
OpenMP Language Features	
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Agenda	


•  The parallel construct	

	


•  Work-sharing	

	


•  Data-sharing	

	


•  Synchronization	

	


•  Interaction with the execution environment	

	


•  More OpenMP clauses	

	


•  Advanced OpenMP constructs	
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The fork/join execution model	

1.  An OpenMP program starts as a single thread (master 

thread)	

2.  Additional threads are created when the master hits a 

parallel region.	

3.  When all threads have finished the parallel region, the 

new threads are given back to the runtime system.	

4.  The master continues after the parallel region.	

	

All threads are synchronized at the end of a parallel region 
via a barrier.	
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OpenMP region	


An OpenMP region of code consists of all code 
encountered during a specific instance of the execution 
of an OpenMP construct. A region includes any code in 
called routines.	

	

In other words, a region encompasses all the code that 
is in the dynamic extent of a construct.	
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Most OpenMP constructs apply to a structured 
block – a block of one or more statements with one 
entry point at the top and one point of exit at the 
bottom. 	

	

It is OK to have an exit() within the structured 
block. 	


Structured block	




6	  

Parallel region	


The construct is used to specify computations that 
should be executed in parallel. Although it ensures that 
computations are performed in parallel it does not 
distribute the work among the threads in a team. In fact, 
if the programmer does not specify any work sharing, 
the work will be replicated.	
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Example of parallel region	
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Example output	
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Parallel regions	


OpenMP Team := Master + Workers	

	

A parallel region is a block of code executed by all threads 
simultaneously	


•  The master thread always has ID 0	

•  Thread adjustment (if enabled) is only done before
	
entering a parallel region	


•  Parallel regions can be nested, but support for this is 	

	
implementation dependent	


•  An “if” clause can be used to guard the parallel region;
	
in case the condition evaluates to “false”, the code is 	
 
	
executed sequentially	
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Clauses supported by the parallel region	
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Work-sharing	


A work-sharing construct divides the execution 
of the enclosed code among the members of the 
team; in other words: they split the work.	


tasks	
 task 
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Parallel loop	


init-expr: initialization of the loop counter, var	

relop: one of <, <=, >, >=.	

incr-expr: one of ++, --, +=, -=, or a form such as var = var + incr.	
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Work-sharing in a parallel region	


int main() {!
    int a[100], i;!
    #pragma omp parallel!
    {!
        #pragma omp for!
        for (i = 0; i < 100; i++)!
            a[i] = i;!
    }!
}!
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•  The iterations of the for-loop are distributed to the threads	

	

•  The scheduling of the iterations is determined by one of the
	
scheduling strategies: static, dynamic, guided, and runtime.	


•  There is no synchronization at the beginning.	


•  All threads of the team synchronize at an implicit barrier at the 
	
end of the loop,	
unless the nowait clause is specified.	


•  The loop variable is by default private. It must not be modified in 
	
the loop body.	


Parallel loop	
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Shared and private data	


Shared data are accessible by all threads.	

A reference a[5] to a shared array accesses the 
same address in all threads.	

	

Private data are accessible only by a single thread 
(the owner). Each thread has its own copy.	

	

The default is shared.	
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Data-sharing attributes	


• Shared	

Ø  	
There is only one instance of the data	

Ø  	
All threads can can read and write the data simultaneously,	

	
 	
unless protected through a specific OpenMP construct	

Ø  	
All changes made are visible to all threads, but not 

	
necessarily immediately, unless enforced.	

	

• Private	


Ø  	
Each thread has a copy of the data	

Ø  	
No other thread can access this data	
	

Ø  	
Changes are only visible to the thread owning the data	
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Private clause for parallel loop	


int main() {!
    int a[100], i, t;!
    #pragma omp parallel!
    {!
        #pragma omp for private(t)!
        for (i = 0; i < 100; i++) {!
            t = f(i);!
            a[i] = t;!
        }!
    }!
}!



18	  

Work-sharing loop	
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Example output	




20	  

Clauses supported by the loop construct	
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The sections construct	


•  Each section is executed once by a thread.	

	

•  Threads that have finished their section wait at the implicit
	
barrier at the end of the sections construct.	
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Parallel sections example	


int main() {!
    int a[100], b[100], i;!
    #pragma omp parallel private(i)!
    {!
        #pragma omp sections!
        {!

