
OpenMP Language Features	

1	

Agenda	

•  The parallel construct	

	

•  Work-sharing	

	

•  Data-sharing	

	

•  Synchronization	

	

•  Interaction with the execution environment	

	

•  More OpenMP clauses	

	

•  Advanced OpenMP constructs	

2	

The fork/join execution model	

1.  An OpenMP program starts as a single thread (master

thread)	

2.  Additional threads are created when the master hits a

parallel region.	

3.  When all threads have finished the parallel region, the

new threads are given back to the runtime system.	

4.  The master continues after the parallel region.	

	

All threads are synchronized at the end of a parallel region
via a barrier.	

3	

OpenMP region	

An OpenMP region of code consists of all code
encountered during a specific instance of the execution
of an OpenMP construct. A region includes any code in
called routines.	

	

In other words, a region encompasses all the code that
is in the dynamic extent of a construct.	

4	

5	

Most OpenMP constructs apply to a structured
block – a block of one or more statements with one
entry point at the top and one point of exit at the
bottom. 	

	

It is OK to have an exit() within the structured
block. 	

Structured block	

6	

Parallel region	

The construct is used to specify computations that
should be executed in parallel. Although it ensures that
computations are performed in parallel it does not
distribute the work among the threads in a team. In fact,
if the programmer does not specify any work sharing,
the work will be replicated.	

7	

Example of parallel region	

8	

Example output	

9	

Parallel regions	

OpenMP Team := Master + Workers	

	

A parallel region is a block of code executed by all threads
simultaneously	

•  The master thread always has ID 0	

•  Thread adjustment (if enabled) is only done before
	
entering a parallel region	

•  Parallel regions can be nested, but support for this is 	

	
implementation dependent	

•  An “if” clause can be used to guard the parallel region;
	
in case the condition evaluates to “false”, the code is 	

	
executed sequentially	

10	

Clauses supported by the parallel region	

11	

Work-sharing	

A work-sharing construct divides the execution
of the enclosed code among the members of the
team; in other words: they split the work.	

tasks	
 task

12	

Parallel loop	

init-expr: initialization of the loop counter, var	

relop: one of <, <=, >, >=.	

incr-expr: one of ++, --, +=, -=, or a form such as var = var + incr.	

	

13	

Work-sharing in a parallel region	

int main() {!
 int a[100], i;!
 #pragma omp parallel!
 {!
 #pragma omp for!
 for (i = 0; i < 100; i++)!
 a[i] = i;!
 }!
}!

14	

•  The iterations of the for-loop are distributed to the threads	

	

•  The scheduling of the iterations is determined by one of the
	
scheduling strategies: static, dynamic, guided, and runtime.	

•  There is no synchronization at the beginning.	

•  All threads of the team synchronize at an implicit barrier at the
	
end of the loop,	
unless the nowait clause is specified.	

•  The loop variable is by default private. It must not be modified in
	
the loop body.	

Parallel loop	

15	

Shared and private data	

Shared data are accessible by all threads.	

A reference a[5] to a shared array accesses the
same address in all threads.	

	

Private data are accessible only by a single thread
(the owner). Each thread has its own copy.	

	

The default is shared.	

16	

Data-sharing attributes	

• Shared	

Ø  	
There is only one instance of the data	

Ø  	
All threads can can read and write the data simultaneously,	

	
 	
unless protected through a specific OpenMP construct	

Ø  	
All changes made are visible to all threads, but not

	
necessarily immediately, unless enforced.	

	

• Private	

Ø  	
Each thread has a copy of the data	

Ø  	
No other thread can access this data	
	

Ø  	
Changes are only visible to the thread owning the data	

17	

Private clause for parallel loop	

int main() {!
 int a[100], i, t;!
 #pragma omp parallel!
 {!
 #pragma omp for private(t)!
 for (i = 0; i < 100; i++) {!
 t = f(i);!
 a[i] = t;!
 }!
 }!
}!

18	

Work-sharing loop	

19	

Example output	

20	

Clauses supported by the loop construct	

21	

The sections construct	

•  Each section is executed once by a thread.	

	

•  Threads that have finished their section wait at the implicit
	
barrier at the end of the sections construct.	

22	

Parallel sections example	

int main() {!
 int a[100], b[100], i;!
 #pragma omp parallel private(i)!
 {!
 #pragma omp sections!
 {!

