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Deductive algorithmic science has reached a high level of sophistication, but its worst-case
and average-case results seldom tell us how well an algorithm is actually going to work in
practice. I argue that an empirical science of algorithms is a viable alternative. I respond to
misgivings about an empirical approach, including the prevalent notion that only a deduc-
tive treatment can be “theoretical” or sophisticated. NP-completeness theory, for instance,
is interesting partly because it has significant, if unacknowledged, empirical content. An
empirical approach requires not only rigorous experimental design and analysis, but also
the invention of empirically-based explanatory theories. I give some examples of recent

work that partially achieves this aim.

There are two ways to study the performance of algorithms. One is analytical and relies
on the methods of deductive mathematics. The other is empirical and uses computational
experiments.

Only the first approach has developed into a science, and I believe that many researchers
and practitioners feel, deep down at least, that this science is inadequate to its task.

True, many brilliant results have been proved regarding the worst-case or average-case
complexity of algorithms. A number of hard-won bounds have been derived on the quality of

the solution delivered by inexact algorithms, both in the worst case and in the average case.



But these results do not usually tell us how an algorithm is actually going to work on
practical problems, or why. The complexity results are asymptotic or apply to a worst case that
seldom occurs. The average-case results presuppose a probability distribution over randomly
generated problems that is typically unreflective of reality. Furthermore, results of either kind
are usually obtained for the simplest kinds of algorithms. The complex algorithms typically
used in practice, not to mention the all-important tricks that are engineered into commercial
codes, are currently beyond the reach of deductive algorithmic science.

A mathematical breakthrough cannot be ruled out. Someone may invent powerful new
methods that can answer algorithmic questions that clever researchers can now only chip away
at. But in the meantime, the theorems seem harder and harder to prove. After years of intense
effort, we still find ourselves making very strong and therefore unrealistic assumptions to get
results.

The only alternative on the horizon seems to be computational testing. My thesis is that
the empirical approach is a viable alternative that should be pursued more consciously and
more rigorously. In other words, we should try to build an empirical science of algorithms.

Computational experiments are already widely reported in scholarly publications. But
these efforts fall short of science on several levels. To begin with, the testing is usually quite
informal, at least in the OR literature. One occasionally sees tests conducted according to
the principles of experimental design, or results analyzed using rigorous statistical methods.
But only occasionally. Not even minimal standards of reproducibility are observed by most
authors. Crowder, Dembo and Mulvey (1978) found the state of affairs sorry enough that they
would not go so far as to recommend reproducibility by others, but only that an investigator
be able to reproduce his or her own results.

It is symptomatic of the situation that, in OR and computer science, one cannot publish
reports that an algorithm does not perform well in computational tests. Negative results are
as important as positive results and are routinely reported in other empirical sciences. But the

OR and computer science communities do not judge the publishability of results, whether they



be positive or negative, primarily on the basis of their value as empirical knowledge. Positive
results are published because they are a practical selling point for the “theoretical” work that
occupies the first 90% of the article. Negative results are relegated to obscurity because they
do not demonstrate the applicability of the “theory.” We recognize their importance on an

unofficial level but must rely on grapevines and email to find out about them.

Advantages of an Empirical Science

An empirical science of algorithms would immediately sidestep several of the problems that

beset a purely deductive science.

It does not rely on proving hard worst-case and average-case theorems.

e Unlike worst-case analysis, it can focus on typical problems.

Unlike average-case analysis, it need not restrict itself to a simple and unrealistic distri-

bution of random problems.

e It can finesse the issue of characterizing a typical class of problems.

The last point deserves expansion. We want to know the performance of an algorithm on
typical problems, but we often do not know how to characterize them. So even if we could
carry out average-case analysis for any problem distribution we wish, we would be unsure
about what distribution to use.

Empirical science is equally stymied by this problem if it approaches it in the usual way.
The usual way is to collect a set of benchmark problems and compare algorithmic results on
them. But any choice of problems is open to the criticism that it is unrepresentative.

There is another way, however. One can investigate how algorithmic performance depends
on problem characteristics. The issue of problem choice therefore becomes one of experimental
design. Rather than agonize over whether a problem set is representative of practice, one

picks problems that vary along one or more parameters. Many investigators already do this



informally, as when exploring the effect of matrix density on algorithmic performance. Over
time, one may discover the important characteristics and learn to predict how an algorithm

will perform on a given problem class.

Empirical Science Involves Theory

Let us next dispose of the notion that empirical work in algorithms is somehow the opposite
of theory. True, in its presently impoverished state it often consists of little more than tables of
computational results on the last pages of journal articles. But it can be every bit as theoretical
as, say, complexity theory.

