Part Il

Algorithms and
Building Blocks

é BOOK.mkr Page 232 Wednesday, March 14, 2001 1:11PM

ZIN

ﬁ-}

é BOOK.mkr Page 233 Wednesday, March 14 2001 1:11PM

CHAPTER

9 Algorithm Analysis

N Part | we examined how object-oriented programming can help in the
| design and implementation o large systems. We did na examine perfor-
mance isaues. Generally, we use a omputer because we need to process a large
amourt of data. When we run a program on large anounts of input, we must be
certain that the program terminates within areasonable anount of time. Although

the anount of running time is smewhat dependent on the programming language

>

we use, and to a smaller extent the methoddogy we use (such as procedural ver-
sus object-oriented), often those fadors are unchangeable constants of the design.
Even so, the running time is most strongly correlated with the choice of algo-
rithms.

An algorithmis a dealy spedfied set of instructions the computer will fol-
low to solve aprablem. Once an algorithm is given for a problem and determined
to be correct, the next step is to determine the anourt of resources, such astime
and space that the dgorithm will require. This dep is cdled algorithm analysis.
An agorithm that requires sveral gigabytes of main memory is not useful for
most current machines, even if it is completely corred.

In this chapter, we show:

ﬁ%

é BOOK.mkr Page 234 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

More data means
that the program

takes more time.

* How to estimate the time required for an agorithm

* How to use techniques that drasticdly reduce the running time of an
algorithm

* How to use amathematicd framework that more rigorously describes the

running time of an algorithm

* How to write asimple binary search routine

5.1 What Is Algorithm Analysis?

The amount of time that any algorithm takes to run almost always depends on the
amount of input that it must process We exped, for instance, that sorting 10,000
€lements requires more time than sorting 10elements. The running time of an
algorithm is thus a function of the input size. The exad value of the function
depends on many fadors, such as the spee of the host machine, the quality of the
compiler, and in some caes, the quality of the program. For agiven program on a
given computer, we can plot the running time function on a graph. Figure 5.1
illustrates guch aplot for four programs. The aurves represent four common func-
tions encountered in algorithm analysis: linear, O(NlogN), quadratic, and
cubic. Theinpu size N ranges from 1 to 100items, and the running times range
from 0 to 10milliseconds. A quick glance d Figure 5.1 and its companion, Figure
5.2, suggests that the linear, O(N log N), quadratic, and cubic curves represent

runningtimesin order of deaeasing preference

ﬁ%

é BOOK.mkr Page 235 Wednesday, March 14 2001 1:11PM é

What Is Algorithm Analysis?

1

An example is the problem of downloading a file over the Internet. Suppose Of the common

thereisan initial 2-secdelay (to set upaconrection), after which thedownload pro- ~ unctions encoun-

tered in algorithm
ceedsat 1.6 K/sec. Thenif thefileisN kil obytes, thetime to download is described

analysis, linear rep-

by theformula T(N) = N/ 1.6 + 2. Thisisalinear function. Downloading an 80K resents the most offi.
file takes approximately 52 sec, whereas downloading afile twice aslarge (160K) cient algorithm.
takes about 102 sec, or roughly twice a long. This property, in which time esen-

tialy isdiredly proportional to amourt of inpu, is the signature of alinear algo-

rithm, which is the most efficient algorithm. In contrast, as these first two graphs

show, some of the nonlinea algorithms leal to large running times. For instance,

the linea algorithms is much more dficient than the cubic agorithm.

In this chapter we address gveral important questions:

* |sit alwaysimportant to be on the most efficient curve?
» How much better is one aurve than ancther?
» How doyoudedde which curve a particular algorithm lies on?

* How doyoudesign algorithms that avoid being on lessefficient curves?

é BOOK.mkr Page 236 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

?

10 - .
Linear —
O(N log N)
QuadratiC mmm
Cubic
sl
)
c
;
= 6f
T
(O]
S
= a4l
j@)]
£
c
e
]
x
21
O
10 20 30 40 50 60 70 80 0 100
Input Size (N)
d Figure 5.1 Running times for small inputs >

é BOOK.mkr Page 237 Wednesday, March 14 2001 1:11PM é

What Is Algorithm Analysis?

