OpenMP Language Features

ﬁl’baQTeam
." —‘»
T —

Initial Thread

m——

Initial Thread

m—

T, E—




Agenda

e The parallel construct

* Work-sharing

* Data-sharing

e Synchronization

* Interaction with the execution environment
e More OpenMP clauses

e Advanced OpenMP constructs




The fork/join execution model

1. An OpenMP program starts as a single thread (master
thread)
2. Additional threads are created when the master hits a

parallel region.

3. When all threads have finished the parallel region, the
new threads are given back to the runtime system.

4. The master continues after the parallel region.

All threads are synchronized at the end of a parallel region
via a barrier.




OpenMP region -

An OpenMP region of code consists of all code
encountered during a specific instance of the execution
of an OpenMP construct. A region includes any code in
called routines.

In other words, a region encompasses all the code that
is 1n the dynamic extent of a construct.




Structured block

Most OpenMP constructs apply to a structured
block — a block of one or more statements with one
entry point at the top and one point of exit at the
bottom.

It is OK to have an exit () within the structured
block.




Parallel region =

#pragma omp parallel [clause[[,] clause]. .. ]

structured block

Figure 4.1: Syntax of the parallel construct in C/C++ — The parallel region
implicitly ends at the end of the structured block. This is a closing curly brace (}) in most
cases.

The construct 1s used to specify computations that
should be executed in parallel. Although it ensures that
computations are performed in parallel it does not
distribute the work among the threads in a team. In fact,
if the programmer does not specity any work sharing,
the work will be replicated.




Example of parallel region

#pragma omp parallel

{
printf ("The parallel region is executed by thread J%d\n",

omp_get_thread_num()) ;

if ( omp_get_thread_num() == 2 ) {
printf(" Thread %d does things differently\n",
omp_get_thread_num());
¥
} /*-- End of parallel region —--x*/

Figure 4.3: Example of a parallel region — All threads execute the first printf
statement, but only the thread with thread number 2 executes the second one.




Example output

The parallel region is executed by thread O

The parallel region is executed by thread 3

The parallel region is executed by thread 2
Thread 2 does things differently

The parallel region is executed by thread 1

Figure 4.4: Output of the code shown in Figure 4.3 — Four threads are used
in this example.




Parallel regions

OpenMP Team := Master + Workers

A parallel region is a block of code executed by all threads
simultaneously
* The master thread always has ID O
* Thread adjustment (if enabled) is only done before
entering a parallel region
* Parallel regions can be nested, but support for this is
implementation dependent
* An “if”’ clause can be used to guard the parallel region;
in case the condition evaluates to “false”, the code 1s
executed sequentially




Clauses supported by the parallel region

if (scalar-expression)
num_threads(integer-expression)
private (list)

firstprivate (list)

shared (list)
default(none|shared)

reduction (operator:list)

copyin (list)

10




Work-sharing

A work-sharing construct divides the execution
of the enclosed code among the members of the
team; in other words: they split the work.

Functionality

Syntax in C/C++

Distribute iterations
over the threads

#pragma omp for

Distribute independent
work units

#pragma omp sections

Only one thread executes
the code block

#pragma omp single

Distribute tasks
over the threads

#pragma omp task

11




Parallel loop

#pragma omp for [clause[[,] clause]. .. ]
for-loop

Figure 4.7: Syntax of the loop construct in C/C++ — Note the lack of curly
braces. These are implied with the construct.

for ( init-expr : var relop b ; incr-expr )

Figure 4.9: Format of C/C++ loop — The OpenMP loop construct may be applied
only to this kind of loop nest in C/C++ programs.

init-expr: initialization of the loop counter, var
relop: one of <, <=, >, >=,
incr-expr: one of ++, --, +=, -=, or a form such as var = var + incr.

12




Work-sharing in a parallel region

int main() {
int a[100], 1i;
#pragma omp parallel

{
#pragma omp for
for (1 = 0; 1 < 100; i++)
a[i] = 1i;
}

13




Parallel loop

* The iterations of the for-loop are distributed to the threads

* The scheduling of the iterations is determined by one of the
scheduling strategies: static, dynamic, guided, and runtime.

* There is no synchronization at the beginning.

* All threads of the team synchronize at an implicit barrier at the
end of the loop, unless the nowait clause is specified.

* The loop variable is by default private. It must not be modified in
the loop body.

14




Shared and private data

Shared data are accessible by all threads.
A reference a[5] to a shared array accesses the

same address in all threads.