In its early stages, an empirical study of an algorithm might well involve nothing more
than running a few tests to see what happens. But after a while one develops an informed
hunch about what is likely to affect performance. This is a hypothesis. The hypothesis is
then tested empirically, using time-honored techniques of experimental design and statistical
analysis. Eventually one may put together a unifying and coherent picture that appears to
explain why certain factors are important. This is a theory. From the theory one can deduce
consequences that can be put to the test.

This sort of development is a well-trod path in empirical sciences. It shows that theory,
far from being antithetical to empirical science, is its culmination. Anyone who thinks that
empirical science is nontheoretical should take a look at quantum electrodynamics.

A source of confusion is that the word ‘empirical’ has one sense in which it refers to
something based purely on observation without theoretical depth. But I use the word in its
classical sense, which simply means something that is ultimately answerable to experience. As
for theory, it is again symptomatic that, within the OR and computer science communities,
the word often connotes a deductive science consisting solely of theorems and proofs. It is time
we broke out of this mindset.

I do not mean to say that theorems and proofs play no role in empirical science. To deduce a

consequence of a theory for testing is in a sense to prove a theorem. But unlike the situation in



deductive science, the “theorem” cannot be accepted as true unless it squares with observation.

How do I know that deducing the consequences of an empirical theory of algorithms will not
be as hard as proving worst-case and average-case results? I do not. Deducing consequences of
empirical theories is sometimes very hard. It took many years to derive the possibility of black
holes from FEinstein’s gravitational field equations. But since we know that theorem-proving

in a deductive science of algorithms is hard, it behooves us to give empirical science a chance.

Why the Resistance to Empiricism?

If an empirical science of algorithms is so viable an alternative, why has it not caught on?
Why do many people actively resist the idea?

I can identify several reasons, none of which I think are legitimate. I will begin with the
most frivolous and progress to the most serious.

One practical reason researchers do not invest more energy in rigorous empirical work is
that it is sometimes considered lowbrow or unsophisticated. There is at least a widespread
impression that it is hard or impossible to get a purely empirical algorithmic study published
in some prestigious journals. Behind this, in part, is a lack of standards for distinguishing
high-quality empirical work.

But the acceptability of empirical work seems to be growing even as this article goes to
press. Journal editors can be encouraged to seek out referees who have done rigorous empirical
studies. Refereeing standards will evolve, particularly as the empirical science develops.

Another objection to empirical work is that it is inherently irreproducible. Everyone knows
that the performance of an algorithm (e.g., number of elementary operations required) can vary
by an order of magnitude with the details of implementation. The data structures, coding
style, compiler, machine, etc., all matter. How can testing show an algorithm to be efficient
or ineflicient when one can only test the algorithm-cum-implementation?

The problem is one of distinguishing the phenomenon (here, the algorithm) from the ap-

paratus used to investigate it (here, the data structures, code, etc.). This is an old problem



in empirical science that is attacked by developing a science that governs the apparatus. An
astronomer, for example, can test a theory regarding the brightness of stars by photographing
them through a telescope. Another astronomer may get different results on a different night.
But their results can be reconciled if they understand how atmospheric conditions and the
construction of their telescopes affect the photograph. Similarly, we need an understanding of
how data structures and coding practices affect our observations of algorithmic behavior.

Perhaps this is a little too facile, however, since whereas it is easy to distinguish stellar
brightness from atmospheric interference, etc., it is not so easy to distinguish algorithms from
the data structures and code that embody them. Perhaps an algorithm is not really well spec-
ified until implemented. Or to put it differently, the very act of implementing (i.e., observing)
an algorithm alters the algorithm being observed.

It is not so obvious that deductive science is better positioned to deal with this problem than
empirical science. But this aside, it is again a problem that empirical science has dealt with. In
quantum physics, the method of observation is notoriously inseparable from the phenomenon
measured. Admittedly this poses a profound conundrum that by many accounts remains
unresolved. But quantum physics has enjoyed spectacular success, both in theoretical power
and in practical application, despite it. Perhaps there is a role for an uncertainty principle
in algorithmic science. In any event, I think we can agree that this empirical endeavor is

beginning to look less and less like a humdrum affair of tabulating CPU times.

The Main Objection

The main source of uneasiness over an empirical approach, however, seems to run deeper.
It is too much like verifying that opposite interior angles are equal by measuring them with
a protractor. The behavior of an algorithm over any finite period of time is in principle
deducible, using formal methods, from a statement of an algorithm. It seems fundamentally
wrong-headed to use empirical methods to study what is essentially a formal system.

I have two responses to this objection. Ome is that the natural phenomena we study



very successfully with empirical methods may themselves be deducible in a formal system.
In fact this was the prevailing view in the early days of modern science. Such luminaries as
Descartes, Leibniz, and Newton believed, and Kant allowed for the possibility, that physics
could in principle be studied with the same deductive methods as geometry, if only we had the
intelligence to do it. It is only our dim-wittedness that obliges us to use empirical observation
as a crutch. Even some recent physicists have suggested, off the record at least, that this
view deserves reconsideration, partly because it is hard to imagine how the numerical values
of fundamental physical constants could be explained except in the manner we explain how 7
has the value it does.

