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Assignments in Shared Memory Parallel Computation 
IPDC, Spring 2010 

 
 

You can work in pair with another student in both assignments. 
 
 
ASSIGNMENT 1: LAPLACE’S EQUATION 
 
Laplace’s equation is a partial differential equation that governs physical phenomena such as 
heat. For two dimensions it can be written as 
 

∂2u
∂x2

+
∂2u
∂y2

= 0 . 

 
When the equation models heat conduction, u(x, y) denotes the temperature at a given point 
in the plane. Laplace’s equation is widely used in scientific applications, for example weather 
forecasting, ocean current simulation and climate modeling. 
 
Your task is to solve this equation using a solution method known as Red-Black Gauss-
Seidel. Given a spatial region and values for points on the boundaries of the region, the goal 
is to approximate the steady-state solution for points in the interior. The general idea is to 
cover the region with an evenly spaced grid of points and iteratively approximate the steady-
state values at the grid points until the error is below a given threshold.  
 
A grid of 8× 8 would look like this: 
 
          * * * * * * * * * * 
       * . . . . . . . . * 
       * . . . . . . . . * 
       * . . . . . . . . * 
         * . . . . . . . . * 
       * . . . . . . . . * 
       * . . . . . . . . * 
       * . . . . . . . . * 
                           * . . . . . . . . * 
       * * * * * * * * * * 
 
The 8 ×  8 grid presented by dots is surrounded by boundary points, represented by *’s. Each 
interior point is initialized to some value. Boundary points remain constant throughout the 
simulation. The steady-state values of interior points are calculated by repeated iterations. 
The computation terminates when every new value is within some acceptable difference eps 
of every old value.  
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There are many iterative algorithms for calculating the steady-state values. One of these is 
Jacobi Iteration, where at iteration k, the new value of an interior point uij is set to the average 
of the old values of the four points left, above, right, and below it: 
 

 uij
k =

1
4
ui( j−1)
k−1 + u(i−1) j

k−1 + ui( j+1)
k−1 + u(i+1) j

k−1⎡⎣ ⎤⎦   

 
All values at the same iteration may be updated simultaneously. However, this method con-
verges very slowly, especially for large problem sizes, and is not used to solve practical 
problems. A clear improvement in efficiency is obtained with Gauss-Seidel, where the update 
procedure at step k may be presented as: 
 

uij
k =

1
4
ui( j−1)
k + u(i−1) j

k + ui( j+1)
k−1 + u(i+1) j

k−1⎡⎣ ⎤⎦   

 
As seen, each value is of uij at iteration k is obtained from two newly computed values for it-
eration k and two old values of iteration k. This minor change to Jacobi Iteration results in 
much faster convergence, but the values of the same iteration can no longer be updated si-
multaneously. Fortunately, there are other strategies that converge faster than Jacobi and are 
more parallelizable than Gauss-Seidel, for example, Red-Black Gauss-Seidel. To implement 
Red-Black Gauss-Seidel, the grid can be arranged in a checker-board ordering of all grid 
points as illustrated below: 
 
 
 

 
 
  
  
 
 
 
 
The algorithm first updates all red values using known black values. Then it updates all black 
values using the new red values: 
 

 uij
k =

1
4
ui( j−1)
k−1 + u(i−1) j

k−1 + ui( j+1)
k−1 + u(i+1) j

k−1⎡⎣ ⎤⎦  when i + j is even, followed by 

uij
k =

1
4
ui( j−1)
k + u(i−1) j

k + ui( j+1)
k + u(i+1) j

k⎡⎣ ⎤⎦  when i + j  is odd 

  
It is easy to see that all red values can be computed in parallel, and all black values can be 
computed in parallel. 
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Problem 1 
 
Write a serial C program that solves Laplace’s equation using Red-Black Gauss Seidel on a  
n× n grid. Your program should take two command-line arguments: the number of grid 
points in each dimension, n, and the error tolerance, eps.  
 
The interior of the grid should be initialized to all 0’s and two borders to 1’s, as illustrated for 
an 8× 8 grid below.  
 

