
Programming R. Rivest
Techniques Editor

Multidimensional
Divide-and-Conquer
Jon Louis Bentley
Carnegie-Mellon University

Most results in the field of algorithm design are
single algorithms that solve single problems. In this
paper we discuss multidimensional divide-and-conquer,
an algorithmic paradigm that can be instantiated in
many different ways to yield a number of algorithms
and data structures for multidimensional problems. We
use this paradigm to give best-known solutions to such
problems as the ECDF, maxima, range searching,
closest pair, and all nearest neighbor problems. The
contributions of the paper are on two levels. On the
first level are the particular algorithms and data
structures given by applying the paradigm. On the
second level is the more novel contribution of this
paper: a detailed study of an algorithmic paradigm that
is specific enough to be described precisely yet general
enough to solve a wide variety of problems.

Key Words and Phrases: analysis of algorithms,
data structures, computational geometry,
multidimensional searching problems, algorithmic
paradigms, range searching, maxima problems,
empirical cumulative distribution functions, closest-
point problems

CR Categories: 3.73, 3.74, 5.25, 5.31

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This research was supported in part by the Office of Naval
Research under contract N00014-76-C-0370 and in part by the Na-
tional Science Foundation under a Graduate Fellowship.

Author's address: Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, PA 15213.
© 1980 ACM 0001-0782/80/0400-0214 $00.75.

214

1. Introduction

The young field of algorithm design and analysis has
made many contributions to computer science of both
theoretical and practical significance. One can cite a
number of properly designed algorithms that save users
thousands of dollars per month when compared to naive
algorithms for the same task (sorting and Fourier trans-
forms are examples of such tasks). On the more theoret-
ical side, algorithm design has shown us a number of
counterintuitive results that are fascinating from a purely
mathematical viewpoint (for instance, there is a faster
way to multiply two matrices than the standard "high
school" algorithm). In one important sense, however, the
study of algorithms is rather unsatisfying--the field con-
sists primarily of a scattered collection of results, without
much underlying theory.

Recent research has begun laying the groundwork
for a theory, of algorithm design by identifying certain
algorithmic methods (or paradigms) that are used in the
solution of a wide variety of problems. Aho et al. [1, ch.
2] describe a few such basic paradigms, and Weide [27]
discusses a number of important analysis techniques in
algorithm design. Almost all of the algorithmic para-
digms discussed to date are at one of two extremes,
however: Either they are so general that they cannot be
discussed precisely, or they are so specific that they are
useful in solving only one or two problems. In this paper
we examine a more "middle of the road" paradigm that
can be precisely specified and yet can also be used to
solve many problems in its domain of applicability. We
call this paradigm multidimensional divide-and-conquer.

Multidimensional divide-and-conquer is applicable
to problems dealing with collections of objects in a
multidimensional space. In this paper we concentrate on
problems dealing with N points in k-dimensional space.
In a geometric setting these points might represent N
cities in the plane (2-space) or N airplanes in 3-space.
Statisticians often view multivariate data with k variables
measured on N samples as N points in k-space. Yet
another interpretation is used by researchers in database
systems who view N records each containing k keys as
points in a multidimensional space. An alternative for-
malism views the points as N k-vectors; in this paper we
use the point formalism, which aids our geometric intu-
ition. The motivating applications for the problems dis-
cussed later are phrased in these geometric terms.

Multidimensional divide-and-conquer is a single al-
gorithmic paradigm that can be used to solve many
particular problems. It can be described roughly as fol-
lows: to solve a problem of N points in k-space, first
recursively solve two problems each of N/2 points in k-
space, and then recursively solve one problem of N points
in (k-1)-dimensional space. In this paper we study a
number of different algorithms and see how each can be
viewed as an instance of multidimensional divide-and-
conquer. There are three distinct benefits resulting from
such a study. First, this coherent presentation enables

Communications April 1980
of Volume 23
the ACM Number 4

descriptions of the algorithms to be communicated more
easily. Second, by studying the algorithms as a group,
advances made in one algorithm can be transferred to
others in the group. Third, once the paradigm is under-
stood, it can be used as a tool with which to attack
unsolved research problems. Even another benefit might
ultimately result from this study and others like it: a
theory of "concrete computational complexity" which
explains why (and how) some problems can be solved
quickly and why others cannot.

Much previous work has been done on the problems
to be discussed. Since most of the work applies to only
one problem, we mention that work when discussing the
particular problem. Two pieces of work, however, are
globally applicable and are therefore mentioned (only)
here. Dobkin and Lipton [11] describe a method for
multidimensional searching that is radically different
from one that we study. Although their method yields
search times somewhat faster than those we discuss, the
preprocessing and storage costs of their algorithms are
prohibitive for practical applications. Shamos [25, 26]
has thoroughly investigated a large number of compu-
tational problems in plane geometry and has achieved
many fascinating results.

The problems discussed in this paper provide an
interesting insight into the relation of theory and practice
in algorithm design. On the practical side, the previous
best-known algorithms for many of the problems we
discuss have running time proportional to N 2 (where N
is the number of points). The algorithms discussed in
this paper have running time proportional to N lg N (at
least for low dimensional spaces). 1 To make this abstract
difference more concrete we note that if the two algo-
rithms were used to process sets of 1 million points on a
1 million-instruction-per-second computer, then the N 2
algorithm would take over 11 days, while the N lg N
algorithm would require only 20 seconds! On the theo-
retical side many of the algorithms we discuss can be
proved to be the best possible for solving their respective
problems, and this allows us to specify precisely the
computational complexity of those problems. These
problems also show us some interesting interactions be-
tween theory and practice: Although some of the theo-
retically elegant algorithms of Sections 2 and 3 are not
suitable for implementation, they suggest certain heuris-
tic algorithms which are currently implemented in sev-
eral software packages.

This paper is more concerned with expressing the
important concepts of multidimensional divide-and-con-
quer than scrupulously examining the details of partic-
ular algorithms. For this reason we gloss over many
(important) details of the algorithms we discuss; the
interested reader is referred to papers containing these
details. In Section 2 we examine three problems centered
around the concept of point domination, and we develop

~We will use lg as an abbreviation for log2 and lg k N as an
abbreviation for (lg N) k.

Fig. 1. Point A dominates point B.

A

B

C

multidimensional divide-and-conquer algorithms for
solving those problems. In Section 3 we focus on prob-
lems defined by point closeness. These two sections
constitute the main part of our discussion of multidimen-
sional divide-and-conquer. In Section 4 we survey ad-
ditional work that has been done, and we then view the
paradigm in retrospect in Section 5.

2. Domination Problems

In this section we investigate three problems defined
in terms of point domination. We write Ai for the ith
coordinate of point A and say that point A dominates
point B if and only if Ai > Bi for all i, l _< i _< k. If
neither point A dominates point C nor point C dominates
point A, then A and C are said to be incomparable. It is
clear from these definitions that the dominance relation
defines a partial ordering on any k-dimensional point
set. These concepts are illustrated for the case k = 2 in
Figure I. The point A dominates the point B, and both
of the pairs A, C and B, C are incomparable.

In Section 2.1 we investigate the empirical cumulative
distribution function, which asks how many points a
given point dominates. In Section 2.2 we study the
related question of whether a given point is dominated.
In both of these sections we discuss two distinct but
related problems. In an all-points problem we are asked
to calculate something about every point in a set (How
many points does it dominate? Is it dominated?). In a
searching problem we must organize the data into some
structure such that future queries (How many points
does this point dominate? Is this point dominated?) may
be answered quickly. In Section 2.3 we examine a search-
ing problem phrased in terms of domination that has no
all-points analog.

2.1 Empirical Cumulative Distribution Functions
Given a set S of N points we define the rank of point

x to be the number of points in S dominated by x. Figure
2 shows a point set with the rank of each point written
near that point. In statistics the empirical cumulative
distribution function (ECDF) for a sample set S of N
elements, evaluated at point x, is just rank(x)/N. This
quantity is the empirical analog of the population cu-
mulative distribution function. Because of the intimate

215 Communications April 1980
of Volume 23
the ACM Number 4

relation between rank and ECDF, we often write ECDF
for rank. With this notation we can state two important
computational problems.

(1) All-Points ECDF. Given a set S of N points in k-
space, compute the rank of each point in the set.

(2) ECDF Searching. Given a set S, organize it into a
data structure such that queries of the form "what is
the rank of point x" can be answered quickly (where
x is not necessarily an element of S).

The ECDF is often required in statistical applications
because it provides a good estimate of an underlying
distribution, given only a set of points chosen randomly
from that distribution. A common problem in statistics
is hypothesis testing of the following form: Given two
point sets, were they drawn from the same underlying
distribution? Many important multivariate tests require
computing the all-points ECDF problem to answer this
question; these include the Hoeffding, multivariate Kol-
mogorov-Smirnov, and multivariate Cramer-Von Mises
tests. The solution to the ECDF searching problem is
required for certain approaches to density estimation,
which asks for an estimate of the underlying probability
density function given a sample. These and other appli-
cations of ECDF problems in statistics are described by
Bentley and Shamos [9], which is the source of the
algorithms discussed.

