é BOOK.mkr Page 925 Wednesday, March 14, 2001 1:29 PM

APPENDICES

é BOOK.mkr Page 926 Wednesday, March 14, 2001 1:29 PM

ZIN

ﬁ-}

é BOOK.mkr Page 927 Wednesday, March 14 2001 1:29 PM

APPENDIX

A Operators

Figure A.1 showsthe precedence and associativity of the common Java operators

discussed. The bitwise operators have not been used in this book.

Category Examples Associativity
g Operations on References | . [] Left to right 2
Unary ++ -- | - (type) Right to left
Multiplicative * | % Left to right
Additive + - Left to right
Shift (bitwise) << >> >>> Left to right
Relational < <= > >= jnstanceof Left to right
Equality == l= Left to right
Boolean (or bitwise) AND & Left to right
Boolean (or bitwise) XOR n Left to right
Boolean (or bitwise) OR | Left to right
Logical AND && Left to right
Logical OR | Left to right
Conditional ?: Right to left
Assignment = %= /= % += -= Right to left

Figure A.1 Java operators listed from highest to lowest precedence

- 4~

é BOOK.mkr Page 928 Wednesday, March 14, 2001 1:29 PM

ZIN

ﬁ-}

é BOOK.mkr Page 929 Wednesday, March 14 2001 1:29 PM

\

APPENDIX

B Graphical User Interfaces

graphical user interface (GUI) is the modern alternative to terminal 1/0
Athat allows a program to communicate with its user. In a GUI, a window
applicationis creaed. Some of the waysto perform input include selection from a
list of alternatives, presing buttons, checking boxes, typing in text fields, and
using the mouse. Output can be performed by writing into text fields as well as
drawing gaphics. In Java 1.2 or higher, GUI programming is performed by using
the Swing padckage.

In this appendix, we will see

The basic GUI comporentsin Swing
* How these mmponents communicae information
* How these cmponents can be aranged in awindow

» How to draw graphics

A graphical user in-
terface (GUI') is the
modern alternative
to terminal I/O that
allows a program to
communicate with

its user.

>

?

é BOOK.mkr Page 930 Wednesday, March 14 2001 1:29 PM

Graphical User Interfaces

é(%

The Abstract Win-
dow Toolkit (AWT) is
a GUl toolkit that is
supplied with all

Java systems.

GUI programming is

event-driven.

B.1 The Abstract Window Toolkit and Swing

The Abstract Window Toolkit (AWT) isa GUI todlkit that is supplied with all Java
systems. It provides the basic classes to all ow user interfaces. These dasses can
be found in the package j ava. awt .1 The AWT is designed to be portable and
work acrossmultiple platforms. For relatively simple interfaces, the AWT is easy
to use. GUIs can be written withou resorting to visual development aids, and pro-
vides a significant improvement over basic terminal interfaces.

In a program that uses terminal 1/O, the program typically prompts the user
for input and then executes a statement that reads a line from the terminal. When
thelineisreda, it is processd. The flow of control in this stuation is easy to fol-
low. GUI programming is different. In GUI programming, the input components
are aranged in awindow. After the window is displayed, the program waits for an
event, such as abutton push, at which pdnt an event handler is cdled. Thismeans
that the flow of control islessobviousin a GUI program. The programmer must

supply the event handler to exeaute some pieceof code.

=31

. Shape |Circle [Jelude X coor M ¥ coor M

® Medium (' Large [Fill Draw

Figure B.1 A GUI that illustrates some of the basic Swing components

L Code in this appendix uses the wil d-card import directive to save space

ﬁ%

é BOOK.mkr Page 931 Wednesday, March 14 2001 1:29 PM é

The Abstract Window Toolkit and Swing

1

Java 1.0 provided an event model that was cumbersome to use. It was The event model

replaced in Java 1.1 by a more robust event model. Not surprisingly, these models ~ cn@nged inincom-

)) o)) patible ways from
are not entirely compatible. Specificdly, aJava 1.0 compiler will not successully
Java 1.0toJava 1.1.

compile code that uses the new event model. Java 1.1 compilers will give diag- The latter version is
nostics about Java 1.0 constructs. However, already compiled Java 1.0 code can described here.
be run by a Java 1.1 interpreter. This appendix describes the newer event model
only. Many of the dasss required by the new event model are fourd in the
j ava. awt . event padage.
The AWT provided a simple GUI, but was criticized for its lack of flair, as Swing is a GUI pack-

well as poor performance In Java 1.2, an improved set of comporents was added ~ @9¢ Providedin

. . . Java 1.2 that is built
in a new pakage aled j avax. swi ng. These components are known as
on top of the AWT N

Swing. Components in Swing look much better than their AWT courterparts, and provides sicker
there ae new Swing components that did na exist in AWT (such as didersand components,
progresshbars), and heve many more options (such as easy tooltips and mnemon-
ics). Additionally, Swing provides the notion of look-and-fed, in which a pro-
grammer can dsplay the GUI in Windows, X-Motif, Macintosh, platform
independent (metal), or even customized style, regardlessof the underlying plat-
form (although, becaise of copyright isaues and perhaps bad bood between Sun
and Microsoft, Windows look-and-fed works only on Windows s/stems).
Swing is built on top o the AWT, and as aresult, the event-handling model is
unchanged. Programming in Swing is very similar to the programming in Java
1.1 AWT, except that many names have changed. In this appendix we describe

Swing programming only. Swing is alarge library; it is not unusual to see etire

ﬁ%

é BOOK.mkr Page 932 Wednesday, March 14 2001 1:29 PM

Graphical User Interfaces

?

books devoted to the topic, so our presentation gealy understates the isaues that
areinvolved in user interfacedesign.

Figure B.1 illustrates some of the basic components provided by Swing.
These include the JConboBox (currently Circle is sleded), a JLi st (cur-
rently blueis sleded), basic JText Fi el dsfor input, four JCheckBoxes, and
a JBut t on (named Draw). Next to the button is a JText Fi el d that is used
for output only (hence, it is darker than the input JText Fi el ds above it). In
the top left-hand corner isaJPanel objed that can be used for drawing pictures

and handling mouse inpui.

Component
> ¢ 3
Cont ai ner
W ndow JConponent
JBut t on
Frane
JCheckBox
JFr ame JConboBox
JPanel
JLabel
JLi st
JRadi oBox
JText Area
JText Field

Figure B.2 Compressed hierarchy of Swing

ﬁ%

é BOOK.mkr Page 933 Wednesday, March 14 2001 1:29 PM é

Basic Objects in the AWT

1

>

This appendix describes the basic organizaion o the Swing API. It covers
the different types of objeds, how they can be used to perform input and ouput,

how these objeds are aranged in awindow, and how events are handled.

B.2 Basic Objects in the AWT

The AWT isorganized using a dassinheritance hierarchy. A compressed version
of this hierarchy is iown in Figure B.2. Thisis compressed because some inter-
mediate dasses are not shown. For instance, in the full hierarchy, JText Fi el d
and JText Ar ea are extended from JText Conponent , while many classes
that deal with fonts, colors, and other objects and are not in the Conponent
b hierarchy are not shown at all. The dasses Font and Col or, which are defined

inthej ava. awmt padage, are extended from Cbj ect .

?

é BOOK.mkr Page 934 Wednesday, March 14 2001 1:29 PM

Graphical User Interfaces

The Conponent
class is an abstract
class that is the su-
perclass of many
AWT objects. It rep-
resents something
that has a position
and a size and can
be painted on the
screen as well as
can receive input

events.

B.2.1 Conponent

The Conponent classis an abstract classthat is the superclass of many AWT
objects, and thus Swing ohjeds. Becaise it is abstrad, it cannot be instantiated. A
Conponent represents something that has a position and a size and can be
painted onthe screen as well as can receive input events. Some examples of the
Component are evident from Figure B.2.