!         #pragma omp section!
            for (i = 0; i < 100; i++) !
                a[i] = 100;!
            #pragma omp section!
            for (i = 0; i < 100; i++) !
                b[i] = 200;!
        }!
    }!
}!
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Independent sections of code can execute 
concurrently – reduce execution time	


Serial Parallel	


#pragma omp parallel sections	

{	

    #pragma omp section	

    funcA();	

    #pragma omp section	

    funcB();	

    #pragma omp section	

    funcC();	

}	


Advantage of parallel sections	
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Clauses supported by the sections construct	
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The single and master constructs	


The master or single region enforces that only a single 
thread executes the enclosed code within a parallel region.	

	

A master region is only executed by the master thread 
while the single region can be executed by any thread. 	

	

A master region is skipped by all other threads while all 
threads are synchronized at the end of a single region.	


single 
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Single construct example	
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Combined parallel works-sharing constructs	
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The shared clause	
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The private clause	
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The lastprivate clause	


Assume n = 5:	
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The firstprivate clause	




32	  

The nowait clause	
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The schedule clause	


schedule(kind [, chunk_size])	


The schedule clause specifies how iterations of the loop are 
assigned to the team of threads.	

	

The granularity of this workload is a chunk, a contiguous, non-
empty subset of the iteration space.	

	

The most straightforward schedule is static, which is the default 
on many OpenMP compilers. Both dynamic and guided 
schedules are useful for handling poorly balanced and 
unpredictable workloads.	
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Static scheduling	
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Static scheduling	
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Guided scheduling	
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Runtime scheduling	
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Schedule example	

Unbalanced workload	


j!

i!
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The barrier construct	


The barrier synchronizes all threads in a team.	

	

When encountered each thread waits until all threads in that team 
have reached this point.	

	

Many OpenMP constructs imply a barrier.	

	

The most common use for a barrier is for avoiding a race condition.	
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The ordered construct	


An ordered construct ensures that the code within the associated 
structured block is executed in sequential order.	

	

An ordered clause has to be added to the parallel region in which this 
construct appears. For example,	

	


	
           #pragma omp parallel for ordered!
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Example with ordered clause	

#pragma omp parallel for ordered!
for (i = 1; i <= N; i++) {!
    S1;
    #pragma omp ordered!
    { S2; }!
    S3;!
}!

 S3!
 S2!

 S1!

Barrier	


i = 1	
 i = 2	
 i = 3	
 i = N!•  •  • 	


 S1!

 S1!
 S1!

 S2!

 S2!

 S2!

 S3!

 S3!

 S3!
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The critical construct	


A thread waits at the beginning of the critical section until no other 
thread is executing a critical section with the same name.	

	

All unnamed critical sections map to the same name.	
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Example with critical clause	
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The atomic construct	


An atomic construct ensures that a specific memory location is 
updated atomically (without interference). 	
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Locking library routines	


Locks can be hold by only one thread at a time.	

	

There are two types of locks: simple locks, which may not be locked 
if already in locked state, and nestable locks, which may be locked 
multiple times by the same thread. Nestable lock variables are 
declared with the special type omp_nest_lock_t.	
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Nestable locks	


Unlike simple locks, nestable locks may be set multiple 
times by a single thread.	

	

Each set operation increments a lock counter.	

	

Each unset operation decrements the lock counter.	

	

If the lock counter is 0 after an unset operation, the lock 
can be set by another thread.	
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General procedure to use locks	


1. Define (simple or nested) lock variables.	


2.  Initialize the lock via a call to omp_init_lock.	


3. Set the lock using omp_set_lock or omp_test_lock. 
The latter checks whether the lock is actually available 
before attempting to set it.	


4. Unset a lock after the work is done via a call to 
omp_unset_lock.	


5. Remove the lock association by a call to 
omp_destroy_lock.	
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Lock example	

#include <omp.h>!
#include <stdio.h>!
!
int main() {!
    omp_lock_t lock;!
    omp_init_lock(&lock);!
    #pragma omp parallel shared(lock)!
    {!
        int id = omp_get_thread_num();!
        omp_set_lock(&lock);!
        printf("My thread number is %d\n", id);!
        omp_unset_lock(&lock);!
        while (!omp_test_lock(&lock))!
            other_work(id); !// lock not obtained!
        real_work(id);! !// lock obtained!
        omp_unset_lock(&lock);!
    }!
    omp_destroy_lock(&lock);!
}!
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Five philosopher are sitting around at a round table in deep thoughts. But of 
course, from time to time they must have something to eat. In front of each 
philosopher is a bowl of rice. Between each pair of philosophers is one 
chopstick. Before a philosopher can eat he must have two chopsticks, one 
taken from the left, and one taken from the right. 	