In this section we first devote our attention to the all-
points ECDF problem in Section 2.1.1 and then solve
the ECDF searching problem by analogy with the all-
points solution in Section 2.1.2. Our strategy in both
sections is to examine solutions to the problem in increas-
ingly higher dimensions, starting with the one-dimen-
sional, or linear, problem.

2.1.1 The all-points ECDF problem. In one dimen-
sion the rank of a point x is just the number of points in
the set less than x, so the all-points ECDF problem can
be solved by sorting. After arranging the points in in-
creasing order we assign the first point the rank 0, the
second point rank 1, and so on. It is obvious that given
the ranks we could produce such a sorted list, so we
know that the complexity of the one-dimensional all-
points ECDF problem is exactly the same as sorting,
which is well known to be O(N lg N). Thus we have
developed an optimal algorithm for the one-dimensional
case) The two-dimensional case is not quite as easy,
however. To solve this problem we apply the multidi-
mensional divide-and-conquer technique instantiated to
two dimensions: To solve a problem of N points in the
plane, solve two problems of N/2 points each in the
plane and then solve one problem of N points on the
line.

Fig. 2. With each point is associated its rank.

i

0

4

2

1

Fig. 3. Operation of Algorithm ECDF2.

0

1

0

0

0

A

(a)

B

(b)

0 " ' -

0 - '

2+2=4

0+2=2

0+1 =1

(c)

Our planar ECDF algorithm operates as follows. The
first step is to choose some vertical line L dividing the
point set S into two subsets A and B, each containing
N/2 points. 3 This step is illustrated in Figure 3(a). The
second step of our algorithm calculates for each point in
A its rank among the points in A, and likewise the rank
of each point in B among the points of B. The result of

2 If we apply the multidimensional divide-and-conquer strategy to
the one-dimensional problem, then we achieve a sorting algorithm
similar to quicksort (but that always partitions around the median of
the set). We do not discuss that algorithm here.

216

a To avoid needless detail we make certain assumptions such as
that N is even and that no pair o f points share, x- or y-coordinates. To
otherwise confront such detail is not particularly illuminating.

Communications April 1980
of Volume 23
the ACM Number 4

this is depicted in Figure 3(b). We now make an impor-
tant observation that allows us to combine these subso-
lutions efficiently to form a solution to the original
problem. Since every point in A has an x-value less than
every point in B, two facts hold: First, no point in A
dominates any point in B, and second, a point b in B
dominates point a in A iff the y-value of b is greater than
the y-value of a. By the first fact we know that the ranks
we computed for A are the correct final ranks. We are
still faced with the reduced problem of calculating for
every point in B the number of points it dominates in A
(which we add to the number of B's it dominates to get
the fmal answer). To solve this reduced problem we use
the second fact. I f we project all the points in S onto the
line L (as depicted in Figure 3(c)), then we can solve the
reduced problem by scanning up the line L, keeping
track of how many As we have seen, and add that
number to the partial rank of each point in B as we pass
that point. This counts the number of points in A with
smaller y-values, which are exactly the points it domi-
nates. We implement this solution algorithmically by
sorting the As and Bs together and then scanning the
sorted list.

Having described the algorithm informally, we are
now ready to give it a more precise description as Algo-
rithm ECDF2. Algorithm ECDF2 is a recursive algo-
rithm which is given as input a set S of N points in the
plane and returns as its output the rank of each point.

Algorithm ECDF2
1. [Division Step.[If S contains just one element then return its rank

as 0; otherwise proceed. 4 Choose a cut line L perpendicular to the
x-axis such that 3[/2 points o f S have x-value less than L's (call this
set of points A) and the remainder have greater x-value (call this set
B). Note that L is a median x-value o f the set.

2. [Recursive Step.] Recursively call ECDF2(A) and ECDF2(B). After
this step we know the true E C DF of all points in A.

3. [Marriage Step.] We must now fred for each point in B the number
of points in A it dominates (i.e., that have lesser y-value) and add
this number to its partial ECDF. To do this, pool the points of A
and B (remembering their type) and sort them by y-value. Scan
through this sorted list in increasing y-value, keeping track in
A C O U N T of the number of As so far observed. Each time a B is
observed, add the current value of A C O U N T to its partial ECDF.

That Algorithm ECDF2 correctly computes the rank
of each point in S can be established by induction, using
the two facts mentioned above. We also use induction to
analyze its running time on a random access computer
by setting up a recurrence relation describing the running
time on N points, say T(N), and then solving that recur-
rence. To set up the recurrence we must count how many
operations each step of the algorithm requires. Step 1
can be solved by a fast median algorithm; we can use the
algorithm of Blum et al. [10] to accomplish this step in
O(N) operations. Because step 2 solves two problems of
size N/2, its cost will be 2 T(N/2), by induction. The sort
of step 3 requires O(N lg N) time, and the scan requires

4 All the algorithms we will see have this test for small input size;
we usually omit it for brevity.

217

linear time, so the total cost of step 3 is O(N lg N).
Adding the costs of the three steps we find that the total
cost of the algorithm is

T(N) ---- O(N) + 2T(N/2) + O(N lg N)
= 2T(N/2) + O(N lg N).

This recurrence 5 has solution

T(N) = O(N lg 2 N)

so we know that the running time of Algorithm ECDF2
is O(N lg 2 N).

We can make an observation that will allow us to
speed up many multidimensional divide-and-conquer
algorithms. In looking carefully at the analysis of Algo-
rithm ECDF2 we see that the running time is dominated
by the sort of step 3. To remove this cost we can sort the
N points of S once byy-coordinate before any invocation
of ECDF2, at a once-for-all cost of O(N lg N). After this
we can achieve the effect of sorting (without the cost) by
being very careful to maintain "sortedness-by-y" when
dividing into sets A and B during step 1. After this
modification the recurrence describing the modified al-
gorithm becomes

T(N) = 2T(N/2) + O(N)

which has solution

T(N) = O(N lg N).

This technique is known aspresorting and has very broad
applicability; we see that it allows us to remove a factor
of O(lg h0 from the running time of many algorithms.

We now turn our attention to developing an algo-
rithm for solving the ECDF problem for N points in 3-
space. The mult idimensional d ivide-and-conquer
method we use is analogous to the method used by the
previous algorithm: To solve a problem of N points in 3-
space we solve two problems of N/2 points in 3-space
and then one problem of N points in 2-space. The first
step of our algorithm chooses a cut plane P perpendicular
to the x-axis dividing S into sets A and B of N/2 points
each. Figure 4 illustrates this division. The second step
then (recursively) counts for each point in A the number
of points in A it dominates, and likewise for B. By
reasoning analogous to that for the planar case we can
see that since no point in A dominates any point in B,
the final ranks of A are exactly the ranks already com-
puted. By the same reasoning we know that a point b in
B dominates point a in A iff b dominates a in their
projection on P, the (y, z) plane. The third step of our
algorithm therefore projects all points onto plane P
(which merely involves ignoring the x-coordinates) and
then counts for each B-point the number of A-points it
dominates. This reduced problem, however, is just a

5 To be precise we should also define the "boundary condition" of
the recurrence, which is in this case T(1) = c, for some constant c.
Since all the recurrences we will see in this paper have the same
boundary, we delete it for brevity. The particular value of the constant
does not affect the asymptotic growth rate of the functions.

Communica t ions April 1980
of Volume 23
the ACM Number 4

slightly modified version of the planar ECDF problem,
which can be solved in O(N lg N) time. 6 The recurrence
describing our three-dimensional algorithm is then

T(N) = 2 T(N/2) + O(N lg iV)

which, as we saw previously, has solution T(N) =
O(N lg 2 N).

The technique that we just used to solve the two- and
three-dimensional problems can be extended to solve the
general problem in k-space. The algorithm consists of
three steps: divide into A and B, solve the subproblems
recursively, and then patch up the partial answers in B
by counting for each point in B the number of As it
dominates (a (k--0-dimensional problem). The (k-1)-
dimensional subproblem can be solved by a "bookkeep-
ing" modification to the (k-1)-dimensional ECDF al-
gorithm. We can describe the algorithm formally as
Algorithm ECDFk.

Algorithm ECDFk.
I. Choose a (k - l)-dimensional cut plane P dividing S into two subsets

A and B, each of N/2 points.
2. Recursively call ECDFk(A) and ECDFk(B). After this we know the

true ECDF of all points in A.
3. [For each B fmd the number of As it dominates.] Project the points

of S onto P, noting for each whether it was an A or a B. Now solve
the reduced problem using a modified E C D F (k - l) algorithm and
add the calculated values to the partial ranks o f B.

To analyze the runtime of Algorithm ECDFk we
denote its running time on a set of N points in k-space
by T(N, k). For any fixed value of k greater than 2, step
l can be accomplished in O(N) time. Step 2 requires
2T(N/2, k) time, and the recursive call of step 3 requires
T(N, k - l) time. Combining these we have the recurrence

T(N, k) -- O(N) + 2T(N/2, k) + T(N, k - l) .

We can use as a basis for induction on k the fact that

T(N, 2) = O(N lg N),

as shown previously, and this establishes that

T(N, k) -- O(N lg k-1 N). 7

We have therefore exhibited an algorithm that solves the
all-points ECDF problem for N points in k-space in
O(N lg k-I N) time, for any fLxed k greater than 1.