I do not claim that nature reflects an underlying formal system. My point is that many of
the founders of modern science saw (and some recent scientists see) nothing contradictory or
wrong-headed about studying a formal system with empirical methods. So I think the onus is
on those who see impropriety to defend their view.

My second response is more substantive. Studying algorithms at the level of a formal
system presupposes a form of reductionism, which is the view that one can and should explain
a phenomenon by reducing it to its ultimate constituents. Reductionism works in some contexts
but fails miserably in others, and I think it often fails in algorithmic science.

Consider the theory of plate techtonics, which explains the formation of the continents
by the way pieces of the earth’s crust float on magma. One might attempt to explain the
same phenomenon by reducing it to quantum physics, perhaps by formulating Schrédinger’s
equation for every atom in the earth and showing that our present topography corresponds to
the simultaneous solution of the equations. But this approach presents two difficulties. There
is the obvious practical problem that no mortal can carry it out. But even if we could do
it, even if we could deduce earth’s topography, this is no way to ezplain it—even in principle.
We would get a computer printout of numbers that provide no insight whatever as to why
continents look the way they do. The fundamental problem is not that there are too many

numbers to absorb, but that even if we could absorb them, they would not tell an explanatory



story. Geologists, meanwhile, point out that the eastern coast of the Americas is shaped like
the western coasts of Europe and Africa because they once collided, etc., and it all starts to
make sense.

The key to explanation is obviously finding the right level of analysis—the level of floating
plates rather than swarming atoms. Perhaps investigating the behavior of algorithms with
formal methods is like applying quantum physics to geology. Even if one can in principle
deduce what the algorithms are going to do, it is beyond human powers to do so, and even
if we did, we would not understand why they behave as they do. Quantum mechanics is not
a deductive science in the way that complexity theory is, but the situations seem otherwise
analogous. (To take an analogy that does involve deductive science, one can ask: does the
computer-implemented proof of the 4-color map lemma, granting that it proves the lemma,

ezplain why the lemma is true?)

Steps in the Right Direction

The OR and computer science communities have taken two steps toward an empirical
science of algorithms. Both are helpful, but both fall short of the goal. A Ph.D. thesis by
Catherine McGeoch (1986a) nicely surveys much of the research in this area.

One step involves statistical methods. A few researchers have used rigorous methods of
experimental design to concoct computational tests and statistical analysis to evaluate the
results, and there seems to be a rising level of interest in these matters. One of the first efforts
in the OR literature was a sophisticated application of experimental design principles by Lin
and Rardin (1980). Golden and Stewart (1985), and more recently Amini and Racer (1992),
used rigorous statistical methods to analyze test results. Eddy (1977) and Hart (1983) used less
elaborate analyses. Barton (1987) discussed experimental design for comparing optimization
procedures, and McGeoch (1992) variance reduction techniques. Crowder, Dembo and Mulvey
(1978) as well as Hoaglin and Andrews (1975) addressed the issue of computational reporting.

Miser (1993) discussed the role of empirical validation in operations research generally.



This movement toward rigorous methods is commendable, but it is only one ingredient of
empirical science. Another key ingredient is the development of empirically-based theories that
can be submitted to rigorous testing.

A second encouraging step toward an empirical science is the heuristic use of experimen-
tation. By this I mean the practice of using experiments to suggest hypotheses about the
behavior of algorithms. Bentley et al. (1983,1984) took this approach to bin packing algo-
rithms and discovered theorems later proved by Shor (1984). Manacher and Zobrist (1983)
took a similar approach to some matching problems, McGeoch (1986a,1986b) and McGeoch
and Tygar (1991) to sorting, and Rivest (1976) to self-organizing search. Varga (1990) dis-
cussed the use of experimentation in mathematics generally, and a popularized exposition was
the cover story in a recent Scientific American (Horgan 1993). There is even a new journal,
Ezxperimental Mathematics, founded at the University of Minnesota Geometry Center.

We all know that mathematicians have long used heuristic experimentation, but the positive
aspect of the recent trend is that we are owning up to it in print. It falls short of empirical
science because experimentation is used only to suggest theorems that may someday be proved.
FEzrperimental mathematics is not necessarily empirical mathematics, because in the latter
experimentation not only suggests hypotheses but is the ultimate basis on which they are
accepted or rejected. Yet heuristic mathematicians perform a valuable service by bringing

mathematical experimentation out of the closet.

Empirical Science in Disguise

The empirical approach may seem more acceptable if we note the extent to which it has
already crept into what is ostensibly our deductive science of algorithms. This has occurred in
nothing less than one of the crowning achievements of “theoretical” (i.e., deductive) computer
science: NP-completeness theory.

