jour-
nal on Computing has emerged as a leading source of articles
on experimental methods for problems of interest to the
operations research community. Many papers presented at
the annual ACM-SIAM Symposium on Discrete Algorithms
contain experimental studies of algorithms. The electronic
ACM Journal of Experimental Algorithmics will contain refer-
eed articles as well as programs, test instances, and instance
generators.

For introductions to general topics in simulation see Brat-
ley, Fox, and Schrage!”™ and Kleijnen and Van
Groenendaal.'®? Barton,”™ Lin and Rardin,®” and Nance,
Moose, and Foutz'®® discuss issues of model development
and experimental design for computational testing of pro-
grams, Devroye' is the definitive reference on techniques
for generating nonuniform random numbers. For a survey
of techniques for generating uniform random variates see
L’Ecuyer.%® Park and Miller'®” discuss implementation is-
sues for a specific uniform generator.

Survey articles. Hooker'**! laments the current state of com-
putational research on algorithms and programs. He notes,



3

Experimental Method for Algorithm Simulation

among other things, that it is notoriously difficult to extrap-
olate results from one class of input instances to another.
Therefore, it is rarely possible for a researcher to claim that
the experimental results are predictive of performance in
practice. To finesse this problem, Hooker suggests that in-
stance generators be developed to produce structured inputs
based upon a very large number of parameters. Computa-
tional tests can be developed to study how performance
depends on parameter settings, and practitioners can match
parameter settings to their particular applications. Much of
the discussion in Section 2 concerns this kind of testing.

Hooker also describes how explanatory rationales can be
developed to support reliable predictions. These rationales
are based on empirical models of experimental data, which
make no assumptions about the process that produces the
data. In contrast, the method proposed in this feature article
is to build mechanistic models that are based on partial un-
derstanding of the process. Discussion of the relative merits
of empirical models and mechanistic models can be found in
textbooks on statistics, for example Box, Hunter, and Hun-
ter'”? (Chapter 16) and Rawlings'®® (Section 7.1). To sum-
marize very briefly, a good mechanistic model provides a
much safer basis for extrapolation beyond the range of ex-
periments, and can give more parsimonious descriptions of
results. Sometimes, however, it is difficult to understand the
interactions between programs, operating systems, and ar-
chitectures that can drive performance. In such a case, the
best strategy may be to develop an empirical model. Which
approach is most suitable for a given research problem may
be a matter of judgment.

Kelton's" surveys current research trends in several areas
of simulation. His focus is on applications of simulation to
problems in operations research and management science,
but many of his remarks apply to general algorithmic re-
search as well. He traces the growth of interest in simulation
over the past 25 years and provides a comprehensive bib-
liographic survey. Greenberg!*® discusses some broad
philosophical issues.

Case studies. For testimonial descriptions of powerful inter-
actions between theoretical and experimental approaches to
algorithm analysis, see Bentley et al,!*> % Cherkassky,
Goldberg, and Radzik,*® Fredman et al.®®! and Todd."”
A few case studies have appeared in which authors
present experimental results together with detailed discus-
sions of experimental techniques. Ahuja, Magnanti, and Or-
lin™ describe methods for choosing combinatorial perfor-
mance measures that are highly predictive of program
running times, and illustrate their ideas using algorithms for
network flows. Bentley™"! presents guidelines for develop-
ing software environments for experimental research. Bent-
ley'® *2 jllustrates several methods of graphical data anal-
ysis in studies of heuristics for the TSP. Gent and Walsh!!
describe problems arising in their computational study of
algorithms for satisfiability. Golden and Stewart*?! show
how sophisticated statistical analyses can be applied to al-
gorithms for the TSP. McGeoch®™®! presents four case studies
in a survey of methodological issues for algorithm analysis.
A tutorial on application of variance reduction techniques to

algorithmic problems appears in [61]. These and other case
studies are discussed later in more specific contexts.

Data analysis. Graphical and exploratory methods of data
analysis are highly appropriate for algorithmic problems.
Exploratory data analysis (EDA) is a subfield of statistics in
which few a priori assumptions are made about the data set.
Instead, summarization and transformation techniques (like
histograms and log-log plots but considerably more sophis-
ticated) are used to discover underlying structures and pat-
terns. Tukey’s text on EDA" is the seminal work; another
excellent introduction is given by Velleman and Hoaglin."””

Graphical data analysis is another subfield that concen-
trates on visual methods for exploring relationships in data.
Graphs are especially good for handling the huge data sets
that arise in algorithmic problems. For introductions to
graphical methods see Chambers et al.,'**! Cleveland,®® and
duToit, Steyn, and Stump£.®* Jones"*! surveys current re-
search trends in the intersection of visualization and opti-
mization.

Parametric techniques of least-squares regression, and es-
pecially of regression diagnostics, figure prominently in re-
search on algorithms because the frequent goal is to discover
functional relationships between input parameters and per-
formance measurements. For introductions to modern re-
gression techniques see Atkinson'! and Rawlings.!®!

The classic paper by Crowder, Dembo, and Mulvey
gives an excellent discussion of how to report experimental
results in published work. The authors survey issues of
experimental and statistical integrity, outline basic stan-
dards for carrying out and reporting computational experi-
ments, and present a reviewer’s checklist for evaluating the
quality of experimental papers. Cleveland™®? discusses prin-
ciples of graphical presentation.

[27]

1.2. Terminology and Notation

The following notation is used throughout the feature arti-
cle. Suppose that the performance of algorithm A is to be
studied for a given parameterized class of input instances.
Algorithm A and the instance class comprise the experimental
model. The simulation study is undertaken to learn how
some performance measure X depends on certain experimental
parameters, say n and d. (It should be pointed out that the
word parameter has an entirely different meaning in statis-
tics, where the terms factor or independent variable would
be used instead. Various subareas of statistics use different
terms for other concepts defined in this section. The terms
used here are consistent with standard usage in algorithm
analysis.) Performance measures are selected according to
the open questions that motivate the experiment and the
level at which the algorithm is instantiated. We assume
throughout that the measures are combinatorial in nature—
that is, they represent counts of basic operations, units of
space, or some measure of solution quality. For more dis-
cussions of this point see Section 2.1.

Several types of parameters may be incorporated in a
study. For example, instances may be generated according
to some input parameters (such as problem size, graph den-
sity, or other structural properties). There may also be algo-



McGeoch

=
@
o
@
o
b
(=]
N
o
<
(=]
(a) Weights to Pack
Figure 2,

rithm parameters that correspond to specific implementation
strategies (such as whether to use a queue or a stack for a
basic data structure). Some parameters vary along a numeric
scale, and some do not. For example, problem size n e I'* is
a numeric parameter, but the data structure parameter d e
{queue, stack} is not.

We develop experiments to answer open questions about
the algorithm. Ideally, we fix those parameters that are
irrelevant to the questions, control those parameters that are
most important, and randomize those properties that have a
small effect on performance, or that we do not understand or
cannot control. Randomization may be present in the input
model or in the algorithm.

A simulation program that mimics the behavior of the
algorithm, and an input generator, are implemented. Exper-
iments are carried out. A design point corresponds to fixed
parameter settings (also called levels); for example, n = 1000
and d = queue may form a design point. There may be
several random trials at each design point. Each trial corre-
sponds to one run of the program on a single instance. If the
algorithm is probabilistic then several trials may be run on a
single instance. An experiment involves t random trials taken
at several design points. A single trial { produces a value for
an output variate X(n, d) that corresponds to the performance
measure X. Some other variates W(n, d) may be recorded for
comparison to the performance variate X(n, d).

Because of randomization in the model, the distribution of
X is described by an unknown density function f, ,(x), hav-
ing unknown mean pu(n, d). Computational experiments of-
ten begin with an effort to understand the mean u(n, d) by
studying the sample mean X(n, d) = (1/9=t.; X(n, d). We
say that X(n, d) is an estimator of u(n, d). More detailed
information about f, ;(x) can be obtained by studying other
properties of X(n, d). These terms are applied in an example
presented in the next section.

1.3. An Example

The one-dimensional bin-packing problem is well known
and easy to state. Given a list containing n weights each in
the range (0, 1], arrange the weights in unit-capacity bins so
as to minimize the total number of bins used. Since this
problem is NP-hard, several heuristic algorithms have been
proposed. The First Fit Decreasing rule (FFD) sorts the weight

Q, 09 §§§é 8182 8382

©

o 0.694

] |

° i

< RS
o i :
o L
c !
o
o

(b) FFD Packing

An FFD packing of a sorted list of 10 weights.

list in decreasing order and then packs each weight in the
first bin that can contain it. Figure 2 shows an FFD packing
of a list containing 10 weights.

