
 1

Assignments in Shared Memory Parallel Computation
IPDC, Spring 2010

You can work in pair with another student in both assignments.

ASSIGNMENT 1: LAPLACE’S EQUATION

Laplace’s equation is a partial differential equation that governs physical phenomena such as
heat. For two dimensions it can be written as

∂2u
∂x2

+
∂2u
∂y2

= 0 .

When the equation models heat conduction, u(x, y) denotes the temperature at a given point
in the plane. Laplace’s equation is widely used in scientific applications, for example weather
forecasting, ocean current simulation and climate modeling.

Your task is to solve this equation using a solution method known as Red-Black Gauss-
Seidel. Given a spatial region and values for points on the boundaries of the region, the goal
is to approximate the steady-state solution for points in the interior. The general idea is to
cover the region with an evenly spaced grid of points and iteratively approximate the steady-
state values at the grid points until the error is below a given threshold.

A grid of 8× 8 would look like this:

 * * * * * * * * * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * * * * * * * * * *

The 8 × 8 grid presented by dots is surrounded by boundary points, represented by *’s. Each
interior point is initialized to some value. Boundary points remain constant throughout the
simulation. The steady-state values of interior points are calculated by repeated iterations.
The computation terminates when every new value is within some acceptable difference eps
of every old value.

 2

There are many iterative algorithms for calculating the steady-state values. One of these is
Jacobi Iteration, where at iteration k, the new value of an interior point uij is set to the average
of the old values of the four points left, above, right, and below it:

 uij
k =

1
4
ui(j−1)
k−1 + u(i−1) j

k−1 + ui(j+1)
k−1 + u(i+1) j

k−1⎡⎣ ⎤⎦

All values at the same iteration may be updated simultaneously. However, this method con-
verges very slowly, especially for large problem sizes, and is not used to solve practical
problems. A clear improvement in efficiency is obtained with Gauss-Seidel, where the update
procedure at step k may be presented as:

uij
k =

1
4
ui(j−1)
k + u(i−1) j

k + ui(j+1)
k−1 + u(i+1) j

k−1⎡⎣ ⎤⎦

As seen, each value is of uij at iteration k is obtained from two newly computed values for it-
eration k and two old values of iteration k. This minor change to Jacobi Iteration results in
much faster convergence, but the values of the same iteration can no longer be updated si-
multaneously. Fortunately, there are other strategies that converge faster than Jacobi and are
more parallelizable than Gauss-Seidel, for example, Red-Black Gauss-Seidel. To implement
Red-Black Gauss-Seidel, the grid can be arranged in a checker-board ordering of all grid
points as illustrated below:

The algorithm first updates all red values using known black values. Then it updates all black
values using the new red values:

 uij
k =

1
4
ui(j−1)
k−1 + u(i−1) j

k−1 + ui(j+1)
k−1 + u(i+1) j

k−1⎡⎣ ⎤⎦ when i + j is even, followed by

uij
k =

1
4
ui(j−1)
k + u(i−1) j

k + ui(j+1)
k + u(i+1) j

k⎡⎣ ⎤⎦ when i + j is odd

It is easy to see that all red values can be computed in parallel, and all black values can be
computed in parallel.

 3

Problem 1

Write a serial C program that solves Laplace’s equation using Red-Black Gauss Seidel on a
n× n grid. Your program should take two command-line arguments: the number of grid
points in each dimension, n, and the error tolerance, eps.

The interior of the grid should be initialized to all 0’s and two borders to 1’s, as illustrated for
an 8× 8 grid below.

 1 1 1 1 1 1 1 1 1
 1 0 0 0 0 0 0 0 0
 1 0 0 0 0 0 0 0 0
 1 0 0 0 0 0 0 0 0
 1 0 0 0 0 0 0 0 0
 1 0 0 0 0 0 0 0 0
 1 0 0 0 0 0 0 0 0
 1 0 0 0 0 0 0 0 0
 1 0 0 0 0 0 0 0 0

To avoid special cases at the boundaries, you should allocate your grid for an n×n simulation
to be (n+2)×(n+2), so you can use row and column 0 and row and column n+1 to store the
boundary values.