NP-completeness theory is, strictly speaking, a theory of problems rather than algorithms.

But it bears importantly on algorithms because no known algorithm can solve any NP-complete



problem in polynomial time.

The reader can consult Garey and Johnson (1979) for an introduction to NP-completeness
theory, but I will state the essentials briefly. Roughly speaking, a problem belongs to the
class NP if it is possible to verify, in polynomial time, that a given solution for it is in fact
a solution. (‘Polynomial time’ means that the time required increases no faster than some
polynomial function of the problem size, which is measured by the number of bits needed to
represent the problem in a computer.) We know that at least some of the problems in NP can
in fact be solved in polynomial time. These comprise the class P, which is a subset of NP. A
large variety of apparently hard problems also belong to NP.

A class of problems in NP is NP-complete if a polynomial-time algorithm for solving them
(supposing such an algorithm exists) can be used to solve any problem in NP in polynomial
time. Since no such algorithm has been found, an NP-complete problem class is regarded as
characteristically hard in some sense, although everybody recognizes that it may contain easy
problems among the hard ones.

The empirical content of NP-completeness theory becomes evident when we note that
any problem class in NP that contains an NP-complete class is itself NP-complete on that
basis alone. Consider, for instance the famous class TSP of traveling salesman problems.
The standard proof of NP-completeness for TSP shows that one could solve any satisfiability
problem in polynomial time if he could solve any problem in a certain subset Ty of TSP in
polynomial time. Since the class of satisfiability problems is NP-complete, it follows that TSP
is NP-complete.

What interests us here is that this argument shows equally well that Tj is NP-complete,
where Tp is a very small subset of very special traveling salesman problems. Let us grant that
this shows that the problems in Ty are characteristically hard in some sense. But on what
ground do we infer that the much larger superset TSP is a class of hard problems?

Recall that any class of problems in NP that contains T is ipso facto NP-complete. Con-

sider the class P’ that consists of all the problems in P (i.e., all problems soluble in polynomial
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time) and the very special traveling salesman problems in 7. P’ is no less NP-complete than
TSP, because it contains Tp. But it seems odd to say that the problems in P’ are characteris-
tically hard, since they include all the easy problems in the world.

What, then, gives us the right to say that TSP consists of characteristically hard problems?
Perhaps it is the fact that all the problems in TSP share a structural similarity with the
problems in Ty. But this only postpones the question: on what ground do we say that the
TSP structure, rather than some other structure shared by problems in 7Tj, makes Ty hard?

I suggest that we regard TSP as a hard class because we in fact find problems in TSP to
be hard in practice. Again, we acknowledge all along that TSP contains many easy problems.
But when one generates larger and larger TSP problems according to almost any reasonable
scheme that is not designed to produce easy problems, their difliculty tends to explode. It is
this fact, I submit, that justifies our saying that TSP contains characteristically hard problems.
It the fact that, to a large degree, makes the NP-completeness result for TSP interesting. And
it is an empirical fact.

TSP is what philosophers of science sometimes call a natural kind. To use Goodman’s
(1965) well-known example, let us define ‘grue’ to mean ‘green until 2000 A.D. and blue
thereafter.” Observing a large number of emeralds justifies a generalization that emeralds
are green. But the same observation, even if it takes place before 2000, fails to justify a
generalization that emeralds are grue. The reason is that ‘green’ is a natural kind where
emeralds are concerned and ‘grue’ is not. We have found empirically that properties like green
relate to the order of nature in a way that properties like grue do not. Similarly, TSP appears
to be a natural kind where problem difficulty is concerned, whereas P’ is not. Again, we found

out about this empirically.

Some Examples

To make my proposal for empirical algorithmic science more concrete, I will describe some

examples from recent work. None of these efforts fully exemplify the empirical approach, and
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I know of none that do. But by pointing out what is missing in each case, perhaps I can more

clearly indicate the goal I have in mind.

NP-completeness Theory

I have already argued that there is something covertly empirical about NP-completeness
theory. I will try to evaluate it as an overtly empirical theory.

The basic law of empirical NP-completeness theory is that NP-complete problem classes
tend to contain hard problems. From this one can deduce testable predictions: that certain
natural problem classes are characteristically hard because they are NP-complete. The theory’s
main strength is the richness and subtlety of the methods with which NP-completeness proofs
are constructed. Their ability to make fine distinctions and derive deep and surprising results
is reminiscent of the best empirical theories.

The main weakness of the theory, however, is its lack of explanatory power. It says little or
nothing to justify its natural kinds. Physical theory, taken as a whole, makes it seem reasonable
that green should be a natural kind and grue not one. Although it seems equally reasonable to
regard traveling salesman problems as a natural class and P’ (defined earlier) as an unnatural
one, nothing in NP-completeness theory or even complexity theory as a whole seems to warrant
these judgments.

