
1

Implementations I

2

Agenda

•  Inner classes and implementation of ArrayList
 Nested classes and inner classes

The AbstractCollection class
Implementation of ArrayList

 • Stack and queues
Array-based implementations
Linked list-based implementations

•  Linked lists
Doubly linked lists

3

Iterator design using nested class

Notice the static
specification

4

Iterator design using inner class

5

6

Nested classes and inner classes

A static nested class interacts with the instance members of its
outer class (and other classes) just like any other top-level class.
In effect, a static nested class is behaviorally a top-level class
that has been nested in another top-level class for packaging
convenience.

As with instance methods and variables, an inner class is
associated with an instance of its enclosing class and has direct
access to that object's methods and fields.

7

Abstract collections

A set is an unordered collection of elements. No duplicates are
allowed.

A list is an ordered collection of elements. Duplicates are
allowed. Lists are also known an sequences.

A map is an unordered collection of key-value pairs. The keys
must be unique. Maps are also known as dictionaries.

8

Map

SortedMap

SortedSet

Collection

Set List

Interfaces for collections
java.util.*

9

boolean add(E o)
boolean addAll(Collection<? extends E> c)
void clear()
boolean contains(Object o)
boolean containsAll(Collection<?> c)
boolean isEmpty()
Iterator<E> iterator()
boolean remove(Object o)
boolean removeAll(Collection<?> c)
boolean retainAll(Collection<?> c)
int size()
Object[] toArray()
<T> T[] toArray(T[] a)

interface Collection<E>

10
of 3

11

12

Flaw

A Collection
may contain
itself!

13

public String toString() {
 Iterator<E> it = iterator();
 if (!it.hasNext())
 return "[]";
 StringBuilder sb = new StringBuilder();
 sb.append('[');
 for (;;) {
 E e = it.next();
 sb.append(e == this ? "(this Collection)" : e);
 if (!it.hasNext())
 return sb.append(']').toString();
 sb.append(',').append(' ');
 }
}

toString as implemented in
java.util.AbstractCollection

14

AbstractCollection

ArrayList

An array list (ArrayList) is a list that uses an array to store its
elements.

Collection

List

ArrayList

implements

extends

italic: interface
normal: class

15

of 3

modCount represents the number of structural
modifications (adds, removes) made to the ArrayList.

The idea is that when an iterator is constructed, the iterator
saves this value in its data member expectedModCount.

When any iterator operation is performed, the iterator’s
expectedModCount member is compared with the
ArrayList’s modCount, and if they disagree, a
ConcurrentModificationException is thrown.

16

idx

17

listIterator(int idx):
Returns a list iterator of the
elements in this list (in proper
sequence), starting at the specified
position in this list. The specified
index indicates the first element
that would be returned by an initial
call to the next method. An initial
call to the previous method
would return the element with the
specified index minus one.

18

19

Does either of these proposed implementations
of clear for AbstractCollection work?

);

Version #1 will throw a ConcurrentModificationException

Version #2 works

20

public void clear() // Version #3
{
 Iterator<AnyType> itr = iterator();
 while(itr.hasNext())
 itr.remove();
}

Version #3 will throw an IllegalStateException

Does this proposed implementation of clear work?

public void clear() // Version #4
{
 Iterator<AnyType> itr = iterator();
 while(itr.hasNext()) {
 itr.next();
 itr.remove();
 }
}

Version #4 works

21

Stacks and queues

22

Stack ���
(LIFO = LastInFirstOut)

A stack is a sequence of items of the same type that
provides the following two operations:

push(x):Add the item x to the top of the stack
pop: Remove the top item from the stack

stack

poppush

Only the topmost item on
the stack (top) is accessible

23

The integer tos (top of stack) provides the array index of the top element of the stack

Stack implemented with an array

24

25

26

27

28

29

Amortized running time

Array doubling is expensive in running time: O(N).

However, array doubling is infrequent because an array doubling
that involves N elements must be preceded by at least N/2 pushes
that do not involve an array doubling.

Consequently we can charge the O(N) cost of the doubling over
these N/2 easy pushes, thereby effectively raising the cost of each
push by only a small constant.

In the “long run” push runs in O(1) time.

Amortization: The paying off of debt in regular installments over a
period of time.

30

•

topOfStack

class ListNode<AnyType> {
 ListNode(AnyType e, ListNode n) { element = e; next = n; }
 AnyType element;
 ListNode next;
}

ListNode

Stack implemented with a linked list

element

next

31

32

33

34

O(1) time

O(1) amortized time

top

35

Class Stack in java.util

A more complete and consistent set of LIFO stack operations is provided by the
Deque (double-ended queue) interface and its implementations, which should be
used in preference to this class. For example ArrayDeque and LinkedList.

36

Queue ���
(FIFO = FirstInFirstOut)

A queue is a sequence of items of the same type that provides
the following two operations:

enqueue(x): Insert the item x at the back of the queue

dequeue: Remove the item at the front of the queue

 dequeue enqueue

queue
Only the item at the front of the
queue (front) is accessible

37

class ListNode<AnyType) {
 ListNode(AnyType e) { element = e; }
 AnyType element;
 ListNode next;
}

•

front back

ListNode

Queue implemented with a linked list

38

39

40

Note the execution order
(right-to-left)

O(1) time

O(1) time

41

back = back.next = new ListNode<AnyType>(x);

42

43

We must avoid shifting the items when an dequeue operation is
executed.

back = 5

0 1 2 3 4 5 6 7

front = 0

Queue implemented with an array

44

back = 5

0 1 2 3 4 5 6 7

front = 2 currentSize = 4

Circular array

dequeue:
back = 5

0 1 2 3 4 5 6 7

front = 3 currentSize = 3

45

enqueue:
back = 6

0 1 2 3 4 5 6 7

front = 3 currentSize = 4

enqueue with wraparound
back = 0

0 1 2 3 4 5 6 7

front = 3 currentSize = 6

46

47

48

49

50

51

52

O(1) amortized time

53

54

O(1) time

O(1) time

55

56

New collections in Java 5

ArrayList LinkedList

Collection

Set List

SortedSet

HashSetTreeSet

Queue

PriorityQueue

57

Interface Queue in java.util

Some implementing classes: LinkedList, PriorityQueue

58

Linked lists

Disadvantages of storing a
sequence of items as an array

(1) Insertion and removal of items take time
proportional to the length of the array

(2) Arrays have a fixed length

60

Singly linked list

61

tmp = new Node(x);
tmp.next = current.next;
current.next = tmp;

Insertion

62

current.next = current.next.next;

Deletion

63

Using a header node for easy
removal of the first element

64

Doubly linked list

65

Insertion

newNode = new DoublyLinkedListNode(x);
newNode.prev = current; // 1
newNode.next = current.next; // 2
current.next = newNode; // 3
newNode.next.prev = newNode; // 4
current = newNode; // 5

current
5

66

Deletion

current.prev.next = current.next; // set a's next link
current.next.prev = current.prev; // set b's prev link
current.next = current.prev = null;
current = head; // So current is not stale

current

67

Circularly linked list

