
� � � � � � � � � �

BOOK.mkr Page 925 Wednesday, March 14, 2001 1:29 PM

BOOK.mkr Page 926 Wednesday, March 14, 2001 1:29 PM

� � � � � � � �

Figure A.1 shows the precedence and associativity of the common Java operators

discussed. The bitwise operators have not been used in this book.

	
 � �
 � � � � �
 � � � � � � � � � � �
 � � � � � �
� � � � � ! " # $ " # % � & � � � # ' � $

. [] (� & " � !) *
+ # � � ,

++ -- ! - (type)
% !) * " - � &

. / - ! � - ! ' � ! 0 �
* / % (� & " � !) *

1 2 2 ! ! 0 �
+ - (� & " � !) *

3 * ! & 4 5 ! 6 ! $ � 7
<< >> >>> (� & " � !) *

% � - � ! " # � -
< <= > >= instanceof (� & " � !) *

8 9 / � - ! ,
== != (� & " � !) *

: " " - � � # 4 " � 5 ! 6 ! $ � 7 1 ; <
& (� & " � !) *

: " " - � � # 4 " � 5 ! 6 ! $ � 7 = � %
^ (� & " � !) *

: " " - � � # 4 " � 5 ! 6 ! $ � 7 � %
| (� & " � !) *

(") ! ' � - 1 ; <
&& (� & " � !) *

(") ! ' � - � %
|| (� & " � !) *

> " # 2 ! ! " # � -
?:

% !) * " - � &
1 $ $!) # ? � #

= *= /= %= += -=
% !) * " - � &

@ A B C D E F G H I J K J L M N O J P L O Q R S Q P N T U O L V W S X W N Q P P L R L Y N Q P M O N Z N T N [Z N

BOOK.mkr Page 927 Wednesday, March 14, 2001 1:29 PM

BOOK.mkr Page 928 Wednesday, March 14, 2001 1:29 PM

� � � � � � � �

 graphical user interface (GUI) is the modern alternative to terminal I/O

that allows a program to communicate with its user. In a GUI, a window

application is created. Some of the ways to perform input include selection from a

list of alternatives, pressing buttons, checking boxes, typing in text fields, and

using the mouse. Output can be performed by writing into text fields as well as

drawing graphics. In Java 1.2 or higher, GUI programming is performed by using

the Swing package.

\] ^ _ ` a b c _ d e f g ^ b h i
j g ^ k _ c g l m n o p q r s t u

v w x u y z { | s u y z { s q } u
s w s u y v q z { | ~ � � s t { s
{ | | w � r { � y w � y { v s w
� w v v � z q � { s u � q s t
q s r � r u y �

In this appendix, we will see:

• The basic GUI components in Swing

• How these components communicate information

• How these components can be arranged in a window

• How to draw graphics

BOOK.mkr Page 929 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� � �

� ¡ � � � � � ¢ � � � £
¤ t u ¥ ¦ f j ^ _ c j § b h i

¨ © ª « © © d ¬ b j l ¥ § « p q r
{ ­ ® ~ s w w | ¯ q s s t { s q r
r � � � | q u x � q s t { | |
° { } { r ± r s u v r �

The Abstract Window Toolkit (AWT) is a GUI toolkit that is supplied with all Java

systems. It provides the basic classes to allow user interfaces. These classes can

be found in the package java.awt.1 The AWT is designed to be portable and

work across multiple platforms. For relatively simple interfaces, the AWT is easy

to use. GUIs can be written without resorting to visual development aids, and pro-

vides a significant improvement over basic terminal interfaces.

­ ® ~ � y w � y { v v q z � q r
u } u z s ² x y q } u z �

In a program that uses terminal I/O, the program typically prompts the user

for input and then executes a statement that reads a line from the terminal. When

the line is read, it is processed. The flow of control in this situation is easy to fol-

low. GUI programming is different. In GUI programming, the input components

are arranged in a window. After the window is displayed, the program waits for an

event, such as a button push, at which point an event handler is called. This means

that the flow of control is less obvious in a GUI program. The programmer must

supply the event handler to execute some piece of code.

@ A B C D E ³ G H ´ � � � P W J P S R R µ Q P O J P N Q Q L V N L U P W N ¶ J Q S Z · Y S [X Z L V M L [N [P Q
1. Code in this appendix uses the wild-card import directive to save space.

BOOK.mkr Page 930 Wednesday, March 14, 2001 1:29 PM

¸ W N ´ ¶ Q P O J Z P ¹ S [T L Y ¸ L L R º S P J [T · Y S [X � � »

¤ t u u } u z s v w x u |
� t { z � u x q z q z � w v ²
� { s q ¼ | u � { ± r ½ y w v
° { } { ¾ � ¿ s w ° { } { ¾ � ¾ �
¤ t u | { s s u y } u y r q w z q r
x u r � y q ¼ u x t u y u �

Java 1.0 provided an event model that was cumbersome to use. It was

replaced in Java 1.1 by a more robust event model. Not surprisingly, these models

are not entirely compatible. Specifically, a Java 1.0 compiler wil l not successfully

compile code that uses the new event model. Java 1.1 compilers will give diag-

nostics about Java 1.0 constructs. However, already compiled Java 1.0 code can

be run by a Java 1.1 interpreter. This appendix describes the newer event model

only. Many of the classes required by the new event model are found in the

java.awt.event package.

À � q z � q r { ­ ® ~ � { � ¯ ²
{ � u � y w } q x u x q z
° { } { ¾ � Á s t { s q r ¼ � q | s
w z s w � w ½ s t u \ Â ¤
{ z x � y w } q x u r r | q � ¯ u y
� w v � w z u z s r �

The AWT provided a simple GUI, but was criticized for its lack of f lair, as

well as poor performance. In Java 1.2, an improved set of components was added

in a new package called javax.swing. These components are known as

Swing. Components in Swing look much better than their AWT counterparts,

there are new Swing components that did not exist in AWT (such as sliders and

progress bars), and have many more options (such as easy tooltips and mnemon-

ics). Additionally, Swing provides the notion of look-and-feel, in which a pro-

grammer can display the GUI in Windows, X-Motif, Macintosh, platform

independent (metal), or even customized style, regardless of the underlying plat-

form (although, because of copyright issues and perhaps bad blood between Sun

and Microsoft, Windows look-and-feel works only on Windows systems).

Swing is built on top of the AWT, and as a result, the event-handling model is

unchanged. Programming in Swing is very similar to the programming in Java

1.1 AWT, except that many names have changed. In this appendix we describe

Swing programming only. Swing is a large library; it is not unusual to see entire

BOOK.mkr Page 931 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� � Ã

books devoted to the topic, so our presentation greatly understates the issues that

are involved in user interface design.

Figure B.1 illustrates some of the basic components provided by Swing.

These include the JComboBox (currently Circle is selected), a JList (cur-

rently blue is selected), basic JTextFields for input, four JCheckBoxes, and

a JButton (named Draw). Next to the button is a JTextField that is used

for output only (hence, it is darker than the input JTextFields above it). In

the top left-hand corner is a JPanel object that can be used for drawing pictures

and handling mouse input.

@ A B C D E ³ G Ä Å L V M O N Q Q N T W S N O J O Z W Æ L U · Y S [X

JButton

JCheckBox

JComboBox

JLabel

JList

JRadioBox

JTextArea

JTextField

Component

Container

JComponent

Frame

 Window

JFrame
JPanel

BOOK.mkr Page 932 Wednesday, March 14, 2001 1:29 PM

Ç J Q S Z È ¶ É N Z P Q S [P W N ´ ¹ ¸ � � �

This appendix describes the basic organization of the Swing API. It covers

the different types of objects, how they can be used to perform input and output,

how these objects are arranged in a window, and how events are handled.

� � Ê � � � � � Ë � Ì � � � � � � � � � � � �

The AWT is organized using a class inheritance hierarchy. A compressed version

of this hierarchy is shown in Figure B.2. This is compressed because some inter-

mediate classes are not shown. For instance, in the full hierarchy, JTextField

and JTextArea are extended from JTextComponent, while many classes

that deal with fonts, colors, and other objects and are not in the Component

hierarchy are not shown at all. The classes Font and Color, which are defined

in the java.awt package, are extended from Object.

