
1

Algorithms II

2

Agenda

Recursion
•  Mathematical induction
•  Rules of recursion
•  Divide and conquer
•  Dynamic programming
•  Backtracking

Verification of algorithms

3

Proof methods ���
(useful for algorithm verification as well as for algorithm design)

Theorem. There is an infinite number of primes.
Proof (Euclid):
Assume there is a finite number of primes: 2, 3, 5, .., p.
Now define N = (2 . 3 . 5 ... p) + 1.
N is greater than p. But N is not exactly divisible by any of the primes
(the remainder is 1). So, N must be a new prime.
We have found a contradiction, which proves the theorem.

Proof by contradiction:

1.  Assume the proposition is false
2.  Show that this leads to a contradiction
3.  Hence the proposition must be true

4

Mathematical induction ���
informal description

If
 (1) the first domino will fall, and
(2) whenever a domino will fall, its successor will fall

then all of the dominoes will fall.
Even if the row is infinitely long.

A long row of dominoes is standing on end:

5

Let T be a theorem involving an integer parameter N.

T is true for all integers N ≥ c, where c is a constant, if the following
two conditions are satisfied:

1. The base case:
T holds for N = c.

2. The induction step:
If T holds for N-1, then T holds for N.

The assumption in the induction step is called the induction
hypothesis.

Mathematical induction ���
formal description

6

Example

Theorem:
The sum S(N) of the first N natural numbers is N(N+1)/2.

Proof:
(1) Base case:

For N = 1 we have S(1) = 1, which agrees with 1(1+1)/2 = 1.

(2) Induction step:
Assume the theorem holds for N-1, that is, S(N-1) = (N-1)N/2.
S(N) = S(N-1) + N = (N-1)N/2 + N = N(N+1)/2
Hence the theorem also holds for N.

7

Proof:
(1) Base case:

4 dollars may be exchanged into two 2 dollar bills.

(2) Induction step:
Assume N-1 dollars may be changed. We can show that this
change can be used for a change of N dollars.
Either the change contains a 5 dollar bill; or it does not.
In the first case, we replace the 5 dollar bill with three 2 dollar bills.
In the second case we replace two 2 dollar bills with a 5 dollar bill.

Theorem: Any amount of money ≥ 4 dollars may be changed using
just 2 dollar and 5 dollar bills.

Money change

8

Strong induction

Let T be a theorem involving an integer parameter N.

T is true for all integers N ≥ c, where c is a constant, if the following
two conditions are satisfied:

1. The base case:
T holds for N = c.

2. The induction step:
If T holds for any k, c ≤ k < N, then T holds for N.

9

Induction can be used in
algorithm design

(1) Start with an instance of the problem.

(2) Try to solve this problem assuming that the same problem –
but of smaller size – has been solved.

Induction can be used constructively. Solution of small problems
are used for solving larger problems.

10

Algorithm design example���
Sorting N numbers in increasing order

Assume that we can sort N-1 numbers.

Then we can sort N numbers as follows:

Sort N-1 of the numbers and insert the N’th number at its right
position (Sorting by insertion)

or

Find the smallest of the N numbers, sort the remaining N-1
numbers, and append the sorted sequence to the first number
(Sorting by selection)

11

The maximum contiguous
subsequence sum problem

Given (possible negative) integers A1, A2, ..., AN, find
the maximum value of

The maximum contiguous subsequence sum is zero if
all the integers are negative.

Ak
k= i

j

∑

Example. If the input is (-2, 11, -4, -1, 13, -5, 2),
then the answer is 19, which represents the sum of the
contiguous subsequence (11, -4, -1, 13).

12

Let S = (A1, A2, .., AN) and S’ = (A1, A2, .., AN-1).
Let S’M be the maximum subsequence for S’.

A1 A2 ANAN-1

S

S’

S’M

Suppose S’M is empty. Then the maximum subsequence for S is also
empty if AN is negative; otherwise it is equal to (AN).

Induction hypothesis: We know how to find the maximum
contiguous subsequence sum for a sequence of length N-1.

Base case: If N = 1, it is easy to find the maximum subsequence:
If the number is not negative, it just consists of the number.
Otherwise, it is empty.

13

If j = N-1, then S’M is extended with AN if and only if AN is positive.