Beyond this is the obvious vagueness in the notion of a characteristically hard problem

class. This makes it difficult to design experiments to check the theory’s predictions.

Local Search

Gent and Walsh’s (1993) recent study of a local search heuristic for the satisfiability problem
has some elements of empirical science.

The satisfiability problem is to determine whether a given set of formulas of propositional
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logic can be true simultaneously. An example might be,

z1 or not-zo
not-ry or s

not-zs

The problem is to decide whether there is an assignment of truth values (true or false) to the
atomic propositions z1, z3, z3 that makes all the of the above formulas true. (In this case, there
is.) A 3-SAT problem is one in which there are exactly three terms (literals) in each formula.

Gent and Walsh attacked this problem by trying to find an assignment of truth values that
maximizes the number of true formulas—that is, by solving MAXSAT, the maximum satisfi-
ability problem. They used a local search heuristic, which operates on a network of solutions
(truth value assignments) in which each node is connected by arcs to adjacent solutions. Each
adjacent solution is obtained by reversing the truth value of one atomic proposition.

The heuristic starts at some node and moves to the adjacent node that satisfies the most
formulas. When there is a tie, it can pick a node randomly. This step is repeated until all the
adjacent solutions are no better than the current one (which is therefore a local mazimum),
or until a predetermined number of iterations are completed. (Actually, Gent and Walsh
permitted the algorithm to move to a worse adjacent solution if none were equal or better,
but this rarely happened.) If the procedure finds a solution that satisfies all the formulas, the
satisfiability problem is solved. Otherwise the problem remains unsolved, because there may
be such a solution that was not found.

Gent and Walsh solved a large set of randomly-generated 3-SAT problems in which the
number M of formulas is a fixed multiple of the number N of atomic propositions. They plotted
the solution value against the iteration number, expressed as a multiple of N. Remarkably, they
found that the plot is almost identical from problem to problem, even for different values of N.
Furthermore, the solution value curve shows a clear transition from a hill-climbing phase to a
plateau phase. They also plotted, against the same abscissa, the number of adjacent solutions

tying for the best. This curve makes a corresponding transition from a sawtooth shape to a
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plateau. Each tooth of the sawtooth portion is twice as big as the previous tooth. Gent and
Walsh used regression analysis to quantify these relationships.

Remarkable as they are, these results do not comprise the sort of theory we seek because
they are purely descriptive and offer no explanation. But one is reminded of Bohr’s early
theory of the atom, which reflected some remarkable relationships that were consistent with
observation but were only later explained by quantum mechanics. Gent and Walsh’s results
may similarly be the first step toward an empirical theory. It is perhaps more plausible,
however, that they reflect a probabilistic theorem that someone may eventually prove, as
Gent and Walsh themselves suggest. In this case the empirical work is heuristic rather than
theoretical, in the sense discussed earlier.

This work may violate the spirit of empirical theory in another respect. I suggested earlier
that algorithmic performance is ideally predicted as a function of problem characteristics,
so as to avoid the issue of how the problems are generated. Here performance is described
as a function of only one parameter (the ratio M/N) and may rely heavily on the problem

distribution Gent and Walsh used.
Linear Programming Decomposition

Bogetoft, Ming and Tind (1992) used empirical methods to study the behavior of a mathe-
matical programming algorithm. Their work illustrates, in a very rudimentary way, two types
of explanatory empirical theories.

This work uses a variation of Dantzig-Wolfe decomposition to study the extent to which
decentralized decision making is possible when the decision makers have different preferences.
The object is to get the headquarters and subsidiaries of a firm to agree on how to operate
the firm even though they differ somewhat on what is important. One obvious way is for
headquarters simply to dictate policy. But in a large firm where it is more efficient to dis-
tribute decision making authority, headquarters might concern itself with the constraints that
involve the big picture, whereas the subsidiaries worry about constraints that are relevant lo-

cally. Headquarters gives the subsidiaries an incentive to take the big picture into account by
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appropriately adjusting the price of resources they obtain through headquarters. If this does
not work, headquarters looks at what the subsidiaries are doing and adjusts incentives so as
to correct their course.

The classical theory of Dantzig-Wolfe decomposition states that, after a finite number of
adjustments, the behavior of the divisions will be optimal for the firm as a whole, if they have
the same preferences (i.e., the same objective function). But what happens when there is not
full agreement on preferences? Bogetoft et al. found empirically that the resulting decision is
remarkably close to being acceptable to all parties even when they have substantially different
preferences.

To understand this work properly, it is necessary to look at the mathematical programming

formulation. It is a multiple-objective linear programming problem:

max pCez (1)
subject to Az <a
Bx <b

z >0

Each row of the matrix C' corresponds to one of the objective functions, and p is the vector
of weights that headquarters assigns to the several objectives. These weights reflect the pref-
erences of the decision maker. Headquarters takes into account the “big picture” constraints
Az < a, which can be regarded as constraints on resources that the divisions must obtain
through headquarters. The divisions concern themselves with the constraints Bz < b.

