OpenMP Troubleshooting Data race conditions

One of the biggest drawbacks of shared-memory parallel
programming is that it might lead to introduction of a certain type
of bug that manifests itself through silent data corruption.

To make matters worse, the runtime behavior of code with this
kind of error is also not always reproducible: if one executes the
same erroneous program a second time, the problem might not

show up.
1 2
threads: 1 checksum 1953 correct value 1853
threads: 1 checksum 1953 correct value 1853
..o threads: 1 checksum 1953 correct value 1953
Data race condltlons threads: 1 checksum 1953 correct value 1853
threads: 2 checksum 1953 correct value 1953
threads: 2 checksum 1953 correct value 1953
threads: 2 checksum 1953 correct value 1953
threads: 2 checksum 1953 correct value 1953
for (i=0; i<n-1; i++) threads: 4 checksum 1905 correct value 1953
alil = al[i+1] + b[il; threads: 4 checksum 1905 correct value 1953
threads: 4 checksum 1953 correct value 1953
threads: 4 checksum 1937 correct value 1953

. . threads: 32 checksum 1625 correct value 1963
The loop iterations are dependent on each other. threads: 32 checksum 1473 correct value 1953

This is call -carri . threads: 32 checksum 1489 correct value 1853
SIsC Cd lOOp ca led dependence threads: 32 checksum 1613 correct value 1963

If this loop is carried out in parallel, the result is threads: 48 checksun 936 correct value 1353

. . threads: 48 checksum 1007 correct value 1953
dependent on the relative speed of the executing threads: 48 checksum 887 correct value 1953
threads. This is referred to as a data race condition. threads: 48 checksum 822 correct value 1953

Figure 7.1: Output from a loop with a data race condition - On a single
thread the results are always correct, as is to be expected. Even on two threads the results
are correct. Using four threads or more, the results are wrong, except in the third run.
This demonstrates the non-deterministic behavior of this kind of code.

Data dependence analysis

for (i = 0; 1 < N; i++) {
a[expressionl] = ...
... = a[expression2];

~e

Necessary condition for this loop to be parallelizable:

expressionl in any iteration is different from
expression2 in any other iteration

Default data-sharing attributes

int i, j;
#pragma omp parallel for
for (i=0; i<m; i++)
for (j=0; j<m; j++) {
alil[j]1 = compute(i,j);
¥

Figure 7.5: Example of a loop variable that is implicitly shared — Loop
variable 1 is private by default, but this is not the case for j: it is shared by default. This
results in undefined runtime behavior.

Values of private variables

void main ()

{
#pragma omp parallel for private(i,a,b)
for (i=0; i<m; i++)
1{
b++;
a = b+i;
} /#-- End of parallel for --x/
c =a+ b;
}

Figure 7.6: Incorrect use of the private clause — This code has two problems.
First, variable b is used but not initialized within the parallel loop. Second, variables a
and b should not be used after the parallel loop. The values after the parallel loop are
undefined and therefore implementation dependent.

Cont'd on next page

Values of private variables

void main ()

{
#pragma omp parallel for private(i), firstprivate(b) \
lastprivate(a,b)
for (i=0; i<n; i++)
1{
b++;
a = b+i;
} /*-- End of parallel for —-*/
c =a+ b;
}

Figure 7.7: Corrected version using firstprivate and lastprivate vari-
ables — This is the correct version of the code in Figure 7.6.

Problems with the master construct

#include <stdio.h>
#include <stdlib.h>

void main()

¢ int Xinit, Xlocal;
#pragma omp parallel shared(Xinit) private(Xlocal)
¢ #pragma omp master
{Xinit = 10;}
Xlocal = Xinit; /#-- Xinit might not be available yet ——*/
} /*—- End of parallel region —-%/
¥

Figure 7.8: Incorrect use of the master construct — This code fragment implicitly
assumes that variable Xinit is available to the threads after initialization. This is incorrect.
The master thread might not have executed the assignment when another thread reaches
it, or the variable might not have been flushed to memory.

Assumptions on work scheduling

#pragma omp parallel
{

#pragma omp for schedule(static) nowait
for (i=0; i<m; i++)
b[il = (alil + ali-11) / 2.0;
#pragma omp for schedule(static) nowait
for (i=0; i<n; i++)
z[i] = sqrt(b[il);

Figure 7.9: Example of incorrect assumptions about work scheduling in
the OpenMP 2.5 specifications — The nowait clause might potentially introduce a
data race condition, even with static work scheduling, if n is not a multiple of the number

of threads.