! #pragma omp section!
 for (i = 0; i < 100; i++) !
 a[i] = 100;!
 #pragma omp section!
 for (i = 0; i < 100; i++) !
 b[i] = 200;!
 }!
 }!
}!

23	

Independent sections of code can execute
concurrently – reduce execution time	

Serial Parallel	

#pragma omp parallel sections	

{	

 #pragma omp section	

 funcA();	

 #pragma omp section	

 funcB();	

 #pragma omp section	

 funcC();	

}	

Advantage of parallel sections	

24	

Clauses supported by the sections construct	

25	

The single and master constructs	

The master or single region enforces that only a single
thread executes the enclosed code within a parallel region.	

	

A master region is only executed by the master thread
while the single region can be executed by any thread. 	

	

A master region is skipped by all other threads while all
threads are synchronized at the end of a single region.	

single

26	

Single construct example	

27	

Combined parallel works-sharing constructs	

28	

The shared clause	

29	

The private clause	

30	

The lastprivate clause	

Assume n = 5:	

31	

The firstprivate clause	

32	

The nowait clause	

33	

The schedule clause	

schedule(kind [, chunk_size])	

The schedule clause specifies how iterations of the loop are
assigned to the team of threads.	

	

The granularity of this workload is a chunk, a contiguous, non-
empty subset of the iteration space.	

	

The most straightforward schedule is static, which is the default
on many OpenMP compilers. Both dynamic and guided
schedules are useful for handling poorly balanced and
unpredictable workloads.	

34	

Static scheduling	

35	

Static scheduling	

36	

Guided scheduling	

37	

Runtime scheduling	

38	

Schedule example	

Unbalanced workload	

j!

i!

39	

40	

The barrier construct	

The barrier synchronizes all threads in a team.	

	

When encountered each thread waits until all threads in that team
have reached this point.	

	

Many OpenMP constructs imply a barrier.	

	

The most common use for a barrier is for avoiding a race condition.	

41	

The ordered construct	

An ordered construct ensures that the code within the associated
structured block is executed in sequential order.	

	

An ordered clause has to be added to the parallel region in which this
construct appears. For example,	

	

	
 #pragma omp parallel for ordered!

42	

Example with ordered clause	

#pragma omp parallel for ordered!
for (i = 1; i <= N; i++) {!
 S1;
 #pragma omp ordered!
 { S2; }!
 S3;!
}!

 S3!
 S2!

 S1!

Barrier	

i = 1	
 i = 2	
 i = 3	
 i = N!• • • 	

 S1!

 S1!
 S1!

 S2!

 S2!

 S2!

 S3!

 S3!

 S3!

43	

The critical construct	

A thread waits at the beginning of the critical section until no other
thread is executing a critical section with the same name.	

	

All unnamed critical sections map to the same name.	

44	

Example with critical clause	

45	

The atomic construct	

An atomic construct ensures that a specific memory location is
updated atomically (without interference). 	

46	

Locking library routines	

Locks can be hold by only one thread at a time.	

	

There are two types of locks: simple locks, which may not be locked
if already in locked state, and nestable locks, which may be locked
multiple times by the same thread. Nestable lock variables are
declared with the special type omp_nest_lock_t.	

47	

Nestable locks	

Unlike simple locks, nestable locks may be set multiple
times by a single thread.	

	

Each set operation increments a lock counter.	

	

Each unset operation decrements the lock counter.	

	

If the lock counter is 0 after an unset operation, the lock
can be set by another thread.	

48	

General procedure to use locks	

1. Define (simple or nested) lock variables.	

2.  Initialize the lock via a call to omp_init_lock.	

3. Set the lock using omp_set_lock or omp_test_lock.
The latter checks whether the lock is actually available
before attempting to set it.	

4. Unset a lock after the work is done via a call to
omp_unset_lock.	

5. Remove the lock association by a call to
omp_destroy_lock.	

49	

Lock example	

#include <omp.h>!
#include <stdio.h>!
!
int main() {!
 omp_lock_t lock;!
 omp_init_lock(&lock);!
 #pragma omp parallel shared(lock)!
 {!
 int id = omp_get_thread_num();!
 omp_set_lock(&lock);!
 printf("My thread number is %d\n", id);!
 omp_unset_lock(&lock);!
 while (!omp_test_lock(&lock))!
 other_work(id); !// lock not obtained!
 real_work(id);! !// lock obtained!
 omp_unset_lock(&lock);!
 }!
 omp_destroy_lock(&lock);!
}!