The decentralized decision problem is formulated as a master problem to be solved by
headquarters and a subproblem to be solved by subsidiaries. The master problem is,

max E Cy; M
el

subject to ZAyi/\i <a
el

dai=1
iel
Ai>0,1€l,
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and the subproblem is,

max (vC —uA)z
subject to Bz <b

x> 0.

In general the subproblem decomposes into several problems, one for each subsidiary, but we
can suppose for simplicity that there is but one subsidiary. Note that the subsidiary may have
different preferences than headquarters, because it may assign a different vector v of weights
to the multiple objectives. When the weights are the same (¢ = v), we have the classical
Dantzig-Wolfe decomposition.

Each column y; of the master problem is an extreme point (or extreme ray) of the sub-
problem’s feasible set. It represents one way the corporation can be run that is consistent
with the constraints Bz < b imposed on the subsidiary. All other feasible ways of running
the corporation correspond to convex combinations of the y;’s, using weights indicated by the
variables A;. The master problem’s constraints prohibit combinations that exceed the resource
limits.

The decision process goes as follows. Headquarters makes an initial decision by solving the
master problem with only a small subset I of the its columns. It then charges the subsidiary
a price for each resource, as given by the optimal value of the vector w of dual variables
corresponding to the resource constraints Az < a. The subsidiary uses these prices to make
its own decision, using its own set of preferences, by solving the subproblem. This decision
is given by an extreme point y; of the feasible set, which is added to the master problem.
If this new column allows headquarters to obtain a better solution, the process repeats, and
otherwise it terminates with an equilibrium decision. Termination always occurs after finitely
many iterations.

The authors generated random problems governed by six parameters, including a) the
number of variables, master problem constraints, subproblem constraints, and objectives, as

well as b) parameters indicating how much the objectives differ and how much the headquarters
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preferences p differ from the subsidiary preferences v. They measured the mutual acceptability
of the resulting decisions by noting how often they are efficient (i.e., pareto-optimal) solutions
of the original problem (1). (They used other measures as well.) They found that about 90%
of the solutions are efficient even when the weights ¢ and v are generated independently, rising
to 100% as p and v become more similar.

More interesting for our purposes is the further discovery that the decisions are more likely
to be efficient when a greater portion of the constraints are in the subproblem. Roughly put,
collaborative decision making is easier when subordinates have more information than the boss
rather than vice-versa, even when they disagree with the boss.

To analyze this study we must realize that it constructs two empirical theories. One is a
theory of hierarchical decision making based on a linear programming model and algorithm. I
just noted one consequence of the theory, which can be tested empirically.

The second theory, which is the one that interests us, addresses the behavior of the algo-
rithm used in the first theory. Unlike Gent and Walsh, the authors try to explain as well as
describe their results. Actually they offer two quite different if very rudimentary explanations,
each of which may be the germ of an empirical theory. One is that if the subsidiary “has fewer
constraints, there are also fewer expreme points from which to select. In this case there is
less chance of obtaining an efficient solution” (p. 19). This could be interpreted as an idea
for a probabilistic proof, in which case the empirical work here is only heuristic. But suppose
this idea is elaborated into a probabilistic rationale that does not reach the status of proof,
perhaps because a rigorous proof is too hard to construct. This might be done by making cer-
tain simplifying assumptions or approximations in the argument that are not mathematically
justified. The resulting theory would be truly empirical because the ultimate test of truth is
whether it squares with computational testing. Nonetheless it is not wholly in the spirit of
empirical theorizing, because it explains phenomena with concepts associated with same type
of reductive analysis (probability theory) that a deductive treatment might use.

The authors’ other explanation goes as follows: “When relatively few constraints are present
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at the central level then relatively more information is present in the subunit [subsidiary].
Hence the subunit improves its possibilities to generate the right proposals to be considered.”
This is an embryonic but substantial advance in empirical theorizing, because the master and
subproblem are viewed as decision making units with access to a certain amount of information,
rather than pieces of mathematics to be analyzed in a theorem-proof mode. Indeed the real-
world pheonomenon the algorithm is designed to model provides the concepts for explaining the
algorithm’s behavior! The explanation is too vague in its present form to have much predictive
power. But when one attempts to understand intuitively what is going on here, he is almost
irresistably drawn to an explanation of this kind. It may therefore form the basis for a useful

empirical theory.
Satisfiability Algorithms

Another empirical study of satisfiability algorithms (Hooker and Vinay 1993) develops
somewhat further the notion of explanation via probabilistic rationale. It deals with branching
algorithms, which are among the more promising methods for solving the satisfiability problem
(see Harche et al. 1993, Mitterreiter and Radermacher 1993). These methods operate by fixing
a chosen variable to true and then to false, and in either case attacking the resulting subproblem
in the same way. Critical to their success is the branching rule, i.e., the way the variable to be
fixed is chosen. Despite a number of deep results in the probabilistic analysis of satisfiability
algorithms (e.g., Franco 1986, Purdom 1990, and many other papers), we cannot explain why
the most effective algorithms work and predict when they will work.