Suppose S’M is not empty, that is, S’M = (Ai, Ai+1, .., Aj) for 1 ≤ i ≤ j ≤ N-1.

A1 A2 ANAN-1

S

S’

S’MAi

14

If j < N-1, there are two cases:
(1) Either S’M is also maximal for S, or
(2) there is another subsequence that is not maximal for S’,

but is maximal for S when AN is added.

Which of the two cases we have cannot be determined from the
available information: S’M.
However, since AN may only extend a sequence that ends in AN-1, the
decision may be made if know the maximum suffix (Ai, Ai+1, .., AN-1)
for S’.

The induction hypothesis must be strengthened

A1 A2 ANAN-1

S

S’

S’M

15

Stronger induction hypothesis: We know how to find the
maximum contiguous subsequence sum and the maximum
suffix sum for a sequence of length N-1.

maxSum = maxSuffixSum = 0;
for (i = 1; i <= N; i++) {
 maxSuffixSum += A[i];
 if (maxSuffixSum > maxSum)
 maxSum = maxSuffixSum;
 else if (maxSuffixSum < 0)
 maxSuffixSum = 0;
}

This leads to the linear algorithm

16

Recursion

•  Recursive definition of X: X is defined in terms of itself.

•  Recursion is useful when a general version of X can be
defined in terms of simpler versions of X.

•  A problem is solved recursively by
(1) decomposing it into smaller problems of the same
type as the original problem,
(2) repeat this process until all sub-problems are so
simple that they can be solved easily, and
(3) combine the solutions of the sub-problems to obtain
a solution of the original problem.

17

Recursive evaluation of the sum of
the first N integers

S(1) = 1
S(N) = S(N-1) + N for N > 1

18

Printing a number in decimal form

n = 36372

print '3637' followed by '2'

19

Printing a number in any base

20

21

Implementation of recursion

A recursive method calls a clone of itself. That clone is simply
another method with different parameters.

At any instant only one clone is active; the rest are pending.

Recursion may be handled using a stack (since methods return in
reverse order of their invocation). Java, like other languages,
implements methods by using an internal stack of activation records.
An activation record contains relevant information about the method
including the values of the parameters and local variables.

22

Stack of activation records

23

Fibonacci numbers

F(0) = 0
F(1) = 1
F(N) = F(N-1) + F(N-2) for N > 1

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

Fibonacci, 1202

Beginning with a single
pair of rabbits, if every
month each productive
pair bears a new pair,
which becomes
productive when they
are 1 month old, how
many pairs of rabbits
will there be after N
months?

24

Fibonacci numbers

The recursive implementation is simple but very inefficient.
By induction we can verify that the number of calls C(N) =
C(N-1) + C(N-2) + 1 for N ≥ 3 is equal to F(N+2) + F(N-1) – 1.
Thus, the number of calls is larger than the number we are trying
to compute. The inefficiency is due to wasted calculations.

For N = 40, F(40) = 102,334,115, and the total number of recursive calls are more than 300,000,000.

25

Four basic rules of recursion

1.  Base case: Always have at least one case that can be solved
without recursion.

2.  Make progress: Any recursive call must progress towards a
base case.

3.  “You gotta believe”: Always assume that the recursive call
works.

4.  Compound interest rule: Never duplicate work by solving
the same instance of a problem in separate recursive calls.

Compound interest: renters rente

26

Recursive definition of a tree

Either a tree T is empty or it consists of a root and zero or
more nonempty subtrees T1, T2, ..., Tk, each of whose roots
are connect by an edge from the root of T.

27

A tree

28

Non-recursive definition of a tree

A tree consists of a set of nodes and a set of directed edges that connect
pairs of nodes. A rooted tree has the following properties:

• One node is distinguished as the root.

• Every node c, except the root, is connected by an edge from
 exactly one other node p.
 Node p is c’s parent, and c is one of p’s children.

• A unique path traverses from the root to each node.
 The number of edges that must be followed is the path length.

 p

c

29

Factorial

1! = 1
N! = N . (N-1)!