At the end of the computation, print out the total number of iterations needed, and the time
taken to achieve the solution (i.e., the time taken for Red-Black Gauss-Seidel Iteration).

Problem 2

Choose values for the size of the grid and eps so that your program will run for a few min-
utes.

Problem 3

Extend your program such that it prints n and the (n+2)×(n+2) steady-state grid values to a
file. Visualize the steady-state solution by giving this file as input to the Java program
PlotSolution. Class PlotSolution and its helper class StdDraw can be found in

 www.ruc.dk/~keld/teaching/IPDC_f10/Assignments/

Problem 4

Parallelize your serial program using OpenMP. You may break down the computation any
way you like. Justify your choice.

 4

Problem 5

Run your OpenMP program on alvin.ruc.dk using 1, 2, 4, 8, and 12 threads, eps = 0.001, and
at least the following problem sizes: n = 200, 400, 600. For each problem plot the timing re-
sults as: Time vs. number of threads, speedup vs. problem size. On each graph plot the theo-
retical linear speedup for reference.

Problem 6

Parallelize your serial program using Java threads. You may break down the computation any
way you like. Justify your choice.

Problem 7

Run your Java threads program on alvin.ruc.dk using 1, 2, 4, 8, and 12 threads and at least the
following problem sizes: n = 200, 400, 600. Report the timings and speedup as in Problem 5.

 5

ASSIGNMENT 2: N-QUEENS PUZZLE

The n-queens puzzle is the problem of placing n chess queens on an n×n chessboard such that
no queen is under attack by another using the standard chess queen's moves, that is, there is at
most one queen at each row, column and diagonal. Below is shown one solution to the 8-
queens puzzle:

The 8-queens puzzle has 92 distinct solutions. There is currently no known formula for the
exact number of solutions. The largest n-queens puzzle solved today is a 26-queens puzzle,
which has 22,317,699,616,364,044 solutions.

Your task is to write a parallel program for counting the number of solutions to the n-queens
problem. Use the following recursive function as template for your algorithm:

void nqueens(int row) {
 if (row == n)
 solutions++;
 else {
 int col;
 for (col = 0; col < n; col++) {
 if (!underAttack(row, col)) {

 setQueen(row, col);
 nqueens(row + 1);

 removeQueen(row, col);
 }
 }

 }
}

 6

Problem 1

Write a serial C program that prints the number of solutions to the n-queens problem.

Problem 2

Parallelize your serial program using OpenMP. You may break down the computation any
way you like. Justify your choice.

Problem 3

Run your program on alvin.ruc.dk using 1, 2, 4, 8, and 12 threads and at least the following
problem sizes: n = 8, 9, 10. For each problem plot the timing results as: Time vs. number of
threads, speedup vs. problem size. On each graph plot the theoretical linear speedup for refer-
ence. Report how large a puzzle your program is able to solve within one minute.

Problem 4

Parallelize your serial program using Java threads. You may break down the computation any
way you like. Justify your choice.

Problem 5

Report the performance of the Java program as in Problem 3.

DEADLINE AND MATERIALS TO BE HANDED IN

Friday, April 23, 2010.

For each assignment write a short report that includes the following aspects:

a) Introduction.
b) Reasoning of your parallelization of the program. For example, how did you figure

out the parallel regions, why did you use (if any) special OpenMP primitives?
c) Specify anything you have found interesting and didn’t think of before.
d) Present and explain your results.
e) Your conclusions.
f) Appendices. Your program code.

Three printed copies of the report and the source code should be handed in by Friday, April
23, 17.00. The source code for the programs should be e-mailed to keld@ruc.dk by 23.59 on
the same day.