Private data are accessible only by a single thread
(the owner). Each thread has its own copy.

The default 1s shared.

15




Data-sharing attributes

e Shared

» There is only one instance of the data

» All threads can can read and write the data simultaneously,
unless protected through a specific OpenMP construct

» All changes made are visible to all threads, but not
necessarily immediately, unless enforced.

e Private

» Each thread has a copy of the data
» No other thread can access this data

» Changes are only visible to the thread owning the data

16




Private clause for parallel loop

int main() {
int a[100], i, t;
#pragma omp parallel

{
#pragma omp for private(t)
for (i = 0; i < 100; i++) {
t = £(1);
a[i] = t;
}
}

17




Work-sharing loop

#pragma omp parallel shared(n) private(i)
{
#pragma omp for
for (i=0; i<n; i++)
printf ("Thread %d executes loop iteration %d\n",
omp_get_thread_num(),i);
} /*-- End of parallel region --%*/

Figure 4.10: Example of a work-sharing loop — Each thread executes a subset of
the total iteration space i =0,...,n — 1.

18




Example output

Thread O executes loop iteration O
Thread 0 executes loop iteration 1
Thread 0 executes loop iteration 2
Thread 3 executes loop iteration 7
Thread 3 executes loop iteration 8
Thread 2 executes loop iteration 5
Thread 2 executes loop iteration 6
Thread 1 executes loop iteration 3
Thread 1 executes loop iteration 4

Figure 4.11: Output from the example shown in Figure 4.10 — The example
is executed for n = 9 and uses four threads.

19




Clauses supported by the loop construct

private (list)

firstprivate (list)

lastprivate (list)

reduction (operator:list)
ordered

schedule (kind[,chunk_size)]
nowait

20




The sections construct

#pragma omp sections [clause[[,] clause]...]
{
[#pragma omp section ]
structured block
[#pragma omp section
structured block ]

}
Figure 4.14: Syntax of the sections construct in C/C++ — The number of

sections controls, and limits, the amount of parallelism. If there are “n” of these code
blocks, at most “n” threads can execute in parallel.

* Each section is executed once by a thread.

* Threads that have finished their section wait at the implicit
barrier at the end of the sections construct.

21




Parallel sections example

int main() {
int a[l100], b[100], i;
#pragma omp parallel private(i)

{
#pragma omp sections
{
#pragma omp section
for (i = 0; i < 100; i++)
a[i] = 100;
#pragma omp section
for (1 = 0; 1 < 100; i++)
b[i] = 200;
}
}

22




Independent sections of code can execute
concurrently — reduce execution time

Advantage of parallel sections

{

#pragma omp parallel sections

#pragma omp section
funcAQ);
#pragma omp section
funcB();
#pragma omp section
funcC();

Serial

N

Parallel

23




Clauses supported by the sections construct

private (list)
firstprivate (list)
lastprivate (list)

reduction (operator:list)
nowait

24




The single and master constructs

#pragma omp single
structured block

#pragma omp master
structured block

The master or single region enforces that only a single
thread executes the enclosed code within a parallel region.

A master region is only executed by the master thread
while the single region can be executed by any thread.

A master region is skipped by all other threads while all
threads are synchronized at the end of a single region.

25




Single construct example

#pragma omp parallel shared(a,b) private(i)

{
#pragma omp single
{
a = 10;
printf ("Single construct executed by thread ’%d\n",
omp_get_thread_num());
}

/* A barrier is automatically inserted here */

#pragma omp for
for (i=0; i<n; i++)
b[i] = a;

} /*-- End of parallel region —--*/
printf ("After the parallel region:\n");

for (i=0; i<n; i++)
printf("b[/d] = %d\n",i,b[i]);

Figure 4.22: Example of the single construct — Only one thread initializes the
shared variable a.

26




Combined parallel works-sharing constructs

Full version Combined construct
#pragma omp parallel #pragma omp parallel for
{ for-loop
#pragma omp for
for-loop
}
#pragma omp parallel #pragma omp parallel sections
{ {
#pragma omp sections [#pragma omp section ]
{
[#pragma omp section ] structured block
structured block [#pragma omp section
[#pragma omp section structured block ]

structured block ]

-
}

Figure 4.29: Syntax of the combined constructs in C/C++4 — The combined
constructs may have a performance advantage over the more general parallel region with
just one work-sharing construct embedded.