   1 1 1 1 1 1 1 1 1 
       1 0 0 0 0 0 0 0 0 
       1 0 0 0 0 0 0 0 0 
       1 0 0 0 0 0 0 0 0 
         1 0 0 0 0 0 0 0 0 
       1 0 0 0 0 0 0 0 0 
       1 0 0 0 0 0 0 0 0 
       1 0 0 0 0 0 0 0 0 
       1 0 0 0 0 0 0 0 0 
 
To avoid special cases at the boundaries, you should allocate your grid for an n×n simulation 
to be (n+2)×(n+2), so you can use row and column 0 and row and column n+1 to store the 
boundary values.  
 
At the end of the computation, print out the total number of iterations needed, and the time 
taken to achieve the solution (i.e., the time taken for Red-Black Gauss-Seidel Iteration). 
 
Problem 2 
 
Choose values for the size of the grid and eps so that your program will run for a few min-
utes.  
 
Problem 3 
 
Extend your program such that it prints n and the (n+2)×(n+2) steady-state grid values to a 
file. Visualize the steady-state solution by giving this file as input to the Java program 
PlotSolution. Class PlotSolution and its helper class StdDraw can be found in 
  
  www.ruc.dk/~keld/teaching/IPDC_f10/Assignments/ 
 
Problem 4 
 
Parallelize your serial program using OpenMP. You may break down the computation any 
way you like. Justify your choice. 
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Problem 5 
 
Run your OpenMP program on alvin.ruc.dk using 1, 2, 4, 8, and 12 threads, eps = 0.001, and 
at least the following problem sizes: n = 200, 400, 600. For each problem plot the timing re-
sults as: Time vs. number of threads, speedup vs. problem size. On each graph plot the theo-
retical linear speedup for reference. 
 
Problem 6 
 
Parallelize your serial program using Java threads. You may break down the computation any 
way you like. Justify your choice. 
 
Problem 7 
 
Run your Java threads program on alvin.ruc.dk using 1, 2, 4, 8, and 12 threads and at least the 
following problem sizes: n = 200, 400, 600. Report the timings and speedup as in Problem 5. 
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ASSIGNMENT 2: N-QUEENS PUZZLE 
 
The n-queens puzzle is the problem of placing n chess queens on an n×n chessboard such that 
no queen is under attack by another using the standard chess queen's moves, that is, there is at 
most one queen at each row, column and diagonal. Below is shown one solution to the 8-
queens puzzle:  
 

 
 
The 8-queens puzzle has 92 distinct solutions. There is currently no known formula for the 
exact number of solutions. The largest n-queens puzzle solved today is a 26-queens puzzle, 
which has 22,317,699,616,364,044 solutions. 
 
Your task is to write a parallel program for counting the number of solutions to the n-queens 
problem. Use the following recursive function as template for your algorithm: 
 
 
  

           
 
 
 
 
 
 
 
 
 
 
 

void nqueens(int row) { 
    if (row == n) 
        solutions++; 
    else { 
        int col; 
        for (col = 0; col < n; col++) { 
       if (!underAttack(row, col)) { 

    setQueen(row, col); 
                nqueens(row + 1); 

    removeQueen(row, col); 
 }     
  } 

    } 
} 
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Problem 1 
 
Write a serial C program that prints the number of solutions to the n-queens problem.  
 
Problem 2 
 
Parallelize your serial program using OpenMP. You may break down the computation any 
way you like. Justify your choice. 
 
Problem 3 
 
Run your program on alvin.ruc.dk using 1, 2, 4, 8, and 12 threads and at least the following 
problem sizes: n = 8, 9, 10. For each problem plot the timing results as: Time vs. number of 
threads, speedup vs. problem size. On each graph plot the theoretical linear speedup for refer-
ence. Report how large a puzzle your program is able to solve within one minute. 
 
Problem 4 
 
Parallelize your serial program using Java threads. You may break down the computation any 
way you like. Justify your choice. 
 
Problem 5 
 
Report the performance of the Java program as in Problem 3. 
 
 
DEADLINE AND MATERIALS TO BE HANDED IN 
 
Friday, April 23, 2010. 
 
For each assignment write a short report that includes the following aspects: 
 

a) Introduction.  
b) Reasoning of your parallelization of the program. For example, how did you figure 

out the parallel regions, why did you use (if any) special OpenMP primitives? 
c) Specify anything you have found interesting and didn’t think of before. 
d) Present and explain your results. 
e) Your conclusions. 
f) Appendices. Your program code. 

 
Three printed copies of the report and the source code should be handed in by Friday, April 
23, 17.00. The source code for the programs should be e-mailed to keld@ruc.dk by 23.59 on 
the same day.  
 