BOOK.mkr Page 933 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� � Í

Î Ï Ð Ï Ñ
Component

¤ t u
Component

� | { r r q r { z { ¼ r s y { � s
� | { r r s t { s q r s t u r � ²
� u y � | { r r w ½ v { z ±
\ Â ¤ w ¼ Ò u � s r � ~ s y u � ²
y u r u z s r r w v u s t q z �
s t { s t { r { � w r q s q w z
{ z x { r q Ó u { z x � { z
¼ u � { q z s u x w z s t u
r � y u u z { r � u | | { r
� { z y u � u q } u q z � � s
u } u z s r �

The Component class is an abstract class that is the superclass of many AWT

objects, and thus Swing objects. Because it is abstract, it cannot be instantiated. A

Component represents something that has a positi on and a size and can be

painted on the screen as well as can receive input events. Some examples of the

Component are evident from Figure B.2.

The Component class contains many methods. Some of these can be used

to specify the color or font; others are used to handle events. Some of the impor-

tant methods are

void setSize(int width, int height);
void setBackground(Color c);
void setFont(Font f);
void show();

The setSize method is used to change the size of an object. It works with

JFrame objects, but it should not be called for objects that use an automatic lay-

out, such as JButtons. For those, use setPreferredSize; this method

takes a Dimension object that itself is constructed with a length and width (and

is defined in JComponent). The setBackground and setFont methods

are used to change the background color and font associated with a Component.

They require a Color and Font object, respectively. Finally, the show method

makes a component visible. Its typical use is for a JFrame.

BOOK.mkr Page 934 Wednesday, March 14, 2001 1:29 PM

Ç J Q S Z È ¶ É N Z P Q S [P W N ´ ¹ ¸ � � Ô

Î Ï Ð Ï Ð
Container

\
Container

q r
s t u { ¼ r s y { � s r � � u y ²
� | { r r y u � y u r u z s q z �
{ | | � w v � w z u z s r s t { s
� { z t w | x w s t u y
� w v � w z u z s r �

In the AWT, a Container is the abstract superclass representing all compo-

nents that can hold other components. An example of an AWT Container is

the Window class, which represents a top-level window. As the inheritance hier-

archy shows, a Container IS-A Component. A particular instance of a

Container object wil l store a col lection of Components as well as other

Containers.

The container has a useful helper object called a LayoutManager, which is

a class that positions components inside the container. Some useful methods are

void setLayout(LayoutManager mgr);
void add(Component comp);
void add(Component comp, Object where);

Layout managers are described in Section B.3.1. A container must first define

how objects in the container should be arranged. This is done by using

setLayout. It then adds the objects into the container one-by-one by using add.

Think of the container as a suitcase, in which you can add clothes. Think of the

layout manager as the packing expert who will explain how clothes are to be added

to the suitcase.

BOOK.mkr Page 935 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� � Õ

Î Ï Ð Ï Ö × Ø Ù Ú Û Ü Ý Ü Û Þ Ø ß à á â ß Ü ã ä
¤ t u ¼ { r q � � w z s { q z ²
u y r { y u s t u s w � ² | u } u |
Window

{ z x
JComponent

� ¤ t u
s ± � q � { | t u { } ± ²
� u q � t s � w v � w ²
z u z s r { y u
JWindowå
JFrame å { z x
JDialog

�

As Figure B.2 shows, there are two types of Container objects, namely

1. the top-level windows which eventually reaches JFrame
2. the JComponent, which eventually reaches most other Swing

components.

JFrame is an example of a “heavyweight component,” while all Swing com-

ponents in the JComponent hierarchy are “ lightweight.” The basic difference

between heavyweight and lightweight components is that lightweight compo-

nents are drawn on a canvas entirely by Swing whereas heavyweight components

interact with the native windowing system. As a result, whereas lightweight com-

ponents can add other lightweight components, (for instance, you can use add to

place several JButton objects in a JPanel), but you should not add directly

into a heavyweight component. Instead you obtain a Container representing

its “content pane” and add into the content pane, thus allowing Swing to update

the content pane. Thus the native windowing system is not involved in the update

(you wil l get a runtime exception if you attempt to add into a heavyweight com-

ponent), increasing update performance.

There are only a few basic top-level windows, including:

1. JWindow: a top-level window that has no border
2. JFrame: a top-level window that has a border and can also have

an associated JMenuBar2

3. JDialog: a top-level window used to create dialogs
An application that uses a Swing interface should have a JFrame (or a class

extended from JFrame) as the outermost container.

2. Menus are not discussed in this Appendix.

BOOK.mkr Page 936 Wednesday, March 14, 2001 1:29 PM

Ç J Q S Z È ¶ É N Z P Q S [P W N ´ ¹ ¸ � � æ

Î Ï Ð Ï ç
JPanel

¤ t u
JPanel

q r � r u x
s w r s w y u { � w | | u � ²
s q w z w ½ w ¼ Ò u � s r å ¼ � s
x w u r z w s � y u { s u
¼ w y x u y r � \ r r � � t å q s
q r s t u r q v � | u r s w ½ s t u
Container

� | { r r u r �

The other Container subclass is the JComponent. One such JComponent

is the JPanel which is used to store a collection of objects, but does not create

borders: So it is the simplest of the container classes.

The primary use of the JPanel is to organize objects into a unit. For

instance, consider a registration form that requires a name, address, social secu-

rity number, and home and work telephone numbers. All of these form compo-

nents might produce a PersonPanel. Then the registration form could contain

several PersonPanel entities to allow the possibil ity of multiple registrants.

As an example, Figure B.3 shows how the components shown in Figure B.1

are grouped into a JPanel class and il lustrates the general technique of creating

a subclass of JPanel. It remains to construct the objects, lay them out nicely,

and handle the button push event.

Note that GUI implements the ActionListener interface. This means

that it understands how to handle an action event (in this case, a button push). To

implement the ActionListener interface, a class must provide an

actionPerformed method. Also, when the button generates an action event,

it must know which component is to receive the event. In this case, by making the

call at 11 (in Figure B.3), the GUI object that contains the JButton tells the

Button to send it the event. These event-handling details are discussed in Sec-

tion B.3.3.

A second use of the JPanel is the grouping of objects into a unit for the

purpose of simpli fying layouts. This is discussed in Section B.3.5.

BOOK.mkr Page 937 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� � è

Almost all of the JPanel functionali ty is in fact inherited from

JComponent. This includes routines for painting, sizing, and event handling

and the method to set tooltips:

void setToolTipText(String txt);
void setPreferredSize(Dimension d);

Î Ï Ð Ï é ê ë Ù Ø ã à á ß à ê ì í Þ Ø ë Ù Ø ß Ü ß à ä

Swing provides a set of components that can be used to perform input and output.

These components are easy to set up and use. The code in Figure B.4 (page 941)

il lustrates how each of the basic components that are shown in Figure B.1 are con-

structed. Generall y, this involves calli ng a constructor and applying a method to

customize a component. This code does not specify how items are arranged in the

JPanel or how the states of the components are examined. Recall that GUI pro-

gramming consists of drawing the interface and then waiting for events to occur.

Component layout and event handling is discussed in Section B.3.