The Conponent classcontains many methods. Some of these can be used
to spedfy the lor or fort; others are used to handle events. Some of the impor-
tant methods are
void setSize(int wdth, int height);
voi d set Background(Col or c);

void setFont(Font f);
void show);

The set Si ze methodis used to change the size of an objed. It works with
JFr ane objects, but it shoud not be cdled for objeds that use an automatic lay-
out, such as JBut t ons. For those, use set Pr ef err edSi ze; this method
takesaDi mensi on objed that itself is constructed with alength and width (and
is defined in JConponent). The set Backgr ound and set Font methods
are used to change the badkground color and font associated with a Conponent .
They require aCol or and Font objed, respedively. Finally, the show method

makes a cmponent visible. Itstypicd useisfor aJFr ame.

é BOOK.mkr Page 935 Wednesday, March 14 2001 1:29 PM é

Basic Objects in the AWT

?

B.2.2 Cont ai ner
In the AWT, a Cont ai ner isthe astrad superclass representing al compo- A Cont ai ner is

nents that can hold other components, An example of an AWT Cont ai ner is e dbstract super-

class representing
the W ndow class which represents a top-level window. As the inheritance hier-
allcomponents that

archy shows, a Cont ai ner IS-A Conponent . A particular instance of a can hold ofher
Cont ai ner objed will store a olledion o Component s aswell as other components.
Cont ai ners.

The container has auseful helper objed cdled aLayout Manager , whichis

a dassthat positions componentsinside the container. Some useful methods are

voi d setlLayout(Layout Manager ngr);
voi d add(Comnponent conp);
voi d add(Conponent conp, Object where);

Layout managers are described in Sedion B.3.1. A container must first define
how objeds in the container shoud be arranged. This is done by using
set Layout . It then addsthe objedsinto the container one-by-one by usingadd.
Think of the container as a suitcase, in which you can add clothes. Think of the
layout manager as the pading expert whowill explain how clothesareto be alded

to the suitcase.

é BOOK.mkr Page 936 Wednesday, March 14 2001 1:29 PM

Graphical User Interfaces

\

The basic contain-
ers are the top-level
W ndowand
JConponent . The
typical heavy-
weight compo-
nents are

JW ndow,
JFrane, and

JDi al og.

B.2.3 Top-level Containers

AsFigure B.2 shows, there ae two types of Cont ai ner objeds, namely

1. thetop-level windows which eventually reades JFr ame

2. theJConponent , which eventually reaties most other Swing
comporents.

JFr ame isan example of a “heavyweight component,” while all Swing com-
ponents in the JConponent hierarchy are “lightweight.” The basic difference
between heavyweight and lightweight components is that lightweight compo-
nents are drawn on a canvas entirely by Swing whereas heavyweight components
interad with the native windowing system. As aresult, whereas lightweight com-
ponents can add ather lightweight comporents, (for instance, you can use add to
place several JBut t on objedsin aJPanel), but you shoud not add diredly
into a heavyweight component. Instead you oktain a Cont ai ner representing
its “content pane” and add into the content pane, thus allowing Swing to update
the mntent pane. Thus the native windowing system is not involved in the update
(you will get aruntime exception if you attempt to add into a heavyweight com-
ponent), increasing update performance.

There aeonly afew basic top-level windows, including:

1. JW ndow: atop-level window that has no bader

2. JFr ane: atop-level window that has aborder and can aso have
an asociated JMenuBar 2

3. JDi al og: atop-level window used to create dialogs
An application that uses a Swing interface should have aJFr ane (or a dass

extended from JFr ane) as the outermost container.

2. Menus are not discussed in this Appendix.

ﬁ%

é BOOK.mkr Page 937 Wednesday, March 14 2001 1:29 PM é

Basic Objects in the AWT

?

B.2.4 JPanel
The other Cont ai ner subclassisthe JConponent . One such JConponent The JPanel isused

isthe JPanel which is used to store acollection d objects, but does nat creae 0 sfore a collec-

.. . . tion of objects, but
borders: So it isthe simplest of the container classes.
does not create

The primary use of the JPanel is to organize objects into a unit. For borders. As such. it

instance, consider a registration form that requires a name, address social seau- s the simplest of the

rity number, and home and work telephone numbers. All of these form compo- Cont ai ner

nents might produce aPer sonPanel . Then the registration form could contain closes
several Per sonPanel entitiesto allow the posshility of multiple registrants.

As an example, Figure B.3 shows how the cmponents $own in Figure B.1
are grouped into a JPanel classand illustrates the general technique of creding
a subclassof JPanel . It remains to construct the objects, lay them out nicely,
and handle the button push event.

Note that GUI implements the Act i onLi st ener interfface This means
that it understands how to hande an action event (in this case, a button push). To
implement the Acti onLi stener interface, a class must provide a
acti onPer f or med method. Also, when the button generates an adion event,
it must know which componrent isto receve the event. In this case, by making the
cal at 11 (in Figure B.3), the GUI objed that contains the JBut t on tells the
But t on to send it the event. These event-handling details are discussd in Sec
tion B.3.3.

A second se of the JPanel is the grouping of objeds into a unit for the

purpase of simplifying layouts. Thisis discussed in Section B.3.5.

ﬁ%

é BOOK.mkr Page 938 Wednesday, March 14 2001 1:29 PM

Graphical User Interfaces

AJLabel isa
component for
placing text in a
container. Its pri-
mary use is to label

other components.

Almost al of the JPanel functiondity is in fact inherited from
JConponent . This includes routines for painting, sizing, and event handling

and the method to set todltips:

voi d set Tool Ti pText(String txt);
void setPreferredSize(Dinension d);

B.2.5 Important /O Components

Swing provides a set of components that can be used to perform input and oupLt.
These components are eay to set up and wse. The ade in Figure B.4 (page 941)
il lustrates how ead of the basic comporentsthat are shown in Figure B.1 are con-
structed. Generally, this involves cdli ng a constructor and applying a method to
customize a omponrent. This code does not specify how items are arranged in the
JPanel or how the states of the components are examined. Recdl that GUI pro-
gramming consists of drawing the interface ad then waiting for events to occur.

Component layout and event handling is discussed in Sedion B.3.

JLabel

A JLabel isacomporent for pladng text in a container. Its primary useis to
label other components auch as a JConboBox, JLi st, JText Fi el d, or
JPanel (many other components already have their names displayed in some
way). In Figure B.1, the phrases Shape, X Coor, and Y Coor are labels. A
JLabel isconstructed with an optional St ri ng and can be changed with the

method set Text . These methods are

ﬁ%

4

é BOOK.mkr Page 939 Wednesday, March 14 2001 1:29 PM é

Basic Objects in the AWT

JLabel ();
JLabel (String theLabel);
voi d setText(String theLabel);

1 inport java.awt.*;

2 inport java.awt.event.*;

3 inport java.awt.sw ng.*;

4

5 class QU extends JPanel inplenents ActionListener
6 {

7 public QU ()

8 {

9 makeTheCbj ects();

10 doTheLayout ();

11 t heDr awBut t on. addAct i onLi stener(this);
12 }

13 /1 Make all the objects

14 private voi d makeTheCbj ects()

15 { /* Inplenentation in Figure B.4 */ }

16

17 /1 Layout all the objects

18 private void doTheLayout()

19 { /* Inplenentation in Figure B.7 */ }
20 D

d 21 /1 Handl e the draw button push ’

22 public void actionPerformed(ActionEvent evt)
23 { /* Inplenentation in Figure B.9 */ }
24
25 private GUl Canvas t heCanvas;
26 private JConboBox t heShape,;
27 private JLi st t heCol or;
28 private JTextField t heXCoor ;
29 private JTextField t heYCoor ;
30 private JRadi oButton snall Pic;
31 private JRadi oButton nedi unPic;
32 private JRadi oButton | argePic;
33 pri vate JCheckBox t heFi | | Box;
34 private JButton t heDr awBut t on;
35 private JTextField t heMessage;
36 }

Figure B.3 Basic GUI class shown in Figure B.1

- 4~ 4

?