The product of the first N positive integers

factorial = n;
while (--n > 1)
 factorial *= n;

Iterative
implementation

30

Binary search

low mid high

31

80 pixels

Call: drawRuler(g, 10, 520, 8) using frame width = 531 and frame height = 110

32

Gray background

33

34

import java.awt.Frame;
import java.awt.Graphics;
import java.awt.Color;

public class FractalStar extends Frame {
 private static final int theSize = 256;

 public void paint(Graphics g) {
 setBackground(Color.gray);
 g.setColor(Color.white);
 drawSFractal(g, theSize / 2 + 10, theSize / 2 + 30, theSize);
 }

 private void drawFractal(Graphics g, int xCenter, int yCenter,
 int boundingDim) { ... }

 public static void main(String[] args) {
 Frame f = new FractalStar();
 f.setSize(theSize + 20, theSize + 40);
 f.setVisible(true);
 }
}

35

The RSA cryptosystem���
(Rivest, Shamir og Adleman, 1977)

Problem: Alice wants to send a secret message to Bob in such a way that
only Bob can read it.

Solution: Bob publishes two numbers, e and N, that people should use
when sending him messages.

Encryption: Alice sends a message M as the number R = Me (mod N).

Decryption: Bob obtains the original message by computing Rd (mod N),
where d is a number that only Bob knows.

36

Computing the RSA constants

Determination of e, d and N:

1) Choose two large primes p and q.
 Typically, these would be 100 digits or so each.

2) Compute N = pq.

3) Compute N’ = (p-1)(q-1).

4) Choose e > 1 such that gcd(e, N’) = 1.

5) Choose d such that ed (mod N’) = 1.
 [i.e., such that d is multiplicative inverse to e mod N’].

It can be shown that (Me)d = M (mod N) for any message M.

Bob must destroy p, q, and N’. He tells anybody who wants to send him
a message the values of e and N, but he keeps d secret.

37

An example

(1) p = 47 and q = 79 (two primes)

(2) N = pq = 3713

(3) N’ = (p-1)(q-1) = 3588

(4) e = 37 (gcd(e, N’) = 1)

(5) d = 97 (ed (mod N’) = 1, since ed = 3589)

38

Example continued ���
(e = 37, d = 97, N = 3713)

Message: ATTACK AT DAWN

Coding: A = 01, B = 02, C = 03, D = 04, ...

 A T T A C K A T D A W N
0120200103110001200004012314 (blocks of two characters)

Encryption using the public key 37:
 012037 = 1404 (mod 3713) 200137 = 2392 (mod 3713) ...

1404239235360001328422802235

Decryption using the secret key 97:
140497 = 0120 (mod 3713) 239297 = 2001 (mod 3713) ...
0120200103110001200004012314

39

Security of the RSA cryptosystem

If d can be determined using the knowledge of e og N, the security of
the system is compromised.

If N can be factorized, N = pq, then d can be reconstructed.

The caveat is that factorization is very hard to do for large numbers.
Using today’s technology it will take millions of years for a computer
to factorize a number of 200 digits.

40

Algorithms

(1) Modular exponentiation (Me and Rd mod N)

(2) Primality testing (p and q must be primes)

(3) Multiplication of long integers ((p-1)(q-1))

(4) Greatest common divisor (gcd(e, N’))

(5) Multiplicative inverse (ed (mod N’) = 1)

41

Exponentiation

Compute xn where x is an integer, and n is a non-negative
integer.

Simple algorithm:

Number of multiplications: n.

power = 1;
for (int i = 1; i <= n; i++)
 power *= x;

42

Exponentiation
Efficient algorithm

If n is even, then

If n is odd, then

xn = (x ⋅ x)
n
2

xn = x ⋅ xn−1 = x ⋅ (x ⋅ x)
n
2

⎢
⎣⎢

⎥
⎦⎥

public static long power(long x, int n) {
 if (n == 0)
 return 1;
 long tmp = power(x * x, n / 2);
 if (n % 2 != 0)
 tmp *= x;
 return tmp;
}

Number of multiplications < 2 log2n.

43

Modular exponentiation

44

Greatest common divisor
Recursive version of Euclid’s algorithm

return b == 0 ? a : gcd(b, a % b);

45

Extended Euclid’s algorithm

Given two integers a and b, the extended Euclid’s algorithm,
fullGcd, computes their greatest common divisor, d, as well as
integers x and y such that d = ax + by.