50	

Five philosopher are sitting around at a round table in deep thoughts. But of
course, from time to time they must have something to eat. In front of each
philosopher is a bowl of rice. Between each pair of philosophers is one
chopstick. Before a philosopher can eat he must have two chopsticks, one
taken from the left, and one taken from the right. 	

The philosophers must find some way to share chopsticks such that they all
get to eat.	

The dining philosophers	

51	

#include <unistd.h>!
!
#define N 5!
int meals[N];!
omp_lock_t chop_stick[N];!
!
void think(int id) { !
 printf("Philosopher #%d is thinking\n", id); !
 sleep(rand() % 10 / 1000.0); !
 printf("Philosopher #%d is hungry\n", id);!
}!
!
void eat(int id) { !
 printf("Philospoher #%d is eating\n", id); !
 sleep(rand() % 20 / 1000.0); !
 printf("Philosopher #%d is stuffed\n", id);!
}!
!
omp_lock_t *left_chop_stick(int id) { !
 return &chop_stick[(id - 1 + N) % N];!
}!
!
omp_lock_t *right_chop_stick(int id) { !
 return &chop_stick[id];!
}!

cont'd on next page	

52	

main() { !
 int i; !
 for (i = 0; i < N; i++) !
 omp_init_lock(&chop_stick[i]); !
 #pragma opm parallel num_threads(N) !
 { !
 int meals, id = omp_get_thread_num(); !
 for (meals = 0; meals < 100; meals++) { !
 think(id); !
 if (id % 2 == 1) { !
 omp_set_lock(left_chop_stick(id)); !
 omp_set_lock(right_chop_stick(id));!
 } else { !
 omp_set_lock(right_chop_stick(id)); !
 omp_set_lock(left_chop_stick(id)); !
 } !
 eat(id); !
 omp_unset_lock(left_chop_stick(id)); !
 omp_unset_lock(right_chop_stick(id)); !
 } !
 }!
}!

53	

The if clause	

if(scalar-logical-expression)	

The if clause is supported the parallel construct only.	

	

If the logical expression evaluates to a non-zero value, the
parallel region will be executed in parallel. Otherwise, the region
is executed by a single thread only.	

	

The clause is often used to test if there is enough work in a
region to warrant its parallelization. Example,	

	

	
 #pragma omp parallel if(n>10)!
	

54	

The num_threads clause	

num_threads(scalar-integer-expression)!

The num_threads clause is supported by the parallel construct
only.	

	

The construct can be used to specify how many threads should be
in a team executing a parallel region. Example,	

	

	
 #pragma omp parallel num_threads(4)!
	

55	

The reduction clause	

reduction(operator:list)!

The reduction clause performs a reduction on the variables
that appear in the list, with the operator operator.	

	

The variables must be shared scalars (scalar: a variable that
contains only one value).	

56	

Example with reduction clause	

57	

Supported reduction operators	

58	

Reduction statements	

^,	

59	

The copyprivate clause	

copyprivate(list)!

The copyprivate clause is supported by the single construct only.	

	

The variables in the list must be private in the enclosing parallel
region.	

	

The values of the executing thread are broadcasted to all other
threads in the team. 	

60	

Copyprivate example	

#pragma omp parallel private(x)!
{!
 #pragma omp single copyprivate(x)!
 {!
 x = getValue();!
 }!
 useValue(x);!
} !

61	

The flush directive	

The flush directive synchronizes copies in register or cache of the
executing thread with main memory.	

	

It synchronizes those variables in the given list; if no list is
specified, all shared variables in the region.	

	

A flush is executed implicitly at all synchronization points.	

62	

Flush example	

pipelining	

#define MAX_THREADS 16!
!
int iam, i, isync[MAX_THREADS];!
for (i = 0; i < MAX_THREADS; i++) isync[i] = 0; !
omp_set_num_threads(MAX_THREADS);!
!
#pragma omp parallel private(iam)!
{!
 iam = omp_get_thread_num();!
 if (aim != 0)!
 while (!isync[iam - 1]) { // wait for neighbor!
 #pragma omp flush(isync)!
 }!
 work(); // do my work!

!isync[iam] = 1; // I am done!
 #pragma omp flush(isync)!
}!

63	

The threadprivate directive	

The effect of the threadprivate directive is that the named global-
lifetime objects are replicated, so that each thread has its own copy.	

	

Threadprivate variables differ from private variables because they are
able to persist between different parallel sections of code. 	