JLabel
\
JLabel

q r {
� w v � w z u z s ½ w y
� | { � q z � s u î s q z {
� w z s { q z u y � ~ s r � y q ²
v { y ± � r u q r s w | { ¼ u |
w s t u y � w v � w z u z s r �

A JLabel is a component for placing text in a container. Its primary use is to

label other components such as a JComboBox, JList, JTextField, or

JPanel (many other components already have their names displayed in some

way). In Figure B.1, the phrases Shape, X Coor, and Y Coor are labels. A

JLabel is constructed with an optional String and can be changed with the

method setText. These methods are

BOOK.mkr Page 938 Wednesday, March 14, 2001 1:29 PM

Ç J Q S Z È ¶ É N Z P Q S [P W N ´ ¹ ¸ � � �

JLabel();
JLabel(String theLabel);
void setText(String theLabel);

ï
import java.awt.*;ð
import java.awt.event.*;ñ
import java.awt.swing.*;òó
class GUI extends JPanel implements ActionListenerô
{õ
 public GUI()ö
 {÷
 makeTheObjects();ï ø
 doTheLayout();ï ï
 theDrawButton.addActionListener(this);ï ð
 }ï ñ
 // Make all the objectsï ò
 private void makeTheObjects()ï ó
 { /* Implementation in Figure B.4 */ }ï ôï õ
 // Layout all the objectsï ö
 private void doTheLayout()ï ÷
 { /* Implementation in Figure B.7 */ }ð øð ï
 // Handle the draw button pushð ð
 public void actionPerformed(ActionEvent evt)ð ñ
 { /* Implementation in Figure B.9 */ }ð òð ó
 private GUICanvas theCanvas;ð ô
 private JComboBox theShape;ð õ
 private JList theColor;ð ö
 private JTextField theXCoor;ð ÷
 private JTextField theYCoor;ñ ø
 private JRadioButton smallPic;ñ ï
 private JRadioButton mediumPic;ñ ð
 private JRadioButton largePic;ñ ñ
 private JCheckBox theFillBox;ñ ò
 private JButton theDrawButton;ñ ó
 private JTextField theMessage;ñ ô
}

@ A B C D E ³ G ù Ç J Q S Z � � � Z R J Q Q Q W L Y [S [ú S X µ O N Ç û ü

BOOK.mkr Page 939 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� Í �

JButton
¤ t u

JButton
q r

� r u x s w � y u { s u {
| { ¼ u | u x ¼ � s s w z �
Â t u z q s q r � � r t u x å
{ z _ c j b © h g ý g h j q r
� u z u y { s u x �

The JButton is used to create a labeled button. Figure B.1 contains a JButton

with the label Draw. When the JButton is pushed, an action event is generated.

Section B.3.3 describes how action events are handled. The JButton interface is

similar to the JLabel. Specifically, a JButton is constructed with an optional

String. The JButton label can be changed with the method setText. These

methods are

BOOK.mkr Page 940 Wednesday, March 14, 2001 1:29 PM

Ç J Q S Z È ¶ É N Z P Q S [P W N ´ ¹ ¸ � Í »

ï
 // Make all the objectsð
 private void makeTheObjects()ñ
 {ò
 theCanvas = new GUICanvas();

ó
 theCanvas.setBackground(Color.green);ô
 theCanvas.setPreferredSize(new Dimension(99, 99));õö
 theShape = new JComboBox(new String[]÷
 { "Circle", "Square" });ï ø
 ï ï
 theColor = new JList(new String[] { "red", "blue" });ï ð
 theColor.setSelectionMode(ï ñ
 ListSelectionModel.SINGLE_SELECTION);ï ò
 theColor.setSelectedIndex(0); // make red defaultï ó

ï ô
 theXCoor = new JTextField(3);ï õ
 theYCoor = new JTextField(3);ï öï ÷
 ButtonGroup theSize = new ButtonGroup();ð ø
 smallPic = new JRadioButton("Small", false);ð ï
 mediumPic = new JRadioButton("Medium", true);ð ð
 largePic = new JRadioButton("Large", false);ð ñ
 theSize.add(smallPic);ð ò
 theSize.add(mediumPic);ð ó
 theSize.add(largePic);ð ôð õ
 theFillBox = new JCheckBox("Fill");ð ö
 theFillBox.setSelected(false);ð ÷ñ ø
 theDrawButton = new JButton("Draw");ñ ïñ ð
 theMessage = new JTextField(25);ñ ñ
 theMessage.setEditable(false);ñ ò
 }

@ A B C D E ³ G þ Å L T N P W J P Z L [Q P O µ Z P Q P W N L ¶ É N Z P Q S [ú S X µ O N Ç û ü

JButton();
JButton(String theLabel);
void setText(String theLabel);
void setMnemonic(char c);

JComboBox
¤ t u

JComboBox
q r

� r u x s w r u | u � s { r q z ²
� | u r s y q z � } q { { � w � ²
� � | q r s w ½ � t w q � u r �

The JComboBox is used to select a single object (typically a string) via a pop-up

list of choices. Only one choice can be selected at any time, and by default only

an object that is one of the choices can be selected. If the JComboBox is made

BOOK.mkr Page 941 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� Í Ã

editable, the user can type in an entry that is not one of the choices. In Figure B.1,

the type of shape is a JComboBox object; Circle is currently selected. Some of

the JComboBox methods are

JComboBox();
JComboBox(Object[] choices);
void addItem(Object item);
Object getSelectedItem();
int getSelectedIndex();
void setEditable(boolean edit);
void setSelectedIndex(int index);

A JComboxBox is constructed with no parameters or with an array of

options. Objects (typically strings) can then be added to (or removed from) the

list of JComboxBox options. When getSelectedItem is called, an Object

representing the current selected item (or null if no choice is selected) is

returned. Instead of returning the actual Object, its index (as computed by the

order of calls to addItem) can be returned by calling getSelectedIndex.

The first item added has index 0, and so on. This can be useful because if an array

stores information corresponding to each of the choices, getSelectedIndex

can be used to index this array. The setSelectedIndex method is used to

specify a default selection.

BOOK.mkr Page 942 Wednesday, March 14, 2001 1:29 PM

Ç J Q S Z È ¶ É N Z P Q S [P W N ´ ¹ ¸ � Í �

JList
¤ t u

List � w v � w ²
z u z s { | | w � r s t u r u ²
| u � s q w z ½ y w v { r � y w | | ²
q z � | q r s w ½

Object
r �

~ s � { z ¼ u r u s � � s w
{ | | w � ½ w y u q s t u y w z u
r u | u � s u x q s u v w y
v � | s q � | u r u | u � s u x
q s u v r �

The JList component allows the selection from a scrolling list of Objects. In

Figure B.1, the choice of colors is presented as a JList. The JList differs

from the JComboBox in three fundamental ways:

1. The JList can be set up to allow either one selected item or mul-
tiple selected items (the default is multiple selection).

2. The JList allows the user to see more than one choice at a time.
3. The JList will take up more screen real estate than the Choice.

The basic JList methods are

JList();
JList(Object [] items);
void setListData(Object [] items);
int getSelectedIndex();
int [] getSelectedIndices();
Object getSelectedValue();
Object [] getSelectedValues();
void setSelectedIndex(int index);
void setSelectedValue(Object value);
void setSelectionMode(int mode);

A JList is constructed with either no parameters or an array of items (there

are other constructors that are more sophisticated). Most of the listed methods

have the same behavior (with possibly different names) as the corresponding

methods in JComboxBox. getSelectedValue returns null if no items are

selected. getSelectedValues is used to handle multiple selection; it returns

an array of Objects (possibly length 0) corresponding to the selected items. As

with the JComboxBox, indices instead of Objects can be obtained by other

public methods.

BOOK.mkr Page 943 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� Í Í

setSelectionMode is used to allow only single item selection. The boil-

erplate code is:

lst.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

JCheckBox ÿ � �
JRadioButton

\
JCheckBox

q r {
­ ® ~ � w v � w z u z s
s t { s t { r { z © h r s { s u
{ z x { z © k k r s { s u � \
ButtonGroup

� { z � w z s { q z { r u s w ½
buttons

q z � t q � t
w z | ± w z u v { ± ¼ u
true

{ s { s q v u �

A JCheckBox is a GUI component that has an on state and an off state. The on

state is true and the off state is false. I t is considered a button (a class

AbstractButton is defined in the Swing API f rom which JButton,

JCheckBox, and JRadioButton are all derived). A JRadioButton is sim-

ilar to a JCheckBox, except that JRadioButtons are round. Figure B.1 con-

tains four JCheckBox objects. In this figure, the Fill check box is currently

true and the three other check boxes are in a ButtonGroup: Only one

JCheckBox in the group of three may be true. When a JCheckBox in a group

is selected, all the others in the group are deselected. A ButtonGroup is con-

structed with zero parameters. Note that it is not a Component; it is simply a

helper class that extends Object.

The common methods for JCheckBox are similar to JRadioButton and

are:

JCheckBox();
JCheckBox(String theLabel);
JCheckBox(String theLabel, boolean state);
boolean isSelected();
void setLabel();
void setSelected(boolean state);

BOOK.mkr Page 944 Wednesday, March 14, 2001 1:29 PM

Ç J Q S Z È ¶ É N Z P Q S [P W N ´ ¹ ¸ � Í Ô

A stand-alone JCheckBox is constructed with an optional label. If a label is

not provided, it can be added later with setLabel. setLabel can also be used

to change the existing JCheckBox label. setSelected is most commonly

used to set a default for a standalone JCheckBox. isSelected returns the

state of a JCheckBox.