2.1.2 The ECDF searching problem. We now turn
our attention to the ECDF searching problem. As in the
all-points problem, we first investigate the one-dimen-

6 The following "bookkeeping" operations must be added to
ECDF2 to enable it to solve this problem in O(N lg N) time: Relabel
the As and Bs to be Xs and Ys, respectively. We are now given N points
in the plane and asked to count for each Y the number o f)is it
dominates. As in ECDF2, we divide into sets A and B and solve those
subproblems recursively. We must now count for each Y in B the
number of Xs in A it dominates; we do this by projecting only the Xs
o f A and the Ys of B onto L in step 3 o f ECDF2.

7 We use the fact that if T(N) = 2T(N/2) + O(N lg" N), then
T(N) = O(N lg "+1 N). A more detailed discussion of these recurrences
can be found in Monier [21].

218

Fig. 4. A three-dimensional problem.

P
A B

- - - °

sional case and then examine successively higher dimen-
sions. There are three costs associated with a search
structure: the preprocessing time required to build the
structure, the query time required to search a structure,
and the storage required to represent the structure in
memory. When analyzing a structure containing N
points we denote these quantities by P(N), Q(N), and
S(N), respectively. We illustrate these quantities as we
examine the one-dimensional ECDF searching problem.

In one dimension the ECDF searching problem asks
us to organize N points (real numbers) such that when
given a new point x (not necessarily in the set), we can
quickly determine how many points x dominates. One
of the more obvious ways of solving the problem is the
"sorted array" data structure. In this scheme the N points
are sorted into increasing order and stored in an array.
To see how many points a query point dominates we
perform a binary search to fred the position of that point
in the array. This structure has been studied often (see,
for example, Knuth [16]) and is known to have properties

P(N) = O(N lg N),
Q(N) = O(lg N),
S(N) = O(N).

In the two-dimensional ECDF searching problem we
are to preprocess N points in the plane such that we can
quickly answer queries asking the rank of a new point,
that is, how many points lie below it and to its left. There
are many structures that can be used to solve this prob-
lem, but we focus on one called the ECDF tree which
follows from the multidimensional divide-and-conquer
paradigm (others are discussed by Bentley and Shamos
[9]). The multidimensional divide-and-conquer method
applied to planar search structures represents a structure
of N points in 2-space by two substructures of N/2 points
in 2-space, and one substructure of N points in 1-space.
We now describe the top level of an ECDF tree storing
the point set S. By analogy to the all-points algorithm,
we choose a line L dividing S into equal sized sets A and
B. Instead of solving subproblems A and B, however, we
now recursively process them into ECDF trees represent-
ing their respective subsets. Having built these subtrees
we are (almost) prepared to answer ECDF queries in set

Communica t ions April 1980
of Volume 23
the A C M N u m b e r 4

Fig . 5. T w o cases o f p l a n a r que r i e s . F ig . 6. C a l c u l a t i n g v's y - r a n k in A.

L
A B

LJ
- - - - n . ~

I
I V

I I
I !
I I

I

I I
I i

0 -

V

S. The first step of a query algorithm compares the x-
value of the query point with the line L; the two possible
outcomes are illustrated in Figure 5 as points u and v. If
the point lies to the left of L (as u does), then we fmd its
rank in S by recursively searching the substructure rep-
resenting A, for it cannot dominate any point in B. I f the
point lies to the right of L (as v does), then searching B
tells how many points in B are dominated by v, but we
still must find how many points in A are dominated by
v. To do this we need only calculate v's y-rank in A; this
is illustrated in Figure 6.

We can now describe the planar ECDF tree more
precisely. An internal node representing a set of N points
will contain an x-value (representing the line L), a
pointer to a left son (representing A, the N/2 points with
lesser x-values), a right son representing B, and an array
of the N/2 points of A sorted by y-value. To build an
ECDF tree recursively one divides the set into A and B,
builds the subtrees representing each, and then sorts the
elements of A by y-value (actually by presorting). To
search the tree recursively one first compares the x-value
of the node with the x-value of the query point. If the
query point is less, then only the left son is searched
recursively. If the value is greater, then the right son is
searched recursively, a binary search is done in the sorted
y-sequence representing A to find the query point's y-
rank in A, and the two ranks are added together and
returned as the result.

To analyze this search structure we again use recur-
rences. In counting the preprocessing cost we note that
the recurrence describing the algorithm (with presorting)
is

P(N) = 2P(N/2) + O(N)

and the solution is

P(N) = O(U lg N).

To store an N element set we must store two N/2 element
sets plus one sorted list of N/2 elements, so the recurrence
is

S(N) = 2S(N/2) + N/2

which has solution

s(_,v) = O(N lg U).

219

In analyzing the search time our recurrence will depend
on whether the point lies in A or B, so we assume it lies
in B and analyze its worst case. In this case we must
make one comparison, perform a binary search in a
structure of size N/2, and then recursively search a
structure of size N/2. The cost of this will be

Q(N) = Q(N/2) + O(lg N)

so we know that the worst-case cost of searching is

Q(N) = O(lg 2 N).

Having analyzed the performance of the planar ECDF
tree, we can turn our attention to higher-dimensional
ECDF searching problems.

A node representing an N-element ECDF tree in 3-
space contains two subtress (each representing N/2
points in 3-space) and a two-dimensional ECDF tree
(representing the projection of the points in A onto the
cut plane P). This structure is built recursively (analogous
to the ECDF3 algorithm). The searching algorithm com-
pares the query point's x value to the value defining the
cut plane, and if less, searches only the left substructure.
If the query point lies in B, then the right substructure is
searched, and a search is done in the two-dimensional
ECDF tree. The full k-dimensional structure is analo-
gous: A node in this structure contains two substructures
of N/2 points in k-space, and one substructure of N/2
points in (k -0-space . The recurrences describing the
structure containing N points in k-space are

P(N, k) = 2P(N/2, k) + P(N/2, k -1) + O(N),
S(N, k) = 2S(N/2, k) + S(N/2, k - l) + O(1),
Q(N, k) = Q(N/2, k) + Q(N/2, k - l) + O(1).

We can use the performance of the two-dimensional
structure as a basis for induction on k, and thus establish
(for fixed values of k) that

P(N, k) = O(N lg k-1 N),
S(N, k) = O(N lg k-a N),
Q(N, k) = O(lg k N).

It is interesting to note how faithfully the actions of the
multidimensional divide-and-conquer algorithms are de-
scribed by the recurrences. Indeed, the recurrences might

C o m m u n i c a t i o n s A p r i l 1980
o f V o l u m e 23
t h e A C M N u m b e r 4

provide a suitable definition of multidimensional divide-
and-conquer!

2.1.3 Summary of the ECDF problems. In our study
of ECDF problems so far we have concentrated on
algorithms for solving the problems without examining
lower bounds. We saw that the one-dimensional all-
points ECDF problem is equivalent to sorting (that is,
one problem can be reduced to the other in linear time),
so we know that the ECDF problem has an f~(N lg N)
lower bound in the decision tree model of computation.
Since the one-dimensional problem can be embedded in
any higher-dimensional space (by simply ignoring some
coordinates), this immediately gives an f~(N lg N) lower
bound for the all-points problem in k-space. Lueker [20]
has used similar methods to show that O(kN lg N) time
is necessary and sufficient for the all-points problem in
k-space in the decision tree model of computation. Un-
fortunately, there do not appear to be succinct programs
corresponding to the decision trees used in his proof. It
therefore appears that a stronger model of computation
than decision trees will have to be used to prove lower
bounds on these problems; Fredman [12] has recently
made progress in this direction. These results show that
Algorithm ECDF2 is within a constant factor of optimal;
whether Algorithm ECDFk is optimal in some reasona-
ble model of computation remains an open question.
Similar methods can be used to show a lower bound
on the problem of ECDF searching; it requires at least
~(lg N) time in the worst case.

The analyses that we have seen for the ECDF algo-
rithms have been "rough" in two respects: We have only
considered the case that N is a power of 2, and our
analyses were given for fLxed k as N grows large. Monier
[21] has analyzed the algorithms in this section more
exactly, overcoming both of the above objections. His
analysis shows that the time taken for Algorithm ECDFk
is given by

T(N, k) = c(N lg *-1N)/(k-1)! + O(N lg *-z N)

where c is an implementation-dependent constant. It is
particularly pleasing to note that the coefficient of the
N lg k-1 N term is 1 / (k- l) ! ; this function goes to zero
very rapidly. Monier's analyses also showed that the
leading terms of the ECDF searching structures perform-
ances have similar coefficients (inverse factorials).

We have now completed our study of the ECDF
problems per se, and it is important for us to take a
moment to reflect on the things we have learned about
multidimensional divide-and-conquer. The paradigm
applies directly to all-points problems, and we state it
here in its full generality:

To solve a problem of N points in k-space, solve two problems of
N/2 points each in k-space and one problem of (up to) N points in
(k - l)-space.