How well does FFD pack in general? We will perform a
small experimental study using lists L, containing n weights
drawn uniformly and independently from (0, 1]. Here n is an
input parameter. Let the total weight in the list be denoted W,
and note that E[W] = n/2 for this random model. One
interesting measure of packing quality is the bin ratio R =
B/OPT, where B denotes the number of bins used by FFD,
and OPT denotes the number of bins in an optimal packing
of the list L,. The mean bin ratio is denoted p(n).

Since bin packing is NP-hard, it is in general not feasible
to compute OPT for a given list. As an alternative to mea-
suring the bin ratio, we define two new performance mea-
sures, the packing ratio P = B/W, and empty space S = B — W,
which have unknown means ¢(n) and o(n), respectively.
Note that empty space can be translated into packing ratio
by the formula P = (§ + W)/W = S/W + 1. Furthermore, for
any list we have [ W] = OPT = B. Therefore B/OPT < B/W,
or equivalently R = P and p(n) = ¢(n).

Please note that the experimental study sketched below
was selected to illustrate several ideas developed in later
sections and not because of its impact on our state-of-the-art
understanding of FFD. Analytical bounds are known for
p(n), o(n), and ¢(n) for this model (see references at the end
of this section). Nevertheless, many key theoretical advances
on average-case analysis of FFD and other packing rules
were directly stimulated by experimental research similar to
that developed here.

The first experiment. Figure 3.a shows the observed pack-
ing ratios P,(n) in 25 random trials each at the design points
n = 1000,2000, . . . 128,000 (doubling 7 each time). The dot-
ted line marks the average packing ratio P(n) observed at n
= 128,000. From the trend toward decreasing means in this
graph we might conjecture that as n grows larger, p(n) <
¢(n) = ¢ where c is near 1.0017.

Figure 3.b plots observed empty space S,(n) against n for
the same experiment. Figure 3.c plots the data on a double-
logarithmic scale. A least-squares regression fit is also
shown. The superimposed line obeys the formula 7(n) =
0.515 Inn — 1.57. Figure 3.d shows the residuals from this fit,



Experimental Method for Algorithm Simulation

1.04
4

1.03

Bins/Weight
1.02

1.01
2 Y H
s HH
-
R

8. % 1.001753 -~
" e 20000 40000 60000 80000 100000 120000
n
(a)
+
w i §
I Sy
S
| $ :
m : i ................. i t
%:n ; + ................
ﬁ ............. % .......
I
L
" +
7 8 - i 11
log(n)
(c)
Figure 3. The First FFD E

data on a double-logarithmic scale; a regression line is also

defined by In S,(n) — §(n). The residuals show no obvious
curvature up or down, which suggests that the line provides
a fairly good description of how the data grows with 7.
Other regression diagnostics (not shown here) indicate that
the line may slightly overestimate growth in the data. (These
statistical terms and techniques are discussed more fully in
Section 2.4.)

Translating back to the linear scale we have an observa-
tion that 5() grows no faster than 7°%°/¢'%, and a conjec-
ture that o(n) grows approximately as ¢n®3'® for a constant
¢. This is a stronger conjecture than the earlier one: if o(n)
does indeed grow more slowly than , then ¢(n) — 1. Since
p(n) = &(n), this would imply that FFD is asymptotically
optimal for this random model.

Now we explore this conjecture: Why should empty space
grow approximately as square-root n? We might hypothe-
size that empty space S reflects some random noise due
solely to random variation in individual weights. If this
were true then variations in observed empty space S,(n)
would not be correlated with variations in, say, the total
weight Wi(n) of the list or the number of bins B(n) used in
the FFD packing.

t
g +
+
8 : *
& : ;
gs] s ; ¢
'5 - + +
+ t % f
*
8] i § : i
i *
[~}
0 20000 40000 60000 8OOOO 100000 120000
n
(b)
al+ ¥ .
= +
S T T
o) ¥ T T T
e o $ * + + + ;
ot E : ¢t i i i
w O
g |+ * % ¥ i + :
.g |+ t i % ¥ +
&3y % ooy ¥
; t .ot 1 + +
Q + * t ;
v i + + +
+ + +
+
7 8 9 10 11
log(n)
(d)

iment. Graph (a) plots 7 vs. packing ratio. Graph (b) plots 7 vs. empty space. Graph (c) plots the
: : showg/vn. GraphP(d) sh](J)ws the r&sicfutayls I;;mm thepregregsion fit,

The second experiment. To test this hypothesis we take
1,000 random trials at the design point n = 128,000. The
graph in Figure 4.a suggests that in fact S/(n) is correlated
with Wi(n). The smoothed line on the plot shows a clear
increasing trend at the right. Furthermore, as Figure 4.b
indicates, a high value for empty space is associated with a
high number of heavy weights (weights greater than 0.5) in
a list. We try a new hypothesis: Most of the empty space in
a packing will be found in bins containing surplus heavy
weights, which are packed one-to-a-bin.

The third experiment. To investigate this hypothesis we
look at the breakdown of empty space by number of weights
per bin. Let a gap be the amount of empty space in a single
bin. Table I shows how gaps are distributed according to
counts of weights per bin in one trial at n = 128,000. Table
entries correspond to weight counts per bin (rows) and
ranges of gap values (columns). Each entry shows how
many bins fit the category. For example, there were 63,493
bins containing 2 weights, and 59,583 of them had gaps in
the range [0, .00005). In this FFD packing, no bin contained
more than 5 weights.



McGeoch

+
+
g Cot
s+ + ¥
+ +
g . ++ . -|-+ o
+
ig SRVas E
8 Fer % e i T b4
uw =, &‘# “t-r o+
Fea ¢ + ¥
§ + o+ -&ﬁ%*ﬁ-+
+ +
et }
4 RN
63700 63800 63900 64000 64100 64200 64300
List Weight
(a)
Figure 4.

weights vs. empty space.

Table I. Breakdown of Bins According to Number of
Weights Per Bin and Gap

Weights  Total Gap Ranges
PerBin  Bins  [0,.00005 [.00005, .0001) [0001, 1)
1 259 14 1 244
2 63493 59583 1335 2575
3 242 16 3 223
4 40 3 4 33
5 1 0 0 1
Total 64035 59616 1343 3076

The hypothesis fails, since it appears that empty space
occurs mostly in bins containing two weights, not one
weight. Since weights are uniformly distributed on (0, 1], it
is not surprising that most bins contains two weights, and
that most of those paired bins have gaps in the smallest
range. What is perhaps surprising is the large number of
paired bins having gaps in the middle and largest range.

The fourth experiment. An obvious next step is to focus on
how weights get paired in bins. Figure 5 shows a diagram of
every bin and weight in an FFD packing of a list of size
n = 1,000. The tops of weights in bins are marked by tiny
horizontal bars. For example, bin number 300 is highlighted
here with a dotted line. This bin contains a pair of weights,
of sizes 0.729738 and 0.256169, giving total weight 0.985907
and a gap of 0.014093. The rough diagonal line across the
figure marks the initial packing of the heavy weights in the
list. The first (largest) weight goes into bin 1, the second
weight (a little bit smaller) goes into bin 2, and so forth. It is
not difficult to visualize the rest of the process and to de-
velop a new hypothesis about how weights are paired in
bins, but at this point we abandon the study.

Further investigation along these lines is described in [13]

+
8
(]
8
8
28
2
£
wi
8
Fo
63600 63800 64000 64200 64400
Number of Heavy Weights
(b)

The Second FFD Experiment. Graph (a) shows list weight vs. empty space. Graph (b) plots number of heavy

0256169

o 0720738
- ~ . 3 —
-~ ~

© A .
© -
o \-
o
<
o . -
o
(=]
ot
o

0 100 200 300 400 500

Bin Number

Figure 5. The Fourth FFD Experiment. This is an FFD

packing of 1,000 weights. The tops of weights in bins are
marked by horizontal bars. The weights in bin number 300
are highlighted.

and [59]. Interestingly, the observation that overall empty
space depends primarily on the quality of packings in bins
containing two weights can be extended to other heuristics
and other input models. Algorithms that improve the way in
which weights get paired in bins would probably outper-
form these heuristics for these classes of inputs.

