
OpenMP Troubleshooting	

1	

2	

Data race conditions	

One of the biggest drawbacks of shared-memory parallel
programming is that it might lead to introduction of a certain type
of bug that manifests itself through silent data corruption.	

To make matters worse, the runtime behavior of code with this
kind of error is also not always reproducible: if one executes the
same erroneous program a second time, the problem might not
show up.	

3	

Data race conditions	

The loop iterations are dependent on each other.
This is called loop-carried dependence. 	

If this loop is carried out in parallel, the result is
dependent on the relative speed of the executing
threads. This is referred to as a data race condition.	

4	

5	

Data dependence analysis	

for (i = 0; i < N; i++) {!
 a[expression1] = ...;!
 ... = a[expression2];!
}!

Necessary condition for this loop to be parallelizable:	

	
expression1 in any iteration is different from
	
expression2 in any other iteration	

6	

Default data-sharing attributes	

7	

Values of private variables	

Cont'd on next page	

8	

Values of private variables	

9	

Problems with the master construct	

10	

Assumptions on work scheduling	

11	

Invalid nesting of directives	

Cont'd on next page	

12	

Invalid nesting of directives	

13	

Subtle errors in the use of directives	

14	

Subtle errors in the use of directives	

15	

Verification of the sequential version	

splint	

-Wall	

16	

Verification of the parallel version	

17	

Debugging tools	

The GNU debugger, gdb, allows you to see what is going on
'inside' a program while it executes. 	

	
gdb program!

Compile the program with -g option in order to produce
debugging information. !

The Intel thread checker, tcheck, allows to find threading errors
like data races and deadlocks.	

	
tcheck_cl program!

18	

int main () {!
 int count = 0;!
 #pragma omp parallel!
 { count++; }!
 printf("count = %d\n", count);!
 return 0;!
}!

Program with a data race	

prg.c:	

icc -o prg -openmp -Wall -g prg.c!

19	

Using the Intel thread checker 	

tcheck_cl prg!

First few lines of the report:	

__!
|ID|Short Des|Sever|Co|Contex|Description |1st A|2nd A|!
| |cription |ity |un|t[Best| |ccess|ccess|!
| | |Name |t |] | |[Best|[Best|!
| | | | | | |] |] |!
___!
|1 |Write -> |Error|15|"prg.c|Memory read at "prg.c":6 conflicts |"prg.|"prg.|!
| |Read | | |":5 |with a prior memory write at |c":6 |c":6 |!
| |data-race| | | |"prg.c":6 (flow dependence) | | |!
___!

20	

Using the Valgrind thread checker 	

valgrind --tool=helgrind prg!

Some lines of the report:	

==15991== Possible data race during write of size 8 at 0x421E508!
==15991== at 0x400945B: _dl_lookup_symbol_x (dl-lookup.c:321)!
==15991== by 0x400D3B8: _dl_fixup (dl-runtime.c:108)!
==15991== by 0x40132A1: _dl_runtime_resolve (dl-trampoline.S:43)!
==15991== by 0x5040035: start_thread (pthread_create.c:277)!
==15991== by 0x532811C: clone (clone.S:112)!
==15991== Old state: shared-readonly by threads #1, #2!
==15991== New state: shared-modified by threads #1, #2!
==15991== Reason: this thread, #2, holds no consistent locks!
==15991== Location 0x421E508 has never been protected by any lock!

21	

http://www.viva64.com/content/articles/parallel-programming/?
f=32_OpenMP_traps.html&lang=en&content=parallel-programming	

22	

Logical errors	

1.  Missing openmp compiler option 	
 	
 	
 	
 	
 	
 	

	
You should enable the option at the moment you create your project.	

2. Missing parallel keyword 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

3. Missing omp keyword 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

4. Missing for keyword 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
You should be accurate about the syntax of the directives you use.	

5. Unnecessary parallelization 	
 	
 	
 	
 	
 	
 	
 	

	
You should be accurate about the syntax of the directives you use and
	
understand their meaning.	

6. Incorrect usage of the ordered clause	
 	
 	
 	
 	
 	
 	
 	

	
It is necessary to watch over the syntax of the directives you use.	

7. Redefining the number of threads in a parallel section 	
 	
 	
 	

	
The number of threads cannot be changed in a parallel section.	

8. Using a lock variable without initializing the variable 	
 	
 	
 	

	
A lock variable must be initialized via the omp_init_lock function call.	