Algorithms based on this paradigm have three major
parts: the division, recurs&e, and marriage steps. Because
of the recursion on dimension, an important technique

220

in developing these algorithms is to start with low-di-
mensional problems and then successively move to
higher dimensions. Describing an algorithm recursively
leads to two advantages: We can describe it succinctly
and then analyze its performance by the use of recur-
rence relations. The recurrence used most often is

F(N) = 2F(N/2) --]- O(N lg m N)

which has solution O(N lg ''+1 N) for m _ 0.
The multidimensional divide-and-conquer paradigm

can be applied in the development of data structures as
well as all-points algorithms. The data structure strategy
can be described as follows:

To store a structure representing N points in k-space, store two
structures representing N/2 points each in k-space and one structure
of (up to) N points in (k--l)-space.

There are, of course, many similarities between these
data structures and the multidimensional algorithms
(most importantly, we use such an algorithm to build the
structure), so the principles we enumerated above for all-
points problems will apply to data structures as well. In
addition to the recurrence mentioned above, the recur-
rence

F(N) = F(N/2) + O(lg m N)

which has solution F(N) = O(lg m+l N) for m __ 0 arises
often in the study of these structures.

Presorting is a technique applicable to both multidi-
mensional divide-and-conquer algorithms and data
structures. By sorting data once-for-all before a recursive
algorithm is initially invoked (and then keeping the data
sorted as we divide into subproblems), we can avoid the
repetitive cost of sorting. This technique often saves
factors of O(lg N). One might hope that presorting could
in some way be used many times to save multiple factors
of O(lg N), but the author doubts that this can be
achieved.

Having made these general observations about our
primary algorithm design tool, we are ready to apply it
to the solution of other problems. Because we have
examined the ECDF algorithms in some detail and the
algorithms that we will soon examine are so similar, our
discussion of those algorithms will not be so precise; their
details can be deduced by analogy with the algorithms
of this section.

2.2 Maxima
In this section we investigate problems dealing with

maximal elements, or maxima, of point sets. A point is
said to be a maximum of a set if there is no other point
that dominates it. In Figure 7 we illustrate a planar point
set with the maxima of the set circled. We are interested
in two types of maxima problems: the all-points problem
(given a set, fmd all the maxima) and the searching
problem (preprocess a set to answer queries asking if a
new point is a maximum of the set). The problem of
computing maxima arises in many diverse applications.
Suppose, for example, that we have a set of programs for

Communications April 1980
of Volume 23
the ACM Number 4

Fig. 7. Maxima are circled. Fig. 8. Maxima of A are circled; B's are squared.

®
®

® ®

®
®

®

[]
[]

performing the same task rated on the two dimensions
of space efficiency and time efficiency. If we plot these
measures as points in the x-y plane, then a point (pro-
gram) dominates another only if it is more space efficient
and more time efficient. The maximal programs of the
set are the only ones we might consider for use, because
any other program is dominated by one of the maxima.
In general, if we are seeking to maximize some multi-
variate goodness function (monotone in all variables)
over some finite point set, then it suffices to consider
only maxima of the set. This observation can signifi-
cantly decrease the cost of optimization if many optimi-
zations are to be performed. Such computation is com-
mon in econometric problems.

Problems about maxima are very similar to problems
about ECDFs. If we define the negation of point set A
(written -A) to consist of each of the points of A multi-
plied by -1 , then a point is a maximum of A if and only
if its rank in -A is zero (for if it is dominated by no
points in A, then it dominates no points in -A). By this
observation we can solve the all-points maxima problem
in O(N lg k-I N) time and the maxima searching problem
with similar preprocessing time and space and O(lg k N)
query time, by using the ECDF algorithms of Section
2.1. In this section we investigate a different multidimen-
sional divide-and-conquer algorithm that allows us to
reduce those cost functions by a factor of O(lg N). The
all-points maxima algorithm we will see is due to Kung
et al. [17] (although our presentation is less complicated
than theirs). The searching structure of this section is
described here for the first time. Although the algorithms
that we will see are similar to the ECDF algorithms of
the last section in many respects, they do have some
interesting expected-time properties that the ECDF al-
gorithms do not have. Having made these introductory
comments, we can now turn our attention to the maxima
problems, investigating first the all-points problem and
then the searching problem.

The maximum of N points on a line is just the
maximum element of the set, which can be found in
exactly N-1 comparisons. Computing the maxima of N
points in the plane is just a bit more difficult. Looking at
Figure 7, we notice that the maxima (circled) are increas-
ing upward as the point set is scanned right to left. This
suggests an algorithm: Sort the points into increasing x-

221

order and then scan that sorted list right to left, observing
successive "highest y-values so far observed" and mark-
ing those as maxima. It is easy to prove that this algo-
rithm gives exactly the maxima, for a point is maximal
if and only if all points with greater x-values (before it
on the list) have lesser y-values. The computational cost
of the algorithm will be O(N lg N) for the sort and then
O(N) for the scan. (So note that if we have presorted
the list, then the total time for finding the maxima is
linear.)

We can also develop a multidimensional divide-and-
conquer algorithm to solve the planar problem. As be-
fore, we divide by L into A and B and solve those
subproblems recursively (finding the maxima of each
set). This is illustrated in Figure 8, in which the maxima
of A are circled and the maxima of B are in boxes.
Because no point in B is dominated by any point in A,
the maxima of B are also maxima of the entire set S.
Thus the third step (the "marriage" step) of our algo-
rithm must discard points which are maxima of A but
not of the whole set, i.e., those maxima of A which are
dominated by some point in B. Since all points in B x-
dominate all points in A, we need check only for y-
domination. We therefore project the maxima of A and
B onto L, then discard A-points dominated by B-points
on the line. This third step can be easily implemented by
just comparing the y-value of all A-maxima with the
maximum y-value of the B-maxima and discarding all
A's with lesser y-value (we described it otherwise to ease
the transition to higher spaces). The running time of this
algorithm is described by the recurrence

T(N) = 2T(N/2) + O(N)

which has solution O(N lg N).
We can generalize the planar algorithm to yield a

maxima algorithm for 3-space. The first step divides into
A and B, and the second step recursively finds the
maxima of each of those sets. Since every maxima of B
is a maxima of the whole set, the third step must discard
every maxima of A which is dominated by a maxima of
B. This is accomplished by projecting the respective
maxima sets onto the plane and then solving the planar
problem. We could modify the two-dimensional maxima
algorithm to solve this task, but it will be slightly more
efficient to use the "scanning" algorithm. Suppose we

Communications April 1980
of Volume 23
the ACM Number 4

cut into A and B by the z-coordinate; we must discard
all A s dominated by any Bs in the x-y plane. If we have
presorted by x, then we just scan right to left down the
sorted list, discarding As with y-values less than the
maximum By-value observed to date. This marriage step
will have linear time (with presorting), so this algorithm
has the same recurrence as the two-dimensional, and its
running time is therefore also O(N lg N).

The obvious generalization of this algorithm carries
through to k-space without difficulty. We solve a prob-
lem of N points in k-space by solving two problems of
N/2 points in k-space and then solving one problem of
(up to) N points in (k-1)-space. This reduced problem
calls for finding all As in the space dominated by any
Bs, and we can solve this by modifying the maxima
algorithm (similar to our modifications of the ECDF
algorithm). The resulting algorithm has a recurrence

T(N, k) = 2T(N/2, k) + T(N, k - l) + O(N)

and we can use the fact that T(N, 3) = O(N lg N) to
establish that

T(N, k) = O(N lg k-2 N) for k _ 3.

The analysis we just performed, though accurate for
the worst case, is terribly pessimistic. It assumes that all
N points of the original set will be maxima of their
subsets, whereas for many sets there will be relatively
few maxima of A and B. Results obtained by Bentley et
al. [6] show that only a very small number of points
usually remain as maxima (for many probability distri-
butions). If only m points remain, then the term T(N,
k - l) in the above recurrence is replaced by T(m,
k - l) , which for small enough m (i.e., m = O(N p) for
some p < 1) has running time O(N). I f this is true, then
the recurrence describing the maxima algorithm is

T(N, k) = 2T(N/2, k) + O(N),

which has solution T(N) = O(N lg N). One can formalize
the arguments we have just sketched to show the average
running time of the above algorithm is O(N lg N) for a
wide class of distributions. The interested reader is re-
ferred to [6] in which a linear expected-time maxima
algorithm is presented (with poorer worst-case perform-
ance than this algorithm); the analysis techniques used
therein can be used to prove this result.

We turn our attention now to the maxima searching
problem. We start with the planar case, where we must
process N points in the plane into a data structure so we
can quickly determine if a new point is a maxima (and
if not, we must name a point which dominates it). Our
structure is a binary tree in which the left son of a given
node represents all points with lesser x-values (A), the
right son represents B, and an x-value represents the line
L. To answer a query asking if a new point q is a
maximum of the set represented by a given node, we
compare q's x-value to the node's. I f the point lies in B
(greater x-value), then we search the subtree and return
the answer. If the point lies in A, however, we first search

222

the left subtree; if the point is dominated, we return the
dominating point. If it is not dominated by any point in
A, then we must check to see if it is dominated by any
point in B. This can be accomplished by storing in each
node the maximum y-value of any point in B. This
structure can be built in O(N lg N) time and requires
linear space. Since the worst-case cost of a query satisfies
the recurrence

T(N) = T(N/2) + O(1),

the worst-case search time is O(lg N).
This search structure can be generalized to k-space.