It is now known analytically that o(n) = On°%) and
therefore p(n) is asymptotically one for this random mod-
el.1*® Related theoretical results and more conjectures about
bin packing rules appear in [14], [24], [37], [38], and [72]. An
excellent survey of bin packing can be found in [25].

2, Steps in the Process

The bin packing study illustrates an important property of
simulation research on algorithms—experimentation is an
evolving and developing process. The performance measures,
parameters, and design points were all modified as insight
grew and new questions were raised. This evolutionary pro-
cess, alternating hypothesis and experiment, is a crucial factor
in successful computational research on algorithms. Also note



7

Experimental Method for Algorithm Simulation

that in this (contrived) example, hypotheses were more often
contradicted than supported by subsequent experiments. Any
sufficiently ambitious computational study on algorithms is
likely to contain several false leads and blind alleys.

The experimental process begins well before, and contin-
ues well after, the actual computational tests are run. This
section surveys methodological issues arising at several
stages in this process.

2.1. Planning the Experiments

Computational experiments are undertaken when research
questions cannot be answered by direct means. These open
questions suggest which performance measures are interest-
ing and what experimental parameters should be incorpo-
rated, but other factors should also guide the planning stage.

What to measure. It is possible to find research questions
and opportunities for performance improvements at all
points along the instantiation scale described earlier. For
example, Goldberg’s maximum flow algorithm can have
O(r*m) or O(n?m'/?) worst-case performance, depending on
how a basic data structure is implemented.” If constant
factors are similar, this represents a speedup by a factor of
1,000 on moderate-size problems (say n = 10°, m = n?).
Furthermore, the choice of a relabeling heuristic for Gold-
berg’s algorithm can affect average-case performance by a
factor of about 100 for this problem size.”™ For some classes
of inputs, a parallel implementation on a Connection Ma-
chine is faster by factors of 40 to 50 than a sequential imple-
mentation on a Sun SPARC-2 workstation (for other input
classes the SPARC-2 is faster).”

Performance measures can be suggested by the open
questions motivating the research. To study big-oh perfor-
mance, count the dominant operation identified in theoret-
ical analyses. To compare strategies for data structures, use
combinatorial measures—perhaps number of structure up-
dates or number of nodes touched or both—that are affected
by the strategies and that are meaningful indicators of over-
all performance. An excellent discussion of techniques for
finding combinatorial measures that are highly correlated
with program running times is given by Ahuja, Magnanti,
and Orlin.™ The authors provide guidelines for discovering
bottleneck operations that drive real performance (as op-
posed to the dominant operations suggested by theoretical
analysis), and they illustrate their technique using several
algorithms for network flow problems.

For highly instantiated algorithms, it can be difficult to
find combinatorial measures that predict running times to a
sufficiently fine degree, and it may be tempting just to report
the running times. However, this approach severely limits
the generality of the experimental results. It is very difficult
to scale running times for different computing environ-
ments. For example, Fredman et al.”®®! observe very different
performance profiles for identical programs and inputs de-
pending on whether they are run on RISC or CISC architec-
tures. This situation is exacerbated with the recent growth in
variety of parallel architectures and operating systems.

Maybe someday we can predict running times reliably
using linear combinations of a small set of key operations,

much as Knuth does for the hypothetical, very simple, MIX
architecture.® For now, however, it remains an open re-
search problem to find a concise and accurate prediction
scheme that spans different varieties of computing systems.

The set of combinatorial measures that might be adopted
in a given computational study can be quite large. Some
measures are better than others in terms of the statistical
analyses and insights they support. For example, in the bin
packing experiments, measurements of empty space S gen-
erally provided clearer views and stronger conjectures than
did measurements of the packing ratio P. While this expe-
rience is difficult to generalize, some guidelines for finding
good measures are listed below.

* Experts on exploratory data analysis point out (for exam-
ple [19], [76]) that data representing differences (like
empty space S) have different properties than data repre-
senting ratios (like packing ratio P). Since the insights
gained can be significantly different for these two classes
of data, it is useful to look at both kinds.

* In general, good measures exhibit small variance within a
design point compared to the amount of variation seen
between distinct design points.

* A statistician with expertise in variance reduction tech-
niques (VRTs) might recognize that list weight W is a
control variate for bin count B, and therefore empty space,
defined by S = B — W, might have less variance than B
(and possibly less than P). Variance reduction techniques
can suggest better measures even when they are used
informally as is done here. A nice technical introduction
to VRTs appears in [18]. A tutorial description of VRTs
applied to an algorithmic problem appears in [61].

* A biased estimator is an output variate having expecta-
tion that does not equal the quantity it is supposed to be
estimating. In the bin packing study, for example, the
sample mean P(n) overestimates the expected bin ratio
p(n) because R < P for all lists. Therefore, P(n) is a biased
estimator of p(n). When an unbiased estimator cannot be
computed efficiently (as is the case with R(n)), or when an
unbiased estimator has too much variance, it may be
possible to find a biased estimator that provides a good
upper or lower bound. See Section 3.2 for further devel-
opment of this idea.

* Too early summarization of the performance measure
should be avoided. The simulation program should report
output variates from each trial, rather than, say, just the
sample means and standard deviations obtained over ¢
trials. This can be especially important when data points
are bimodal or have unusual distributional properties.
Mechanistic explanations are developed by looking at the
entire data set, not just the summary statistics.

* Of course, the measure can and should change as new
hypotheses are formed and understanding grows. In the
bin packing example, the trend was from less detail to
more detail in the output variates. In other studies a
reverse of this trend may be more appropriate.

Modes of experimentation. Computational experiments can
be developed to target various kinds of questions about



McGeoch

performance. The bin packing study illustrates three modes
of experimentation, described below.

* In a dependency study the goal is to discover functional
relationships between parameter settings and perfor-
mance measurements. The first bin packing experiment,
for example, concentrated on how P and S vary with
problem size n. In this experiment, the focus was on
average performance. Deviation from average was of sec-
ondary interest, used primarily for checking the quality of
the regression fit. The function that results from this type
of study may be descriptive, reflecting the best fit to the
data found, or it may be mechanistic, incorporating some
partial understanding of underlying structure. The first
bin packing experiment produced a descriptive formula
of ¢n®>'%, and subsequent experiments were developed to
find mechanisms to explain this observation.

The second bin packing experiment focused on how pack-
ing quality correlates with variates such as list weight W
and the number of heavy weights in a list. Notice that
together with the additional output variates reported in
each trial, the second experiment incorporated fewer de-
sign points but more trials per design point. In general,
such trade-offs may be necessary to keep the total size of
the data set manageable.

A robustness study such as this looks at distributional
properties observed over several random trials, rather
than average behavior. Robustness studies address such
questions as: How much deviation from average is there?
What is the range in performance at a given design point?
Does the amount of variation depend on the parameters?
Are there unusually high or low values in the measure-
ments? How does the median compare with the mean? Is
the variation in performance correlated with certain prop-
erties of the input or of the algorithm?

Robustness studies can reveal ways to eliminate algorith-
mic sensitivities that produce unusually bad performance.
Correlations between variates can suggest ways in which
performance depends on randomized properties. They
can also suggest new parameters for future dependency
studies. For example, since the quality of FFD packings
appears to be correlated with the number of heavy
weights, we might develop a new round of experiments
incorporating both 7 and the number of heavy weights in
the list-generation routine.

¢ The last two experiments were probing studies, which in-
volved opening up the simulation program and inserting
probes to study components of the performance measures.
In the third experiment, empty space was recorded in cate-
gories according to weight counts and gap ranges. Because
of the greater amount of data reported, this experiment was
performed for only one trial. The fourth experiment, show-
ing every weight and bin in a packing, represents the pen-
ultimate in the amount of detail reported (the ultimate
would be achieved by a real-time animation of the packing).
This kind of close-up view can be extremely useful for
developing the insights needed for building mechanistic
explanations, but it is easy to be overwhelmed by too much
detail. Visualization tools can be very useful here.

2.2. The Pilot Study

A good first step is to implement a basic simulation program
and input generator based on simple assumptions about the
algorithmic model. This pilot program, developed separately
from the more ambitious simulation program, has several
uses.