é BOOK.mkr Page 940 Wednesday, March 14 2001 1:29 PM

m Graphical User Interfaces

The JBut t onis
used to create a

labeled button.

When it is pushed,

an action eventis

generated.

JButt on
The JBut t on isused to creae alabeled button. Figure B.1 containsaJBut t on

with the label Draw. When the JBut t on is pushed, an action event is generated.
Sedion B.3.3 describes how adion events are handed. TheJBut t on interfaceis
similar to the JLabel . Spedficdly, aJBut t on is constructed with an gptional

String. TheJBut t on label can be changed with the method set Text . These

methods are

é BOOK.mkr Page 941 Wednesday, March 14 2001 1:29 PM é

Basic Objectsin the AWT |2

1 /1 Make all the objects

2 private void makeTheObj ects()

3 {

4 t heCanvas = new GUI Canvas();

5 t heCanvas. set Background(Col or. green);

6 theCanvas. set Pref erredSi ze(new Di mension(99, 99));
7

8 t heShape = new JConmboBox(new String[]

9 { "Circle", "Square" });

10

11 theCol or = new JList(new String[] { "red", "blue" });
12 t heCol or. set Sel ecti onMode(

13 Li st Sel ecti onMbdel . SI NGLE_SELECTI ON) ;
14 t heCol or. set Sel ectedl ndex(0); // make red default

15

16 t heXCoor = new JTextField(3);

17 t heYCoor = new JTextField(3);

18

19 ButtonGroup theSize = new ButtonG oup();
20 smal | Pic = new JRadi oButton("Small", false);
21 medi unPi ¢ = new JRadi oButton("Mediunt', true);
22 | argePi c = new JRadi oButton("Large", false);
23 theSi ze. add(small Pic);
24 theSi ze. add(medi unPic);
25 theSi ze. add(|argePic);

3 26 5

27 theFi | | Box = new JCheckBox("Fill");
28 theFi | | Box. set Sel ected(false);
29
30 t heDrawButton = new JButton("Draw');
31
32 t heMessage = new JTextField(25);
33 t heMessage. set Edi t abl e(fal se);
34 }

Figure B.4 Code that constructs the objects in Figure B.1

JButton();

JButton(String thelLabel);

voi d setText(String theLabel);
voi d set Mnenoni c(char c);

JConboBox
The JConboBox isused to select asingle objed (typically astring) via apop-up The JComboBox is

list of choices. Only one doice can be seleded at any time, and by default only ~ Used fo select asin-

. . .) gle string via a pop-
an object that is one of the choices can be selected. If the JConboBox is made
up list of choices.

ﬁ%

é BOOK.mkr Page 942 Wednesday, March 14 2001 1:29 PM é

Graphical User Interfaces

?

editable, the user can typein an entry that is not one of the choices. In Figure B. 1,
the type of shapeisaJConboBox objed; Circle is currently selected. Some of

the JConboBox methods are

JConboBox();

JConboBox(Object[] choices);

voi d addltem(Ohject item);

oj ect getSelectedltem);

i nt get Sel ect edl ndex();

voi d set Edi t abl e(bool ean edit);
voi d set Sel ect edl ndex(int index);

A JConmboxBox is constructed with no perameters or with an array of
options. Obj ect s (typicdly strings) can then be added to (or removed from) the
list of JConmboxBox options. When get Sel ect edl t emiscdled, an Cbj ect
representing the aurrent seleded item (or nul | if no choice is selected) is
returned. Insteal of returning the actual Obj ect , its index (as computed by the
order of callsto addl t em) can be returned by cdling get Sel ect edl ndex.
Thefirst item added hasindex 0, and so on This can be useful becauseif an array
stores information corresponding to each of the choices, get Sel ect edl ndex
can be used to index this array. The set Sel ect edl ndex methodis used to

specify adefault seledion.

é BOOK.mkr Page 943 Wednesday, March 14 2001 1:29 PM é

Basic Objects in the AWT 943

JLi st

The JLi st component allows the seledion from a scrollinglist of Cbj ect s. In The Li st compo-

Figure B.1, the choice of colors is presented as a JLi st . The JLi st differs "ent dllows fhe se-

lection from a scroll-
from the JConboBox in threefundamental ways:
ing list of Cbj ect s.

1. TheJLi st can beset upto allow either one selected item or mul- It can be set up fo
tiple seleded items (the default is multiple seledion). allow for either one

2. TheJLi st alowsthe user to ssemore than one choice d atime. .

3. TheJLi st will take up more screen real estate than the Choi ce. selected ffem or

. . multiple selected
ThebasicJLi st methods are

items.
JList();
JList(Object [] itens);
voi d setListData(Object [] items);
i nt get Sel ect edl ndex();
int [] get Sel ect edl ndi ces();
N oj ect get Sel ect edVval ue(); N
hject [] getSel ectedVal ues();
voi d set Sel ect edl ndex(int index);
voi d set Sel ect edVval ue(Obj ect value);
voi d set Sel ecti onMode(int node);

A JLi st isconstructed with either no parameters or an array of items (there
are other constructors that are more sophisticated). Most of the listed methods
have the same behavior (with posshly different names) as the corresponding
methods in JComboxBox. get Sel ect edVal ue returnsnul | if noitemsare
seleded. get Sel ect edVal ues isused to handle multiple seledion; it returns
an array of Obj ect s (possbly length 0) corresponding to the selected items. As
with the JConboxBox, indices instead of Obj ect s can be obtained by other

public methods.

?

é BOOK.mkr Page 944 Wednesday, March 14 2001 1:29 PM

m Graphical User Interfaces

A JCheckBox is a
GUI component
that has an on state
and an off state. A
But t onG oup
can contain aset of
but t ons in which
only one may be

true atatime.

set Sel ect i onMbde isused to alow only single item seledion. The boil-

erplate mdeis:

| st.set Sel ecti onMode(Li st Sel ecti onModel . SI NGLE_SELECTI ON) ;

JCheckBox and JRadi oBut t on
A JCheckBox isaGUI comporent that has an on state and an off state. The on

state ist r ue and the off stateisf al se. It is considered a button (a dass
Abstract Button isdefined in the Swing API from which JBut t on,
JCheckBox, and JRadi oBut t on are dl derived). A JRadi oButt onis sm-
ilar to aJCheckBox, except that JRadi oBut t onsare round Figure B.1 con-
tains four JCheckBox objects. In this figure, the Fill ched box is currently
t r ue and the three other check boxes are in a But t onGr oup: Only one
JCheckBox inthe group d three may be true. When a JCheckBox in agroup
is ®leded, all the othersin the group are deselected. A But t onGr oup is con-
structed with zero parameters. Note that it isnot a Conponent ; itis smply a
helper classthat extends Obj ect .

The common methods for JCheckBox are similar to JRadi oBut t on and
are:
JCheckBox();
JCheckBox(String theLabel);
JCheckBox(String theLabel, bool ean state);
bool ean i sSel ected();

voi d set Label ();
voi d set Sel ect ed(bool ean state);

ﬁ%

é BOOK.mkr Page 945 Wednesday, March 14 2001 1:29 PM é

Basic Objects in the AWT 945

A stand-alone JCheckBox is constructed with an optional labdl. If alabel is
not provided, it can be alded later with set Label . set Label canalso be used
to change the existing JCheckBox label. set Sel ect ed is most commonly
used to set a default for a standalone JCheckBox. i sSel ect ed returns the
state of aJCheckBox.