27




The shared clause

#pragma omp parallel for shared(a)
for (i=0; i<n; i++)
{
ali] += 1i;
} /*-- End of parallel for --*/

Figure 4.31: Example of the shared clause — All threads can read from and write
to vector a.

28




The private clause

#pragma omp parallel for private(i,a)
for (i=0; i<n; i++)
{
a = 1i+1;
printf("Thread %d has a value of a = /d for i = %d\n",
omp_get_thread_num(),a,i);
} /*—- End of parallel for --%/

Figure 4.32: Example of the private clause — Each thread has a local copy of
variables i and a.

29




The lastprivate clause

#pragma omp parallel for private(i) lastprivate(a)
for (i=0; i<n; i++)
{
a = 1i+1;
printf ("Thread %d has a value of a = /d for i = %d\n",
omp_get_thread_num(),a,i);
} /*-- End of parallel for --x*/

printf("Value of a after parallel for: a = %d\n",a);

Figure 4.34: Example of the lastprivate clause — This clause makes the sequen-
tially last value of variable a accessible outside the parallel loop.

Assume n = 5:

Value of a after parallel for: a = 5

30




The firstprivate clause

for(i=0; i<vlen; i++) al[i] = -i-1;

indx = 4;
#pragma omp parallel default(none) firstprivate(indx) \
private(i,TID) shared(n,a)

{
TID = omp_get_thread_num();

indx += n*TID;
for(i=indx; i<indx+n; i++)
ali]l = TID + 1;
} /*-- End of parallel region --*/

printf ("After the parallel region:\n");
for (i=0; i<vlen; i++)
printf("a[/d] = %d\n",i,a[i]);

Figure 4.37: Example using the firstprivate clause — Each thread has a pre-
initialized copy of variable indx. This variable is still private, so threads can update it
individually.

31




The nowait clause

#pragma omp for nowait
for (i=0; i<n; i++)

------------

Figure 4.40: Example of the nowait clause in C/C++ — The clause ensures
that there is no barrier at the end of the loop.

32




The schedule clause

schedule(kind [, chunk_size])

The schedule clause specifies how iterations of the loop are
assigned to the team of threads.

The granularity of this workload is a chunk, a contiguous, non-
empty subset of the iteration space.

The most straightforward schedule is static, which is the default
on many OpenMP compilers. Both dynamic and guided
schedules are useful for handling poorly balanced and
unpredictable workloads.

33




Static scheduling

Schedule kind

Description

static

Iterations are divided into chunks of size chunk_size. The
chunks are assigned to the threads statically in a round-robin
manner, in the order of the thread number. The last chunk
to be assigned may have a smaller number of iterations.
When no chunk_size is specified, the iteration space

is divided into chunks that are approximately equal in size.
Each thread is assigned at most one chunk.

34




dynamic

Static scheduling

The iterations are assigned to threads as the threads request
them. The thread executes the chunk of iterations (controlled
through the chunk_size parameter), then requests another
chunk until there are no more chunks to work on.

The last chunk may have fewer iterations than chunk_size.
When no chunk_size is specified, it defaults to 1.

35




guided

Guided scheduling

The iterations are assigned to threads as the threads request
them. The thread executes the chunk of iterations (controlled
through the chunk_si:ze parameter), then requests another
chunk until there are no more chunks to work on.

For a chunk_size of 1, the size of each chunk is proportional

to the number of unassigned iterations, divided by the number
of threads, decreasing to 1.

For a chunk_size of “k” (k > 1), the size of each

chunk is determined in the same way, with the restriction that
the chunks do not contain fewer than k iterations (with a
possible exception for the last chunk to be assigned,

which may have fewer than k iterations).

When no chunk_size is specified, it defaults to 1.

36




runtime

Runtime scheduling

If this schedule is selected, the decision regarding scheduling
kind is made at run time. The schedule and (optional) chunk
size are set through the OMP_SCHEDULE environment variable.

37




%l—l.

Schedule example

Unbalanced workload

#pragma omp parallel for default(none) schedule(runtime) \
private(i,j) shared(n)
for (i=0; i<n; i++)
{
printf ("Iteration %d executed by thread ’%d\n",

i, omp_get_thread_num());
for (j=0;

system("sleep 1");
} /*-- End of parallel for --x/

Figure 4.43: Example of the schedule clause — The runtime variant of this clause
is used. The OMP_SCHEDULE environment variable is used to specify the schedule that should
be used when executing this loop.