In that case a structure representing N points in k-space
contains two substructures representing N/2 points in k-
space and one substructure representing N/2 points in
(k-D-space. To test if a new point is a maximum we
first determine if it lies in A or B. If it is in B, then we
visit only the right son. If it lies in A, we first see if it is
dominated by any point in A (visit the left son), and if
not then we check to see if it is dominated by any point
in B (by searching the (k-1)-dimensional structure). The
recurrences describing the worst-case performance of
this structure are

P(N, k) = 2P(N/2, k) + P(N, k - l) + O(N),
S(N, k) = 2S(N/2, k) + S(N/2, k - l) + O(1),
Q(N, k) = Q(N/2, k) 4. Q(N/2, k - l) 4- O(1),

which have solutions

P(N, k) = O(N lg k-2 N),
S(N, k) = O(N lg k-z N),
Q(N, k) = O(lg k-1 N).

As in the case of the all-points problem, these times are
highly pessimistic, and for many point distributions they
can be shown to be much less on the average.

Yao [29] has shown that ~(N lg N) is a lower bound
on the decision tree complexity of computing the maxima
of N points in 2-space. This result shows that the maxima
algorithms we have seen here are optimal for two and
three dimensions (by embedding). Lower bounds for the
rest of the problems of this section are still open prob-
lems, and a model other than the decision tree will have
to be used to prove optimal the algorithms that we have
seen.

This concludes our study of maxima problems.
Clever application of the multidimensional divide-and,
conquer strategy allowed us to squeeze a factor of
O(lg N) from the running times of the ECDF algorithms.
We also glimpsed how an expected-time analysis might
be performed on the computation-cost functions.

2.3 Range Searching
In this section we examine the problem of range

searching, a searching problem defined by point domi-
nation for which there is no corresponding all-points
problem. The problem is to build a structure holding N
points in k-space to facilitate answering queries of the
form "report all points which are dominated by point U

Communica t ions April 1980
of Volume 23
the A C M N u m b e r 4

Fig. 9. Number of points in R = r(A) - (r(B) + r(D)) + r(C).

B A

C ~D
i
i
I
I
I
I
I

Fig. 10. A node in a planar range tree.

l O HI

MID

A B
• - - - o

. o

and dominate point L." This kind of query is usually
called an orthogonal range query because we are in fact
giving for each dimension i a range Ri = [li, ui] and then
asking the search to report all points x such that xi is in
range Ri for all i. A geometric interpretation of the query
is that we are asking for all points that lie in a given
hyper-rectangle. Such a search might be used in querying
a geographic database to list all cities with latitude
between 37 ° and 41° N and longitude between 102 ° and
109 ° W (this asks for all cities in Colorado). In addition
to database problems, range queries are also used in
certain statistical applications. These applications and a
survey of the different approaches to the problem are
discussed in Bentley and Friedman's [5] survey of range
searching. The multidimensional divide-and-conquer
technique that we will see has also been applied to this
problem by Lee and Wong [18], Lueker [20], and Willard
[28] who independently achieved structures very similar
to the ones we describe.

In certain applications of the range searching prob-
lem we are not interested in actually processing each
point found in the query rectangle--it suffices rather to
know only how many such points there are. (One such
example is multivariate density estimation.) Such a prob-
lem can be solved by using the ECDF searching algo-
rithm of Section 2.1 and the principle of inclusion and
exclusion. Figure 9 illustrates how four planar rank
queries can be combined to tell the number of points in
rectangle R (we use "r" as an abbreviation for "rank");
in k-space 2 k range searches are sufficient.

The sorted array is one suitable structure for range
searching in one-dimensional point sets. The points are
organized into increasing order exactly as they were for
the ECDF searching problem of Section 2.1. To answer
a query we do two binary searches in the array to locate
the positions of the low and high ends of the range; this
identifies a sequence of points in the array which are the
answer to the query, and they can then be reported by a
simple procedure. The analysis of this structure for range
searching is very similar to our previous analysis: The
storage cost is linear and the preprocessing cost is O(N
lg N). The query cost is then O(lg N) for the binary
searches plus O(F), if a total of F points are found to be
in the region. Note that any algorithm for range search-

223

ing must include a term of O(F) in the analysis of
query time.

We will now describe range trees, a structure intro-
duced by Bentley [4]; as usual, we first examine the
planar case. There are six elements in a range tree's node
describing set S. These values are illustrated in Figure
10. The reals LO and HI give the minimum and maxi-
mum x-values in the set S (these are accumulated
"down" the tree as it is built). The real MID holds the x-
value defining the line L, which divides S into A and B,
as usual; we then store two pointers to range trees
representing the sets A and B. The final element stored
in the node is a pointer to a sorted array, containing the
points of S sorted by y-value. A range tree can be built
recursively in a manner similar to constructing an ECDF
tree. We answer a range query asking for all points with
x-value in range X and y-value in range Y by visiting
the root of the tree with the following recursive proce-
dure. When visiting node N we compare the range X to
the range [LO, HI]. If [LO, HI] is contained in X, then
we can do a range search in the sorted array for all
points in the range Y (all these points satisfy both the X
and Y ranges). If the X range lies wholly to one side of
MID, then we search only the appropriate subtree (re-
cursively); otherwise we search both subtrees. If one
views this recursive process as happening all at once, we
see that we are performing a set of range searches in a
set of arrays sorted by y. The preprocessing costs of this
structure and the storage costs are both O(N lg N). To
analyze the query cost we note that at most two sorted
lists are searched at each of the lg N levels of the tree,
and each of those searches cost at most O(lg N), plus the
number of points found during that search. The query
cost of this structure is therefore O(lg2N + F), where F
(as before) is the number of points found in the desired
range.

The range tree structure can of course be generalized
to k-space. Each node in such a range tree contains
pointers to two subtrees representing N/2 points in k-
space and one N point subtree in (k- l) -space. Analysis
of range trees shows that

P(N, k) = O(N lg k-1 N), S(N, k) = O(N lg k-1 N),
Q(N, k) = O(lg k N + F)

where F is the number of points found.

Communications April 1980
of Volume 23
the ACM Number 4

Saxe [24] has used the decision tree model of com-
putation to show a lower bound on the range searching
problem of approximately 2k lg N. Bentley and Maurer
[7] have given a range searching data structure that
realizes this query time, at the cost of extremely high
storage and preprocessing requirements. An interesting
open problem is to give bounds on the complexity of this
problem in the presence of only limited space (or pre-
processing time); Fredman's [12] work is a first step in
this direction.

3. Closest-Point Problems

Fig, 11. Fixed-radius near neighbor algorithm.

A

Q

l
B

Q

@

In Section 2 we investigated problems defmed by
point domination; in this section we discuss a class of
problems defined by point closeness. We saw that mul-
tidimensional divide-and-conquer "works" for domina-
tion problems because projection onto a plane preserves
point domination. In this section we discuss a number of
projections that preserve point closeness.

We investigate three problems dealing with closeness.
We use as our "closeness" measure the standard Euclid-
ean distance measure (although the algorithms can be
modified tO use other measures). The problem we study
in Section 3.1 is the easiest of the three problems we
discuss because it is defined in terms of "absolute"
closeness. The problems of Sections 3.2 and 3.3 are
defined in terms of relative distances and are therefore
a bit trickier. Throughout this section we describe the
algorithms only at a very high level; the interested reader
can fmd the details of these algorithms (as well as a
sketch of how they were discovered) in Bentley [3].

3.1 Fixed-Radius Near Neighbors
In this section we discuss problems on point sets

which deal with absolute closeness of points, that is, pairs
of points within some fixed distance d of one another.
We concentrate on the all-points problem which asks for
all pairs within d to be listed, and then we briefly examine
the problem of "fixed-radius near neighbor" searching.
Fixed-radius problems arise whenever "multidimen-
sional agents" have the capability of affecting all objects
within some fixed radius. Such problems arise in air
traffic control, molecular graphics, pattern recognition,
and certain military applications. One difficulty in ap-
proaching the fixed-radius near neighbors problem, how-
ever, is that if points are clustered closely together, then
there can be O(N 2) close pairs, and we are therefore
precluded from finding a fast algorithm to solve the
problem.

We can avoid this difficulty by considering only
sparse point sets, that is, sets which are not "clustered."
We det'me sparsity as the condition that no d-ball in the
space (that is, a sphere of radius d) contains more than
some constant c points. This condition ensures that there
will be no more than cN pairs of close points found. This

224

condition is guaranteed in certain applications from the
natural sciences--if an object can affect all objects within
a certain radius, then there cannot be too many "affect-
hag" objects. We see that this condition also arises nat-
urally in the solution of other closest-point problems. In
this section we investigate the sparse all-points near
neighbors problem by examining successively higher
dimensions, and then we turn our attention to the search-
ing problem.