Invalid nesting of directives

#ipragma omp parallel shared(m,a,b)
{

#pragma omp for
for (int i=0; i<m; i++)

{
alil =i + 1;
#pragma omp for // WRONG - Needs a new parallel region
for (int j=0; j<m; j++)
blil[j] = alil;
}

} /*-- End of parallel region --*/

Figure 7.10: Example of incorrectly nested directives — Nested parallelism is
implemented at the level of parallel regions, not work-sharing constructs, as erroneously
attempted in this code fragment.

Cont'd on next page

Invalid nesting of directives

#pragma omp parallel shared(n,a,b)
{

d#ipragma omp for

for (int i=0; i<n; i++)

{
alil =i + 13
#pragma omp parallel for // Okay - This is a parallel region
for (int j=0; j<n; j++)
blil[j] = alil;
¥

} /#-- End of parallel region —-*/

Figure 7.11: Example of correctly nested directives — This is correct use of
nested parallelism. This code fragment has two nested parallel regions.

Subtle errors in the use of directives

#pragma omp parallel // Incorrect use of the barrier
{

if (omp_get_thread num() == 0)

{

#pragma omp barrier
T
else
1{
#pragma omp barrier
}
} /#-- End of parallel region —-—*/

Figure 7.12: Illegal use of the barrier — The barrier is not encountered by all
threads in the team, and therefore this is an illegal OpenMP program. The runtime
behavior is undefined.

Subtle errors in the use of directives

main()

{

#pragma omp parallel
{

worki(); /#-- Executed in parallel --=/
work2(); /*-- Executed in parallel --*/
¥

#pragma omp parallel
worki(); /#*—- Executed in parallel --*/
work2(); /#-- Executed sequentially —-*/

i

Figure 7.14: Example of the impact of curly brackets on parallel execution
— It is very likely an error was made in the definition of the second parallel region: function
work?2 is executed by the master thread only.

Verification of the sequential version

splint
¢ Run the source code through syntax checking tools such as 4

e Enable as many compiler diagnostic options as possible. -Wall

o Try different compiler optimizations. The bug might already show up for a
specific set of options applied to the sequential version.

e Run the loops parallelized with OpenMP backwards. If the result is wrong,
the loop(s) cannot be executed in parallel. The reverse is not true. If the
result is okay, it does not automatically mean the loop can be parallelized.

Verification of the parallel version

¢ Hun the OpenMP version of the program on one thread. If the error shows
up then, there is most likely a basic error in the code.

e Selectively enable/disable OpenMP directives to zoom in on the part of the
program where the error originates.

o If a data race is suspected:
— Use as many threads as possible. The higher the number of threads, the

more likely the data race is to show up.

— BAFA TS AR taterents T FoTtrar programs—amd- the use of static

and external variables in C/C++ might cause data to be shared unin-
tentionally.

e Check that the libraries used are thread-safe in case one or more of their
funections are called within a parallel region.

Debugging tools

The GNU debugger, gdb, allows you to see what is going on

'inside' a program while it executes.

gdb program

Compile the program with -g option in order to produce

debugging information.

The Intel thread checker, tcheck, allows to find threading errors

like data races and deadlocks.

tcheck cl program

Program with a data race

prg.c:

{

int main () {
int count = 0;
#pragma omp parallel

printf("count = %d\n", count);
return 0;

count++; }

icc -o prg -openmp -Wall -g prg.c

Using the Intel thread checker

tcheck cl prg

First few lines of the report:

ID|Short Des|Sever|Co|Contex|Description
|cription |ity |un|t[Best|

|1st A|2nd A
|ccess|ccess|

	Name	t]	[Best	[Best		
	[[[
1	Write ->	Error	15	"prg.c	Memory read at "prg.c":6 conflicts	"prg.	"prg.
	Read			":5	with a prior memory write at	c":6	c":6
	data-race			"prg.c":6 (flow dependence)			
b

/

19

Using the Valgrind thread checker

valgrind --tool=helgrind prg

Some lines of the report:

==15991== Possible data race during write of size 8 at 0x421E508

at 0x400945B: _dl_lookup_symbol_x (dl-lookup.c:321)

by 0x400D3B8: _dl_fixup (dl-runtime.c:108)

by 0x40132Al1: _dl runtime_resolve (dl-trampoline.S:43)

by 0x5040035: start_thread (pthread_create.c:277)

by 0x532811C: clone (clone.S:112)

0ld state: shared-readonly by threads #1, #2

New state: shared-modified by threads #1, #2
==15991== Reason: this thread, #2, holds no consistent locks
==15991== Location 0x421E508 has never been protected by any lock

32 OpenMP Traps For C++ Developers

Alexey Kolosov

00O "Program Verification Systems"
Evgeniy Ryzhkov

000 "Program Verification Systems"

Andrey Karpov
00O "Program Verification Systems"

http://www.viva64.com/content/articles/parallel-programming/?
f=32_OpenMP_traps html&lang=en&content=parallel-programming

Logical errors

1.