First, the pilot implementation can be used for a prelim-
inary exploration to determine the scope and dimensions of
the larger simulation project. The pilot program can be used
to: (1) suggest the number of trials necessary to obtain
desired accuracy in estimators; (2) indicate the largest prob-
lem size that can be reasonably accommodated; (3) narrow a
large collection of potential parameters down to the most
important ones; (4) suggest better performance measures;
and (5) suggest some initial hypotheses about performance.

The pilot study may generate publishable information
about the performance of an algorithm. Especially when an
algorithm is new and complex, news about its general prop-
erties and characteristics can be immediately useful to other
researchers. However, the strongest computational experi-
ments are obtained by deliberate designs that exploit some
partial information about the problem. The pilot study pro-
duces a wealth of information that can be applied in more
ambitious experiments.

Second, a pilot program can be used as backup imple-
mentation for validating experimental results. The pilot pro-
gram can be ported to other computing environments and
fitted with alternative random number generators to evalu-
ate the impact of environmental factors on the results. Rep-
lication of experiments can play a crucial role in ensuring the
integrity of the study (see Section 3.1).

The pilot program should be carefully tested for correct-
ness. Statistical tests of the random number generator may
be appropriate. Standard program verification and valida-
tion techniques should be applied. Sometimes the computa-
tional results can be checked against known analytical for-
mulas (in one case such a check revealed an error in the
published theoretical work!¢°),

2.3. Developing and Running Experiments

Once the scope and dimension of the project are outlined by
the pilot study, the next step is to develop a simulation
program and a testing environment. After this, the tasks of
running experiments and analyzing data can begin.

Implementing the simulation program. Of course the sim-
ulation program should be a correct and accurate represen-
tation of the algorithmic model. Some sources of difficulties
in achieving this goal are outlined in Section 3.1.

Much can depend upon the computational efficiency of
the simulation program. The conclusions obtained in a study
can depend dramatically on the size of the largest problem
examined (see Section 3.3). This quantity, together with the
number of design points and the number of trials per design
point, are all constrained by the speed of the simulation
program. Furthermore, the amount of exploration and evo-
Iution possible in a study depends on program efficiency:
whether a given hypothesis is pursued may depend entirely
upon whether the experiment takes an hour or a weekend to



Experimental Method for Algorithm Simulation

run. Bentley'” describes strategies for writing efficient pro-
grams. Examples of simulation speedups—ways to exploit the
simulation problem to obtain results more efficiently than
could be obtained in a straightforward implementation of an
algorithm—appear in [9], [59], and [61].

Bentley™"! provides an excellent survey of software de-
velopment issues arising in algorithmic simulation. With
illustrations from experimental studies of binary search trees
and heuristics for the TSP, he gives several practical hints
and programming techniques to support flexible and rigor-
ous experiments. He mentions several principles for input
and output design in this context. For example, output files
should be self-describing. That is, they should contain hu-
man-readable specifications of the parameter settings pro-
ducing the data; otherwise the experimenter can quickly lose
track of which files correspond to which experiments. An-
other principle is that output files should be directly read-
able by whatever statistical package, plotting system, or
visualization tool is used to analyze the data. (Since these
two principles conflict in my own software environment, my
approach is to place all parameters and human-readable
comments in the input file, and to link it to an output file
containing unannotated data. It is also very helpful to use an
online notes program to keep track of experiments.)

Basics of experimental design. Where do you place the
design points in a dependency study? Familiarity with the
powerful formal methods of experimental design can be
helpful in answering this question. Statistics texts such as
[17], [40], and [62] provide good introductions to this topic.
Strategies for developing experimental designs for compu-
tational testing of programs are presented by Lin and Rar-
din,’”! and Nance, Moose, and Foutz.!*

These formal methods give rise to several informal rules
for choosing design points. A good pilot study can provide
the rough understanding needed to apply these rules effec-
tively.

* Suppose there are four parameters in the experiment, and
each can be set at three levels (say high, medium, and
low). A complete factorial design would require 3* = 81
design points for all possible combinations of the param-
eter levels. If the design produces too many design points
to be tractable, then it becomes necessary either to elimi-
nate some parameters or reduce the number of levels for
some parameters. Carefully developed incomplete de-
signs can support rigorous statistical analyses. Introduc-
tory statistics textbooks such as Freund"*®! or Moore and
McCabe'®?! contain discussions of these topics.

¢ Partial understanding of the functional relationships be-
tween parameters and performance can be exploited in
the experimental design. For example, if measure X is
known to be linear in parameter p (when all other param-
eters are held constant), then two design points (at high
and low values of p) are sufficient to determine the slope
of the line. If the function is not known to be linear, then
three levels of p are enough to tell whether the function is
curving up or down. More levels give more detailed
views. It is important to note, however, that a linear

relationship is not the same as an asymptotically linear
relationship. Assumptions that ignore low-order terms in
functions can produce misleading results.

Cyclical and threshold behaviors (showing up as oscilla-
tions and step-functions in data) are probably best de-
tected with a design that uses many design points spaced
evenly or randomly throughout the range of the param-
eter settings (with perhaps only a few trials per design
point). There seems to be little information available
about whether this approach is best in general, although
some statistical arguments for stratification in field exper-
iments (see for example [18]) tend to justify the use of
fewer design points and more trials per design point.

* A large amount of variance in the data makes it difficult
to obtain reliable estimates of means. Variance can be
reduced by taking more trials; in general variance is in-
versely proportional to the square root of the number of
trials per design point.

* Some experience suggests that the quality of the experi-

ment is enhanced by taking the largest problem sizes

possible (see Section 3.3).

¢ For several reasons described in Section 2.4, data analysis
may begin with a transformation of data values, often by
taking logarithms. Transformation may be applicable for
parameters that have theoretically unbounded growth
(like problem size) or that cause large changes in the
performance measurements,
When logarithmic transformation is appropriate, plan
ahead and use design points that appear evenly spaced on
a logarithmic scale. These points are obtained by increas-
ing the parameter level by a constant factor rather than a
constant increment (for example, doubling the problem
size each time as was done in the bin packing experi-
ments).

2.4, Statistics and Data Analysis

The bin packing study suggests the power of graphical
techniques for providing insights into algorithmic processes.
Certainly many of the observations in that example would
have been nearly impossible to obtain from, say, large tables
showing sample means and standard deviations.

Several general properties of algorithmic problems com-
bine to suggest that methods of graphical and exploratory
data analysis, and of scientific visualization, are most useful.
For example, simulation programs tend to be very fast and
to generate huge data sets. It is not unusual to obtain hun-
dreds of data points in a few seconds (although experiments
requiring several hours for one data point are not unknown).
Graphs and visualization techniques provide the only prac-
tical means of handling such large quantities of data. Also,
we are interested in developing mechanistic explanations of
observations, and graphical and visual techniques allow us
to see directly the patterns produced by underlying mecha-
nisms. Finally, a common goal in dependency studies is to
discover the form of the function that relates input param-
eters and performance measures, not to make predictions
based on a priori assumptions about the functional form.



10

McGeoch

Methods of exploratory data analysis are highly suited to
this goal.

The remainder of this section discusses the data analysis
techniques applied in the bin packing study of Section 1.3.
Additional techniques and technical discussions can be
found in books by Atkinson,"! Chambers et al,'! Cleve-
land,* du Toit, Steyn, and Stumpf>* Rawlings,®
Tukey,” and Velleman and Hoaglin.l””? Many statistical
software packages are available to support the analyses
described in this section.

The graphs in Figures 3 and 4 are examples of the classic
scatterplot representation of data pairs (x,y). Figure 3 shows
data in slices and Figure 4 shows clouds of points. A tech-
nique known as jittering reduces the problem of overlapping
points in slices by adding a small amount of random noise to
each x coordinate."! Several graphical methods (such as
draftsman displays, coded plots, casement displays, and
plot matrices) are available for handling higher-dimensional
point sets.[*!

The linear least-squares regression fit in Figure 3.c is a
standard technique for investigating (assumed) linear rela-
tionships in data. Regression is a powerful tool when formal
assumptions about the data set are valid. In this case, we
assume that the (x,y) pairs are related by the formula y =
ax + b + € where € is a random variate representing devi-
ation from the mean. The variate € is assumed to be inde-
pendently and normally distributed, with mean 0 and stan-
dard deviation independent of x and y. When these
assumptions hold, linear regression produces an estimate of
the coefficients 4 and b together with a reliable probabilistic
statement about the quality of that estimate.