Hooker and Vinay propose two simple probabilistic models of how branching rules affect
the performance of algorithms. The matter is too involved to describe in detail here, but
briefly, one model says that branching rules work well when they try to create subproblems
that are satisfiable with high probability. This is the justification given by Jeroslow and Wang
(1990) for their very effective branching rule. The other model says that an effective branching
rule should try to create subproblems that result in the generation of a large number of unit

clauses (formulas containing just one literal) further down the search tree.
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Both models make simplifying approximations and abandon the possibility of proving a
theorem. But both make specific predictions that can be tested empirically. Computational
experience soundly refutes the first model and tends to confirm the second (to the extent that
empirical confirmation is possible; see Popper 1965). In particular, the original justification
for the Jeroslow-Wang rule is wrong, and the alternative model suggests a new branching rule
that is apparently superior to other known rules.

This study falls short of the empirical ideal in at least two respects, however. It relies on
a set of benchmark problems (albeit a very large one), and it reverts to probabilistic concepts

that would be used in a deductive analysis.
Simulated Annealing

Fleischer and Jacobson (1992, 1993) used concepts from information theory to try to ex-
plain the performance of simulated annealing heuristics. Their work shows that sophisticated
theoretical analysis can form the basis for an empirical theory.

Simulated annealing heuristics, which derive ultimately from the work of Metropolis el
al. (1953), are similar to local search heuristics in that they repeatedly move to an adjacent
solution (see Aarts and Korst 1989 for a detailed treatment). They differ, however, in that they
choose a solution randomly from adjacent solutions and move to this solution if it is no worse
than the current one. If the solution is worse, the move is nonetheless made with probability
e~2/T where A is how much worse it is, and 7 is the “temperature.” The process is repeated
as long as one desires, while the temperature is gradually reduced. Mitra et al. (1986) showed
that for a properly chosen cooling schedule, the probability that the heuristic will reach an
optimal solution in any given move approaches one aymptotically as the number of iterations
increases.

The simulated annealing process can be modeled with a (strongly ergodic) inhomogeneous
Markov chain. At every step of the algorithm there is a matrix P whose elements p;; give the

probability that the algorithm will move to solution j if it is now at solution ¢. The chain is

inhomogeneous because P changes with each iteration, due to the changing temperature.
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Fleischer and Jacobson begin with a known connection between the entropy H of a ho-
mogeneous (constant temperature) Markov chain and its behavior. Namely, the number of
possible sequences of n steps that are “typical” sequences is proportional to e"H. A typical
sequence of steps is one in which each solution occurs with a relative frequency that is close to
the steady-state probability of that solution if the algorithm were to run forever. The entropy
of a chain is a measure of the average amount of information obtained when it moves one step.
More precisely, the entropy of each row i of P is —3; p;jlnp;;, and the entropy of P and
therefore the chain is an average of the row entropies, weighted by the steady-probabilities of
reaching the corresponding solutions ¢ in any given step. Thus a high-entropy chain is less
likely to deviate from typical behavior.

When the temperature falls appropriately and the algorithm runs long enough, a typical
sequence of steps is one that reaches mostly optimal solutions (because of the result of Mitra
et al. that optimal solutions become increasingly probable). So if the idea of entropy could
be extended to inhomogeneous chains, high-entropy chains ought to reach optimal solutions
with greater probability. Fleischer and Jacobson do essentially this by defining the entropy
H™ of a sequence of steps to be the sum of the entropies of the matrices P used along the
way. They show that this measure bounds below and asymptotically approximates a related
but uncomputable entropy measure that relates to performance in the way described.

The theory predicts that, other things equal, simulated annealing algorithms with high H*
ought to perform better in a given number of steps. But empirical confirmation is complicated
by the fact that other things are not equal; high-entropy chains tend to gather less informa-
tion in each step and may therefore run longer before generating typical (i.e., near-optimal)
sequences of steps. Fleischer and Jacobson qualitatively analyze this effect, but not in a way
that makes specific numerical predictions. They do find experimentally that higher entropy
chains obtain better solutions, but it is unclear to what extent this confirms the theory.

Despite problems of confirmation, the theory links a measurable trait of an annealing

algorithm—the entropy of the associated Markov chain—with the algorithm’s performance.
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The entropy can be computed exactly only for very small problems, but it can conceivably be
estimated for large problems by sampling or by partially analyzing the probability matrix P.