In the one-dimensional all-points near neighbor
problem we are given N points on a line and constants
c and d such that no segment on the line of length 2d
contains more than c points, our problem is to list all
pairs within d of one another. We can accomplish this
by sorting the points into a list in ascending order and
then scanning down that list. When visiting point x
during the scan we check backward and forward on the
list a distance ofd. By the sparsity condition, this involves
checking at most c points for "closeness" to x. The cost
of this procedure is O(N lg N) for the sorting and then
O(N) for the scan, for a total cost of O(N lg N). Note the
very important role sparsity plays in analyzing this al-
gorithm: It guarantees that the cost of the scan is linear
inN.

Figure 11 shows how we can use multidimensional
divide-and-conquer to solve the planar near neighbor
problem. The first and second steps of our algorithm are,
as usual, to divide the point set by L into A and B and
then fmd all near neighbor pairs in each recursively. At
this point we have almost solved our problem--all that
remains to be done is to fred all pairs within d which
have one element in A and one in B. Note that the "A
point" of such a pair must lie in the slab of A which is
within d of L, and likewise for B. Our third step thus
calls for finding all pairs with one element in A and the
other in B, and to do this we can confine our attention
to the slab of width 2d centered about line L. But this
can be transformed into a one-dimensional problem by
projecting all points in the slab onto L. It is not difficult
to show that projection preserves sparsity (details of the
proof can be found in Bentley [3]), and it is obvious that
projection preserves closeness, for projection only de-
creases the distance between pairs of points. Our reduced

Communications April 1980
of Volume 23
the ACM Number 4

Fig. 12. Two cut lines.

Bad cut
l ine

Good cut
l ine

problem is therefore just the one-dimensional sparse near
neighbors problem (though it requires checking both to
ensure pairs have one element from A and one from B
and to ensure that the pairs were close before projection),
and this can be accomplished in O(N lg N) time, or
linear time if presorting is used. The runtime of our
algorithm thus obeys the recurrence

T(N) = 2T(N/2) + O(N)

which has solution T(N) = O(N lg N). Sparsity played
two important roles in this algorithm. Since the original
point set was sparse, we could guarantee that both A and
B would be sparse after the division step (which in no
way alters A or B). The sparsity condition was also
preserved in the projection of the third step, which
allowed us to use the one-dimensional algorithm to solve
the resulting subproblem.

The algorithm we just saw can be generalized to three
and higher dimensions. In three dimensions we divide
the set by a cut plane P into A and B and find all near
pairs in those sets recursively. We now need to find all
close pairs with one member in A and the other in B,
and to do this we confine our attention to the "slab" of
all points within distance d of P. If we project all those
points onto the slab (remembering if each was an A or
a B), then we have a planar near neighbor problem of
(up to) N points. Using our previous planar algorithm
gives an algorithm for 3-space with O(N lg 2 N) running
time. Extending this to k-space gives us an O(N lg k-~ N)
algorithm.

Having seen so many O(N lg k-1 N) algorithms in this
paper may have lulled the reader into a bleary-eyed state
of universal acceptance, but the practicing algorithm
designer never sleeps well until he has an algorithm with
a matching lower bound. For this problem the best
known lower bound is f~(N lg N); so we are encouraged
to try to find an O(N lg N) algorithm. First we consider
our planar algorithm in its O(N lg 2 N) form, temporarily
ignoring the speedup available with presorting. If we ask
where the extra logarithmic factor comes from, we see
that it is due to the fact that in the worst case all N points
can lie in the slab of width 2d; this is illustrated in Figure
12. If the points are configured this way, then we should

225

choose as cut line L a horizontal line dividing the set
into halves. It turns out not to be hard to generalize this
notion to show that in any sparse point set there is a
"good" cut line. By "good" we mean that L possesses
the following three properties:

(1) It is possible to locate L in linear time.
(2) The set S is divided approximately in half by L.
(3) Only O(N 1/2) points of S are within d of L.

A proof that every sparse point set contains such a
cut line can be found in Bentley [3]. We can use the
existence of such a cut line to create an O(N lg N)
algorithm. The first step of our algorithm takes linear
time (by property 1 of L), and the second step is altered
(by property 2). The third step is faster because it sorts
fewer than N points--only the O(N ~/2) points within d
of L, by property 3. Since this can be accomplished in
much less than linear time, our algorithm has the recur-
rence s

T(N) = 2T(N/2) + O(N)

which has solution O(N lg N). The gain in speed was
realized here by solving only a very small problem on
the fine, so small that it can be solved in much less than
linear time. Not unexpectedly, it can be shown that for
sparse point sets in k-space there will always exist good
cut planes, which will have not more than O(N a-Ilk)
points within d of them. These planes imply that the
(k-1)-dimensional subproblem can be solved in less than
linear time, and the full problem thus obeys the recur-
rence

T(N, k) = 2T(N/2, k) + O(N).

This establishes that we can solve the general problem in
O(N lg N) time.

The techniques which we have used for the all-points
near neighbors problems can also be applied to the near
neighbor searching problem. In that problem we are
given a sparse set of points to preprocess into a data
structure such that we can quickly answer queries asking
for all points within d of a query point. If we use the
general multidimensional divide-and-conquer strategy,
then we achieve a structure very similar to the range tree,
with performances

P(N) = O(N lg k-1 N),
S(N) = O(N lg k-~ N),
Q(N) = O(lg k N).

If we make use of the good cut planes, however, then we
can achieve a structure with performance

P(N) = O(N lg N),
S(N) = O(N),
Q(N) = O(lg N).

This modified structure follows immediately from the
properties of the cut planes we mentioned above; the

8 The recurrence actually takes on a slightly different form--details
are in Bentley [3].

Communications April 1980
of Volume 23
the ACM Number 4

details are similar to the other multidimensional divide-
and-conquer structures we have seen previously.

To show lower bounds on fixed-radius problems in
k-space we can consider the corresponding problems in
1-space. Fredman and Weide [13] have shown that the
problem of reporting all intersecting pairs among a set
of segments on the line requires f~(N lg N) time; by
embedding, this immediately gives the same lower bound
on the all-points fixed-radius near neighbors problem in
k-space. This shows that our algorithm is optimal (to
within a constant factor). Reduction to one dimension
can also be used to show that the data structure is
optimal.

In this section we have seen how multidimensional
divide-and-conquer can be applied to closest-point prob-
lems, a totally different kind of problem than the domi-
nation problems we saw in Section 2. Some of the
techniques we have seen in this section will be useful in
all other closest-point problems. One such technique is
employing the concept of sparsity; it was given in the
statement of this problem, and we will see how to intro-
duce it into other problems in which it is not given. The
second technique that we will use again is projection of
all near points onto a cut plane. With these tools in hand,
we now investigate other closest-point problems.

3.2 Closest Pair
In this section we examine the closest-pair problem,

an all-points problem with no searching analog. We are
given N points in k-space and must fred the closest pair
in the set. Notice that this problem is based on relative,
not absolute, distances. Although the distance separating
the closest pair could be used as a rotation-invariant
"signature" of a point set, its primary interest to us is not
as an applications problem but rather in its status as an
"easiest" closest-point problem. We call it easiest because
there are a number of other geometric problems (such as
nearest neighbors and minimal spanning trees) that fred
the closest pair as part of their solution. For a long time
researchers felt that there might be a quadratic lower
bound on the complexity of the closest-pair problem,
which would have implied a quadratic lower bound on
all the other problems. In this section we will see an O(N
lg N) closest-pair algorithm, which gives us hope for the
existence of fast algorithms for the other problems.
(The O(N lg N) planar algorithm we will see was first
described by Shamos [26], who attributes to H.R. Strong
the idea of using divide-and-conquer to solve this problem.)

The one-dimensional closest-pair problem can be
solved in O(N lg N) time by sorting. After performing
the sort we scan through the list, checking the distance
between adjacent elements. In two dimensions we can
use multidimensional divide-and-conquer to solve the
problem. The first step divides S by line L into sets A
and B, and the second step finds the closest pairs in A
and B, the distances between which we denote by da and
dn, respectively. This is illustrated in Figure 13. Note
that we have now introduced a sparsity condition into

226

Fig. 13. A planar closest-pair algorithm.

A

i

de

d = ra i n (d^ ,dB)

both A and B. Because the closest pair in A is da apart,
no da-ball in A can contain more than seven points. This
follows from the fact that at most six unit circles can be
made to touch some fLxed unit circle in the plane without
overlapping; details of the proof are in Bentley [3].
Likewise we can show that B is sparse in the sense that
no dB-ball in B contains more than seven points. I f we
let d be the minimum of d3 and dB, notice that the whole
space is sparse in the sense that no d-ball contains more
than 14 points. This observation of "induced" sparsity
will make the third step of our algorithm much easier,
which is to make sure that the closest pair in the space
is actually that corresponding to dA or to dB. We could
just run a sparse fixed-radius near neighbor algorithm at
this point to fred any pairs within d of one another, but
there is a more elegant approach. Note that any close
pair must have one element in A and one element in B,
so all we have to do is consider the slab of all points
within d of L, and the third step of this algorithm
becomes exactly the third step of the near neighbor
algorithm. If we do not use presorting, this gives an
O(N lg 2 N) algorithm.