 A JCheckBox that is part of a ButtonGroup is constructed as usual and

is then added to the ButtonGroup object by use of the ButtonGroup add

method. The ButtonGroup methods are:

ButtonGroup();
void add(AbstractButton b);

� ÿ � � ÿ � � � �
\ � { z } { r � w v � w ²
z u z s y u � y u r u z s r {
¼ | { z ¯ y u � s { z � � | { y
{ y u { w ½ s t u r � y u u z
w z s w � t q � t s t u { � ²
� | q � { s q w z � { z x y { �
w y y u � u q } u q z � � s
u } u z s r �

In the AWT, a Canvas component represents a blank rectangular area of the

screen onto which the appli cation can draw. Primitive graphics are described in

Section B.3.2. A Canvas could also receive input from the user in the form of

mouse and keyboard events. The Canvas was never used directly: Instead, the

programmer defined a subclass of Canvas with appropriate functionality. The

subclass overrode the method

void paint(Graphics g);

In Swing, this is no longer in vogue. The same effect is obtained by extending

JPanel and overriding the method

void paintComponent(Graphics g);

BOOK.mkr Page 945 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� Í Õ

Although this works for any component, by using a JPanel of a preferred size,

one can avoid having any painting run over the boundary of the “canvassing

area.”

JTextField ÿ � �
JTextArea �

\
JTextField

q r
{ � w v � w z u z s s t { s
� y u r u z s r s t u � r u y
� q s t { r q z � | u | q z u w ½
s u î s � \

JTextArea

{ | | w � r v � | s q � | u | q z u r
{ z x t { r r q v q | { y
½ � z � s q w z { | q s ± �

A JTextField is a component that presents the user with a single line of text.

A JTextArea all ows multi ple lines and has simil ar functionalit y. Thus only

JTextField is considered here. By default, the text can be edited by the user,

but it is possible to make the text uneditable. In Figure B.1, there are three

JTextField objects: two for the coordinates and one, which is not editable by

the user, that is used to communicate error messages. The background color of an

uneditable text field differs from that of an editable text field. Some of the com-

mon methods associated with JTextField are

JTextField();
JTextField(int cols);
JTextField(String text, int cols);
String getText();
boolean isEditable();
void setEditable(boolean editable);
void setText(String text);

A JTextField is constructed either with no parameters or by specifying an

initial optional text and the number of columns. The setEditable method can

be used to disallow input into the JTextField. setText can be used to print

messages into the JTextField, and getText can be used to read from the

JTextField.

BOOK.mkr Page 946 Wednesday, March 14, 2001 1:29 PM

Ç J Q S Z � O S [Z S M R N Q � Í æ

� � � � � � � � � � � � � � 	 � �

This section examines three important facets of AWT programming. First, how

objects are arranged inside a container, followed by how events, such as button

pushing, are handled. Finall y, it describes how graphics are drawn inside

Canvas objects.

Î Ï Ö Ï Ñ
 á � Ø � à
 á ß á � Ü ã ä
¤ t u d _ � © e j � _ h _] g ^
{ � s w v { s q � { | | ± { y ²
y { z � u r � w v � w ²
z u z s r w ½ s t u � w z ²
s { q z u y � \ | { ± w � s
v { z { � u y q r { r r w � q ²
{ s u x � q s t { � w z ²
s { q z u y ¼ ± s t u

set-

Layout v u s t w x �

A layout manager automatically arranges components of the container. It is asso-

ciated with a container by issuing the setLayout command. An example of

using setLayout is the call

setLayout(new FlowLayout());

Notice that a reference to the layout manager need not be saved. The container in

which the setLayout command is applied stores it as a private data member.

When a layout manager is used, requests to resize many of the components, such

as buttons, do not work because the layout manager will choose its own sizes for

the components, as it deems appropriate. The idea is that the layout manager will

determine the best sizes that allow the layout to meet the specifications.

Think of the layout manager as an expert packer hired by the container to

make the final decisions about how to pack items that are added to the container.

BOOK.mkr Page 947 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� Í è

FlowLayout
¤ t u r q v � | u r s w ½ s t u
| { ± w � s r q r s t u
FlowLayout å

� t q � t { x x r � w v ²
� w z u z s r q z { y w �
½ y w v | u ½ s s w y q � t s �

The simplest of the layouts is the FlowLayout. When a container is arranged

using the FlowLayout, its components are added in a row from left to right.

When there is no room left in a row, a new row is formed. By default, each row is

centered. This can be changed by providing an additional parameter in the con-

structor with the value FlowLayout.LEFT or FlowLayout.RIGHT.

The problem with using a FlowLayout is that a row may break in an awk-

ward place. For instance, if a row is too short, a break may occur between a

JLabel and a JTextField, even though logically they should always remain

adjacent. One way to avoid this is to create a separate JPanel with those two

elements and then add the JPanel into the container. Another problem with the

FlowLayout is that it is difficult to line up things vertically.

The FlowLayout is the default for a JPanel.

@ A B C D E ³ G � ú S K N ¶ µ P P L [Q J O O J [X N T µ Q S [X
BorderLayout

BOOK.mkr Page 948 Wednesday, March 14, 2001 1:29 PM

Ç J Q S Z � O S [Z S M R N Q � Í �

ï
import java.awt.*;ð
import javax.swing.*;ñò
 // Generate Figure B.5

ó
public class BorderTest extends JFrameô
{õ
 public static void main(String [] args)ö
 {÷
 JFrame f = new BorderTest();ï ø
 JPanel p = new JPanel();ï ïï ð
 p.setLayout(new BorderLayout());ï ñ
 p.add(new JButton("North"), "North");ï ò
 p.add(new JButton("East"), "East");ï ó
 p.add(new JButton("South"), "South");ï ô
 p.add(new JButton("West"), "West");ï õ
 p.add(new JButton("Center"), "Center");ï öï ÷
 Container c = f.getContentPane();ð ø
 c.add(p);ð ï
 f.pack(); // Resize frame to minimum sizeð ð
 f.show(); // Display the frameð ñ
 }ð ò
}

@ A B C D E ³ G � Å L T N P W J P S R R µ Q P O J P N Q
BorderLayout

BorderLayout

BorderLayout
q r

s t u x u ½ { � | s ½ w y w ¼ ²
Ò u � s r q z s t u

Window

t q u y { y � t ± å r � � t { r
JFrame

{ z x
JDialog

� ~ s | { ± r
w � s { � w z s { q z u y
¼ ± � | { � q z � � w v ²
� w z u z s r q z w z u w ½
½ q } u | w � { s q w z r �

A BorderLayout is the default for objects in the Window hierarchy, such as

JFrame. It lays out a container by placing components in one of five locations.

For this to happen, the add method must provide as a second parameter one of

the strings "North", "South", "East", "West", and "Center"; the sec-

ond parameter defaults to "Center" if not provided (so one single-parameter

add will work, but several adds place items on top of each other). Figure B.5

shows five buttons added to a Frame using a BorderLayout. The code to gen-

erate this layout is shown in Figure B.6. Observe that we use the typical idiom of

adding into a lightweight JPanel, and then adding the JPanel into the top-

level JFrame’s content pane. Typical ly, some of the five locations may be

BOOK.mkr Page 949 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� Ô �

unused. Also, the component placed in a location is typically a JPanel that con-

tains other components using some other layout.

As an example, the code in Figure B.7 (page 952) shows how the objects in

Figure B.1 are arranged. Here, we have two rows, but we want to ensure that the

checkboxes, buttons, and output text field are placed below the rest of the GUI.

The idea is to create a JPanel that stores the items that should be in the top half

and another JPanel that stores the items in the bottom half. These two

JPanels can be placed on top of each other by arranging them using a

BorderLayout.

Lines 4 and 5 create the two JPanel objects topHalf and bottomHalf.

Each of the JPanel objects are then separately arranged using a FlowLayout.

Notice that the setLayout and add methods are applied to the appropriate

JPanel. Because the JPanels are arranged with the FlowLayout, they may

consume more than one row if there is not enough horizontal real estate available.