It is rarely the case that all these regression assumptions
hold for data from algorithmic problems. For example, when
an output variate represents some count of basic operations,
it is likely to have upper and lower bounds that depend on
the parameter level, which is not consistent with the as-
sumption of a normal distribution in the error variate e.
Nevertheless, regression analysis can be fairly robust even
when some assumptions fail. Furthermore, regression-based
techniques can be used in informal ways to guide the search
for true functional forms. An important tool for checking the
regression assumptions is residuals analysis. The residuals
from the fit, shown in Figure 3.d, correspond to the vertical
distances between each y value and the regression line.
Other techniques are available to assess the quality of re-
gression fits and to develop improved regression models.
Atkinson,! Rawlings,'*® and Chambers et al.™ provide
discussions of these techniques.

If residuals analysis (or a quick look at the scatterplot)
indicates that the data do not obey a linear relationship, it
may be possible to find a linearizing transformation for
which the relationship does hold. The original data set in
Figure 3.b undergoes a transformation that takes logarithms
of both x and y, with the result shown in Figure 3.c. In
general, if the data obey the relationship y = ax’, then the
transformed data y’ = log(y), x' = log(x) obey a linear rela-
tionship ¥’ = bx' + log(a) + log(e). Results of linear regres-
sion on this transformed scale can be translated back to the
original scale to obtain estimates of 4 and b. This is one of

about a half-dozen well-known transformation techniques
(see Rawlings!®®! for an excellent discussion). Transforma-
tion is also useful for making the sample variance constant
across the design points, which can improve some kinds of
analysis.

Tukey'” uses the term re-expression to describe this same
general idea. He points out that data sets tend to fall into a
few broad categories, such as counts and amounts, ratios,
and balances. He argues that exploratory analysis of counts
and amounts (which have lower bounds of zero and no fixed
upper bounds) is usually best done after the data have been
transformed by taking logarithms (or sometimes square
TOOtSs).

The technique of smoothing shown in Figure 4 is generally
more appropriate for clouds than for slices. Smoothed lines
are developed by taking running averages in overlapping
groups of data points. Smoothed lines can be used to high-
light trends and correlations in data, as is done here. They
can also be used to assess the quality of regression fits, or to
find symmetries in plots of distributions. Smoothing is de-
scribed by Chambers et al.,'*® Tukey,” and Velleman and
Hoaglin.!"”}

Figures 2 and 5 are very primitive visualization tech-
niques showing two snapshots of FFD packings. The bin
packing research cited at the end of Section 1.3 made use of
animations showing FFD packings in progress; it is likely
that such visualization tools will be more widely used in the
future.

3. Hazards of Algorithm Simulation

A basic premise here is that the quality of an experimental
study is maximized when the simulation program repre-
sents the algorithmic model exactly.

This property does not always hold in published compu-
tational research on algorithms, sometimes because the dis-
tinction between application programs and simulation pro-
grams is not recognized. For example, three studies of
heuristics for self-organizing sequential search present the-
oretical results for a standard analytical model together with
some experimental measurements.™'> 2% 74 In all three stud-
ies, the simulation programs incorporate variations from the
analytical model. Some modifications are clearly intended to
make the experiments more reflective of realistic situations.
Others were probably developed to reduce the time required
to run the tests (for details, see [61]). However, in none of the
cases do the authors mention that the data cannot be used
for making precise inferences about the model—some ex- .
perimental measurements overestimate the theoretical
quantity, some underestimate it, and for some it is hard to
tell.

Other difficulties associated with developing a simulation
program that accurately reflects an algorithmic model are
surveyed in this section.

3.1. Implementation Artifacts

There are several ways in which a simulation program can
give an inaccurate view of algorithmic properties. Consider
the following anecdotes (those with no citations are from my



11

Experimental Method for Algorithm Simulation

own experience or are personal communications from col-
leagues).

¢ Some intriguing cyclical behavior observed in an algo-
rithm for self-organizing search, which prompted about
two days worth of fruitless theoretical research, disap-
peared when the random number generator was changed.

¢ In a study to estimate a constant in the Held-Karp lower
bound on the optimal tour length for the TSP, D. S.
Johnson checked his results using different random num-
ber generators. Although the estimates agreed to three
decimal places, estimates of the fourth decimal place had
95% confidence intervals that were disjoint. (Numerical
analyses indicated that estimation of the fourth decimal
place should have been well within the range of his ex-
periments.)

* A backup implementation was developed for the bin
packing project cited in Section 1.3. The main body of
experiments were run on a VAX/750, and a second pro-
gram was developed on a Radio Shack TRS-80 Model III
computer. At one point in the experiments, the two pro-
grams reported different values for empty space when
run on identical algorithms and identical (large) input
instances. An investigation of this discrepancy revealed
that the smaller machine precision on the TRS-80 was
causing some small weights to be rounded to zero. Larger
problem sizes would have introduced the same problem
on the VAX implementation.

¢ A colleague reports that two separately developed imple-
mentations of a heuristic algorithm produced different
results on identical input instances. This could have been
due to randomization in the algorithm. However, it
turned out that some strategies introduced to speed up
the code had combined to make one of the implementa-
tions diverge from the theoretical model. Several experi-
mental tests had to be redone.

¢ Gent and Walsh™*! describe the following experience in
their study of a randomized algorithm for satisfiability.
“We discovered a bug in one of the most frequently called
subroutines which biased the picking of a random ele-
ment from a set. We noticed this bug when we observed
very different performance running the same code under
two different compilers . . ..” Several experiments had to
be redone. They also report that the code with the bug
sometimes gave better performance, suggesting that the
algorithm might be improved by incorporating some kind
of systematic bias in the subroutine.

Note that all of these problems were caught because the
researchers were able to compare different versions of their
simulation programs. The lesson is clear. Key experiments
should be replicated to reduce the possibility of program
bugs and implementation-dependent factors producing er-
roneous results,

Two kinds of replication are suggested. First, check for
discrepancies due to pseudo-random number generators.
Even the best modern generators can exhibit non-random
patterns that interact badly with simulation programs. Sec-
ond, check for program bugs and numerical precision prob-

lems by comparing implementations developed separately
and running on different machines. In the latter case, iden-
tical input instances, generators, and random number seeds
should be used. Of course, like debugging, replication only
demonstrates the presence of error and not its absence.

3.2. Intractable Problems :
Certainly a large proportion of experimental research on
algorithms concerns heuristics for NP-hard problems. Ap-
proximation and heuristic algorithms are natural candidates
for experimental research because they are of great interest
to practitioners and are usually too complex to analyze for
any but the simplest of models.

One question often asked about an approximation algo-
rithm is: How well does it perform in comparison to an
optimal algorithm? The obvious difficulty with experimen-
tal research here is that the performance of an optimal
algorithm cannot be efficiently computed (unless P = NP).
Without the optimal solution cost, it can be hard to interpret
experimental results: Is a heuristic solution of 35.78 good or
bad? How much effort should we spend trying to reduce it
to 33? Ideas for sidestepping (but not surmounting) this
problem, gleaned from the literature on approximation al-
gorithms for the TSP, are surveyed in this section.

We begin by establishing some notation. For a given input
graph G, let A denote the cost of the TSP tour obtained by
some approximation algorithm, and let OPT denote the cost
of the optimal tour for that instance. Graphs G are drawn
randomly from some class 9 according to probability distri-
bution P. The set of input parameters for this class and
distribution is denoted by p. We are interested in the per-
formance ratio R = A/OPT. This ratio has unknown mean
p(p) that depends on the parameter set p.

The straightforward experimental approach would be to
generate ¢ random graphs according to parameters p and to
calculate the mean R(p) = (1/1)={.; Adp)/ OPT(p). However,
this is not possible because OPT,(p) cannot be computed
efficiently. Alternative strategies may involve changing the
class § to other input classes, finding a more tractable ana-
lytical measure than p(p), and developing new (perhaps
biased) estimators of p(p).

¢ Use well-known test sets for which optimal solutions
have been published. This corresponds to restricting the
input class to a handful of instances. The TSPLIB prob-
lems'® have provided widely used TSP benchmarks for
several years, and optimal tours are known for several
instances in that set. Of course, it can be difficult to
generalize results from small classes. Even worse, re-
searchers may be tempted to tune their algorithms to
produce good performance on the benchmark problems
rather than on general problem classes. Another difficulty
is that testbeds become obsolete. The largest problem in
TSPLIB has about 11,000 vertices, while recent TSP heu-
ristics can handle instances with a million vertices ([10],
[12]).