38




3 I il -
N ideqy TR E =
11— . m -l
0 - L L]
3 L] L] H—l - B B B
o 28 H— | i
5 1 | B - B u |
S ojm—m O O B —uu
=3 dynamic,7
2—
! static
0
| | | | | | | |
0 25 50 5 100 125 150 175 200
lteration number

Figure 4.44: Graphical illustration of the schedule clause — The mapping of
iterations onto four threads for three different scheduling algorithms for a loop of length

n = 200 is shown. Clearly, both the dynamic and the guided policy give rise to a much
more dynamic workload allocation scheme.




The barrier construct

#pragma omp barrier

Figure 4.45: Syntax of the barrier construct in C/C++ — This construct binds
to the innermost enclosing parallel region.

The barrier synchronizes all threads in a team.

When encountered each thread waits until all threads in that team
have reached this point.

Many OpenMP constructs imply a barrier.

The most common use for a barrier is for avoiding a race condition.

40




The ordered construct

#pragma omp ordered
structured block

Figure 4.49: Syntax of the ordered construct in C/C++4 — This construct is
placed within a parallel loop. The structured block is executed in the sequential order of
the loop iterations.

An ordered construct ensures that the code within the associated
structured block is executed in sequential order.

An ordered clause has to be added to the parallel region in which this
construct appears. For example,

#pragma omp parallel for ordered

41




Example with ordered clause

#pragma omp parallel for ordered
for (i = 1; 1 <= N; i++) {
S1;
#pragma omp ordered
{ s2; }
S3;

Barrier

42




The critical construct

#pragma omp critical [(name)]
structured block

Figure 4.51: Syntax of the critical construct in C/C++ — The structured
block is executed by all threads, but only one at a time executes the block. Optionally,
the construct can have a name.

A thread waits at the beginning of the critical section until no other
thread is executing a critical section with the same name.

All unnamed critical sections map to the same name.

43




Example with critical clause

#pragma omp parallel shared(n) private(TID)
' TID = omp_get_thread_num();
#pragma omp critical (print_tid)
' printf ("I am thread %d\n",TID);
} /i-- End of parallel region --*/

Figure 4.57: Avoiding garbled output — A critical region helps to avoid intermin-
gled output when multiple threads print from within a parallel region.

44




The atomic construct

#pragma omp atomic
statement

Figure 4.59: Syntax of the atomic construct in C/C++ — The statement is
executed by all threads, but only one thread at a time executes the statement.

An atomic construct ensures that a specific memory location is
updated atomically (without interference).

The atomic construct may only be used together with an expression statement
in C/C++, which essentially means that it applies a simple, binary operation such
as an increment or decrement to the value on the left-hand side. The supported

-~

operations are: +, *, -, /, &, ~, |, <<, >>.

45




Locking library routines

void omp_func lock (omp_lock t *1ck)

Figure 4.63: General syntax of locking routines in C/C++ — For a specific rou-
tine, func expresses its functionality; func may assume the values init, destroy, set,
unset, test. The values for nested locks are init nest, destroy_nest, set_mest,
unset_nest, test_nest.

Locks can be hold by only one thread at a time.

There are two types of locks: simple locks, which may not be locked
if already in locked state, and nestable locks, which may be locked
multiple times by the same thread. Nestable lock variables are
declared with the special type omp nest lock t.

46




Nestable locks

Unlike simple locks, nestable locks may be set multiple
times by a single thread.

Each set operation increments a lock counter.
Each unset operation decrements the lock counter.

If the lock counter is O after an unset operation, the lock
can be set by another thread.

47




General procedure to use locks

1. Define (simple or nested) lock variables.

2. Initialize the lock via a call to omp init lock.

3. Set the lock using omp set lock or omp test lock.

The latter checks whether the lock is actually available
before attempting to set it.

4. Unset a lock after the work is done via a call to
omp unset lock.

5. Remove the lock association by a call to
omp destroy lock.

48




Lock example

#include <omp.h>
#include <stdio.h>

int main() {
omp lock t lock;
omp init lock(&lock);
#pragma omp parallel shared(lock)

{

}

int id = omp get thread num();
omp set lock(&lock);
printf("My thread number is %d\n", id);
omp unset lock(&lock);
while (!omp test lock(&lock))
other work(id); // lock not obtained
real work(id); // lock obtained
omp unset lock(&lock);

omp destroy lock(&lock);

49




The dining philosophers

Five philosopher are sitting around at a round table in deep thoughts. But of
course, from time to time they must have something to eat. In front of each

philosopher is a bowl of rice. Between each pair of philosophers is one
chopstick. Before a philosopher can eat he must have two chopsticks, one
taken from the left, and one taken from the right.