This could cause a bad break between a JLabel and a JTextField. It is left as

an exercise for the reader to create additional JPanels to ensure that any breaks

do not disconnect a JLabel and the component it labels. Once the JPanels are

done, we use a BorderLayout to line them up. This is done at lines 28 to 30.

Notice also that the contents of both JPanels are centered. This is a result of the

FlowLayout. To have the contents of the JPanels left-aligned, lines 8 and 19

would construct the FlowLayout with the additional parameter

FlowLayout.LEFT.

BOOK.mkr Page 950 Wednesday, March 14, 2001 1:29 PM

Ç J Q S Z � O S [Z S M R N Q � Ô »

Â t u z s t u
BorderLayout

q r
� r u x å { z

add � w v ²
v { z x s t { s q r q r r � u x
� q s t w � s {

String

x u ½ { � | s r s w
"Center"

�

When the BorderLayout is used, any add commands that are issued

without a String use "Center" as the default. If a String is provided, but is

not one of the acceptable five (including having correct case), then a runtime

exception is thrown.3

null � ÿ � � � �
¤ t u

null
d _ � © e j q r

� r u x s w � u y ½ w y v
� y u � q r u � w r q s q w z q z � �

The null layout is used to perform precise positioning. In the null layout, each

object is added to the container by add. Its position and size may then be set by

calling the setBounds method:

void setBounds(int x, int y, int width, int height)

Here x and y represent the location of the upper left-hand corner of the object,

relative to the upper left-hand corner of its container. width and height repre-

sent the size of the object. All units are pixels.

The null layout is platform-dependent; typically, this is a large liabil ity.

� ÿ � � � � � � ÿ � � � � �
� s t u y | { ± w � s r r q v � ²
| { s u s { ¼ ¼ u x q z x u î
� { y x r { z x { | | w �
{ y y { z � q z � w } u y { z
{ y ¼ q s y { y ± � y q x �

Java also provides the CardLayout, GridLayout, and GridBagLayout.

The CardLayout simulates the tabbed index cards popular in Windows appli-

cations but looks terrible in the AWT. The GridLayout adds components into a

grid but will make each grid entry the same size. This means that components are

stretched in sometimes unnatural ways. It is useful for when this is not a problem,

3. Note that in Java 1.0, the arguments to add were reversed and missing or incorrect Strings were quietly

ignored, thus leading to difficult debugging. The old style is still allowed, but it is officially discouraged.

BOOK.mkr Page 951 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� Ô Ã

such as a calculator keypad that consists of a two-dimensional grid of buttons.

The GridBagLayout adds components into a grid but allows components to

cover several grid cells. It is more complicated than the other layouts.

ï
 // Layout all the objectsð
 private void doTheLayout()ñ
 {ò
 JPanel topHalf = new JPanel();

ó
 JPanel bottomHalf = new JPanel();ô
 õ
 // Layout the top halfö
 topHalf.setLayout(new FlowLayout());÷
 topHalf.add(theCanvas);ï ø
 topHalf.add(new JLabel("Shape"));ï ï
 topHalf.add(theShape);ï ð
 topHalf.add(theColor);ï ñ
 topHalf.add(new JLabel("X coor"));ï ò
 topHalf.add(theXCoor);ï ó
 topHalf.add(new JLabel("Y coor"));ï ô
 topHalf.add(theYCoor);ï õï ö
 // Layout the bottom halfï ÷
 bottomHalf.setLayout(new FlowLayout());ð ø
 bottomHalf.add(smallPic);ð ï
 bottomHalf.add(mediumPic);ð ð
 bottomHalf.add(largePic);ð ñ
 bottomHalf.add(theFillBox);ð ò
 bottomHalf.add(theDrawButton);ð ó
 bottomHalf.add(theMessage);ð ôð õ
 // Now layout GUIð ö
 setLayout(new BorderLayout());ð ÷
 add(topHalf, "North");ñ ø
 add(bottomHalf, "South");ñ ï
 }

@ A B C D E ³ G � Å L T N P W J P R J Æ Q L µ P P W N L ¶ É N Z P Q S [ú S X µ O N Ç û ü

� � � � ÿ � � � � � �
Commercial products include tools that allow the programmer to draw the layout

using a CAD-li ke system. The tool then produces the Java code to construct the

objects and provide a layout. Typically, it generates an arrangement using a null

BOOK.mkr Page 952 Wednesday, March 14, 2001 1:29 PM

Ç J Q S Z � O S [Z S M R N Q � Ô �

layout manager. Even with this system, the programmer must still write most of

the code, including the handli ng of events, but is reli eved of the dirty work

involved in calculating precise object positions.

Î Ï Ö Ï Ð ã á Ù ! â " ä
­ y { � t q � r { y u x y { � z
¼ ± x u ½ q z q z � { � | { r r
s t { s u î s u z x r
JPanel

� ¤ t u z u �
� | { r r w } u y y q x u r s t u
paintCompo-

nent v u s t w x { z x
� y w } q x u r { � � ¼ | q �
v u s t w x s t { s � { z
¼ u � { | | u x ½ y w v s t u
� { z } { r # r � w z s { q z u y �

Graphics
q r { z

{ ¼ r s y { � s � | { r r s t { s
x u ½ q z u r r u } u y { |
x y { � q z � v u s t w x r �

As mentioned in Section B.2.5, graphics are drawn by using a JPanel object.

Specifically, to generate graphics, the programmer must define a new class that

extends JPanel. This new class provides a constructor (if a default is unaccept-

able), overrides a method named paintComponent, and provides a public

method that can be called from the canvas’s container. The paintComponent

method is

void paintComponent(Graphics g);

Graphics is an abstract class that defines several methods. Some of these are

void drawOval(int x, int y, int width, int height);
void drawRect(int x, int y, int width, int height);
void fillOval(int x, int y, int width, int height);
void fillRect(int x, int y, int width, int height);
void drawLine(int x1, int x2, int y1, int y2);
void drawString(String str, int x, int y);
void setColor(Color c);

~ z ° { } { å � w w y x q z { s u r
{ y u v u { r � y u x y u | { ²
s q } u s w s t u � � � u y
| u ½ s ² t { z x � w y z u y w ½
s t u � w v � w z u z s �

In Java, coordinates are measured relative to the upper left-hand corner of the

component. drawOval, drawRect, fillOval, and fillRect all draw an

object of specified width and height with the upper left-hand corner at coor-

dinates given by x and y. drawLine and drawString draw lines and text,

BOOK.mkr Page 953 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� Ô Í

respectively. setColor is used to change the current color; the new color is

used by all drawing routines until i t is changed.

~ s q r q v � w y s { z s s t { s
s t u ½ q y r s | q z u w ½
paintCompo-

nent � { | | r s t u r � ²
� u y � | { r r #

paint-

Component
�

It is important that the first line of paintComponent calls the superclass’

paintComponent.

Figure B.8 (page 955) illustrates how the canvas in Figure B.1 is imple-

mented. The new class GUICanvas extends JPanel. It provides various private

data members that describe the current state of the canvas. The default

GUICanvas constructor is reasonable, so we accept it.

The data members are set by the public method setParams, which is pro-

vided so that the container (that is, the GUI class that stores the GUICanvas)

can communicate the state of its various input components to the GUICanvas.

setParams is shown at lines 3 to 13. The last line of setParams calls the

method repaint.

¤ t u
repaint

v u s t w x r � t u x � | u r
{ � w v � w z u z s � | u { y
{ z x s t u z � { | | r
paintCompo-

nent
�

The repaint method schedules a component clearing and subsequent call

to paintComponent. Thus all we need to do is to write a paintComponent

method that draws the canvas as specified in the class data members. As can be

seen by its implementation in lines 15 to 35, after chaining up to the superclass,

paintComponent simply calls the Graphics methods described previously

in this appendix.