* Generate instances for which the optimal solution is
known by construction but is somehow hidden from the



12

McGeoch

heuristics. For these kinds of instances OPT can be found
exactly. Input instances arising in worst-case analyses
often have this property, but interesting random classes
are more difficult to construct. Pilcher and Rardin®” de-
scribe random instances of this type for the TSP. San-
chis”® discusses complexity issues of constructing such
test cases for NP-hard problems.

Restrict the experiments to an instance class and proba-
bility distribution for which the expected optimal solution
cost w(p) = E[OPT] can be calculated. For example, the

‘expected cost of an optimal tour through n points uni-

formly distributed in the unit square is known to be of the
form K\/ﬁ + o(n) for a constant K. Computational tests
have bounded Kby 0.765 < K < 0.765 + 4/n (see [6], [42],
and [73]).

With this input model, report the mean Ry(p) = (1/H3_,
A{p)/ w(p), which is an estimator of p(p) = E[A(p)]/w(p).
In general, there is no reason that p(p) should be close to
p(p). That is, the ratio of expected values need not equal
the expected value of the ratio. Nevertheless, p can pro-
vide a useful baseline for comparison. See [8] for an
example of this approach.

Use the distribution of costs of heuristic solutions A,(p),
B{p) ... to estimate OPT,(p). Golden and Stewart™? show
that costs of solutions to certain TSP problems can be
reasonably expected to obey a Weibull distribution. They
show how to obtain a point estimate and a confidence
interval for the minimum value (i.e., the optimal tour cost)
of a set of Weibull-distributed data. Their results are
impressive. For a class of problems with known optimal
solutions their point estimates are always within 2.8% of
the optimal cost, and their (100 — €)% confidence intervals
always contain the optimal cost (where € is approximately
107%%). Golden and Stewart also apply this technique to
estimate w(p) for the model using n points uniform in the
unit square. They report that an (100 — €)% confidence
interval (with € ~ 10~) always includes 0.765 i (which
agrees with the computational estimate of K mentioned
earlier). This idea is intriguing but has seen limited appli-
cation.

Instead of restricting the instance class, find an easily
computed lower bound L,(p) = OPT(p) and compute the
ratio R, (p) = A{p)/L{p). The sample mean R, (p) is an
upper bound on R. Although R, (p) overestimates p(p) to a
degree that may be unknown, it has the advantage over
R(p) of being efficient to compute. For applications of this
approach to studies of TSP algorithms see [12], [28], and
[39]. (This idea was also applied in the bin packing exam-
ple)

Karp®! uses a novel approach in his evaluation of a TSP
heuristic for planar point sets. He applies the heuristic to
the problem of computing a minimum spanning tree
(MST) of the point set, and compares the cost of the
heuristic MST to the cost of the true MST (which is easy to
compute). He argues that the performance ratio on the
MST problem is predictive of the performance ratio on the
TSP problem for these inputs. It would be interesting to
see if this approach can be generalized to other problems.

* A final strategy is to forget about performance ratios and
just use solution quality A,(p) to estimate a(p) = E[A(p)]
for a variety input classes. Use the same test sets that
others have used in published work, so that comparison
to a broad range of other heuristics is possible. Graphical
testbeds other than TSPLIB and Netlib ([33], [69]) are
available. Bentley"™ ' has developed a set of scalable
geometric problems that appear to be hard for many TSP
algorithms. Several graph and network generators are
available in a directory supported by DIMACS.1”!
Knuth’s extensive Stanford GraphBase'® contains ran-
dom graphs and networks as well as several instance
classes that have more structure.

Many of these approaches can be applied to problem
domains other than the TSP, but it is difficult to say which is
the most useful in general. Strategies involving restrictions
of the input class may give results that cannot be general-
ized. The lower-bound strategy is attractive because there is
no need to restrict the input class, but good lower bounds on
optimal solutions may not always be available. Results can
be hard to interpret if the lower bound L is far from OPT or
is negatively correlated with OPT. Some of the more ad-
vanced ideas are not yet well understood.

Perhaps the best way to proceed is to search for better
estimators, tractable performance measures, and interesting
problem classes, when beginning any new study of algo-
rithms for intractable problems. It is also a good idea to
produce results that can be compared with previous work.

3.3. Coping with Infinity

Analytical models are developed for infinite-size classes of
inputs, and the usual focus is on describing performance as
problem size approaches infinity. Unfortunately simulation
experiments are finite. With rare exceptions (see [35]), it is
not feasible to design experiments that directly reveal as-
ymptotic behavior or that span the entire spectrum of input
classes.

It is dangerous to extend observations about performance
to situations outside the range of experiments. The hazards
of extrapolating to other instance classes are fairly well
recognized, and researchers tend to be conservative. How-
ever, the dangers of extrapolating to larger problems sizes
may be less widely recognized. Three cautionary tales are
presented here.

Random binary search trees. The internal path length (IPL)
of a binary search tree is a measure of how balanced the tree
is (good trees are well balanced and have low IPLs). Start
with a random binary search tree of n nodes. What happens
to the IPL after m iterations of the operations (delete a
random node, insert a random node)? Knuth!®*! (Section
6.6.2), citing experimental results by Knott, remarks, “em-
pirical evidence suggests strongly that the path length tends
to decrease after repeated deletions and insertions, so the
departure from randomness seems to be in the right direc-
tion.” Later experiments by Eppinger,!*®! however, gener-
ated a conjecture that the IPL tends to increase to about
BO(log?n) times the initial cost.



Experimental Method for Algorithm Simulation

7
+
" +
8 *
" L]
8 ¥
4 § +
2% )
o +
S i
: i
+
p ¥ ;
ol W L) "
0.2 0.4 0.6 0.8 1.0
u (n=1,000)
(a)

Figure 6.

g i %

g i
i
4
g
@ L]

§ L

-
o+ + *
0.2 04 0.6 0.8 1 :0
u (n=100,000)
(b)

Two Experiments for the First Fit Rule. The parameter u is an upper bound on weight sizes in the list. Graph

(a) shows u vs. empty space for n = 1,000. Graph (b) plots u vs. empty space for n = 128,000.

The reason for these contradictory conclusions is problem
size. Eppinger’s experiments use much larger values for n
and m, and his results clearly indicate that the IPL initially
decreases, but later increases as m grows. (Later results by
Culberson and Munro®®”’ confirm Eppinger’s observations
and suggest that the asymptotic IPL is closer to @(n®/?).
Their results are based partly on experiments and partly on
new analytical insights.)

More bin packing. The First Fit heuristic for bin packing is
the FFD rule without the sorting step. This rule takes the
original weight list and packs each weight into the first bin
that can contain it. Suppose the n weights are drawn uni-
formly from (0, u], for 0 < u = 1. How does empty space
vary with u when n is fixed?

Figure 6.a shows observed empty space for 25 random
trials at each of several values of u, with n = 1,000. Figure 6.b
shows the same measurements with n = 100,000. The non-
monotonic behavior is striking. First Fit packings of weights
drawn from (0, .9] leave much less empty space than pack-
ings of weights from (0, .8].

Experiments on bin packing rules done in the late 1970’s
([46], [64]) produced conjectures implying that empty space
is linear in u. (Those experiments did not measure empty
space, but inferences can be drawn from the published data.)
These conjectures were contradicted by experiments done in
the late 1980’s with n as large as 128,000. Again, a major
reason for the contradictory conclusions was problem size.
The pattern in Figure 6.b is not visible until n is near 8,000.

Self-organizing search. Another example arises in studies of
heuristic rules for self-organizing sequential search. Two
input parameters for these problems are n and m. A paper”*!
appearing in 1978 describes experiments comparing seven
rules with 7 set to values between 25 and 250, and withm =
12,000. A paper'®"! published in 1989 presents experimental
results with n at 100 and 200, and with several settings of m
up to 600,000. The conclusions and the relative performance
rankings of the seven rules are very different in these two
papers.

How big is a big problem? These examples clearly indicate
the difficulties inherent in extending experimental results to
conjectures about asymptotic performance. In all three of
these problem domains, the later experiments were per-
formed at least 10 years after the early ones. Experiments
using larger problem sizes were possible because of techno-
logical improvements in the intervening 10 years. In each
case, larger problem sizes in the later studies produced
results that contradicted conclusions drawn from earlier
studies. Note, however, that the early experiments were
worth doing. All of the studies, old and new, produced
useful results that could not have been obtained by purely
analytical methods.