Base case: If b = 0, then d = a, x = 1, and y = 0.

Example: a = 13, b = 17, d = 1, x = 4, y = -3

46

Induction hypothesis: We know how to compute d, x and y
for fullGcd(b, a mod b).

d1 = bx1 + (amodb)y1 = bx1 + (a −
a
b
⎢
⎣⎢

⎥
⎦⎥
b)y1 = ay1 + b(x1 −

a
b
⎢
⎣⎢

⎥
⎦⎥
y1)

Let d1, x1 and y1 denote the values computed by fullGcd(b, a mod b).

Thus, for fullGcd(a, b) we have

d = d1, x = y1, y = x1 −
a
b

⎢
⎣⎢

⎥
⎦⎥
y1

47

Implementation of
Extended Euclid’s algorithm

long[] fullGcd(long a, long b) { // returns {d, x, y}
 if (b == 0)
 return new long[] {a, 1, 0};
 long[] t = fullGcd(b, a % b);
 return new long[] {t[0], t[2], t[1] - (a / b) * t[2]};
}

48

Multiplicative inverse

The solution 1 ≤ x ≤ n to the equation

is called the multiplicative inverse of a, mod n.

A call of fullGcd(a, n) returns d, x, and y, such that d = ax + ny,
and d is the greatest common divisor of a and n.

If d = 1, then x must be the multiplicative inverse of a, mod n.
If d ≠ 1, then a has no multiplicative inverse, mod n.

ax ≡ 1(modn)

49

50

To move the n disks from peg from to peg to:
1. move the uppermost n-1 disks from peg from to peg via
2. move the bottom disk from peg from to peg to
3. move the n-1 disks from peg via to peg to.

Towers of Hanoi

Problem. Move the disks on peg from to peg to. Only one disk may be
moved at a time, and no disk may be placed on top of a smaller disk.

from via to

51

void move(int n, int from, int to, int via) {
 if (n == 0)
 return;
 move(n - 1, from, via, to);
 System.out.println("Move " + from + " to " + to);
 move(n - 1, via, to, from);
}

Implementation

52

move(2,2,3,1)
move(2,1,2,3)

move(1,1,3,2)

move(0,1,2,3) move(0,3,2,1)

move(1,2,1,3)

move(0,2,3,1) move(0,1,2,3)

move(3,1,3,2)

Call tree for move(3,1,3,2)

 move(0,1,2,3) move(0,3,2,1)

move(1,1,3,2)

move(0,2,3,1) move(0,3,1,2)

move(1,3,2,1)

Call tree

53

Complexity

The time complexity is proportional to the number of moves, M(N),
where N is the number of disks.

M(N) = M(N-1) + 1 + M(N-1) = 2M(N-1) + 1, for N > 1
M(1) = 1

which has the solution M(N) = 2N – 1.

The total time needed for 64 disks, given that each move takes one
second, is

264 seconds ≈ 1019 seconds ≈ 1012 years

The space complexity is proportional to the maximum number of
unfinished calls of move, that is O(N).

54

Divide-and-conquer is a important algorithm design technique.
It is an example of the use of strong induction.

Divide-and-conquer

(1) Divide: If the input is smaller than a certain threshold
(say, one or two elements), solve the problem directly using
a straightforward method and return the solution so
obtained. Otherwise, divide the input data into two or more
disjoint subsets.

(2) Recur: Recursively solve the sub-problems associated
with the subsets.

(3) Conquer: Take the solutions to the sub-problems and
“merge” them into a solution of the original problem.

55

Template for divide-and-conquer

Pseudocode:

solve(Problem p) {
 if (size(p) <= critical_size)
 solve_small_problem(p);
 else {
 subproblem = divide(p);
 solve(subproblem[0]);
 solve(subproblem[1]);

 combine_solutions();
 }

}

56

Example���
Computing the maximum contiguous sum

Either the maximum subsequence resides

(2) entirely in the right part, or

(3) in a sequence that contains
the center element

Divide the input into two halves:

(1) entirely in the left part,

57

The first two sums are computed using recursion.

The last sum is determined as the sum of
• the maximum suffix for the sequence to the left of the center element

(including this element), and
• the maximum prefix for the sequence to the right of the center element.