The generalization to 3-space is obvious: We choose
a plane P defining A and B and solve the subproblems
for those sets. After this we have introduced sparsity into
both A and B (relative to da and dB), and we can ensure
that our answer is correct by solving a planar fixed-
radius subproblem. In k-space we solve two closest-pair
problems of N/2 points each in k-space and one fixed-
radius problem of (up to) N points in k -1 dimensions.
If we use the O(N lg N) algorithm for near neighbors,
then our recurrence is

T(N) = 2T(N/2) + O(N lg N)

which has solution T(N) = O(N lg 2 N). Although we will
not go into the details of the proof here, Bentley [3] has
shown how the good cut planes we saw for the fixed-
radius problem can be applied to this problem. If they
are used appropriately, then the running time of the
closest-pair algorithm in k-space can be reduced to
O(N lg N). Shamos [26] has shown an f~(N lg N) lower
bound on this problem in 1-space by reduction to the
"element uniqueness" problem; this algorithm is there-
fore optimal to within a constant factor.

Communications April 1980
of Volume 23
the ACM Number 4

3.3 Nearest Neighbors
The fmal closest-point problem we investigate deals

with nearest neighbors. In the all-points form we ask
that for each point x the nearest point to x be identified
(ties may be broken arbitrarily). In the searching form
we give a new point x and ask which of the points in the
set is nearest to x. The all-points problem has applica-
tions in cluster analysis and multivariate hypothesis test-
ing; the searching problem arises in density estimation
and classification. As usual, we begin our discussion of
this problem by examining the planar case of the all-
points problem.

It is not hard to see how multidimensional divide-
and-conquer can be used to solve the planar problem.
The first step divides S into A and B and the second step
finds for each point in A its nearest neighbor in A (and
likewise for each point in B). The third step must "patch
up" by finding if any point in A actually has its true
nearest neighbor in B, and similarly for points in B. To
aid in this step we observe that we have established a
particular kind of sparsity condition. We define the NN-
ball (for nearest neighbor ball) of point x to be the circle
centered at x which has radius equal to the distance from
x to x's nearest neighbor. It can be shown (see Bentley
[3]) that with this definition no point in the plane is
contained in more than seven NN-balls of points in A. We
will now discuss one-half of the third step, namely, the
process of ensuring for each point in A that its nearest
neighbor in A is actually its nearest neighbor in S. In
this process we need consider only those points in A with
NN-balls intersecting the line L (for if their NN-ball did
not intersect L, then their nearest neighbor in A is closer
than any point in B). The final step of our algorithm
projects all such points of A onto L and then projects
every point of B onto L. It is then possible to determine
during a linear-time scan of the resulting list if any point
x in A has a point in B nearer to x than x's nearest
neighbor in A. This results in an O(N lg N) algorithm if
presorting is used. Shamos [26] has shown that it is
within a constant factor of optimal.

The extension of the algorithm to k-space yields
O(N lg k-1 N) performance. It is not clear that there is a
search structure corresponding to this algorithm. Shamos
[26] and Lipton and Tarjan [19] have given nearest
neighbor search structures for points in the plane that
are analogous to this algorithm. Whether there exists a
fast k-dimensional nearest neighbor search structure is
still an open question; this approach is certainly one
promising point of attack for that problem.

algorithms for other multidimensional problems, such as
the all-points problem of finding the minimal-perimeter
triangle determined by N points and the searching prob-
lem of determining if a query point lies in any of a set of
N rectangles. Another aspect of this paradigm is the
work of Bentley [3] on heuristics that algorithm designers
can use when applying this paradigm to their problems.
These heuristics were enumerated after the paradigm
had been used to solve the closest-point problems of
Section 3 and were then used in developing the algo-
rithms of Section 2, among others. A final aspect of this
paradigm is the precise mathematical analysis of the
resulting algorithms; Monier [21] has used beautiful com-
binatorial techniques to analyze all of the algorithms we
have seen in this paper.

We now briefly examine two paradigms of algorithm
design closely related to multidimensional divide-and-
conquer. The first such paradigm, planar divide-and-con-
quer, is really just the specialization of the general par-
adigm to the planar case. Shamos [25, 26] has used this
technique to solve many computational problems in
plane geometry. Among these problems are constructing
the convex hulls of planar point sets, constructing Vo-
ronoi diagrams (a planar structure which can be used to
solve various problems), and two-variable linear pro-
gramming. It is often easier to apply the paradigm in
planar problems than in k-dimensional problems, be-
cause the third (marriage) step of the algorithm is one-
dimensional, and there are many techniques for solving
such problems. Lipton and Tarjan [19] have given a very
powerful "planar separator theorem" that often aids in
applying the planar divide-and-conquer paradigm. 9

The second related paradigm is what we might call
recursive partitioning. This technique is usually applied
to searching problems, but it can then be used to Solve
all-points problems by repeated searching. The idea
underlying this technique can be phrased as follows: To
store N points in k-space, store two substructures each of
N/2 points in k-space. Searches in such structures must
then occasionally visit both subtrees of a given node to
answer some queries, but with "proper" choice of cut
planes this can be made to happen very infrequently.
Bentley [2] described a search structure based on this
idea which he called the multidimensional binary search
tree, abbreviated as a k-d tree when used in k-space.
That structure has been used to facilitate fast nearest
neighbor searching, range searching, fixed-radius near
neighbor searching, and for a database problem called
"partial match" searching. Reddy and Rubin [23] use
recursive partitioning in algorithms and data structures

4. Additional Work

In Sections 2 and 3 we saw many aspects of the
multidimensional divide-and-conquer paradigm, but
there are many other aspects that can only be briefly
mentioned. The paradigm has been used to create fast

227

9 The author cannot resist pointing out that the planar divide-and-
conquer paradigm is also used by police officers. Murray [22] offers
the following advice in a hypothetical situation: "A crowd of rioters far
outnumbers the police assigned to disperse it. If you were in command,
the best action to take would be to split the crowd into two or m o r e
parts and disperse the parts separately." An interesting open problem
is to apply other algorithmic paradigms to problems in police work,
thus establishing a discipline of "computational criminology."

Communications April 1980
of Volume 23
the ACM Number 4

for representing objects in computer graphics systems.
Friedman [14, 15] has used the idea of recursive parti-
tioning to solve many problems in multivariate data
analysis such as classification and regression. In addition
to their theoretical interest, these structures are quite
easy and efficient to implement; their use has reduced
the costs of certain computations by factors of a hundred
to a thousand (examples of such savings can be found in
the above references).

All of the data structures described in this paper have
been static in the sense that once they are built, additional
elements cannot be inserted into them. Many applica-
tions, however, require a dynamic structure into which
additional elements can be inserted. Techniques de-
scribed by Bentley [4] can be applied to all of the data
structures that we have seen in this paper to transform
them from static to dynamic. The cost of this transfor-
mation is to add an extra factor of O(lg N) to both query
and preprocessing times (P(N) now denotes the time
required to insert N elements into an initially empty
structure), while leaving the storage requirements un-
changed. The details of this transformation can be found
in Bentley [4]. Recent work by Lueker [20] and Willard
[28] can be applied to all of the data structures in this
paper to convert them to dynamic at the cost of an
O(lg N) increase in P(N), leaving both Q(N) and S(N)
unchanged. Additionally, their method facilitates dele-
tion of the elements.

This survey of additional work is not completed by
having mentioned only what has been done; there is
much more eagerly waiting to be done. Perhaps the single
most obvious open problem is that of developing meth-
ods to reduce the times of our algorithm from O(N lgkN)
to O(N lg N). We saw how presorting could be used to
remove one logarithmic factor (in all the algorithms) and
certain other techniques that actually achieved
O(N lg N) time, such as the expected analysis of Section
2.2 and the "good" cut planes of Sections 3.1 and 3.2.
One might hope for similar techniques of broader appli-
cability to increase the speed of our algorithms even
more. Another area which we just barely scratched (in
Section 2.2) was the expected analysis of these algo-
rithms-experience indicates that our worst-case analy-
ses are terribly pessimistic. A more specific open problem
is to use this method to solve the nearest neighbor
searching problem in k-space; one might also hope to
use the method to give a fast algorithm for constructing
minimal spanning trees. Although it has already been
used to solve a number of research problems, much work
remains to be done before we can "write the final
chapter" on multidimensional divide-and-conquer.

5. Conclusions

In this section we summarize the contributions con-
tained in this paper, but before we do so we will briefly
review the results of Sections 2 and 3. Those sections
dealt with two basic classes of problems: all-points prob-

228

lems and searching problems. For five all-points prob-
lems of N points in k-space we saw algorithms with
running time of O(N lgk-lN); for certain of these prob-
lems we saw how to reduce their running time even
more. For four searching problems we developed data
structures that could be built on O(N lgk-lN) time, used
O(N lg~-lN) space, and could be searched in O(lgkN)
time. Both the all-points algorithms and the searching
data structures were constructed by using one paradigm:
multidimensional divide-and-conquer. All of the
all-points problems that we saw have f~(N lg N)
lower bounds and all of the searching problems have
f~(lg N) lower bounds; the algorithms and data struc-
tures that we have seen are therefore within a constant
factor of optimal (some for only small k, others for any
k).