Recent progress on TSP algorithms has been even more
rapid. In 1985, Golden and Stewart"*?! described experi-
ments on graphs having at most 350 nodes. In 1987, Bland
and Shallcross® reported results for problems of 5,000 to
30,000 nodes. In 1990, Bentley!"® described experiments on
graphs having up to 1,000,000 nodes. Here problem sizes
have increased by four orders of magnitude (seven, if you
count the edges) in the space of five years.

In general, it does appear to be worthwhile to make every
effort to study the largest problem sizes possible. Even if no
better understanding of asymptotic behavior is gained, re-
sults on very large problem instances will extend the useful
lifetime of an experimental paper.

4. Final Remarks

A final story. While at a conference a few years ago, I was
introduced to a colleague who asked me about my research
interests. I told him I was working on developing experi-
mental methods for algorithm analysis. “How can you do
research in that area?” he asked. “All you have to do is
implement the algorithms and measure them—doing com-
putational studies on algorithms is too easy to be called
research.” About a half-hour later I had a similar conversa-
tion with another colleague. “How can you do research in
that area?” he asked, “You can’t learn anything useful about



14

McGeoch

algorithms that way—doing computational studies on algo-
rithms is too hard.”

Both were right, of course. It is conceptually easy to
develop a simulation program that represents a given well-
specified algorithm. On the other hand, it is difficult to
obtain simulation results that will suggest new mechanistic
models of performance and support extrapolations to sce-
narios outside the scope of the experiments. These goals are
not easy to achieve, but with care the special features of
algorithmic problems can be exploited and the special haz-
ards of algorithmic research can be circumvented.

Although the potential power of simulation research on
algorithmic problems is evident, many difficulties and meth-
odological issues remain unresolved. The ideas presented in
this feature article are meant to promote better experiments
as well as more discussion as this field continues to develop.

Acknowledgments

I thank Jon Bentley, Bill Eddy, David Johnson, and Jim Orlin, who
contributed many anecdotes and suggestions. The ideas presented
here were developed through conversations with them and numer-
ous other researchers over too many cups of coffee.

References

1. RK. AHUJA, T.L. MAGNANTI and J.B. ORLIN, 1993. Network
Flows: Theory, Algorithms, and Applications, Prentice Hall, Engle-
wood Cliffs, NJ.

2. F. ALIZADEH and A.V. GOLDBERG, 1991. Implementing the Push-
Relable Method for the Maximum Flow Problem on a Connec-
tion Machine, in Network Flows and Matching: First DIMACS
Implementation Challenge, D.S. Johnson and C.C. McGeoch (eds),
American Mathematical Society, Philadelphia, pp. 65-95.

3. RJ. ANDERSON and J.C. SETUBAL, 1991. Goldberg’s Algorithm
for Maximum Flow in Perspective: A Computational Study, in
Network Flows and Matching: First DIMACS Implementation Chal-
lenge, D.S. Johnson and C.C. McGeoch, (eds), American Mathe-
matical Society, Philadelphia, pp. 1-18.

4. A.C. ATKINSON, 1987. Plots, Transformations, and Regression, Clar-
endon Press, Oxford.

5. R.R. BARTON, 1987. Testing Strategies for Simulation Optimiza-
tion, in Proceedings of the 1987 Winter Simulation Conference, A.
Thesen, H. Grant, and W.D. Kelton, (eds.), Society for Computer
Simulation, pp. 391-401.

6. J. BEARDWOOD, J.H. HALTON and J.M. HAMMERSLEY, 1959. The
Shortest Path Through Many Points, Proceedings of the Cambridge
Philosophical Society 55, 299-327.

7. J.L. BENTLEY, 1982. Writing Efficient Programs, Prentice Hall,
Englewood Cliffs, NJ.

8. J.L. BENTLEY, 1984. A Case Study in Applied Algorithm Design,
Computer 17:2, 75-88.

9. J.L. BENTLEY, 1988. More Programming Pearls: Confessions of a

Coder, Addison-Wesley, Reading, MA.

J.L. BENTLEY, 1990. Experiments on Traveling Salesman Heuris-

tics, in Proceedings of the First ACM-SIAM Symposium on Discrete

Algorithms, ACM-SIAM, New York and Philadelphia, pp. 91-99.

J.L. BENTLEY, 1991. Tools For Experiments on Algorithms, in

CMU Computer Science: A 25th Anniversary Commemorative, R.F.

Rashid, (ed.), ACM Press, New York.

J.L. BENTLEY, 1992. Fast Algorithms for Geometric Traveling

Salesman Problems, ORSA Journal on Computing, 4:4, 387-411.

13. J.L. BENTLEY, D.S. JOHNSON, F.T. LEIGHTON and C.C. MCGEOCH,

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

21

1983. An Experimental Study of Bin Packing, in Proceedings of the
21st Annual Allerton Conference on Communication, Control, and
Computing, University of Illinois at Urbana-Champaign, pp. 51-
60.

J.L. BENTLEY, D.S. JOHNSON, F.T. LEIGHTON, C.C. MCGEOCH and
L.A. MCGEOCH, 1984. Some Unexpected Expected Behavior Re-
sults for Bin Packing, in Proceedings of the Sixteenth Symposium on
Theory of Computing, ACM, New York, pp. 279~288.

JR. BITNER, 1979. Heuristics that Dynamically Organize Data
Structures, SIAM Journal of Computing 8:1, 82-110.

R.G. BLAND and D.F. SHALLCROSS, 1987. Large Traveling Sales-
man Problems Arising from Experiments in X-Ray Crystallog-
raphy: A Preliminary Report on Computation. Technical Report
730, School of Operations Research and Industrial Engineering,
Cornell University, Ithaca, NY.

G.E.P. BOX, W.G. HUNTER and ].S. HUNTER, 1978. Statistics for
Experimenters, John Wiley & Sons, New York.

P. BRATLEY, B.L. FOX and L.E. SCHRAGE, 1983. A Guide to Simu-
lation, Springer-Verlag, New York.

J.M. CHAMBERS, W.S. CLEVELAND, B. KLEINER and P.A. TUKEY,
1983. Graphical Methods for Data Analysis, Duxbury Press, Boston,
B.V. CHERKASSKY, A.V. GOLDBERG and T. RADZIK, 1994. Shortest
Paths Algorithms: Theory and Experimental Evaluation, in Pro-
ceedings of the Fifth ACM-SIAM Symposium on Discrete Algo-
rithms, ACM-SIAM, New York and Philadelphia, pp. 516-525.
H.T. CH'NG, B. SRINIVASAN and B.C. OolI, 1989. Study of Self
Organizing Heuristics for Skewed Access Patterns, Information
Processing Letters 30, 237-244.

22. W.S. CLEVELAND, 1985. Elements of Graphing Data, Wadsworth,

24,

26.

27.

28.

29.

31.

32,

33.

34.

Monteray, CA.

. W.S. CLEVELAND, 1993. Visualizing Data, Hobart Press, Summit,

NJ.
E.G. COFFMAN, JR., D.S. JOHNSON, P.W. SHOR and R.R. WEBER,
1993. Markov Chains, Computer Proofs, and Average-Case
Analysis of Best Fit Bin Packing, in Proceedings of the Twenty-Fifth
Symposium on the Theory of Computing, ACM, New York, pp.
412-421.

. E.G. COFFMAN, JR. and G.S. LUEKER, 1991. Probabilistic Analysis of

Packing and Partitioning Algorithms, Wiley InterScience, New
York.

T.M. CORMEN, C.E. LEISERSON and R.L. RIVEST, 1990. Introduc-
tion to Algorithms, MIT Press, Cambridge, MA.

H.P. CROWDER, R.S. DEMBO and J.M. MULVEY, 1978. Reporting
Computational Experiments in Mathematical Programming,
Mathematical Programming 15, 316-329.

H.P. CROWDER and M.W. PADBERG, 1980. Solving Large-Scale
Symmetric Travelling Salesman Problems to Optimality, Man-
agement Science 26:5, 495-509.

J. CULBERSON and ].I. MUNRO, 1989. Explaining the Behavior of
Binary Search Trees Under Prolonged Updates: A Model and
Simulations, Computer Journal 32:1, 68-75.

. N. DEAN and G. SHANNON, 1992. DIMACS Workshop on Com-

putational Support for Discrete Mathematics, DIMACS Center,
Rutgers University, Piscataway, NJ.