23	

9. Unsetting a lock from another thread	
 	
 	
 	
 	
 	
	

10. Using a lock as a barrier 	
 	
 	
 	
 	
 	
 	
 	
 	

	
If a thread uses locks, both the lock (omp_set_lock,
	
omp_test_lock) and unlock (omp_unset_lock) functions must
	
be called 	
by this thread.	

11. Threads number dependency 	
 	
 	
 	
 	
 	
 	

	
Your code's behavior must not depend on the number of
	
threads which execute the code.	

12. Incorrect usage of dynamic threads creation 	
 	
 	
 	
 	

	
If you really need to make your code's behavior depend on the
	
number of threads, you must make sure that the code will be
	
executed by the needed number of threads (dynamic threads
	
creation must be disabled). We do not recommend using
	
dynamic threads creation.	

13. Concurrent usage of a shared resource 	
 	
 	
 	
 	

	
Concurrent shared resource access must be protected by a
	
critical section or a lock.	

24	

14. Shared memory access unprotected	

	
 	
Concurrent shared memory access must be protected as an
	
atomic operation (the most preferable option), critical 	
section or
	
a lock.	

15. Using the flush directive with a reference type	
 	
 	

	
Applying the flush directive to a pointer is meaningless since only
	
the variable's value (a memory address, not the addressed
	
memory) is synchronized in this case.	

16. Missing flush directive 	
 	
 	
 	
 	
 	
 	

	
Missing flush directive may cause incorrect memory read/write
	
operations.	

17. Missing synchronization 	
 	
 	
 	
 	
 	
 	

	
Missing synchronization may also cause incorrect memory 	
read/
	
write operations.	

25	

18. An external variable is specified as threadprivate not in all units 	

19. Uninitialized local variables 	
 	
 	
 	
 	
 	
 	
 	

20. Forgotten threadprivate directive 	
 	
 	
 	
 	
 	
 	
 	

21. Forgotten private clause 	
 	
 	
 	
 	
 	
 	
 	
 	

22. Careless usage of the lastprivate clause 	
 	
 	
 	
 	
 	

23. Unexpected values of threadprivate variables in the beginning of parallel
sections	

	
 	
We recommend that you do not use the threadprivate directive and the
	
private, firstprivate, lastprivate clauses. We recommend that you declare
	
local variables in parallel sections and perform first/last assignment
	
operations (if they are necessary) with a shared variable.	

24. Incorrect worksharing with private variables 	
 	
 	
 	
 	
 	

	
If you parallelize a code fragment which works with private
	
variables using the threads in which the variables were created
	
different threads will get different values of the variables.	

26	

25. Some restrictions of private variables	

	
 	
Private variables must not have reference type, since it will 	
cause
	
concurrent shared memory access. Although the variables will be
	
private, the variables will still address the same memory fragment.
	
Class instances declared as private must have explicit copy
	
constructor, since an instance containing references will be copied
	
incorrectly otherwise.	

26. Private variables are not marked as such 	
 	
 	
 	
 	

	
You must control access modes of your variables. We recommend
	
that developers who are new to OpenMP use the default(none)
	
clause so that they will have to specify access modes explicitly. In
	
particular, loop variables must always be declared as private or
	
local variables.	

27. Parallel array processing without iteration ordering	
 	
 	
 	

	
If an iteration execution depends on the result of a previous
	
iteration, you must use the ordered directive to enable iterations
	
ordering.	
	

27	

Performance errors	

28. Unnecessary flush directive 	
 	
 	
 	
 	
 	

	
There is no need to use the flush directive in the cases when the
	
directive is implied.	

29. Using critical sections or locks instead of the atomic directive
	
We recommend that you use the atomic directive to protect
	
elementary operations when it is possible, since using locks or
	
critical sections slows down you program's execution.	

30. Unnecessary concurrent memory writing protection 	
 	

	
There is no need protect private or local variables. Also, there
	
is no need to protect a code fragment which is executed by a
	
single thread only.	

31. Too much work in a critical section 	
 	
 	
 	
 	

	
Critical sections should contain as little work as possible. You
	
should not put a code fragment which does not work with
	
shared memory into a critical section. Also we do not
	
recommend putting a complex function calls into a critical
	
section.	

28	

	 	 	
32. Too many entries to critical sections	
 	
 	
 	
 	
 	

	
We recommend that you decrease the number of entries to and
	
exits from critical sections. For example, if a critical section
	
contains a conditional statement, you can place the statement
	
before the critical section so that the critical section is entered
	
only if the condition is true. 	
	