Threadprivate data persistency	

When the end of a parallel region is reached, the slave threads
disappear, but they do not die. Rather, they park themselves on a
queue waiting for the next parallel region. In addition, they retain
their state, in particular their instances of the threadprivate
variables. As a result the contents of threadprivate data persists
for each thread from one parallel region to another.	

	

The persistency is guaranteed as long as the number of threads
does not change.	

	

	

64	

65	

Runtime routines for threads 	

cont’d on next page	

•  	
Determine the number of threads for parallel regions	

	
 	
 	
omp_set_num_threads(count)!

	

•  	
Query the maximum number of threads for team creation	

	
 	
 	
maxthreads = omp_get_max_threads()!

	

•  	
Query the number of threads in current team	

	
 	
 	
numthreads = omp_get_num_threads()!

	

•  	
Query own thread number	

	
 	
 	
iam = omp_get_thread_num()!

	

•  	
Query number of processors	

!numprocs = omp_get_numprocs()	

66	

•  	
Query state	

	
 	
 	
logicalvar = omp_in_parallel()!

	

•  	
Allow the runtime system to determine the number of threads 	

	
for team creation	

	
 	
 	
omp_set_dynamic(logicalexp)!

	

•  	
Query whether runtime system can determine the number of	

	
threads	

	
 	
 	
logicalvar = omp_get_dynamic()!

Runtime routines for threads (cont’d) 	

cont’d on next page	

67	

•  	
Query the wall clock time (in seconds) relative to an arbitrary
	
reference time 	

	
 	
 	
time = omp_get_wtime()!

•  Allow nesting of parallel regions	

	
 	
 	
omp_set_nested(logicalexp)!
	

•  	
Query nesting of parallel regions	

	
 	
 	
logicalvar = omp_get_nested()	

Runtime routines for threads (cont’d) 	

68	

Environment variables	

OMP_NUM_THREADS=4!
!
OMP_SCHEDULE="dynamic"!
!
OMP_SCHEDULE="GUIDED,4"!
!
OMP_DYNAMIC=TRUE!
!
OMP_NESTED=TRUE!

Numerical integration for estimating π 	

Mathematically, we know that 	

4

1+ x20

1

∫ = π

We can approximate the integral	

as a sum of rectangles:	

	

	

	

Where each rectangle has width
Δx and height F(xi) at the middle
of interval i.	

F(xi)
i=0

N −1

∑ Δx ≈ π

69	

Serial π program 	

#include <stdio.h>!
!
int main() {!
 int N = 100000, i;!
 double sum = 0.0;!
!
 for (i = 0; i < N; i++) {!
 double x = (i + 0.5) / N;!
 sum += 4.0 / (1.0 + x * x);!
 }!
 printf("Estimate of pi = %.15f\n", sum / N);!
 printf("True value of pi = 3.141592653589793\n");!
} !

Estimate of pi = 3.141592653598162!
True value of pi = 3.141592653589793!

70	

71	

Parallel π program 	

#include <stdio.h>!
!
int main() {!
 int N = 100000, i;!
 double sum = 0.0;!
!
 for (i = 0; i < N; i++) {!
 double x = (i + 0.5) / N;!
 sum += 4.0 / (1.0 + x * x);!
 }!
 printf("Estimate of pi = %.15f\n", sum / N);!
 printf("True value of pi = 3.141592653589793\n");!
} !

#pragma omp parallel reduction(+:sum)!

max = INT_MIN;!
for (i = 0; i < n; i++) {!
 if (a[i] > max)!
 max = a[i];!
}!

Finding the maximum value in an array	

72	

max = INT_MIN;!
#pragma omp parallel for shared(max)!
for (i = 0; i < n; i++) {!
 #pragma omp critical!
 if (a[i] > max)!
 max = a[i];!
}!

Inefficient parallel code	

73	

max = INT_MIN;!
#pragma omp parallel for shared(max)!
for (i = 0; i < n; i++) {!
 #pragma omp flush(max)!
 if (a[i] > max)!
 #pragma omp critical!
 if (a[i] > max)!
 max = a[i];!
}!

Improved parallel code	

74	

max = INT_MIN;!
#pragma omp parallel shared(max)!
{!
 int private_max = max;!
 #pragma for !
 for (i = 0; i < n; i++)!
 if (a[i] > private_max)!
 private_max = a[i];!
 #pragma omp flush(max) !
 if (private_max > max)!
 #pragma omp critical!
 if (private_max > max)!
 max = private_max;!
}!

Efficient parallel code	

75	