The philosophers must find some way to share chopsticks such that they all 
get to eat.	


The dining philosophers	
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#include <unistd.h>!
!
#define N 5!
int meals[N];!
omp_lock_t chop_stick[N];!
!
void think(int id) {    !
    printf("Philosopher #%d is thinking\n", id);    !
    sleep(rand() % 10 / 1000.0);    !
    printf("Philosopher #%d is hungry\n", id);!
}!
!
void eat(int id) {    !
    printf("Philospoher #%d is eating\n", id);    !
    sleep(rand() % 20 / 1000.0);    !
    printf("Philosopher #%d is stuffed\n", id);!
}!
!
omp_lock_t *left_chop_stick(int id) {    !
    return &chop_stick[(id - 1 + N) % N];!
}!
!
omp_lock_t *right_chop_stick(int id) {    !
    return &chop_stick[id];!
}!

cont'd on next page	
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main() {    !
    int i;    !
    for (i = 0; i < N; i++)        !
        omp_init_lock(&chop_stick[i]);    !
    #pragma opm parallel num_threads(N)    !
    {        !
        int meals, id = omp_get_thread_num(); !
        for (meals = 0; meals < 100; meals++) {            !
            think(id); !
            if (id % 2 == 1) {                !
                omp_set_lock(left_chop_stick(id));                  !
                omp_set_lock(right_chop_stick(id));!
            } else {                !
                omp_set_lock(right_chop_stick(id));                !
                omp_set_lock(left_chop_stick(id));            !
            }            !
            eat(id);            !
            omp_unset_lock(left_chop_stick(id));            !
            omp_unset_lock(right_chop_stick(id));        !
        }    !
    }!
}!
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The if clause	


if(scalar-logical-expression)	


The if clause is supported the parallel construct only.	

	

If the logical expression evaluates to a non-zero value, the 
parallel region will be executed in parallel. Otherwise, the region 
is executed by a single thread only.	

	

The clause is often used to test if there is enough work in a 
region to warrant its parallelization. Example,	

	


	
   #pragma omp parallel if(n>10)!
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The num_threads clause	


num_threads(scalar-integer-expression)!

The num_threads clause is supported by the parallel construct 
only.	

	

The construct can be used to specify how many threads should be 
in a team executing a parallel region. Example,	

	


	
   #pragma omp parallel num_threads(4)!
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The reduction clause	


reduction(operator:list)!

The reduction clause performs a reduction on the variables 
that appear in the list, with the operator operator.	

	

The variables must be shared scalars (scalar: a variable that 
contains only one value).	
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Example with reduction clause	
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Supported reduction operators	
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Reduction statements	


^,	




59	  

The copyprivate clause	


copyprivate(list)!

The copyprivate clause is supported by the single construct only.	

	

The variables in the list must be private in the enclosing parallel 
region.	

	

The values of the executing thread are broadcasted to all other 
threads in the team. 	
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Copyprivate example	


#pragma omp parallel private(x)!
{!
    #pragma omp single copyprivate(x)!
    {!
        x = getValue();!
    }!
    useValue(x);!
} !
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The flush directive	


The flush directive synchronizes copies in register or cache of the 
executing thread with main memory.	

	

It synchronizes those variables in the given list; if no list is 
specified, all shared variables in the region.	

	

A flush is executed implicitly at all synchronization points.	
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Flush example	

pipelining	


#define MAX_THREADS 16!
!
int iam, i, isync[MAX_THREADS];!
for (i = 0; i < MAX_THREADS; i++) isync[i] = 0; !
omp_set_num_threads(MAX_THREADS);!
!
#pragma omp parallel private(iam)!
{!
    iam = omp_get_thread_num();!
    if (aim != 0)!
        while (!isync[iam - 1]) { // wait for neighbor!
            #pragma omp flush(isync)!
        }!
    work(); // do my work!

!isync[iam] = 1; // I am done!
    #pragma omp flush(isync)!
}!
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The threadprivate directive	


The effect of the threadprivate directive is that the named global-
lifetime objects are replicated, so that each thread has its own copy.	

	

Threadprivate variables differ from private variables because they are 
able to persist between different parallel sections of code. 	