The maximum subsequence sum is determined as the maximum of
these three values.

Three sub-problems

58

59

if (left > right)
 return 0;

a, left, center – 1)

60

Complexity
Let T(N) represent the time to solve a maximum contiguous
subsequence problem of size N. Suppose N is a power of 2.
Then T(N) satisfies the recurrence

T(N) = 2T(N/2) + O(N)
T(1) = O(1)

If O(N) and O(1) are replaced by N and 1, respectively, the
solution is

T(N) = N log2N + N

Thus, the total running time is O(N log N).

61

There are about log2N levels

Call tree

62

A general upper bound for
divide-and-conquer algorithms

The solution to the equation T(N) = AT(N/B) + O(Nk),
where A ≥ 1 and B > 1, is

T (N) =
O(N logB A)
O(N k logN)
O(N k)

⎧

⎨
⎪

⎩
⎪

for A > Bk

for A = Bk

for A < Bk

63

Divide-and conquer (top-down):
 To solve a large problem, the problem is divided into smaller

problems that are solved independently.

Dynamic programming

Dynamic programming (bottom-up):
 To solve a large problem, all small problems are solved, and their

solutions are saved and used to solve larger problems. This process
continues until the original problem has been solved.

Richard E. Bellman, 1953

64

Dynamic programming

Modern definition:
Implementation of recursive programs with overlapping sub-
problems. Top-down and bottom-up implementations are
possible.

Top-down dynamic programming (memoization) means storing the
results of certain calculations, which are then re-used later.
Bottom-up dynamic programming involves formulating a complex
calculation as a recursive series of calculations.

65

Fibonacci numbers

Don’t use this code. The same sub-problems are solved many times.

66

Avoiding re-calculations
with memoization

Maintain an array (indexed by the parameter value) containing
* 0, if the recursive methods has not yet been called
 with this parameter value; otherwise

* the result computed by a previous call
For the first call for a given parameter value: compute and save
the result. For later calls with this parameter value: return the
saved value.

int fib(int n) {
 if (fibKnown[n] != 0)
 return fibKnown[n];
 int f = n <= 1 ? n : fib(n-1) + fib(n-2);
 fibKnown[n] = f;
 return f;
}

67

Efficiency

 Running time: linear

34
21

13

8
5

3
2

1

13
8

5
3

2
1

1

Memoization:

1 0

Simple recursive algorithm: F(9)
34

21
13

8
5 3 3

5
2

3 2 2 1
1 1 1 1 1

2
1 1

1

8
5

3
1 1 2

1 1
1

2
1 1

3
1

13
8 5

5
3

2
1 1

1 1 1

3 3
2

1
2

1
1 2 1

1 1

2
1 1

2
1 1

1 0
1 0 1 0 1 0

1 0
1 0

1 0
1 0

1 0 1 0 1 0
1 0

Running time: exponential

68

Example: Computation of Fibonacci numbers

F[0] = 0; F[1] = 1;
for (i = 2; i <= n; i++)
 F[i] = F[i - 1] + F[i - 2];

Running time is linear.

Dynamic programming (traditional):
* Tabulate the solutions of the sub-problems
* Build the table in increasing problem size
* Use tabulated solutions for obtaining new solutions

Bottom-up approach

69

Optimal change-making

Change-making problem
For a currency with coins C1, C2, ..., CN (cents) what is the minimum number of
coins needed to make K cents of change?

Example:
U.S. currency has coins in 1-, 5-, 10- and 25-cent denominations. We can make
63 cents by using two 25-cent pieces, one 10 cent piece, and three 1-cent pieces,
for a total of six coins.

For U.S. coins it can be shown that a greedy algorithm where we repeatedly use
the largest coin available always minimizes the total number of coins uses.
However, this algorithm does not work if U.S. currency included a 21-cent. The
greedy algorithm would still use six coins, but the optimal solution uses three
coins (all 21-cent pieces).

70

Top-down solution

int[] coins = {1, 5, 10, 21, 25};

int makeChange(int change) {
 if (change == 0)

 return 0;
 int min = Integer.MAX_VALUE;
 for (int i = 0; i < coins.length; i++)
 if (change >= coins[i])
 min = Math.min(min,

 1 + makeChange(change - coins[i]));
 return min;
}

Do not use this algorithm! Exponential time. Avoid recomputations.