The philosophers must find some way to share chopsticks such that they all
get to eat.

50




#include <unistd.h>

#define N 5
int meals[N];
omp lock t chop stick[N];

void think(int id) {
printf ("Philosopher #%d is thinking\n", id);
sleep(rand() % 10 / 1000.0);
printf ("Philosopher #%d is hungry\n", id);

}

void eat(int id) {
printf ("Philospoher #%d is eating\n", id);
sleep(rand() % 20 / 1000.0);
printf ("Philosopher #%d is stuffed\n", id);
}

omp lock t *left chop stick(int id) {
return &chop stick[(id - 1 + N) % NJ;
}

omp lock t *right chop stick(int id) {
return &chop stick[id];

}

cont'd on next page

51




main() {
int i;
for (i = 0; 1 < N; i++)
omp init lock(&chop stick[i]);
#pragma opm parallel num threads(N)
{
int meals, id = omp get thread num();
for (meals = 0; meals < 100; meals++) {
think(id);
if (id & 2 == 1) {
omp set lock(left chop stick(id));
omp set lock(right chop stick(id));
} else {
omp set lock(right chop stick(id));
omp set lock(left chop stick(id));
}
eat(id);
omp unset lock(left chop stick(id));
omp unset lock(right chop stick(id));
}
}
}

52




The if clause

if(scalar-logical-expression)

The if clause is supported the parallel construct only.
If the logical expression evaluates to a non-zero value, the
parallel region will be executed in parallel. Otherwise, the region

is executed by a single thread only.

The clause is often used to test if there is enough work in a
region to warrant its parallelization. Example,

#pragma omp parallel if(n>10)

53




The num_threads clause

num threads (scalar-integer-expression )

The num_threads clause is supported by the parallel construct
only.

The construct can be used to specify how many threads should be
in a team executing a parallel region. Example,

#pragma omp parallel num threads(4)

54




The reduction clause

reduction (operator:list)

The reduction clause performs a reduction on the variables
that appear in the list, with the operator operator.

The variables must be shared scalars (scalar: a variable that
contains only one value).

55




Example with reduction clause

#pragma omp parallel for default(none) shared(n,a) \
reduction(+:sum)
for (i=0; i<n; i++)
sum += ali];
/*-- End of parallel reduction --*/
printf ("Value of sum after parallel region: %d\n",sum);

Figure 4.77: Example of the reduction clause — This clause gets the OpenMP
compiler to generate code that performs the summation in parallel. This is generally to
be preferred over a manual implementation.

56




Supported reduction operators

Operator | Initialization value
+ 0

* 1

- 0

& ~0

| 0

- 0

&& 1

| 0

Figure 4.80: Operators and initial values supported on the reduction
clause in C/C++ — The initialization value is the value of the local copy of the
reduction variable. This value is operator, data type, and language dependent.

57




Reduction statements

X = X 0p expr
X binop= expr

x = expr op x (except for subtraction)
X++

++x

a——

S

Figure 4.82: Typical reduction statements in C/C++ — Here, expr has scalar
type and does not reference x, op is not an overloaded operator, but one of +, *, -, &,
* |, &k, or ||, and binop is not an overloaded operator, but one of +, *, -, &, ~, or |.

58




The copyprivate clause

copyprivate (list)

The copyprivate clause is supported by the single construct only.

The variables in the list must be private in the enclosing parallel
region.

The values of the executing thread are broadcasted to all other
threads in the team.

59




Copyprivate example

#pragma omp parallel private(x)

{

#pragma omp single copyprivate(x)

{
X = getValue();

}

useValue(x);

60




The flush directive

#pragma omp flush [(list)]

Figure 4.89: Syntax of the flush directive in C/C++4 — This enforces shared
data to be consistent. Its usage is not always straightforward.

The flush directive synchronizes copies in register or cache of the
executing thread with main memory.

It synchronizes those variables in the given list; if no list 1s
specified, all shared variables in the region.

A flush 1s executed implicitly at all synchronization points.