M.H. DEGROOT, 1975. Probability and Statistics, Addison-Wesley,
Reading, MA.

L. DEVROYE, 1986. Non-Uniform Random Variate Generation,
Springer-Verlag, New York.

J.J. DONGARRA and E. GROSSE, 1987. Distribution of Mathemat-
ical Software Via Electronic Mail, Communications of the ACM
30:5, 403-407. Available through the mail server
netlib@research.att.com.

S.H.C. pu TorT, A.G.W. STEYN and R.H. STUMPF, 1986. Graphical
Exploratory Data Analysis, Springer-Verlag, New York.



15

35.

36.
37.

38.

39.

41.
. B.L. GOLDEN and W.R. STEWART, 1985. Empirical Analysis of

45.
46.

47.

49.

50.

51.

52.

53.

55.

56.

Experimental Method for Algorithm Simulation

W.F. EDDY and A.A. MCINTOSH, 1989. Determining Properties
of Minimial Spanning Trees by Local Sampling, in Computer
Science and Statistics: Proceedings of the 20th Symposium on the
Interface, pp. 538-545.

J. EPPINGER, 1983. An Empirical Study of Insertion and Deletion
in Binary Trees, Communications of the ACM 26:9, 663—669.

S. FLOYD and R.M. KARP, 1991. FFD Bin Packing for Item Sizes
with Distributions on [0,1/2], Algorithmica 6, 222-240.

G.N. FREDERICKSON, 1980. Probabilistic Analysis for Simple One
and Two-Dimensional Bin Packing Algorithms, Information Pro-
cessing Letters 11:4-5, 156-161.

M.L. FREDMAN, D.S. JOHNSON, L.A. MCGEOCH and G. OSTHEI-
MER, 1993. Data Structures for Traveling Salesmen, in Proceed-
ings of the Fourth ACM-SIAM Symposium on Discrete Algorithms,
ACM-SIAM, New York and Philadelphia, pp. 145-154.

. J.E. FREUND, 1973. Modern Elementary Statistics, Prentice Hall,

Englewood Cliffs, NJ.
LP. GENT and T. WALSH, 1994. How not to do it. Manuscript.

Heuristics, in The Traveling Salesman Problem: A Guided Tour of
Combinatorial Optimization, E. Lawler, J K. Lenstra, A. Rinnooy
Kan, and D. Shmoys, (eds.), Wiley InterScience, New York.

. H. GREENBERG, 1990. Computational Testing: Why, How, and

How Much, ORSA Journal on Computing 2, 94-97.

. J. HOOKER, 1993. Needed: An Empirical Science of Algorithms,

Operations Research 42:2, 201-212.

J. HOOKER, 1993. Session on Empirical Evaluation of Algo-
rithms, TIMS/ORSA Joint National Meeting, Chicago.

D.S. JOHNSON, 1973. Near-Optimal Bin Packing Algorithms,
Ph.D. Thesis, Project MAC TR-100, MIT, Cambridge, MA.

D.S. JoHNSON and C.C. MCGEOCH (EDS.), 1991. Network Flows
and Matching: First DIMACS Implementation Challenge, Vol. 12 of
DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, American Mathematical Society, Philadelphia. Pro-
grams and test instances are available via anonymous ftp in
directory pub/netflow at dimacs.rutgers.edu.

. D.S. JOHNSON and M. TRICK (EDS.), 1995. Graph Coloring, Vertex

Cover, and Satisfiability: Second DIMACS Implementation Chal-
lenge. In preparation.

C.V. JONES, 1994. Visualization and Optimization, ORSA Journal
on Computing 6:3, 221-257.

R.M. KARP, 1977. Probabilistic Analysis of Partitioning Algo-
rithms for the Traveling-Salesman Problem in the Plane, Math-
ematics of Operations Research 2:3, 209-224.

W.D. KELTON, 1994. Perspectives on Simulation Research and
Practice, ORSA Journal on Computing 6:4, 318-328.

J. KLEINJNEN and W. VAN GROENENDAAL, 1992. Simulation: A
Statistical Perspective, John Wiley & Sons, New York.

D.E. KNUTH, 1973. The Art of Computer Programming: Vol. 1,
Fundamental Algorithms, Addison-Wesley, Reading, MA.

. D.E. KNUTH, 1973. The Art of Computer Programming: Vol. 3,

Sorting and Searching, Addison-Wesley, Reading, MA.

D.E. KNUTH, 1993. The Stanford GraphBase: A Platform for Combi-
natorial Computing, ACM Press and Addison-Wesley, New York
and Reading, MA. Available by anonymous ftp at labrea.stan-
ford.edu.

P. L’ECUYER, 1994. Uniform Random Number Generation, An-
nals of Operations Research 53, 77-120.

57.

58.

59.

61.

62.

66.

67.

68.

70.

7L

72.

73.

74.

75.

76.

B.W. LIN and R.L. RARDIN, 1980. Controlled Experimental De-
sign for Statistical Comparison of Integer Programming Algo-
rithms, Management Science 25:12, 1258-1271.

B. LIsKOV, 1991. Workshop on Research in Experimental Com-
puter Science, Palo Alto, CA.

C.C. MCGEOCH, 1986. Experimental Analysis of Algorithms,
Ph.D. Thesis, Technical Report CMU-CS-87-124, Department of
Computer Science, Carnegie Mellon University, Pittsburgh.

. C.C. MCGEOCH, 1986. An Experimental Study of Median Selec-

tion in Quicksort, in Proceedings of the 24th Allerton Conference on
Communication, Control, and Computing, University of Illinois at
Urbana-Champaign, pp. 19-28.

C.C. MCGEOCH, 1992. Analyzing Algorithms by Simulation:
Variance Reduction Techniques and Simulation Speedups,
ACM Computing Surveys 245:2, 195-212.

D.S. MOORE and G.P. MCCABE, 1988. Introduction to the Practice
of Statistics, W.H. Freeman and Co., San Frandisco.

. R.E. NANCE, JR., R.L. MOOSE and R.V. FOUTZ, 1987. A Statistical

Technique for Comparing Heuristics: An Example from Capac-
ity Assignment Strategies in Computer Network Design, Com-
munications of the ACM 30:5, 430-442.

. H.L. ONG, M.J. MAGAZINE and T.S. WEE, 1984. Probabilistic

Analysis of Bin Packing Heuristics, Operations Research 32:5,
983-999.

. J.B. ORLIN, 1990. Session on Computational Experiments in Net-

work Optimization. ORSA /TIMS Joint National Meeting, Phil-
adelphia.

S.K. PARK and K.W. MILLER, 1988. Random Number Generators:
Good Ones are Hard to Find, Communications of the ACM 31:10,
1192-1201.

M.G. PILCHER and R.L. RARDIN, 1987. A Random Cut Generator
for Symmetric Travelling Salesman Problems with Known Op-
timal Solutions. Technical Report CC-87-4, Purdue University,
West Lafayette, IN.

J.O. RAWLINGS, 1988. Applied Regression Analysis: A Research Tool,
Wadsworth and Brooks/Cole, Pacific Grove, CA.

. G. REINELT, 1991. TSPLIB-A Traveling Salesman Problem Li-

brary, ORSA Journal on Computing 3, 376-384. Available through
the mail server netlib@research.att.com.

L.A. SANCHIS, 1990. On the Complexity of Test Case Generation
for NP-Hard Problems, Information Processing Letters 36, 135—
140.

R. SEDGEWICK, 1983. Algorithms, Addison-Wesley, Reading, MA.
P.W. SHOR, 1986. The Average-Case Analysis of Some On-Line
Algorithms for Bin Packing, Combinatorica 6:2, 179-200.

D. STEIN, 1977. Scheduling Dial-a-ride Transportation Systems:
An Asymptotic Approach, Ph.D. Thesis, Harvard University,
Cambridge, MA.

A. TENENBAUM, 1978. Simulations of Dynamic Sequential
Search Algorithms, Communications of the ACM 21:9, 790-791.
M.J. ToDD, 1994. Theory and Practice for Interior-Point Meth-
ods, ORSA Journal on Computing 6:1, 28-31.

J.W. TUKEY, 1977. Exploratory Data Analysis, Addison-Wesley,
Reading, MA.

. P.F. VELLEMAN and D.C. HOAGLIN, 1981. Applications, Basics, and

Computing of Exploratory Data Analysis, Duxbury Press, Boston.