A JCheckBox that is part of aButt onG oup is constructed as usual and
is then added to the But t onGr oup objed by use of the But t onGr oup add

method. The But t onGr oup methods are:

Butt onG oup();
void add(AbstractButton b);

Canvasses

b In the AWT, a Canvas component represents a blank rectangular area of the A canvas compo-
screen onto which the application can draw. Primitive graphics are described jn "M represents a

. L) blank rectangular
Section B.3.2. A Canvas could also receive input from the user in the form of
area of the screen

mouse and keyboard events. The Canvas was never used directly: Instead, the .
onto which the ap-

programmer defined a subclassof Canvas with appropriate functionality. The plication can draw

subclassoverrode the method orreceive input

events.

voi d paint(Gaphics g);

In Swing, thisis no longer in vogue. The same dfed is obtained by extending

JPanel andoverriding the method

voi d pai nt Conponent (Graphics g);

ﬁ%

?

é BOOK.mkr Page 946 Wednesday, March 14 2001 1:29 PM

m Graphical User Interfaces

AlJTextFieldis
a component that
presents the user
with a single line of
text. AJText Area
allows multiple lines
and has similar

functionality.

Although this works for any component, by usingaJPanel of apreferred size,
one ca avoid having any painting run over the boundry of the “canvassng

”

area

JText Fi el d and JText Ar eas

A JText Fi el d isacomponent that presents the user with a single line of text.
A JText Ar ea alows multiple lines and has dmilar functionality. Thus only
JText Fi el d isconsidered here. By default, the text can be edited by the user,
but it is possble to make the text uneditable. In Figure B.1, there ae three
JText Fi el d objects: two for the coordinates and one, which is not editable by
the user, that is used to communicate aror messages. The badkground color of an
uneditable text field differs from that of an editable text field. Some of the com-

mon methods asociated with JText Fi el d are

JTextField();

JTextField(int cols);

JTextField(String text, int cols);
String getText();

bool ean i sEditable();

voi d set Edi t abl e(bool ean editable);
voi d setText(String text);

A JText Fi el d isconstructed either with noparameters or by specifying an
initial optional text and the number of columns. The set Edi t abl e methodcan
be used to disallow input into the JText Fi el d. set Text can be used to print
messages into the JText Fi el d, and get Text can be used to read from the

JText Fi el d.

é BOOK.mkr Page 947 Wednesday, March 14 2001 1:29 PM é

Basic Principles

?

B.3 Basic Principles

This sction examines threeimportant facets of AWT programming. First, how
objeds are arranged inside acontainer, followed by how events, such as button
pushing, are handled. Finally, it describes how graphics are drawn inside

Canvas objeds.

B.3.1 Layout Managers

A layout manager automaticdly arranges comporents of the container. It iSas- The layout manager

ciated with a cntainer by issuing the set Layout command. An example of ~ @utomatically ar-

. . ranges compo-
using set Layout isthecall
nents of the con-
set Layout (new Fl owLayout ()); tainer. A layout

Noticethat a referenceto the layout manager need nat be saved. The ontainer in ~ Manager is assock-

. ated with a con-
which the set Layout command is applied stores it as a private data member.
tainer by the set -

When alayout manager is used, requests to resize many of the cmponents, such Layout method,
as buttons, do not work because the layout manager will choose its own sizes for
the comporents, as it deems appropriate. The ideais that the layout manager will
determine the best sizes that allow the layout to med the specifications.
Think o the layout manager as an expert padker hired by the container to

make the final deasions about how to pack items that are added to the container.

é BOOK.mkr Page 948 Wednesday, March 14, 2001 1:29 PM

Graphical User Interfaces

The simplest of the
layouts is the

Fl owLayout ,
which adds com-
ponents in a row

from left to right.

Fl owlLayout

The simplest of the layouts is the FI owlLayout . When a mntainer is arranged
using the FI owlL.ayout , its comporents are added in a row from left to right.
When there is noroom left in arow, anew row isformed. By default, each row is
centered. This can be changed by providing an additional parameter in the con-
structor with the value FI owLayout . LEFT or FI owLayout . Rl GHT.

The problem with using aFI owlLayout isthat arow may bre& in an awk-
ward place. For instance, if a row is too short, a bresk may occur between a
JLabel andaJText Fi el d, even though logicdly they shoud always remain
adjacent. One way to avoid this is to crede aseparate JPanel with those two
elements and then add the JPanel into the container. Another problem with the
FI owLayout isthat it isdifficult to line up things verticaly.

The Fl owLayout isthe default for aJPanel .

FEE o

Morth

West Center East

South

Figure B.5 Five buttons arranged using Bor der Layout

é BOOK.mkr Page 949 Wednesday, March 14 2001 1:29 PM

Basic Principles m

i nport java.aw.*;
i mport javax.sw ng.*;

1
2
3
4 /'l Generate Figure B.5

5 public class BorderTest extends JFrane
6 {

7

8

public static void main(String [] args)

9 JFrame f = new Border Test();

10 JPanel p = new JPanel ();

11

12 p. set Layout (new BorderLayout());

13 p.add(new JButton("North"), "North");
14 p.add(new JButton("East"), "East");

15 p. add(new JButton("South"), "South");
16 p.add(new JButton("West"), "West");

17 p.add(new JButton("Center"), "Center");
18

19 Contai ner ¢ = f.getContentPane();

20 c.add(p);

21 f.pack(); /!l Resize frane to mnimum size
22 f.show(); /1 Display the frane

23 }

24 }

Figure B.6 Code that illustrates Bor der Layout

Bor der Layout

A Bor der Layout isthe default for objeds in the W ndow hierarchy, such as
JFrane. It lays out a container by placing comporentsin ore of five locaions.
For this to happen, the add method must provide as a second parameter one of
thestrings" Nort h", " Sout h", " East","Wst",and" Cent er " ; the sec
ond parameter defaultsto " Cent er " if not provided (so one single-parameter
add will work, but several adds placeitems ontop d ead ather). Figure B.5
shows five buttons added to a Fr ame using aBor der Layout . The codeto gen-
erate thislayout is shown in Figure B.6. Observe that we use the typical idiom of
adding into a lightweight JPanel , and then adding the JPanel into the top-

level JFr ame’s content pane. Typically, some of the five locations may be

ﬁ%

Bor der Layout is
the default for ob-
jectsinthe W ndow
hierarchy, such as
JFrame and

JDi al og. It lays
out a container

by placing com-
ponents in one of

five locations.

—

1

>

é BOOK.mkr Page 950 Wednesday, March 14 2001 1:29 PM

Graphical User Interfaces

unused. Also, the component placed in alocdionistypically aJPanel that con
tains other components using some other layout.

As an example, the code in Figure B.7 (page 952) shows how the objeds in
Figure B.1 are aranged. Here, we have two rows, but we want to ensure that the
chedkboxes, buttons, and ouput text field are placed below the rest of the GUI.
Theideaisto create aJPanel that storestheitemsthat should bein the top Half
and another JPanel that stores the items in the bottom half. These two
JPanel s can be placed on top of each ather by arranging them using a
Bor der Layout .

Lines4 and 5 credethetwo JPanel objedst opHal f and bot t onHal f.
Each of the JPanel objeds are then separately arranged using aFl owLayout .
Notice that the set Layout and add methods are gplied to the gpropriate
JPanel . Becaise the JPanel s are arranged with the FI owLayout , they may
consume more than one row if thereis not enough haizontal red estate avail able.
This could cause abad bresk betweenaJLabel andaJText Fi el d. Itisleftas
an exercise for the reader to creae alditional JPanel sto ensure that any bregks
do not disconned aJLabel andthe component it labels. Oncethe JPanel sare
done, we use aBor der Layout to line them up. Thisis dore at lines 28 to 30.
Notice dso that the mntents of both JPanel sare centered. Thisis aresult of the
FI owLayout . To have the contents of the JPanel sleft-aligned, lines8 and 19
would construct the Fl owLayout with the alditional parameter

FI owLayout . LEFT.