61




Flush example
pipelining

#define MAX THREADS 16

int iam, i, isync[MAX THREADS];
for (i = 0; i1 < MAX THREADS; i++) isync[i] = 0;
omp set num threads(MAX THREADS);

#pragma omp parallel private(iam)
{
iam = omp get thread num();
if (aim != 0)
while (!isync[iam - 1]) { // wait for neighbor
#pragma omp flush(isync)
}
work(); // do my work
isync[iam] = 1; // I am done
#pragma omp flush(isync)

62




The threadprivate directive

#pragma omp threadprivate (list)

Figure 4.94: Syntax of the threadprivate directive in C/C++4 — The list
consists of a comma separated list of file-scope, namespace-scope, or static block scope
variables that have incomplete types. The copyin clause can be used to initialize the data

in the threadprivate copies of the list item(s).

The effect of the threadprivate directive is that the named global-
lifetime objects are replicated, so that each thread has its own copy.

Threadprivate variables differ from private variables because they are
able to persist between different parallel sections of code.

63




Threadprivate data persistency

When the end of a parallel region is reached, the slave threads
disappear, but they do not die. Rather, they park themselves on a
queue waiting for the next parallel region. In addition, they retain
their state, in particular their instances of the threadprivate
variables. As a result the contents of threadprivate data persists
for each thread from one parallel region to another.

The persistency i1s guaranteed as long as the number of threads
does not change.




Runtime routines for threads

Determine the number of threads for parallel regions
omp set num threads(count)

Query the maximum number of threads for team creation
maxthreads = omp get max threads()

Query the number of threads in current team
numthreads = omp get num threads()

Query own thread number
iam = omp get thread num()

Query number of processors
numprocs = omp get numprocs()

cont’d on next page
65




Runtime routines for threads (cont’d)

* Query state
logicalvar = omp in parallel()

* Allow the runtime system to determine the number of threads

for team creation
omp set dynamic(logicalexp)

* Query whether runtime system can determine the number of

threads
logicalvar = omp get dynamic()

cont’d on next page
66




Runtime routines for threads (cont’d)

* Query the wall clock time (in seconds) relative to an arbitrary
reference time
time = omp get wtime()

* Allow nesting of parallel regions

omp set nested(logicalexp)

* Query nesting of parallel regions

logicalvar = omp get nested()

67




Environment variables

OMP NUM THREADS=4
OMP SCHEDULE="dynamic"
OMP SCHEDULE="GUIDED, 4"
OMP DYNAMIC=TRUE

OMP NESTED=TRUE

68




Numerical integration for estimating n

|
4
Mathematically, we know that J 14 2
o 1+x

=TT

as a sum of rectangles:

‘\‘A
X
+
F
= 20
=
<

N-1
2 F(x)Ax=m
i=0

F(x)

of interval i.

We can approximate the integral

Where each rectangle has width
Ax and height F'(x;) at the middle

69




Serial & program

#include <stdio.h>

int main() {
int N = 100000, 1i;
double sum = 0.0;

for (1 = 0; 1 < N; i++) {
double x = (i + 0.5) / N;
sum += 4.0 / (1.0 + x * X);
}
printf("Estimate of pi = %.15f\n", sum / N);
printf("True value of pi = 3.141592653589793\n");

Estimate of pi = 3.141592653598162
True value of pi = 3.141592653589793




Parallel & program

#include <stdio.h>

int main() {
int N = 100000, 1i;
double sum = 0.0;
#pragma omp parallel reduction(+:sum)
for (1 = 0; 1 < N; i++) {
double x = (i + 0.5) / N;
sum += 4.0 / (1.0 + x * X);

}
printf("Estimate of pi = %.15f\n", sum / N);

printf("True value of pi = 3.141592653589793\n");




Finding the maximum value in an array

max = INT MIN;
for (i = 0; i < n; i++) {
if (a[i] > max)
max = af[i];




Inefficient parallel code

max = INT MIN;
#pragma omp parallel for shared(max)
for (1 = 0; i < n; i++) {
#pragma omp critical
if (a[i] > max)
max = a[i];

73




Improved parallel code

max = INT MIN;
#pragma omp parallel for shared(max)
for (1 = 0; i < n; i++) {
#pragma omp flush(max)
if (a[i] > max)
#pragma omp critical
if (a[i] > max)
max = a[i];

74




Efficient parallel code

max = INT MIN;
#pragma omp parallel shared(max)
{
int private max = max;
#pragma for
for (1 = 0; 1 < n; i++)
if (a[i] > private max)
private max = a[i];
#pragma omp flush(max)
if (private max > max)
#pragma omp critical
if (private max > max)
max = private max;