Threadprivate data persistency	


When the end of a parallel region is reached, the slave threads 
disappear, but they do not die. Rather, they park themselves on a 
queue waiting for the next parallel region. In addition, they retain 
their state, in particular their instances of the threadprivate 
variables. As a result the contents of threadprivate data persists 
for each thread from one parallel region to another.	

	

The persistency is guaranteed as long as the number of threads 
does not change.	

	

	


64	  



65	  

Runtime routines for threads 	


cont’d on next page	


•  	
Determine the number of threads for parallel regions	

	
 	
 	
omp_set_num_threads(count)!

	

•  	
Query the maximum number of threads for team creation	

	
 	
 	
maxthreads = omp_get_max_threads()!

	

•  	
Query the number of threads in current team	

	
 	
 	
numthreads = omp_get_num_threads()!

	

•  	
Query own thread number	

	
 	
 	
iam = omp_get_thread_num()!

	

•  	
Query number of processors	


!numprocs = omp_get_numprocs()	
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•   	
Query state	

	
 	
 	
logicalvar = omp_in_parallel()!

	

•   	
Allow the runtime system to determine the number of threads 	

	
for team creation	

	
 	
 	
omp_set_dynamic(logicalexp)!

	

•   	
Query whether runtime system can determine the number of	

	
threads	

	
 	
 	
logicalvar = omp_get_dynamic()!

Runtime routines for threads (cont’d) 	


cont’d on next page	
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•  	
Query the wall clock time (in seconds) relative to an arbitrary 
	
reference time 	

	
 	
 	
time = omp_get_wtime()!

•  Allow nesting of parallel regions	

	
 	
 	
omp_set_nested(logicalexp)!
	

•  	
Query nesting of parallel regions	

	
 	
 	
logicalvar = omp_get_nested()	


Runtime routines for threads (cont’d) 	
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Environment variables	


OMP_NUM_THREADS=4!
!
OMP_SCHEDULE="dynamic"!
!
OMP_SCHEDULE="GUIDED,4"!
!
OMP_DYNAMIC=TRUE!
!
OMP_NESTED=TRUE!



Numerical integration for estimating π 	


Mathematically, we know that 	

4

1+ x20

1

∫ = π

We can approximate the integral	

as a sum of rectangles:	

	

	

	

Where each rectangle has width 
Δx and height F(xi) at the middle 
of interval i.	


F(xi )
i=0

N −1

∑ Δx ≈ π
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Serial π program 	


#include <stdio.h>!
!
int main() {!
    int N = 100000, i;!
    double sum = 0.0;!
!
    for (i = 0; i < N; i++) {!
        double x = (i + 0.5) / N;!
        sum += 4.0 / (1.0 + x * x);!
    }!
    printf("Estimate of pi   = %.15f\n", sum / N);!
    printf("True value of pi = 3.141592653589793\n");!
} !

Estimate of pi   = 3.141592653598162!
True value of pi = 3.141592653589793!
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Parallel π program 	


#include <stdio.h>!
!
int main() {!
    int N = 100000, i;!
    double sum = 0.0;!
!
    for (i = 0; i < N; i++) {!
        double x = (i + 0.5) / N;!
        sum += 4.0 / (1.0 + x * x);!
    }!
    printf("Estimate of pi   = %.15f\n", sum / N);!
    printf("True value of pi = 3.141592653589793\n");!
} !

#pragma omp parallel reduction(+:sum)!



max = INT_MIN;!
for (i = 0; i < n; i++) {!
    if (a[i] > max)!
        max = a[i];!
}!

Finding the maximum value in an array	
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max = INT_MIN;!
#pragma omp parallel for shared(max)!
for (i = 0; i < n; i++) {!
    #pragma omp critical!
    if (a[i] > max)!
        max = a[i];!
}!

Inefficient parallel code	
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max = INT_MIN;!
#pragma omp parallel for shared(max)!
for (i = 0; i < n; i++) {!
    #pragma omp flush(max)!
    if (a[i] > max)!
        #pragma omp critical!
        if (a[i] > max)!
            max = a[i];!
}!

Improved parallel code	
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max = INT_MIN;!
#pragma omp parallel shared(max)!
{!
    int private_max = max;!
    #pragma for  !
    for (i = 0; i < n; i++)!
        if (a[i] > private_max)!
            private_max = a[i];!
    #pragma omp flush(max) !
    if (private_max > max)!
        #pragma omp critical!
        if (private_max > max)!
            max = private_max;!
}!

Efficient parallel code	
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