ﬁ%

é BOOK.mkr Page 951 Wednesday, March 14 2001 1:29 PM é

Basic Principles m

When the Bor der Layout is used, any add commands that are issued When the

1

withoutaSt ri ng use" Cent er " asthedefault. If aSt ri ng isprovided, but is Bor der Layout is

))]) . used, an add com-
not one of the acceptable five (including having corred case), then a runtime
mand that is issued

. . 3
exception is thrown. without a St ri ng

defaults to

nul | Layout
"Center".

Thenul | layout isused to perform predse positioning. Inthenul | layout, each The nul | layoutis

objed is added to the mntainer by add. Its position and size may then be set by ~1ed fo perform

precise posifioning.

calingthe set Bounds method:

voi d setBounds(int x, int y, int width, int height)

Here x and y represent the location of the upper left-hand corner of the objed,
relative to the upper left-hand corner of its container. wi dt h and hei ght repre-
sent the size of the object. All units are pixels.

Thenul | layout is platform-dependent; typically, thisis alarge liability.

Fancier Layouts
Javaalso provides the Car dLayout , Gri dLayout, and Gri dBagLayout. Otherlayouts simu-

The Car dLayout simulates the tabbed index cards popular in Windows appli- o€ fabbed index

. cards and allow
cations but looksterriblein the AWT. The Gri dLayout adds componentsinto a
orronging over an

grid but will make each grid entry the same size This means that components are . ,
arbitrary grid.

stretched in sometimes unnatural ways. It is useful for when thisis not aproblem,

3 Notethat in Java 1.0, the aguments to add were reversed and misgng or incorrect St r i ngs were quietly

ignored, thus leading to difficult debugging. The old styleis still all owed, but it is officialy discouraged.

ﬁ%

é BOOK.mkr Page 952 Wednesday, March 14 2001 1:29 PM

Graphical User Interfaces

such as a cdculator keypad that consists of atwo-dimensional grid of buttons.
The Gri dBaglLayout adds components into a grid but all ows components to

cover severa grid cells. It ismore complicaed than the other layouts.

1 /1 Layout all the objects

2 private voi d doTheLayout()

3 {

4 JPanel topHal f = new JPanel ();

5 JPanel bottonHal f = new JPanel ();

6

7 /1 Layout the top half

8 topHal f. set Layout (new Fl owLayout ());
9 topHal f.add(theCanvas);

10 topHal f.add(new JLabel ("Shape"));
11 topHal f.add(theShape);

12 topHal f.add(theCol or);

13 topHal f.add(new JLabel ("X coor"));
14 topHal f.add(theXCoor);

15 topHal f.add(new JLabel ("Y coor"));
16 topHal f.add(theYCoor); o

14]7 14

18 /1 Layout the bottom half

19 bot t onHal f. set Layout (new Fl owLayout());
20 bottontHal f.add(smallPic);
21 bot t omHal f. add(medi unPic);
22 bottonHal f. add(|l argePic);
23 bottonHal f. add(theFill Box);
24 bott omHal f. add(theDrawButton);
25 bot t omHal f. add(theMessage);
26
27 /1 Now | ayout GU
28 set Layout (new BorderLayout());
29 add(topHal f, "North");
30 add(bottomHal f, "South");
31 }

Figure B.7 Code that lays out the objects in Figure B.1

Visual Tools

Commercia products include todls that alow the programmer to draw the layout
using a CAD-like system. The tool then produces the Java cde to construct the

objects and provide alayout. Typicaly, it generates an arrangement using anul |

ﬁ%

é BOOK.mkr Page 953 Wednesday, March 14 2001 1:29 PM

Basic Principles

layout manager. Even with this system, the programmer must still write most of
the code, including the handling of events, but is relieved of the dirty work

involved in cdculating predse object positions.

B.3.2 Graphics

As mentioned in Sedion B.2.5, graphics are drawn by using aJPanel object. Graphics are drawn

Specifically, to generate graphics, the programmer must define anew classthat °Y defining a class

]])] that extends
extends JPanel . This new classprovides a mnstructor (if a default is unaccept-
JPanel . The new

able), overrides a method ramed pai nt Conponent , and provides a public class overrides the

methodthat can be cdled from the canvas's container. The pai nt Conmponent pai nt Conpo-

method is nent method and
provides a public

voi d pai nt Conponent (Graphics g); method that can

G aphi cs isan abstrad classthat defines sveral methods. Some of these e~ P€ called from the

canvas’s container.

void drawOval (int x, int y, int width, int height)
void drawRect(int x, int y, int wdth, int height);)
void fillOval (int x, int y, int width, int height) G aphi csisan
void fillRect(int x, int y, int width, int height)

void drawLine(int x1, int x2, int yl, int y2);

void drawsString(String str, int x, int y); defines several

void setColor(Color c);

abstract class that

drawing methods.
In Java, coordinates are measured relative to the upper left-hand corner of the In Java. coordinates

are measured rela-

comporent. dr awOval , drawRect , fill Oval ,andfil | Rect al draw an

tive to the upper
object of specified wi dt h and hei ght with the upper left-hand corner at coor-
left-hand corner of

dinates given by x and y. dr awLi ne and dr awSt ri ng draw lines and text, n
e component.

ﬁ%

—

1

é BOOK.mkr Page 954 Wednesday, March 14 2001 1:29 PM

Graphical User Interfaces

It is important that
the first line of

pai nt Conpo-
nent calls the su-
perclass’ pai nt -

Conponent .

The r epai nt
method schedules
a component clear
and then calls

pai nt Conpo-

nent .

respectively. set Col or is used to change the aurrent color; the new color is
used by all drawing routines urtil it is changed.

It isimportant that the first line of pai nt Conponent calls the superclass
pai nt Conponent .

Figure B.8 (page 955) illustrates how the cawas in Figure B.1 is imple-
mented. The new classGUJI Canvas extendsJPanel . It provides various private
data members that describe the airrent state of the cawas. The default
GUI Canvas constructor is reasonable, so we accet it.

The data members are set by the public method set Par ans, which is pro-
vided so that the container (that is, the GUI classthat stores the GUI Canvas)
can communicate the state of its various input components to the GUI Canvas.
set Par ans is diown at lines 3 to 13. The last line of set Par ans cdls the
method r epai nt .

Ther epai nt method schedules a cmponrent clearing and subsequent call
to pai nt Conponent . Thusal we neal to doisto write apai nt Conponent
method that draws the cawas as edfied in the dassdata members. As can be
seen by its implementation in lines 15 to 35 after chaining up to the superclass
pai nt Conponent simply calls the Gr aphi cs methods described previously

in this appendix.

4

é BOOK.mkr Page 955 Wednesday, March 14 2001 1:29 PM é

Basic Principles 955

1 class GUI Canvas extends JPanel
2 {
3 public void setParans(String aShape, String aColor, int x,
4 int y, int size, boolean fill)
5 {
6 thi s. theShape = aShape;
7 this.theCol or = aCol or;
8 XCcoor = X;
9 ycoor =y,
10 t heSi ze = si ze;
11 fillon = fill;
12 repaint();
13 }
14
15 public void pai nt Conponent(Graphics g)
16 {
17 super . pai nt Conponent (g);
18 i f(theCol or.equals("red"))
19 g.setColor(Color.red);
20 else if(theCol or.equal s("blue"))
21 g.set Col or(Col or.blue);
22
23 thewdth = 25 * (theSize + 1);
24
25 i f(theShape. equal s("Square"))
> 26 if(filloOn) h
27 g.fill Rect(xcoor, ycoor, theWdth, theWdth);
28 el se
29 g.drawRect (xcoor, ycoor, theWdth, theWdth);
30 el se if(theShape.equals("Circle"))
31 if(fillOn)
32 g.fillOval (xcoor, ycoor, theWdth, theWdth);
33 el se
34 g.drawOval (xcoor, ycoor, theWdth, theWdth);
35 }
36
37 private String theShape = "";
38 private String theColor ="";
39 private int xcoor;
40 private int ycoor;
41 private int theSize; // 0 =smll, 1 = med, 2 = large
42 private boolean fillOn;
43 private int theWdth;
44 }

Figure B.8 Basic canvas shown in fop left-hand corner of Figure B.1

- 4~ 4

é BOOK.mkr Page 956 Wednesday, March 14 2001 1:29 PM

Graphical User Interfaces

Java’s original
event-handling sys-
tem was cumber-
some and has been

completely redone.