BOOK.mkr Page 954 Wednesday, March 14, 2001 1:29 PM

Ç J Q S Z � O S [Z S M R N Q � Ô Ô

ï
class GUICanvas extends JPanelð
{ñ
 public void setParams(String aShape, String aColor, int x,ò
 int y, int size, boolean fill)

ó
 {ô
 this.theShape = aShape;õ
 this.theColor = aColor;ö
 xcoor = x;÷
 ycoor = y;ï ø
 theSize = size;ï ï
 fillOn = fill;ï ð
 repaint();ï ñ
 }ï òï ó
 public void paintComponent(Graphics g)ï ô
 {ï õ
 super.paintComponent(g);ï ö
 if(theColor.equals("red"))ï ÷
 g.setColor(Color.red);ð ø
 else if(theColor.equals("blue"))ð ï
 g.setColor(Color.blue);ð ðð ñ
 theWidth = 25 * (theSize + 1);ð òð ó
 if(theShape.equals("Square"))ð ô
 if(fillOn)ð õ
 g.fillRect(xcoor, ycoor, theWidth, theWidth);ð ö
 elseð ÷
 g.drawRect(xcoor, ycoor, theWidth, theWidth);ñ ø
 else if(theShape.equals("Circle"))ñ ï
 if(fillOn)ñ ð
 g.fillOval(xcoor, ycoor, theWidth, theWidth);ñ ñ
 elseñ ò
 g.drawOval(xcoor, ycoor, theWidth, theWidth);ñ ó
 }ñ ôñ õ
 private String theShape = "";ñ ö
 private String theColor = "";ñ ÷
 private int xcoor;ò ø
 private int ycoor;ò ï
 private int theSize; // 0 = small, 1 = med, 2 = largeò ð
 private boolean fillOn;ò ñ
 private int theWidth;ò ò
}

@ A B C D E ³ G $ Ç J Q S Z Z J [K J Q Q W L Y [S [P L M R N U P % W J [T Z L O [N O L U ú S X µ O N Ç û ü

BOOK.mkr Page 955 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� Ô Õ

Î Ï Ö Ï Ö & Ý Ü ß à ä
° { } { # r w y q � q z { |
u } u z s ² t { z x | q z � r ± r ²
s u v � { r � � v ¼ u y ²
r w v u { z x t { r ¼ u u z
� w v � | u s u | ± y u x w z u �

When the user uses the mouse or types on the keyboard, the operating system pro-

duces an event. Java’s original event-handling system was cumbersome and has

been completely redone. The new model, in place since Java 1.1, is much simpler

to program than the old. Note that the two models are incompatible: Java 1.1

events are not understood by Java 1.0 compilers and vice versa. The basic rules

are as follows:

1. Any class that is will ing to provide code to handle an event must
implement a listener interface. Examples of listener interfaces
are ActionListener, WindowListener, and
MouseListener. As usual, implementing an interface means
that all methods of the interface must be defined by the class.

2. An object that is wil ling to handle the event generated by a compo-
nent must register its will ingness with an add listener message sent
to the event-generating component. When a component generates
an event, the event will be sent to the object that has registered to
receive it. If no object has registered to receive it, then it is ignored.

\ z { � s q w z u } u z s q r
� u z u y { s u x � t u z
s t u � r u y � y u r r u r {
JButton' q s q r t { z ²

x | u x ¼ ± { z
ac-

tionListener
�

For an example, consider the action event, which is generated when the user

presses a JButton, hits Return while in a JTextField, or selects from a

JList or JMenuItem. The simplest way to handle the JButton click is to

have its container implement ActionListener by providing an

actionPerformed method and registering itself with the JButton as its

event handler.

This is shown for our running example in Figure B.1 as follows. Recall that in

Figure B.3, we already have done two things. At line 5, GUI declares that it

implements the ActionListener, and at line 11, an instance of GUI registers

itself as its JButton’s action event handler. In Figure B.9 (page 959), we imple-

BOOK.mkr Page 956 Wednesday, March 14, 2001 1:29 PM

Ç J Q S Z � O S [Z S M R N Q � Ô æ

ment the listener by having actionPerformed call setParam in the

GUICanvas class. This example is simpli fied by the fact that there is only one

JButton, so when actionPerformed is called, we know what to do. If GUI

contained several JButtons and it registered to receive events from all of these

JButtons, then actionPerformed would have to examine the evt parame-

ter to determine which JButton event was to be processed: This would proba-

bly involve a sequence of if/else tests.4 The evt parameter, which in this case

is an ActionEvent reference, is always passed to an event handler. The event

will be specific to the type of handler (ActionEvent, WindowEvent, and so

on), but it wil l always be a subclass of AWTEvent.

\ � q z x w � � | w r q z �
u } u z s q r � u z u y { s u x
� t u z { z { � � | q � { ²
s q w z q r � | w r u x �

An important event that needs to be processed is the window closing event.

This event is generated when an application is closed by pressing on the that is

at the top right-hand corner of the application window. Unfortunately, by default,

this event is ignored, so if an event handler is not provided, the normal mecha-

nism for closing an application wil l not work.

4. One way to do this is to use evt.getSource(), which returns a reference to the object that generated the

event.

BOOK.mkr Page 957 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� Ô è

¤ t u � q z x w � ² � | w r q z �
u } u z s q r t { z x | u x ¼ ±
q v � | u v u z s q z � s t u
WindowListener

q z s u y ½ { � u �

CloseableFrame

u î s u z x r
JFrame

{ z x q v � | u v u z s r
Window-

Listener
�

Window closing is one of several events that is associated with a

WindowListener interface. Because implementing the interface requires us to

provide implementations for many methods (which are likely to be empty bodies),

the most reasonable course of action is to define a class that extends JFrame and

implements the WindowListener interface. This class, CloseableFrame,

is shown in Figure B.10. The window close event handler is simple to write — it

just calls System.exit. The other methods remain without a special imple-

mentation. The constructor registers that it is wil ling to accept the window closing

event. Now we can use CloseableFrame instead of JFrame throughout.

Notice that the code for CloseableFrame is cumbersome; we will revisit

it shortly, and see a use for anonymous inner classes.

¤ t u
pack v u s t w x

r q v � | ± v { ¯ u r s t u
JFrame

{ r s q � t s { r
� w r r q ¼ | u å � q } u z q s r
� w z r s q s � u z s � w v � w ²
z u z s r � ¤ t u

show

v u s t w x x q r � | { ± r s t u
°
Frame

�

Figure B.11 provides a main that can be used to start the application in Fig-

ure B.1. We place this in a separate class, which we call BasicGUI. BasicGUI

extends the class CloseableFrame. main simply creates a JFrame into

which we place a GUI object. We then add an unnamed GUI object into the

JFrame’s content pane and pack the JFrame. The pack method simply makes

the JFrame as tight as possible, given its constituent components. The show

method displays the JFrame.

BOOK.mkr Page 958 Wednesday, March 14, 2001 1:29 PM

Ç J Q S Z � O S [Z S M R N Q � Ô �

ï
 // Handle the draw button pushð
 public void actionPerformed(ActionEvent evt)ñ
 {ò
 try

ó
 {ô
 theCanvas.setParams(õ
 (String) theShape.getSelectedItem(),ö
 (String) theColor.getSelectedValue(),÷
 Integer.parseInt(theXCoor.getText()),ï ø
 Integer.parseInt(theYCoor.getText()),ï ï
 smallPic.isSelected() ? 0 :ï ð
 mediumPic.isSelected() ? 1 : 2,ï ñï ò
 theFillBox.isSelected());ï ó
 theMessage.setText("");ï ô
 }ï õ
 catch(NumberFormatException e)ï ö
 { theMessage.setText("Incomplete input"); }ï ÷
 }

@ A B C D E ³ G (Å L T N P L W J [T R N P W N T O J Y ¶ µ P P L [M µ Q W U L O ú S X µ O N Ç û ü

ï
// Frame that closes on a window-close eventðñ
public class CloseableFrame extends JFrameò
 implements WindowListener

ó
{ô
 public CloseableFrame()õ
 { addWindowListener(this); }ö÷
 public void windowClosing(WindowEvent event) ï ø
 { System.exit(0) } ï ï
 public void windowClosed(WindowEvent event)ï ð
 { }ï ñ
 public void windowDeiconified(WindowEvent event)ï ò
 { }ï ó
 public void windowIconified(WindowEvent event)ï ô
 { }ï õ
 public void windowActivated(WindowEvent event)ï ö
 { }ï ÷
 public void windowDeactivated(WindowEvent event)ð ø
 { }ð ï
 public void windowOpened(WindowEvent event)ð ð
 { }ð ñ
}

@ A B C D E ³ G H)
CloseableFrame

Z R J Q Q * Q J V N J Q
JFrame + ¶ µ P W J [T R N Q P W N

Y S [T L Y Z R L Q S [X N K N [P

BOOK.mkr Page 959 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� Õ �

ï
class BasicGUI extends CloseableFrameð
{ñ
 public static void main(String [] args)ò
 {

ó
 JFrame f = new BasicGUI();ô
 f.setTitle("GUI Demo");õ
 ö
 Container contentPane = f.getContentPane();÷
 contentPane.add(new GUI());ï ø
 f.pack();ï ï
 f.show();ï ð
 }ï ñ
}

@ A B C D E ³ G H H
main

O L µ P S [N U L O ú S X µ O N Ç û ü

Î Ï Ö Ï ç & Ý Ü ß à , á ß - Û â ß � . / - á Ù à Ü ã ä á ß - / ß Ø ß � ë Ø � ä ê ß ß Ü ã Þ Û á ä ä Ü ä

The CloseableFrame class is a mess. To listen for a WindowEvent, we

must declare a class that implements the WindowListener interface, instanti-

ate the class, and then register that object with the CloseableFrame. Since the

WindowListener interface has seven methods, we must implement all seven

methods, even though we are interested in only one of the seven methods.

