
OpenMP Troubleshooting!

!" #"

Data race conditions!

One of the biggest drawbacks of shared-memory parallel
programming is that it might lead to introduction of a certain type
of bug that manifests itself through silent data corruption.!

To make matters worse, the runtime behavior of code with this
kind of error is also not always reproducible: if one executes the
same erroneous program a second time, the problem might not
show up.!

$"

Data race conditions!

The loop iterations are dependent on each other.
This is called loop-carried dependence. !

If this loop is carried out in parallel, the result is
dependent on the relative speed of the executing
threads. This is referred to as a data race condition.!

%"

&"

Data dependence analysis!

for (i = 0; i < N; i++) {!
 a[expression1] = ...;!
 ... = a[expression2];!
}!

Necessary condition for this loop to be parallelizable:!

!expression1 in any iteration is different from
!expression2 in any other iteration!

'"

Default data-sharing attributes!

("

Values of private variables!

Cont'd on next page!
)"

Values of private variables!

*"

Problems with the master construct!

!+"

Assumptions on work scheduling!

!!"

Invalid nesting of directives!

Cont'd on next page!
!#"

Invalid nesting of directives!

!$"

Subtle errors in the use of directives!

!%"

Subtle errors in the use of directives!

!&"

Verification of the sequential version!

splint!

-Wall!

!'"

Verification of the parallel version!

!("

Debugging tools!

The GNU debugger, gdb, allows you to see what is going on
'inside' a program while it executes. !

!gdb program!

Compile the program with -g option in order to produce
debugging information. !

The Intel thread checker, tcheck, allows to find threading errors
like data races and deadlocks.!

!tcheck_cl program!

!)"

int main () {!
 int count = 0;!
 #pragma omp parallel!
 { count++; }!
 printf("count = %d\n", count);!
 return 0;!
}!

Program with a data race!

prg.c:!

icc -o prg -openmp -Wall -g prg.c!

!*"

Using the Intel thread checker !

tcheck_cl prg!

First few lines of the report:!
__!
|ID|Short Des|Sever|Co|Contex|Description |1st A|2nd A|!
| |cription |ity |un|t[Best| |ccess|ccess|!
| | |Name |t |] | |[Best|[Best|!
| | | | | | |] |] |!
___!
|1 |Write -> |Error|15|"prg.c|Memory read at "prg.c":6 conflicts |"prg.|"prg.|!
| |Read | | |":5 |with a prior memory write at |c":6 |c":6 |!
| |data-race| | | |"prg.c":6 (flow dependence) | | |!
___!

#+"

Using the Valgrind thread checker !

valgrind --tool=helgrind prg!

Some lines of the report:!

==15991== Possible data race during write of size 8 at 0x421E508!
==15991== at 0x400945B: _dl_lookup_symbol_x (dl-lookup.c:321)!
==15991== by 0x400D3B8: _dl_fixup (dl-runtime.c:108)!
==15991== by 0x40132A1: _dl_runtime_resolve (dl-trampoline.S:43)!
==15991== by 0x5040035: start_thread (pthread_create.c:277)!
==15991== by 0x532811C: clone (clone.S:112)!
==15991== Old state: shared-readonly by threads #1, #2!
==15991== New state: shared-modified by threads #1, #2!
==15991== Reason: this thread, #2, holds no consistent locks!
==15991== Location 0x421E508 has never been protected by any lock!

#!"

http://www.viva64.com/content/articles/parallel-programming/?
f=32_OpenMP_traps.html&lang=en&content=parallel-programming!

##"

Logical errors!
1.  Missing openmp compiler option ! ! ! ! ! ! !

!You should enable the option at the moment you create your project.!
2. Missing parallel keyword ! ! ! ! ! ! ! ! ! !
3. Missing omp keyword ! ! ! ! ! ! ! ! ! !
4. Missing for keyword ! ! ! ! ! ! ! ! ! !

!You should be accurate about the syntax of the directives you use.!
5. Unnecessary parallelization ! ! ! ! ! ! ! !

!You should be accurate about the syntax of the directives you use and
!understand their meaning.!

6. Incorrect usage of the ordered clause! ! ! ! ! ! ! !
!It is necessary to watch over the syntax of the directives you use.!