An action event is
generated when
the user presses a
JBut t on; it is han-
dled by anac-

tionLi stener.

B.3.3 Events

When the user uses the mouse or types on the keyboard, the operating system pro-
duces an event. Java's original event-handling system was cumbersome and has
been completely redone. The new model, in place since Java 1.1, is much simpler
to program than the old. Note that the two models are incompatible: Java 1.1
events are not understood by Java 1.0 compil ers and vice versa. The basic rules

are asfollows:

1. Any classthat iswilling to provide code to hande an event must
i mpl enent alistener interface. Examples of listener interfaces
areAct i onLi st ener, W ndowLi st ener, and
MouseLi st ener. Asusual, implementing an interfacemeans
that all methods of the interface must be defined by the class

2. An aoject that iswilling to handle the event generated by a compo-
nent must register itswill ingnesswith an add listener message sent
to the event-generating component. When a cmponent generates
an event, the event will be sent to the object that has registered to
receiveit. If no oljed hasregistered to recaveit, thenitisignored.

For an example, consider the adion event, which is generated when the user
presss a JBut t on, hits Return while in a JText Fi el d, or seleds from a
JLi st or JMenul t em The simplest way to handle the JBut t on click is to
have its container implement ActionLi stener by providing an
acti onPer f or med method and registering itself with the JButt on as its
event handler.

Thisis srown for our running examplein Figure B.1 asfoll ows. Recall that in
Figure B.3, we dready have done two things. At line 5, GUI dedares that it
implements the Act i onLi st ener, and at line 11, an instance of GUI registers

itself asits JBut t on’s adion event handler. In Figure B.9 (page 959), we imple-

ﬁ%

é BOOK.mkr Page 957 Wednesday, March 14 2001 1:29 PM é

Basic Principles

?

ment the listener by having acti onPerformed cal set Param in the
GUI Canvas class. This example is smplified by the fad that there is only one
JBut t on, sowhenact i onPer f or ned iscdled, we know what to da If GUI
contained several JBut t ons and it registered to receive events from all of these
JBut t ons, thenact i onPer f or med would have to examine the evt parame-
ter to determine which JBut t on event was to be processed: This would proba-
bly involve asequenceof i f /el se tests. Theevt parameter, which in this case
isan Act i onEvent reference, is aways passed to an event hander. The event
will be spedfic to the type of handler (Act i onEvent , W ndowEvent , and so
on), but it will always be asubclassof AWTEvent .
An important event that needs to be processed is the window closing event. A window closing

This event is generated when an applicationis closed by pressng on the I that js ©ven' s generated

when an applica-
at the top right-hand corner of the gplicaion window. Unfortunately, by default,

tion is closed.

this event is ignared, so if an event hander is not provided, the norma meda-

nism for closing an application will not work.

4 Oneway to dothisisto useevt . get Sour ce(), which returns areferenceto the object that generated the

event.

ﬁ%

é BOOK.mkr Page 958 Wednesday, March 14 2001 1:29 PM

Graphical User Interfaces

The window-closing
event is handled by
implementing the

W ndowLi st ener

intferface.

Cl oseabl eFrane
extends JFr ame
and implements

W ndow

Li st ener.

The pack method
simply makes the
JFr ame as tight as
possible, given its
constituent compo-
nents. The show
method displays the

JFr ane.

Window closing is one of several events that is assciated with a
W ndowLi st ener interface Because implementing the interface requires us to
provide implementations for many methods (which arelikely to be empty bodes),
the most reasonable wurse of adionisto define a dassthat extends JFr ane and
implements the W ndowLi st ener interface. This class Cl oseabl eFr ane,
is down in Figure B.10. The window close event handler is Smple to write — it
just cdls Syst em exi t. The other methods remain without a spedal imple-
mentation. The constructor registersthat it iswillingto accept the window closing
event. Now we can use Cl oseabl eFr ane instead of JFr anme throughout.

Noticethat the aode for C oseabl eFr ane is cumbersome; we will revisit
it shortly, and seea use for anonymous inner classes.

Figure B.11 povides anmi n that can be used to start the gplicaionin Fig-
ure B.1. We placethisin a separate dass which we cdl Basi cGUl . Basi cGUI
extends the class Cl oseabl eFrane. mai n simply creaes a JFr ane into
which we place aGUJl objed. We then add an unramed GUI objed into the
JFr ame's content pane and pack the JFr ane. The pack method simply makes
the JFr anme as tight as posdble, given its constituent comporents. The show

method displaysthe JFr ane.

é BOOK.mkr Page 959 Wednesday, March 14 2001 1:29 PM é

Basic Principles

1 /1 Handl e the draw button push

2 public void actionPerformed(Acti onEvent evt)

3 {

4 try

5 {

6 t heCanvas. set Par ans(

7 (String) theShape.getSelectedlten(),

8 (String) theCol or. get Sel ect edVal ue(),

9 I nt eger. parselnt(theXCoor.getText()),
10 I nt eger. parselnt(theYCoor.getText()),
11 smal | Pic.isSelected() ? 0 :

12 medi unPic.isSelected() ? 1 : 2,
13

14 theFi || Box.isSelected());

15 t heMessage. set Text("");

16 }

17 cat ch(Nunber For mat Exception e)

18 { theMessage.set Text("Inconplete input"); }
19 }

Figure B.9 Code to handle the draw button push for Figure B.1

/'l Frame that closes on a wi ndow- cl ose event

public class C oseabl eFrane extends JFrane
i mpl ements W ndowLi st ener

public C oseabl eFrame()
{ addW ndowLi stener(this); }

NV ONONOTEA WN —
~

public void wi ndowCl osi ng(W ndowEvent event)

10 { Systemexit(0) }

11 public void wi ndowCl osed(W ndowEvent event)

12 {1}

13 public void wi ndowDei coni fi ed(W ndowEvent event)
14 {1}

15 public void wi ndow conified(WndowEvent event)
16 {1}

17 public void wi ndowActivat ed(W ndowEvent event)
18 {1}

19 public void wi ndowDeactivated(W ndowEvent event)
20 {1}

21 public void wi ndowOpened(W ndowEvent event)

22 {1}

23 }

Figure B.10 Cl oseabl eFr ane class: same as JFr ame, but handles the
window closing event

ﬁ%

é BOOK.mkr Page 960 Wednesday, March 14 2001 1:29 PM

m Graphical User Interfaces

The listener adapter
classes provide de-
fault implementa-
tions of all the lis-

tener methods.

1 class BasicGUl extends C oseabl eFrane

2 {

3 public static void main(String [] args)
4 {

5 JFrame f = new BasicGUI ();

6 f.setTitle("GUI Dem");

7

8 Cont ai ner content Pane = f.get Cont entPane();
9 cont ent Pane. add(new GUI ());

10 f.pack();

11 f.show();

12 }

13 }

Figure B.11 nai n routine for Figure B.1

B.3.4 Event Handling: Adapters and Anonymous Inner Classes

The Cl oseabl eFr ane classis a mess To listen for aW ndowEvent , we
must dedare a tassthat implements the W ndowlLi st ener interface, instanti-
ate the dass and then register that objed with the Cl oseabl eFr ane. Sincethe
W ndowLi st ener interface has sven methods, we must implement all seven
methaods, even though we ae interested in only ore of the seven methods.