Compute for each possible coin the minimum number of coins that can
be used in a change of the remaining amount of money. Take minimum.

71

int makeChange(int change) {
 if (change == 0)
 return 0;
 if (minKnown[change] > 0)
 return minKnown[change];
 int min = Integer.MAX_VALUE;
 for (int i = 0; i < coins.length; i++)
 if (change >= coins[i])
 min = Math.min(min,
 1 + makeChange(change - coins[i]));
 minKnown[change] = min;
 return min;
}

Use known solutions

72

Printing the coins used in an optimal change

while (change > 0) {
 System.out.println(lastCoin[change]);
 change -= lastCoin[change];
}

Save in an array, lastCoin, the last coin used to make an
optimal change.

73

int makeChange(int change) {
 if (change == 0)
 return 0;
 if (minKnown[change] > 0)
 return minKnown[change];
 int min = Integer.MAX_VALUE;
 for (int i = 0; i < coins.length; i++)
 if (change >= coins[i]) {
 int m = 1 + makeChange(change - coins[i]);
 if (m < min)
 { min = m; lastCoin[change] = coins[i]; }
 }
 minKnown[change] = min;
 return min;
}

74

int makeChange(int change) {
 minKnown[0] = 0;
 for (int c = 1; c <= change; c++) {
 int min = Integer.MAX_VALUE;
 for (int i = 0; i < coins.length; i++)
 if (c >= coins[i])
 min = Math.min(min,
 1 + minKnown[change - coins[i]]);
 minKnown[c] = min;
 }
 return minKnown[change];
}

Bottom-up solution ���
(no recursion)

Use known solutions to compute new solutions.

Running time is proportional to change * coins.length.

75

Backtracking

Use recursion to try all possibilities

76

Search in a maze

WWW
******W W W W W W W W W W
WWWWW*W W W W W W W W WWWWWWWWWW
W***** WW W WWWW WWW W WWWWWW W W W
W*WWWWWWWW W W W W**** W********W WWWWWW
W* W W W W**W*W**WWWWW** W
W*WWWWWWWWWWWW WW WW*W*W*WWWW*** W WWWW W
W********************W*W*W *WWWW W W
WWWWWWWWWWWWWWWWWWWW W***W W****W W WW W
W W WWWWWWWWWWW*WWWWWWWW
W WWWWWWWWWW WWWW WWWWW W W*W***WW W
W W W W ***W*****
WWW

Solution

End

Start

Start

End

Problem
WWW
 W W W W W W W W W W
WWWWW W W W W W W W W WWWWWWWWWW
W WW W WWWW WWW W WWWWWW W W W
W WWWWWWWW W W W W W W WWWWWW
W W W W W W W WWWWW W
W WWWWWWWWWWWW WW WW W W WWWW W WWWW W
W W W W WWWW W W
WWWWWWWWWWWWWWWWWWWW W W W W W WW W
W W WWWWWWWWWWW WWWWWWWW
W WWWWWWWWWW WWWW WWWWW W W W WW W
W W W W W
WWW

77

public class Maze {
 static String[] problem =

 {"WWW",
 " W W W W W W W W W W",

 "WWWWW W W W W W W W W WWWWWWWWWW",
 "W WW W WWWW WWW W WWWWWW W W W",
 "W WWWWWWWW W W W W W W WWWWWW",
 "W W W W W W W WWWWW W",
 "W WWWWWWWWWWWW WW WW W W WWWW W WWWW W",
 "W W W W WWWW W W",
 "WWWWWWWWWWWWWWWWWWWW W W W W W WW W",
 "W W WWWWWWWWWWW WWWWWWWW",
 "W WWWWWWWWWW WWWW WWWWW W W W WW W",
 "W W W W W ",
 "WWW”};
 static int xStart = 0, yStart = 1, xEnd = 40, yEnd = 11;

 static boolean solutionFound = false;
 static StringBuffer[] solution = new StringBuffer[problem.length];

78

public static void main(String[] args) {
 for (int x = 0; x < problem.length; x++)
 solution[x] = new StringBuffer(problem[y]);
 visit(xStart, yStart);
 if (solutionFound)
 for (int y = 0; y < solution.length; y++)
 System.out.println(solution[y]);
}