1

1
Linear —
O(N log N)
QuadratiC s
08 Cubic
)
g 0.6
Y
£
|_
o 0.4
E
>
x
0.2

0 N 1 n i M L
b 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Input Size (N)

Figure 5.2 Running times for moderate inputs

A cubic function is a function whose dominant term is some @nstant times
NZ. As an example, 10N3+ N2+ 40N + 80 is a aibic function. Similarly, a qua-
dratic function hes a dominant term that is ©me mnstant times N2, and a linea
function has a dominant term that is some @nstant times N. The expresson
O(NlogN) represents a function whose dominant term is N times the logarithm
of N. The logarithm is a slowly growing function; for instance, the logarithm of
1,000,000 (with the typical base 2) is only 20. The logarithm grows more slowly
than a sguare or cube (or any) root. We discussthe logarithm in more depth in

Sedion 55.

ﬁ%

?

é BOOK.mkr Page 238 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

The growth rate of a
function is most im-
portant when Nis

sufficiently large.

Either of two functions may be smaller than the other at any given point, so
claiming, for instance, that F(N)< G(N) does not make sense. Instead, we mea
sure the functions' rates of growth. This is justified for three reasons. First, for
cubic functions such as the one shown in Figure 5.2, when N is 1,000 the value of
the aubic functionisamost entirely determined by the cubic term. In the function
10N3+ N2+ 40N + 80, for N = 1,000, the value of the function is 10,001,040,080,
of which 10000,000,000isdueto the 10N 3 term. If wewereto use only the aubic
term to estimate the entire function, an error of abou 0.01 percent would result.
For sufficiently large N, the value of afunction is largely determined by its domi-

nant term (the meaning of the term sufficiently large varies by function).

é BOOK.mkr Page 239 Wednesday, March 14 2001 1:11PM é

What Is Algorithm Analysis?

1

The second reason we measure the functions' growth rates is that the exad
value of the leading constant of the dominant term is not meaningful acossdif-
ferent machines (althouch the relative values of the leading constant for identi-
cally growing functions might be). For instance, the quality of the compiler could
have alarge influence on the leading constant. The third reason is that small val-
ues of N generally are not important. For N = 20, Figure 5.1 shows that all algo-
rithms terminate within 5 ms. The difference between the best and worst
algorithm islessthan a blink of the eye.
We use Big-Oh notation to capture the most dominant term in afunctionand Big-Oh notation is

to represent the growth rate. For instance, the running time of a quadratic dgo- 8@ 10 capturethe

rithm is gedfied as O(N2) (pronaunced “order en-squared”). Big-Oh naation mest dominant
N term in a function. N
also allows us to establish arelative order among functions by comparing domi-
nant terms. We discussBig-Oh notation more formally in Sedion 5.4.
For small values of N (for instance, those lessthan 40), Figure 5.1 shows that
one aurve may beinitially better than ancther, which doesn’t hold for larger val-
ues of N. For example, initially the quadratic curve is better than the O(N logN)
curve, but as N gets aufficiently large, the quadratic dgorithm losesits advantage.
For small amounts of input, making comparisons between functions is difficult
because leading constants become very significant. The function N + 2,500 is
larger than N2 when N is lessthan 5Q Eventually, the linea function is always
lessthan the quadratic function. Most important, for small i nput sizes the running

times are generally inconsequential, so we need not worry about them. For

instance, Figure 5.1 shows that when N islessthan 25 all four algorithmsrunin

ﬁ%

é BOOK.mkr Page 240 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

Quadratic algo-
rithms are impracti-
cal for input sizes ex-
ceeding a few

thousand.

Cubic algorithms
are impractical for
input sizes as small

as a few hundred.

lessthan 10 ms. Consequently, when input sizes are very small, a good rule of
thumb isto use the simplest algorithm.

Figure 5.2 clealy demonstrates the differences between the various curves
for large input sizes. A linear algorithm solves a problem of size 10,000 in asmall
fradion d aseoond. The O(NlogN) algorithm uses roughly 10 times as much
time. Note that the actual time differences depend onthe wnstants involved and
thus might be more or less. Depending on these mnstants, an O(N logN) algo-
rithm might be faster than a linea algorithm for fairly large input sizes. For
equally complex algorithms, however, linea agorithms tend to win out over
O(NlogN) agorithms.