It therefore represents an interesting advance in empirical theory.
Tabu Search

My final example is more in the way of a research proposal. It concerns the tabu search
heuristic, sometimes called a metaheuristic because it can be realized in so many ways. Tabu
heuristics have met with considerable success in solving hard combinatorial problems, but
there is little or no theoretical understanding of when or why they work well. See Glover
(1989,1990a,1990b) for a thorough discussion of tabu heuristics.

Like simulated annealing, tabu search in its most basic form is a local search with one
additional wrinkle. When the procedure reaches a local minimum, it keeps going to the best
adjacent solution, even if it is worse than the current one. The process is repeated a predeter-
mined number of iterations, keeping track of the best solution found so far.

A tabu list provides the heuristic with short term memory, to prevent cycling through the
same solutions over and over. It is a list of the moves that have been made recently, where a
move is a way that one alters a solution to get to an adjacent one. Any move that reverses a
move on the list is tabu (more often spelled ‘taboo’ in other contexts), meaning that it cannot
be used. Tabu searches can also use long-term memory based on frequency, etc.

Consider again the network of solutions, where each node is connected to adjacent solutions.
The motivating idea for the model I propose is to view the nodes as points on an undulating
landscape, so that nodes connected by arcs are close in some spatial sense. The elevation of
each node is the cost of the corresponding solution, and the object is to find a point of low
elevation.

The tabu search operates by finding a steepest possible downhill hill path until the bottom
of a basin (a local minimum) is reached. At this point the heuristic climbs out of the basin
until it reaches the rim, whereupon it descends into another basin, on the chance it contains

a lower point. The tabu list is supposed to prevent the search from falling back down into a
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basin before it climbs out. (The basin surrounding a local minimum is the set of nodes from
which some local search leads to the local minimum. The rim of the basin is the set of its
nodes that are adjacent to at least one node outside the basin.)

Tabu search can be interpreted as a form of implicit enumeration. Once the search descends
into a basin and finds a local minimum, there is no point in visiting any of the other nodes
in the basin (except to climb out again). The unvisited nodes are implicitly enumerated. My
theory states that the performance of the heuristic can be explained by the efficiency of this
implicit enumeration. If the heuristic visits only a small fraction of the nodes in a basin, it
should in effect enumerate a large number of solutions in a short time and therefore perform
well.

We can take the length of a path in the network to be the number of nodes on it. The
distance between two nodes is the length of a shortest path between them. Given these
definitions, we should expect the tabu heuristic to visit a small fraction of the nodes in a basin
when the number of nodes in the basin is large relative to the distance from the rim to the
local minimum. Let this distance be the radius of the basin, defined as the mean distance
from rim nodes to the local minimum. (If there are multiple local minima, we can take the
one resulting in the smallest mean.)

We can now propose a hypothesis, to be tested empirically:

e Tabu search works better when the ratio of average basin size to average radius (which

we call the search ratio) is large.

Intuitively we can think of the search ratio as being large when the network is embedded
in a higher dimensional space, since the volume-to-radius ratio for spheres and other bodies
increases as the number of dimensions increases. So tabu search should work better in higher-
dimensional spaces, albeit this idea of dimensionality is not formally part of the model.

This little theory is useful only if conjoined with a theory of how the basin characteristics
depend on the problem type, so that one can predict performance for a particular problem.

Ryan (1993a, 1993b) has proved upper bounds on the size of basins in certain graph color-
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ing, knapsack, and set covering problems. But I would propose empirical investigations that
characterize the search ratio as a function of problem characteristics.

The theory also leaves much room for elaboration. Problem landscapes have many features
other than the size and diameter of basins, and these may help explain tabu performance. The
landscape may consist essentially of a plain that is pockmarked with small basins, or of large
hills and valleys that are similarly indented. Tabu search may find better solutions on the

latter type of manifold because it tends to spill out of each basin it visits into a lower one.

Other Possibilities

The empirical theories I have surveyed are not only embryonic but also conservative. There
is room for a good deal more imagination. For instance, empirical theories often find it useful
to postulate an internal structure for the objects under investigation, as Rutherford suggested
an orbital model of the atom to explain its scattering of Xrays. Perhaps this can be done for
algorithms. The postulated structure, however, need have no relation to the sequence of steps
or subroutines in a statement of the algorithm. The steps pertain to a formal explanation of its
behavior, which we are trying to avoid here. In fact it may be good policy to forget all about
the formal structure of the algorithm, to free one’s imagination to invent empirically-inspired
explanations.

A biological level of explanation, for instance, may be useful, since algorithms can be viewed
as organisms that act upon their environment. This is not as far-fetched as it sounds. Farmer
and Belin (1990) argue that computer viruses (which are essentially algorithms) possess most
and conceivably all of the formal characteristics of living organisms.

It is hard to be more specific, since one cannot propose interesting and plausible empirical
theories on the first day of work. Empirical science takes time to build. I suggest we get

started.
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