One can imagine the messy code that will ensue when a large program han-

dles numerous events. The problem is that every event handling strategy corre-

sponds to a new class, and it would be bizarre to have many classes with lots of

methods that simply declare { }.

¤ t u d b f j g h g ^ _ ¨ _ ` j g ^
c d _ f f g f � y w } q x u x u ²

½ { � | s q v � | u v u z s { ²
s q w z r w ½ { | | s t u | q r ²
s u z u y v u s t w x r �

As a result, the java.awt.event package defines a set of listener adapter

classes. Each listener interface that has more than one method is implemented by

a corresponding listener adapter class, with empty bodies. Thus instead of provid-

ing the empty bodies ourselves, we can simply extend the adapter class, and over-

ride the methods we are interested in. In our case, we need to extend

BOOK.mkr Page 960 Wednesday, March 14, 2001 1:29 PM

Ç J Q S Z � O S [Z S M R N Q � Õ »

WindowAdapter. This gives the (flawed) implementation for

CloseableFrame shown in Figure B.12.

The code in Figure B.12 fails because multiple implementation inheritance is

il legal in Java. This is not a serious problem, however, because we do not need the

CloseableFrame to be the object that handles its own events. Instead, it can

delegated to a function object.

ï
// Frame that closes on a window-close event: (flawed)ð
public class CloseableFrame extends JFrame, WindowAdapterñ
{ò
 public CloseableFrame()

ó
 { addWindowListener(this); }ôõ
 public void windowClosing(WindowEvent event) ö
 { System.exit(0) }÷
}

@ A B C D E ³ G H Ä
CloseableFrame

Z R J Q Q µ Q S [X
WindowAdapter

û ¸ W S Q T L N Q [L P
Y L O º ¶ N Z J µ Q N P W N O N S Q [L V µ R P S M R N S [W N O S P J [Z N S [I J K J û

ï
// Frame that closes on a window-close event: (works!)ð
public class CloseableFrame extends JFrame, WindowAdapterñ
{ò
 public CloseableFrame()

ó
 { addWindowListener(new ExitOnClose()); }ôõ
 private class ExitOnClose extends WindowAdapterö
 {÷
 public void windowClosing(WindowEvent event) ï ø
 { System.exit(0) }ï ï
 }ï ð
}

@ A B C D E ³ G H ù
CloseableFrame

Z R J Q Q µ Q S [X
WindowAdapter

J [T S [[N O
Z R J Q Q û

BOOK.mkr Page 961 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� Õ Ã

ï
// Frame that closes on a window-close event: (works!)ð
public class CloseableFrame extends JFrame, WindowAdapterñ
{ò
 public CloseableFrame()

ó
 {ô
 addWindowListener(new WindowAdapter() õ
 {ö
 public void windowClosing(WindowEvent event) ÷
 { System.exit(0) }ï ø
 }ï ï
);ï ð
 }ï ñ
}

@ A B C D E ³ G H þ
CloseableFrame

Z R J Q Q µ Q S [X
WindowAdapter

J [T J [L [Æ %
V L µ Q S [[N O Z R J Q Q û

Figure B.13 il lustrates this approach. The ExitOnClose class implements

the WindowListener interface by extending WindowAdapter. An instance

of that class is created and registered as the frame’s window listener.

ExitOnClose is declared as an inner class instead of a nested class. This would

give it access to any of the CloseableFrame’s instance members, should it

need it. The event handling model is a classic example of the use of function

objects, and is the reason that inner classes were deemed an essential addition to

the language (recall that inner classes and the new event model appeared simulta-

neously in Java 1.1).

Figure B.14 shows the logical continuation, using anonymous inner classes.

Here we are adding a WindowListener and explaining, on pretty much the

next line of code, what the WindowListener does. This is a classic use of the

anonymous inner classes. The pollution of braces, parentheses and semicolons is

horrific, but experienced readers of Java code skip over those syntactic details and

easily see what the event handling code does. The main benefit here is that if there

BOOK.mkr Page 962 Wednesday, March 14, 2001 1:29 PM

Ç J Q S Z � O S [Z S M R N Q � Õ �

are lots of small event handling methods, they need not be scattered in top-level

classes, but instead can be placed near the objects that these events are coming

from.

Î Ï Ö Ï é 0 � ë ë á ã � . 1 � à à â ß � à ! Ü 1 â Ü " Ü ä × Ø � Ü à ! Ü ã

Here is a summary of how to create a GUI application. Place the GUI functional-

ity in a class that extends JPanel. For that class, do the following:

• Decide on the basic input elements and text output elements. If the same

elements are used twice, make an extra class to store the common func-

tionali ty and apply these principles on that class.

• If graphics are used, make an extra class that extends JPanel. That class

must provide a paintComponent method and a public method that can

be used by the container to communicate to it. It may also need to provide

a constructor.

• Pick a layout and issue a setLayout command.

• Add components to the GUI using add.

• Handle events. The simplest way to do this is to use a Button and trap

the button push with actionPerformed.

Once a GUI class is written, an application defines a class that extends

CloseableFrame with a main routine. The main routine simply creates an

instance of this extended frame class, places the GUI panel inside the frame’s

content pane, and issues a pack command and a show command for the frame.

BOOK.mkr Page 963 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� Õ Í

Î Ï Ö Ï 2 ê ä × ! â ä & Ý Ü ã � à ! â ß � ê 3 Ü Ü - × Ø 4 ß Ø 5 / 6 Ø � à 0 5 â ß � 7

What we have described so far will work well for toy user interfaces, and is an

improvement over console-based applications. But there are significant complica-

tions that a professional applications programmer would have to deal with.

It is rare that the layout manager will make you happy, Often you need to

tinker by adding additional subpanels. To help out, Swing defines elements such

as spacers, struts, and so on that allow you to position elements more precisely,

along with elaborate layout managers. Using these elements is quite challenging.

Other swing components include sliders, progress bars, scroll ing (which can

be added to any JComponent), password textfields, file choosers, option panes

and dialog boxes, tree structures (such as what you see in FileManager on Win-

dows systems), tables, and on and on. Image acquisition and display is also sup-

ported by Swing. Additionally, one often needs to know about fonts, colors, and

the screen environment that one is working in.

Additionally, there is the important issue of what happens if an event occurs

while you are in an event handler. It turns out that events are queued. However, if

you get trapped in an event handler for a long time, you application can appear

unresponsive; we’ve all seen this in application code. For instance, if the button

handling code has an infinite loop, you wil l not be able to close a window. To

solve this problem, typically programmers use a technique known as multithread-

ing, which opens up a whole new can of worms.

BOOK.mkr Page 964 Wednesday, March 14, 2001 1:29 PM

· µ V V J O Æ � Õ Ô

0 � ë ë á ã �

This appendix examined the basics of the Swing package, which allows the pro-

gramming of GUIs. This makes the program look much more professional than

simple terminal I/O.

GUI applications differ from terminal I/O applications in that they are event-

driven. To design a GUI, we write a class. We must decide on the basic input ele-

ments and output elements, pick a layout and issue a setLayout command, add

components to the GUI using add, and handle events. All this is part of the class.