One @n imagine the messy code that will ensue when a large program han-
dles numerous events. The prablem is that every event handling strategy corre-
sponds to a new class and it would be bizarre to have many classes with lots of
methods that simply dedare{ }.

Asaresult, thej ava. awt . event padage defines aset of listener adapter
classes. Each listener interfacethat has more than one method is implemented by
a arresponding listener adapter class with empty bodies. Thusinstead of provid-
ing the empty bodies ourselves, we an simply extend the alapter class and over-

ride the methods we ae interested in. In ou case, we neal to extend

ﬁ%

é BOOK.mkr Page 961 Wednesday, March 14 2001 1:29 PM é

Basic Principles m

W ndowAdapter. This gives the (flawed) implementation for

Cl oseabl eFramne shownin Figure B.12.

The aodein Figure B.12 fails because multiple implementation inheritanceis
illegal in Java. Thisis not a serious problem, however, becaise we do not need the
Cl oseabl eFr ane to be the objed that handles its own events. Instead, it can

delegated to afunction objed.

1 // Frame that closes on a wi ndowcl ose event: (flawed)
2 public class C oseabl eFrame extends JFrame, W ndowAdapt er

3 {
4 public C oseabl eFranme()
5 { addW ndowLi stener(this); }
6
7 public void wi ndowCl osi ng(W ndowEvent event)
8 { Systemexit(0) }
> 9} >

FigureB.12 Cl oseabl eFr ane class using W ndowAdapt er . This does not
work because there is no multiple inheritance in Java.

1 // Frame that closes on a wi ndowcl ose event: (works!)
2 public class C oseabl eFrane extends JFrane, W ndowAdapt er

3 {

4 public C oseabl eFrame()

5 { addW ndowLi stener(new ExitOnCl ose()); }

6

7 private class ExitOnCl ose extends W ndowAdapt er

8 {

9 public void wi ndowCl osi ng(W ndowEvent event)
10 { Systemexit(0) }

1 }

12 }

Figure B.13 Cl oseabl eFr ame closs using W ndowAdapt er and inner
class.

- 4~ 4

é BOOK.mkr Page 962 Wednesday, March 14 2001 1:29 PM

Graphical User Interfaces

1 // Frame that closes on a w ndow cl ose event: (works!)
2 public class d oseabl eFrame extends JFrane, W ndowAdapt er

3 {

4 public C oseabl eFrame()

5 {

6 addW ndowLi st ener (new W ndowAdapter()
7 {

8 public void wi ndowCl osi ng(W ndowEvent event)
9 { Systemexit(0) }

10 }

11)

12 }

13 }

Figure B.14 Cl oseabl eFr ane class using W ndowAdapt er and anony-
mous inner class.

Figure B.13 illustrates this approach. The Exi t OnCl ose classimplements
the W ndowlLi st ener interface by extending W ndowAdapt er. An instance
of that class is creaed and registered as the frame's window listener.
Exi t OnCl ose isdedared asan inner classinstead of anested class Thiswould
give it accessto any o the C oseabl eFr ane’s instance members, should it
need it. The event handling model is a dassic example of the use of function
objects, and is the reason that inner classes were deemed an essential addition to
the language (recadl that inner classes and the new event model appeared simulta-
neously in Java 1.1).

Figure B.14 shows the logicd continuation, using anonymous inner classes.
Here we are alding a W ndowLi st ener and explaining, on pretty much the
next line of code, what the W ndowLi st ener does. Thisisa dassc use of the
anonymous inner classes. The pallution of braces, parentheses and semicolons is
horrific, but experienced realers of Java cde skip over thase syntadic details and

easily see what the event handling code does. The main benefit hereisthat if there

ﬁ%

é BOOK.mkr Page 963 Wednesday, March 14 2001 1:29 PM

Basic Principles

are lots of small event handling methods, they need not be scattered in top-level
classes, but instead can be placal nea the objeds that these events are coming

from.

B.3.5 Summary: Putting the Pieces Together
Here isasummary of how to creae a GUI applicdion. Place the GUI functional-

ity in a dassthat extends JPanel . For that class do the following:

» Deddeonthe basic input elements and text output elements. If the same
elements are used twice, make an extra dassto store the common func-
tionality and apply these principles onthat class

* If graphics are used, make an extra dass that extends JPanel . That class
must provide apai nt Conponent method and a public method that can
be used by the mntainer to communicaetoit. It may also need to provide
a onstructor.

» Pick alayout andissieaset Layout command.

» Add components to the GUI using add.

» Handle events. The simplest way to do thisisto use aBut t on andtrap

the button push with act i onPer f or ned.

Once a GUI class is written, an applicaion defines a dass that extends
Cl oseabl eFr ane with anai n routine. The nmai n routine simply creaes an
instance of this extended frame dass places the GUI panel inside the frame's

content pane, and issies apack command and a show command for the frame.

- 4~

4

1

é BOOK.mkr Page 964 Wednesday, March 14 2001 1:29 PM

m Graphical User Interfaces

B.3.6 Is This Everything | Need To Know About Swing?

What we have described so far will work well for toy user interfaces, and is an
improvement over consol e-based applications. But there ae significant complica
tionsthat a professonal applications programmer would have to ded with.

It is rare that the layout manager will make you happy, Often you need to
tinker by adding additional subpanels. To help out, Swing defines elements such
as gacers, struts, and so onthat allow you to position elements more predsely,
along with elaborate layout managers. Using these dementsis quite chall enging.

Other swing components include dliders, progressbars, scrolling (which can
be added to any JConponent), password textfields, file choosers, option panes

and didog boxes, tree structures (such as what you seein FileManager on Win-

>

dows g/stems), tables, and on and on. Image acqquisition and dsplay is aso sup-
ported by Swing. Additionally, one often needs to know about fonts, colors, and
the screen environment that oneisworking in.

Additionally, there is the important issue of what happens if an event occurs
while you are in an event handler. It turns out that events are queued. However, if
you get trapped in an event handler for a long time, you application can appea
unresporsive; we've dl seen thisin applicaion code. For instance, if the button
handling code has an infinite loap, you will not be able to close awindow. To
solve this problem, typicdly programmers use atechnique known as multithread-

ing, which opens upawhole new can of worms.

ﬁ%

é BOOK.mkr Page 965 Wednesday, March 14 2001 1:29 PM

\

Summary

This appendix examined the basics of the Swing padage, which allows the pro-
gramming of GUIs. This makes the program look much more professonal than
simple terminal 1/0O.

GUI applications differ from termina 1/O applicaionsin that they are event-
driven. To designa GUI, we write a class We must dedde on the basic inpu ele-
ments and output elements, pick alayout andissue aset Layout command, add
comporentsto the GUI usingadd, and handle events. All thisis part of the class
Starting with Java 1.1, event handling is done with event listeners.

Once this classis written, an application defines a dassthat extends JFr ane
with amai n routine and an event handler. The event handler processes the win-
dow closing event. The simplest way to do thisisto use the Cl oseabl eFr ame
class in Figure B.14. The nai n routine simply creaes an instance of this
extended frame dass places an instance of the dass(whose anstructor likely
creates a GUI panel) inside the frame's content pane, and issues a pack com-
mand and a show command for the frame.

Only the basics of Swing have been discussed here. Swing is the topic of

entire books.