79

static void visit(int x, int y) {
 solution[x].setCharAt(y, '*');
 solutionFound = (x == xEnd && y == yEnd);
 for (int d = 1; d <= 4 && !solutionFound; d++) {
 int xNext = 0, yNext = 0;
 switch(d) {
 case 1: xNext = x; yNext = y - 1; break;
 case 2: xNext = x - 1; yNext = y; break;
 case 3: xNext = x; yNext = y + 1; break;
 case 4: xNext = x + 1; yNext = y; break;

 }
 if (yNext >= 0 && yNext < solution.length &&

 xNext >= 0 && xNext < solution[yNext].length &&
 solution[yNext].charAt(xNext) == ' ')

 visit(xNext, yNext);
}

 if (!solutionFound)
 solution[x].setCharAt(y, ' ');
}

80

Tic-tac-toe

...

...

............

O wins Draw X wins

81

82

83

84

The routine implements the
minimax strategy.

For the computer, the value of a
position is the maximum of the
values of all positions that can
result from making a move.

For the human, the value of a
position is the minimum of the
values of all positions that can
result from making a move.

85

to obtain
•  simple and precise definitions
•  elegant solutions of problems that otherwise are hard to solve
•  algorithms that are simple to analyze

Think recursively

86

87

An algorithm A is said to be partially correct if the following holds:
If A terminates for a given legal input, then its output is correct.

Verification of algorithms

Proof of partial correctness is made by using assertions.

A program assertion is a condition associated to a given point of the
algorithm that is true each time the algorithm reaches that point.

An algorithm A is said to be correct (or totally correct) if A is partially
correct and A terminates for any legal input.

88

Assertions

•  Precondition
a condition that must always be true just prior to the execution of
some section of code.

•  Postcondition
a condition that must always be true just after the execution of some
section of code.

•  Loop invariant
a statement of the conditions that should be true on entry into a loop
and that are guaranteed to remain true on every iteration of the loop.

89

{ m ≤ n } precondition
sort(a, m, n);

{ a[m] ≤ a[m+1] ≤ . . . ≤ a[n] } postcondition

Examples of assertions

i = m;
while

 { a[m] ≤ a[m+1] ≤ . . . ≤ a[i-1] ^
 a[m .. i-1] ≤ a[i .. n] } loop invariant
 (i < n) {
 min = i;
 for (j = i + 1; j <= n; j++)
 if (a[j] < a[min]) min = j;
 x = a[i]; a[i] = a[min]; a[min] = x;
 i++;
}

90

Verification rules

•  Assignment:

{ P } { w > 2 }
v = w;

{ P } { v > 2 }

w

•  Selection:

{P}
if (B) { P ^ B }

 S1;
else { P ^ ¬B }
 S2;

w -> v

91

Given the algorithm

q = 0; r = x;
while (r >= y) {
 r = r - y;
 q = q + 1;

 }

where x, y, q and r are integers, x ≥ 0 and y > 0.

Verification example���
Integer division

Prove that the algorithm computes the quotient q and the
remainder r for the integer division of x by y, that is

r = x - qy (0 ≤ r < y)

92

The steps of the proof

 (1) The loop invariant is true at the entry of the loop

(2) If the loop invariant is true at a given iteration it is
also true at the next iteration

(3) If the algorithm terminates, its postcondition is true

(4) The algorithm terminates

induction

93

{ x ≥ 0, y > 0 } precondition of the algorithm
q = 0;
r = x;

while { r = x - qy ^ r ≥ 0 } loop invariant
 (r >= y) {

 r = r - y;

 q = q + 1;
}

{ r = x - qy ^ 0 ≤ r < y } postcondition of the algorithm

{ r = x - qy ^ r ≥ y }

{ r = x - (q+1)y ^ r ≥ 0 }

 { r - y = x - (q+1)y ^ r - y ≥ 0 }≡

94

q = 0; r = x;
while (r >= y) {
 r = r - y;

q = q + 1;
}

The algorithm terminates

Termination

Proof:
Since y > 0, each iteration will reduce r.
Thus, the loop condition will be false after a finite number of
iterations.