Starting with Java 1.1, event handling is done with event listeners.

Once this class is written, an application defines a class that extends JFrame

with a main routine and an event handler. The event handler processes the win-

dow closing event. The simplest way to do this is to use the CloseableFrame

class in Figure B.14. The main routine simply creates an instance of this

extended frame class, places an instance of the class (whose constructor likely

creates a GUI panel) inside the frame’s content pane, and issues a pack com-

mand and a show command for the frame.

Only the basics of Swing have been discussed here. Swing is the topic of

entire books.

BOOK.mkr Page 965 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� Õ Õ

í 6 8 Ü " à ä Ø 9 à ! Ü á ë Ü

Abstract Window Toolkit (AWT) A GUI toolkit that is supplied with all Java
systems. Provides the basic classes to allow user interfaces. (930)

ActionEvent An event generated when a user presses a JButton, hits

Return in a JTextField, or selects from a JList or JMenuItem.

Should be handled by the actionPerformed method in a class that

implements the ActionListener interface. (956)

ActionListener interface An interface used to handle action events. Con-

tains the abstract method actionPerformed. (956)

actionPerformed A method used to handle action events. (956)

AWTEvent An object that stores information about an event. (956)

BorderLayout The default for objects in the Window hierarchy. Used to

lay out a container by placing components in one of five locations

("North", "South", "East", "West", "Center"). (949)

ButtonGroup An object used to group a collection of button objects and

guarantee that only one may be on at any time. (944)

canvas A blank rectangular area of the screen onto which an application can

draw and receive input from the user in the form of keyboard and mouse

events. In Swing, this is implemented by extending JPanel. (953)

Component An abstract class that is the superclass of many AWT objects.

Represents something that has a position and a size and that can be painted

on the screen as well as can receive input events. (934)

Container The abstract superclass representing all components that can

hold other components. Typically has an associated layout manager. (935)

BOOK.mkr Page 966 Wednesday, March 14, 2001 1:29 PM

È ¶ É N Z P Q L U P W N � J V N � Õ æ

event Produced by the operating system for various occurrences, such as input

operations, and passed to Java. (956)

FlowLayout A layout that is the default for JPanel. Used to lay out a con-

tainer by adding components in a row from left to right. When there is no

room left in a row, a new row is formed. (948)

graphical user interface (GUI) The modern alternative to terminal I/O that

allows a program to communicate with its user via buttons, checkboxes,

textfields, choice lists, menus, and the mouse. (929)

Graphics An abstract class that defines several methods that can be used to

draw shapes. (953)

JButton A component used to create a labeled button. When the button is

pushed, an action event is generated. (940)

JCheckBox A component that has an on state and an off state. (944)

JComboBox A component used to select a single string via a pop-up list of

choices. (941)

JComponent An abstract class that is the superclass of lightweight Swing

objects. (936)

JDialog A top-level window used to create dialogs. (936)

JFrame A top-level window that has a border and can also have an associated

JMenuBar. (936)

JLabel A component that is used to label other components such as a

JComboBox, JList, JTextField, or JPanel. (938)

BOOK.mkr Page 967 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� Õ è

JList A component that allows the selection from a scrolling list of strings.

Can allow one or multiple selected items, but uses more screen real estate

than JComboBox. (943)

JPanel A container used to store a collection of objects but does not create

borders. Also used for canvasses. (937)

JTextArea A component that presents the user with several l ines of text.

(946)

JTextField A component that presents the user with a single line of text.

(946)

layout manager A helper object that automatically arranges components of a

container. (947)

listener adapter class Provides default implementations for a listener inter-

face that has more than one method. (960)

null layout A layout used to perform precise positioning. Allows the

setBounds method to work. (951)

pack A method used to pack a JFrame into its smallest size given its constit-

uent components. (958)

paintComponent A method used to draw onto a component. Typically

overridden by classes that extend JPanel. (953)

repaint A method used to clear and repaint a component. (954)

setLayout A method that associates a layout with a container. (947)

show A method that makes a component visible. (958)

Window A top-level window that has no border. (936)

BOOK.mkr Page 968 Wednesday, March 14, 2001 1:29 PM

Å L V V L [: O O L O Q � Õ �

WindowAdapter A class that provides default implementations of the

WindowListener interface. (936)

WindowListener interface An interface used to specify the handling of

window events, such as window closing. (958)

Þ Ø ë ë Ø ß & ã ã Ø ã ä

1. Forgetting to set a layout manager is a common mistake. If you forget it,

you’ ll get a default. However, it may not be the one you want.

2. The layout manager must appear prior to the calls to add.

3. Applying add or setting a layout manager to the wrong container is a

common mistake. For instance, in a container that contains panels, apply-

ing the add method without specifying the panel means that the add is

applied to the main container.

4. A missing String argument to add for BorderLayout uses

"Center" as the default. A common mistake is to specify it in the wrong

case, as in "north". The five valid arguments are "North", "South",

"East", "West", and "Center". In Java 1.1, if the String is the sec-

ond parameter, a runtime exception will catch the error. If you use the old

style, in which the String comes first, the error might not be detected.

5. Special code is needed to process the window closing event.

BOOK.mkr Page 969 Wednesday, March 14, 2001 1:29 PM

� O J M W S Z J R � Q N O � [P N O U J Z N Q� æ �

í ß à ! Ü ê ß à Ü ã ß Ü à

All code found in this Appendix is available:

BorderTest.java Simple il lustration of the BorderLayout,

shown in Figure B.6.

BasicGUI.java The main example, for the GUI application used in

this chapter, with CloseableFrame from Fig-

ure B.14.

& ; Ü ã " â ä Ü ä
< = > ? @ A B

B.1. What is a GUI?

B.2. List the various JComponent classes that can be used for GUI input.

B.3. Describe the difference between heavyweight components and lightweight

components, and give examples of each.

B.4. What are the differences between the JList and JComboBox compo-

nents?

B.5. What is a ButtonGroup used for?

B.6. Explain the steps taken to design a GUI.

B.7. Explain how the FlowLayout, BorderLayout, and null layouts

arrange components.

B.8. Describe the steps taken to include a graphical component inside a

JPanel.

BOOK.mkr Page 970 Wednesday, March 14, 2001 1:29 PM

: C N O Z S Q N Q � æ »

B.9. What is the default behavior when an event occurs? How is the default

changed?

B.10. What events generate an ActionEvent?

B.11. How is the window closing event handled?

D E F G H I J K I L

B.12. paintComponent can be written for any component. Show what hap-

pens when a circle is painted in the GUI class instead of its own canvas.

B.13. Handle the pressing of the Enter key in the y-coordinate text field in class

GUI. You wil l need to modify actionPerformed and register a second

event handler.

B.14. Add a default of (0, 0) for the coordinates of a shape in class GUI.

F G M N G H O O K E N F G M P L I J Q

B.15. Write a program that can be used to input two dates and output the number

of days between them. Use the Date class from Exercise 3.16.

B.16. Write a program that allows you to draw lines inside a canvas using the

mouse. A click starts the line draw; a second click ends the line. Multiple

lines can be drawn on the canvas. To do this, extend the JPanel class and

handle mouse events by implementing MouseListener. You will also

need to override update to avoid clearing the canvas between line draws.

Add a button to clear the canvas.

B.17. Write an application that contains two GUI objects. When actions occur in

one of the GUI objects, the other GUI object saves its old state. You will

BOOK.mkr Page 971 Wednesday, March 14, 2001 1:29 PM

R S T U V W X T Y Z [\ S] ^ _ \ S ` T X \ [a b c

need to add a copyState method to the GUI class that will copy the

states of all of the GUI fields and redraw the canvas.

B.18. Write a program that contains a single canvas and a set of ten GUI input

components that each specify a shape, color, coordinates, and size, and a

checkbox that indicates the component is active. Then draw the union of

the input components onto a canvas. Represent the GUI input component

by using a class with accessor functions. The main program should have

an array of these input components plus the canvas.

d e f e g e h i e

In addition to the standard set of references in Chapter 1, a complete Swing tuto-

rial is provided in the 950 page book [1].

1. K. Walrath and M. Campione, The JFC Swing Tutorial, Addison-Wesley,
Reading, Mass. (1999).

BOOK.mkr Page 972 Wednesday, March 14, 2001 1:29 PM