Summary

965

4

>

é BOOK.mkr Page 966 Wednesday, March 14 2001 1:29 PM

m Graphical User Interfaces

ﬁ <, Objects of the Game
am Abstract Window Toolkit (AWT) A GUI toolkit that is supplied with all Java
systems. Provides the basic clases to allow user interfaces. (930)

Act i onEvent An event generated when auser pressesaJBut t on, hits
ReturninaJText Fi el d, or seledsfromaJLi st or JMenul t em
Shoud be handled by theact i onPer f or med method in a dassthat
implementsthe Act i onLi st ener interface (956

Act i onLi st ener interface Aninterface used to handle adion events. Con-
tainsthe astract method act i onPer f or ned. (956)

acti onPer f or med A method wsed to handle action events. (956)

AWIEvent An olhed that storesinformation about an event. (956)

Bor der Layout The default for objedsin the W ndow hierarchy. Used to
lay out a @ntainer by pladng comporentsin one of five locations
("North","South","East","Wst","Center"). (949

But t onGr oup An object used to group a mllection of button objeds and
guaranteethat only one may be on at any time. (944)

canvas A blank rectangular areaof the screen orto which an application can
draw and receve input from the user in the form of keyboard and mouse
events. In Swing, thisisimplemented by extending JPanel . (953)

Conmponent An abstrad classthat is the superclassof many AWT objeds.
Represents something that has apositionand asize and that can be painted
on the screen as well as can receive inpu events. (934)

Cont ai ner The éstrad superclass representing all components that can

hold other components. Typicaly has an associated layout manager. (935)

ﬁ%

é BOOK.mkr Page 967 Wednesday, March 14 2001 1:29 PM é

Objects of the Game

1

>

event Produced by the operating system for various occurrences, such as input
operations, and passd to Java. (956)

FI owLayout A layout that isthe default for JPanel . Used to lay out a corn-
tainer by adding comporentsin arow from left to right. When there is no
room left in arow, anew row isformed. (948)

graphical user interface (GUI) The modern alternative to terminal /O that
allows a program to communicae with its user via buttons, chedkboxes,
textfields, choicelists, menus, and the mouse. (929)

Gr aphi cs An abstrad classthat defines sveral methods that can be used to
draw shapes. (953)

JBut t on A component used to creae alabeled button. When the buttonis
pushed, an adion event is generated. (940)

JCheckBox A component that has an on state and an off state. (944)

JConmboBox A component used to seled asingle string viaapop-up list of
choices. (941)

JConponent An abstrad classthat is the superclassof lightweight Swing
objects. (936)

JDi al og A top-level window used to create dialogs. (936)

JFr ame A top-level window that has aborder and can also have an asciated
JMenuBar . (936)

JLabel A comporent that isused to label other components sich asa

JConboBox, JLi st,JText Fi el d, or JPanel . (938

ﬁ%

é BOOK.mkr Page 968 Wednesday, March 14 2001 1:29 PM

Graphical User Interfaces

JLi st A component that all ows the selection from a scrolling list of strings.
Can allow one or multiple seleded items, but uses more screen red estate
than JConboBox. (943)

JPanel A container used to store a ©lledion d objeds but does not crede
borders. Also used for canvasses. (937)

JText Ar ea A component that presents the user with several lines of text.
(946)

JText Fi el d A componrent that presents the user with asingle line of text.
(946)

layout manager A helper objed that automaticaly arranges components of a
container. (947)

listener adapter class Provides default implementations for alistener inter-
facethat has more than one method. (960)

nul | layout A layout used to perform precise positioning. Allows the
set Bounds methodto work. (951)

pack A method used to pack aJFr ane into its snall est size given its constit-
uent components. (958)

pai nt Conponent A method used to draw onto a component. Typically
overridden by classes that extend JPanel . (953)

r epai nt A method wsed to clea and repaint a component. (954)

set Layout A methodthat associates alayout with a mntainer. (947)

show A method that makes a component visible. (958)

W ndow A top-level window that has no border. (936)

ﬁ%

é BOOK.mkr Page 969 Wednesday, March 14 2001 1:29 PM é

Common Errors m

1

W ndowAdapt er A classthat provides default implementations of the
W ndowLi st ener interface (936)
W ndowLi st ener interface An interfaceused to spedfy the handling of

window events, such as window closing. (958

Common Errors

1. Forgetting to set alayout manager is acommon mistake. If you forget it,

you'll get adefault. However, it may nat be the one you want.

2. Thelayout manager must appear prior to the cdlsto add.

3. Applying add or setting alayout manager to the wrong container isa
common mistake. For instance, in a mntainer that contains panels, apply-
ingthe add method without spedfying the panel means that the add is
applied to the main container.

4. A missng St ri ng argument to add for Bor der Layout uses
"Cent er" asthedefault. A common mistake isto specify it inthewrong
case asin" nort h". Thefivevalid argumentsare” Nor t h" ," Sout h",
"East","West",and" Center".InJavall,iftheStri ngisthesec
ond parameter, aruntime exception will catch the eror. If you use the old
style, in which the St r i ng comesfirst, the aror might not be deteded.

5. Spedal codeis nealed to processthe window closing event.

é BOOK.mkr Page 970 Wednesday, March 14 2001 1:29 PM

Graphical User Interfaces

On the Internet

All code foundin this Appendix is available:

Border Test.java Simpleillustration of the Bor der Layout ,

shown in Figure B.6.

BasicGUl .java The main example, for the GUI applicaion used in

this chapter, with Cl oseabl eFr anme from Fig-

ure B.14.

@ Exercises

B.1.

B.2.

B.3.

B.4.

B.5.

B.6.

B.7.

B.8.

In Short
What isaGUI?

List the various JConponent classsthat can be used for GUI input.
Describe the difference between heavyweight components and lightweight
comporents, and give examples of each.

What are the differences between the JLi st and JConboBox compo-
nents?

What isaBut t onGr oup used for?

Explain the steps taken to design a GUI.

Explain how the Fl owlLayout, Bor der Layout, and nul | layouts
arrange cmponents.

Describe the steps taken to include a graphical comporent inside a

JPanel .

ﬁ%

é BOOK.mkr Page 971 Wednesday, March 14 2001 1:29 PM é

Exercises

1

B.9. What is the default behavior when an event occurs? How is the default
changed?
B.10. What events generate an Act i onEvent ?

B.11. How isthe window closing event handled?

In Practice

B.12. pai nt Conponent can be written for any component. Show what hap-
pens when a drcleis painted in the GUI classinstea of its own canvas.

B.13. Handlethe pressng d the Enter key in the y-coordinate text field in class
GUI . You will need to modify act i onPer f or med and register asecond
event handler.

B.14. Add adefault of (0, 0) for the cordinates of ashapein classGUI .

Programming Projects

B.15. Write aprogram that can be used to input two dates and output the number
of days between them. Use the Dat e classfrom Exercise 3.16.

B.16. Write aprogram that allows you to draw lines inside a cavas using the
mouse. A click starts the line draw; a second click ends the line. Multiple
lines can be drawn onthe canvas. To do this, extendthe JPanel classand
handle mouse events by implementing MouselLi st ener. You will also
need to override updat e to avoid cleaing the anvas between line draws.
Add abuttonto clear the cawas.

B.17. Write an applicaion that containstwo GUI objeds. When adions occur in

one of the GUI objeds, the other GUI objed savesits old state. You will

ﬁ%

é BOOK.mkr Page 972 Wednesday, March 14 2001 1:29 PM

Graphical User Interfaces

?

need to add a copy St at e method to the GUI classthat will copy the
states of all of the GUI fields and redraw the canvas.

B.18. Write a program that contains a single cawas and a set of ten GUI inpu
comporents that each speafy a shape, color, coordinates, and size, and a
chedkbox that indicates the comporent is adive. Then draw the union o
the input components onto a @nvas. Represent the GUI input component
by using a dasswith accessor functions. The main program shoud have

an array of these input components plus the cawas.

Reference

In addition to the standard set of referencesin Chapter 1, a complete Swing tuto-

rial is provided in the 950 page book [1].

1. K. Walrath and M. Campione, The JFC Swing Tutorial, Addison-Wesley,
Realing, Mass (1999).