The contributions of this paper can be described at
two levels. At the first level we have seen a number of
particular results of both theoretical and practical inter-
est. The algorithms of Sections 2 and 3 are currently the
best algorithms known for their respective problems in
terms of asymptotic running time. They (or their var-
iants) can also be implemented efficiently for problems
of "practical" size, and several are currently in use in
software packages. At a second level this paper contains
contributions in the study of a particular algorithmic
paradigm, multidimensional divide-and-conquer. This
paradigm is essentially a general algorithmic schema,
which we instantiated to yield a number of particular
algorithms and data structures. The study of this para-
digm as a paradigm has three distinct advantages. First,
we have been able to present a large number of results
rather succinctly. Second, advances made in one problem
can be applied to other problems (indeed, once one
search structure was discovered, all the rest came about
quite rapidly). Third, this paradigm has been used to
discover new algorithms and data structures. The author
has (on occasion) consciously applied this paradigm in
the attempt to solve research problems. Although the
paradigm often did not yield fruit, the ECDF, range
searching, and nearest neighbor problems were solved in
exactly this way.

In this paper the author has tried to communicate
some of the flavor of the process of algorithm design and
analysis, in addition to the nicely packaged results. It is
his hope that the reader takes away from this study not
only a set of algorithms and data structures, but also a
feeling for how these objects came into being.

Acknowledgments. The presentation of this paper has
been greatly improved by the careful comments of J.
McDermott, J. Traub, B. Weide, and an anonymous
referee. I am also happy to acknowledge assistance re-
ceived as I was working on the algorithms described in
this paper. D. Stanat was an excellent thesis advisor, and
M. Shamos was a constant source of problems and
algorithmic insight.

Communications April 1980
of Volume 23
the ACM Number 4

Received 9/78; revised 6/79; accepted 1/80

References
!. Aho, AV., Hopcroft, J.E., and Ullman, J.D. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Reading, Mass.,
1974.
2. Bentley, J.L. Multidimensional binary search trees used for
associative searching. Comm. ACM 18, 9 (Sept. 1975), 509-517.
3. Bentley, J.L. Divide and conquer algorithms for closest point
problems in multidimensional space. Unpublished Ph.D. dissertation,
Univ. of North Carolina, Chapel Hill, N.C., 1976.
4. Bentley, J.L. Decomposable searching problems. Inform. Proc.
Letters 8, 5 (June 1979), 244-251.
5. Bentley, J.L., and Friedman, J.H. Algorithms and data structures
for range searching. Comptng. Surv. 11, 4 (Dec. 1979), 397-409.
6. Bentley, J.L., Kung, H.T., Schkolnick, M., and Thompson, C.D.
On the average number of maxima in a set of vectors and
applications. J. ACM 25, 4 (Oct. 1978), 536-543.
7. Bentley, J.L., and Maurer, H.A. Efficient worst-case data
structures for range searching. To appear in Acta lnformatica
(1980).
g. Bentley, J.L., and Shamos, M.I. Divide and conquer in
multidimensional space. In Proc. ACM Symp. Theory of Comptng.,
May 1976, pp. 220-230.
9. Bentley, J.L., and Shamos, M.I. A problem in multivariate
statistics: Algorithm, data structure, and applications. In Proc. 15th
Allerton Conf. Communication, Control, and Comptng., Sept. 1977,
pp. 193-201.
10. Blum, M., et al. Time bounds for selection. J. Comptr. Syst. Sci.
7, 4 (Aug. 1972), 448--461.
i l . Dobkin, D., and Lipton, R.J. Multidimensional search problems.
SIAM J. Comptng. 5, 2 (June 1976), 181-186.
12. Fredman, M. A near optimal data structure for a type of range
query problem. In Proc. 1 lth ACM Symp. Theory of Comptng.,
April 1979, pp. 62-66.
13. Fredman, M., and Weide, B.W. On the complexity of computing
the measure of O [ai, bi]. Comm. ACM 21, 7 (July 1978), 540-544.
14. Friedman, J.H. A recursive partitioning decision rule for
nonparametric classification. 1EEE Trans. Comptrs. C-26, 4 (April
1977), 404--408.
15. Friedman, J. H. A nested partitioning algorithm for numerical
multiple integration. Rep. SLAC-PUB-2006, Stanford Linear
Accelerator Ctr., 1978.
16. Knuth, D.E. The Art of Computer Programming, Vol. 3: Sorting
and Searching. Addison-Wesley, Reading, Mass., 1973.
17. Kung, H.T., Luccio, F., and Preparata, F.P. On finding the
maxima of a set of vectors. J. A CM 22, 4 (Oct. 1975), 469-476.
18. Lee, D.T., and Wong, C.K. Qintary trees: A file structure for
multidimensional database systems. To appear in ACM Trans.
Database Syst.
19. Lipton, R., and Tarjan, R.E. Applications of a planar separator
theorem. In Proc. 18th Symp. Foundations of Comptr. Sci., Oct.
1977, pp. 162-170.
20. Lueker, G. A data structure for orthogonal range queries. In
Proc. 19th Symp. Foundations of Comptr. Sci., Oct. 1978, pp.
28-34.
21. Monier, L. Combinatorial solutions of multidimensional divide-
and-conquer recurrences. To appear in the J. of Algorithms.
22. Murray, J.A. Lieutenant, Police Department--The Complete Study
Guide for Scoring High (4th ed.). Arco, New York, 1966, p. 184,
question 3.
23. Reddy, D.R., and Rubin, S. Representation of three-dimensional
objects. Carnegie-Mellon Comptr. Sci. Rep. CMU-CS-78-113,
Carnegie-Mellon Univ., Pittsburgh, Pa., 1978.
24. Saxe, J.B. On the number of range queries in k-space. Discrete
Appl. Math. 1, 3 (Nov. 1979), 217-225.
25. Shamos, M.I. Computational geometry. Unpublished Ph.D.
dissertation, Yale Univ., New Haven, Conn., 1978.
26. Shamos, M.I. Geometric complexity. In Proc. 7th ACM Symp.
Theory of Comptng., May 1975, pp. 224-233.
27. Weide, B. A survey of analysis techniques for discrete algorithms.
Comptng. Surv. 9, 4 (Dec. 1977), 291-313.
28. Willard, D.E. New data structures for orthogonal queries.
Harvard Aiken Comptr. Lab. Rep., Cambridge, Mass., 1978.
29. Yao, F.F. On f'mding the maximal elements in a set of planar
vectors. Rep. UIUCDCS-R-74-667, Comptr. Sci. Dept., Univ. of
Illinois, Urbana, July 1974.

229

P r o g r a m m i n g R. R i v e s t

T e c h n i q u e s E d i t o r

A Unifying Look
at Data Structures
Jean Vuillemin
University of Paris-South

Examples of fruitful interaction between
geometrical combinatorics and the design and analysis
of algorithms are presented. A demonstration is given
of the way in which a simple geometrical construction
yields new and efficient algorithms for various
searching and list manipulation problems.

Key Words and Phrases: data structures,
dictionaries, linear list, search, merge, permutations,
analysis of algorithms

CR Categories: 4.34, 5.24, 5.25, 5.32, 8.1

1. Introduction

W h e n e v e r two c o m b i n a t o r i a l s t ruc tu res are c o u n t e d
by the s a m e n u m b e r , the re exis t b i j ec t ions (o n e - o n e

m a p p i n g s) b e t w e e n the two s t ructures . O n e g o a l o f geo-

me t r i ca l c o m b i n a t o r i c s (see, for e x a m p l e , F o a t a a n d

S c h u t z e n b e r g e r [7]) is to expl ic i t ly cons t ruc t such b i jec-

t ions. T h i s is b r i n g i n g the f ie ld v e r y close to c o m p u t e r

science: O n e can r e g a r d c o m b i n a t o r i a l r ep r e sen t a t i ons o f

r e m a r k a b l e n u m b e r s as e q u i v a l e n t d a t a s t ruc tures ; ex-

pl ici t b i j ec t ions b e t w e e n such r e p r e s e n t a t i o n s p r o v i d e

c o d i n g a n d d e c o d i n g a l g o r i t h m s b e t w e e n the s t ructures .

Ea r l i e r i nves t iga t ions a l o n g these l ines are 1;eported in

F r a n ~ o n et al. [10] a n d F l a j o l e t et al. [6].

T h i s p a p e r s h o u l d be r e g a r d e d as an i n t r o d u c t i o n to

us ing m e t h o d s o f g e o m e t r i c a l c o m b i n a t o r i c s in the f ie ld

o f a l g o r i t h m des ign a n d analysis . F o r this pu rpose , we

c o n s i d e r r e p r e s e n t a t i o n o f n! as a r u n n i n g e x a m p l e a n d

d e m o n s t r a t e h o w we are led to d i s c o v e r i n g n e w a n d

ef f ic ien t d a t a s t ruc tures a n d a l g o r i t h m s for so lv ing var -

ious d a t a m a n i p u l a t i o n p r o b l e m s .

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This work was supported by the National Center for Scientific
Research (CNRS), Paris, under Grant 3941.

Author's address: J. Vuillemin, Laboratory for Information Re-
search, Building 490, University of Paris-South, 91405 Orsay, France.
© 1980 ACM 0001-0782/80/0400-0229 $00.75.

Communications April 1980
of Volume 23
the ACM Number 4