Missing openmp compiler option
You should enable the option at the moment you create your project.

. Missing parallel keyword
. Missing omp keyword
. Missing for keyword

You should be accurate about the syntax of the directives you use.

. Unnecessary parallelization

You should be accurate about the syntax of the directives you use and
understand their meaning.

. Incorrect usage of the ordered clause

It is necessary to watch over the syntax of the directives you use.

. Redefining the number of threads in a parallel section

The number of threads cannot be changed in a parallel section.

. Using a lock variable without initializing the variable

A lock variable must be initialized via the omp_init_lock function call.

22

9. Unsetting a lock from another thread

10. Using a lock as a barrier
If a thread uses locks, both the lock (omp_set_lock,
omp_test_lock) and unlock (omp_unset_lock) functions must
be called by this thread.

11. Threads number dependency
Your code's behavior must not depend on the number of
threads which execute the code.

12. Incorrect usage of dynamic threads creation
If you really need to make your code's behavior depend on the
number of threads, you must make sure that the code will be
executed by the needed number of threads (dynamic threads
creation must be disabled). We do not recommend using
dynamic threads creation.

13. Concurrent usage of a shared resource
Concurrent shared resource access must be protected by a
critical section or a lock.

14. Shared memory access unprotected
Concurrent shared memory access must be protected as an
atomic operation (the most preferable option), critical section or
a lock.

15. Using the flush directive with a reference type
Applying the flush directive to a pointer is meaningless since only
the variable's value (a memory address, not the addressed
memory) is synchronized in this case.

16. Missing flush directive
Missing flush directive may cause incorrect memory read/write
operations.

17. Missing synchronization
Missing synchronization may also cause incorrect memory read/
write operations.

24

18. An external variable is specified as threadprivate not in all units

19. Uninitialized local variables

20. Forgotten threadprivate directive

21. Forgotten private clause

22. Careless usage of the lastprivate clause

23. Unexpected values of threadprivate variables in the beginning of parallel

sections
We recommend that you do not use the threadprivate directive and the
private, firstprivate, lastprivate clauses. We recommend that you declare
local variables in parallel sections and perform first/last assignment
operations (if they are necessary) with a shared variable.

24. Incorrect worksharing with private variables
If you parallelize a code fragment which works with private
variables using the threads in which the variables were created
different threads will get different values of the variables.

25. Some restrictions of private variables
Private variables must not have reference type, since it will cause
concurrent shared memory access. Although the variables will be
private, the variables will still address the same memory fragment.
Class instances declared as private must have explicit copy
constructor, since an instance containing references will be copied
incorrectly otherwise.

26. Private variables are not marked as such
You must control access modes of your variables. We recommend
that developers who are new to OpenMP use the default(none)
clause so that they will have to specify access modes explicitly. In
particular, loop variables must always be declared as private or
local variables.

27. Parallel array processing without iteration ordering
If an iteration execution depends on the result of a previous
iteration, you must use the ordered directive to enable iterations
ordering.

Performance errors

28. Unnecessary flush directive
There is no need to use the flush directive in the cases when the
directive is implied.

29. Using critical sections or locks instead of the atomic directive
We recommend that you use the atomic directive to protect
elementary operations when it is possible, since using locks or
critical sections slows down you program's execution.

30. Unnecessary concurrent memory writing protection
There is no need protect private or local variables. Also, there
is no need to protect a code fragment which is executed by a
single thread only.

31. Too much work in a critical section
Critical sections should contain as little work as possible. You
should not put a code fragment which does not work with
shared memory into a critical section. Also we do not
recommend putting a complex function calls into a critical
section.

32. Too many entries to critical sections
We recommend that you decrease the number of entries to and
exits from critical sections. For example, if a critical section
contains a conditional statement, you can place the statement
before the critical section so that the critical section is entered
only if the condition is true.

28