7. Redefining the number of threads in a parallel section ! ! ! !
!The number of threads cannot be changed in a parallel section.!

8. Using a lock variable without initializing the variable ! ! ! !
!A lock variable must be initialized via the omp_init_lock function call.!

#$"

9. Unsetting a lock from another thread! ! ! ! ! !!
10. Using a lock as a barrier ! ! ! ! ! ! ! ! !

!If a thread uses locks, both the lock (omp_set_lock,
!omp_test_lock) and unlock (omp_unset_lock) functions must
!be called !by this thread.!

11. Threads number dependency ! ! ! ! ! ! !
!Your code's behavior must not depend on the number of
!threads which execute the code.!

12. Incorrect usage of dynamic threads creation ! ! ! ! !
!If you really need to make your code's behavior depend on the
!number of threads, you must make sure that the code will be
!executed by the needed number of threads (dynamic threads
!creation must be disabled). We do not recommend using
!dynamic threads creation.!

13. Concurrent usage of a shared resource ! ! ! ! !
!Concurrent shared resource access must be protected by a
!critical section or a lock.!

#%"

14. Shared memory access unprotected!
! !Concurrent shared memory access must be protected as an
!atomic operation (the most preferable option), critical !section or
!a lock.!

15. Using the flush directive with a reference type! ! !
!Applying the flush directive to a pointer is meaningless since only
!the variable's value (a memory address, not the addressed
!memory) is synchronized in this case.!

16. Missing flush directive ! ! ! ! ! ! !
!Missing flush directive may cause incorrect memory read/write
!operations.!

17. Missing synchronization ! ! ! ! ! ! !
!Missing synchronization may also cause incorrect memory !read/
!write operations.!

#&"

18. An external variable is specified as threadprivate not in all units !
19. Uninitialized local variables ! ! ! ! ! ! ! !
20. Forgotten threadprivate directive ! ! ! ! ! ! ! !
21. Forgotten private clause ! ! ! ! ! ! ! ! !
22. Careless usage of the lastprivate clause ! ! ! ! ! !
23. Unexpected values of threadprivate variables in the beginning of parallel
sections!
! !We recommend that you do not use the threadprivate directive and the
!private, firstprivate, lastprivate clauses. We recommend that you declare
!local variables in parallel sections and perform first/last assignment
!operations (if they are necessary) with a shared variable.!

24. Incorrect worksharing with private variables ! ! ! ! ! !
!If you parallelize a code fragment which works with private
!variables using the threads in which the variables were created
!different threads will get different values of the variables.!

#'"

25. Some restrictions of private variables!
! !Private variables must not have reference type, since it will !cause
!concurrent shared memory access. Although the variables will be
!private, the variables will still address the same memory fragment.
!Class instances declared as private must have explicit copy
!constructor, since an instance containing references will be copied
!incorrectly otherwise.!

26. Private variables are not marked as such ! ! ! ! !
!You must control access modes of your variables. We recommend
!that developers who are new to OpenMP use the default(none)
!clause so that they will have to specify access modes explicitly. In
!particular, loop variables must always be declared as private or
!local variables.!

27. Parallel array processing without iteration ordering! ! ! !
!If an iteration execution depends on the result of a previous
!iteration, you must use the ordered directive to enable iterations
!ordering.!!

#("

Performance errors!
28. Unnecessary flush directive ! ! ! ! ! !

!There is no need to use the flush directive in the cases when the
!directive is implied.!

29. Using critical sections or locks instead of the atomic directive
!We recommend that you use the atomic directive to protect
!elementary operations when it is possible, since using locks or
!critical sections slows down you program's execution.!

30. Unnecessary concurrent memory writing protection ! !
!There is no need protect private or local variables. Also, there
!is no need to protect a code fragment which is executed by a
!single thread only.!

31. Too much work in a critical section ! ! ! ! !
!Critical sections should contain as little work as possible. You
!should not put a code fragment which does not work with
!shared memory into a critical section. Also we do not
!recommend putting a complex function calls into a critical
!section,!

#)"

" ""
32. Too many entries to critical sections! ! ! ! ! !

!We recommend that you decrease the number of entries to and
!exits from critical sections. For example, if a critical section
!contains a conditional statement, you can place the statement
!before the critical section so that the critical section is entered
!only if the condition is true. !!