This relationship is nat true, however, for the quadratic and cubic dgorithms.
Quadratic agorithms are almost always impradical when the input size is more
than afew thousand, and cubic dgorithms are impradicd for input sizes as gnall
as afew hundred. For instance, it is impracticd to use anaive sorting algorithm
for 100,000 items, because most simple sorting algorithms (such as bubble sort
and seledion sort) are quadratic dgorithms. The sorting agorithms discussed in
Chapter 8 run in subcuadratic time (that is, better than O(N?2)), thus making

sorting large arays pradical.

é BOOK.mkr Page 241 Wednesday, March 14 2001 1:11PM é

Examples of Algorithm Running Times

1

Function Name
c Constant
logN Logarithmic
log?N Log-squared
N Linear
Nlog N Nlog N
N2 Quadratic
N3 Cubic
2N Exponential

Figure 5.3 Functions in order of increasing growth rate

The most striking feature of these aurvesisthat the quadratic and cubic dgo-
rithms are not competitive with the others for reasonably large inputs. We can
code the quadratic dgorithm in highly efficient machine language and do a poor
job coding the linear algorithm, and the quadratic dgorithm will still lose badly.
Even the most clever programming tricks cannot make an inefficient algorithm
fast. Thus, before we waste dfort attempting to optimize @de, we need to gpti-
mize the algorithm. Figure 5.3 arranges functions that commonly describe dgo-

rithm running timesin order of increasing growth rate.

5.2 Examples of Algorithm Running Times

In this dion we examine three problems. We dso sketch possble solutions and
determine what kind of running times the algorithms will exhibit, without provid-

ing cetailed programs. The goal in this ®dionisto provide you with some intu-

ﬁ%

é BOOK.mkr Page 242 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

ition about algorithm analysis. In Section 5.3 we provide more detail s on the
process and in Section 54 we formally approach an algorithm analysis problem.

We look at the following problemsin this dion:

MINIMUM ELEMENT IN AN ARRAY
Given an array of N items, find the smallest item.

CLOSEST POINTS IN THE PLANE

Given N points in a plane (that is, an x-y coordinate system), find
the pair of points that are closest together.

COLINEAR POINTS IN THE PLANE

Given N points in a plane (that is, an x-y coordinate system), deter-
mine if any three form a straight line.

The minimum element problem is fundamental in computer science. It can be

solved as follows:

1. Maintain avariable m n that stores the minimum element.
2. Initializemi n to the first element.
3. Make asequential scan through the aray and update mi n as
appropriate.
The running time of this algorithm will be O(N), or linear, becaise we will

repeat afixed amount of work for eat element in the aray. A linear algorithm is
as goad as we can hope for. Thisis becaise we have to examine every element in
the array, a processthat requires linear time.

The dosest points problem is a fundamental problem in graphics that can be

solved as follows:

1. Cadlculate the distance between each pair of points.
2. Retain the minimum distance

This cdculation is expensive, however, because there ae N(N—1)/2 pairs of

points.t Thus there ae roughly N2 pairs of paints. Examining all these pairs and

ﬁ%

é BOOK.mkr Page 243 Wednesday, March 14 2001 1:11PM é

Examples of Algorithm Running Times 243

finding the minimum distance among them takes quadratic time. A better algo-
rithm runsin O(N log N) time and works by avoiding the computation of all dis-
tances. Thereis aso an algorithm that is expeded to take O(N) time. These last
two algorithms use subtle observations to provide faster results and are beyond
the scope of thistext.

The wlinea points problem is important for many graphics algorithms. The
resson is that the existence of colinear points introduces a degenerate case that
requires peda handing. It can be diredly solved by enumerating all groups of
three points. This lution is even more computationally expensive than that for
the dosest points problem because the number of different groups of threepoints
isN(N—-1)(N—-2)/6 (using reasoning similar to that used for the dosest points
problem). Thisresult tell s usthat the dired approach will yield a aubic dgorithm.
Thereisalso amore dever strategy (also beyond the scope of thistext) that solves
the problem in quadratic time (and further improvement is an area of continu-
ously adive reseach).

In Sedion 53 we look at a problem that illustrates the differences among lin-
ear, quadratic, and cubic dgorithms. We dso show how the performance of these
algorithms compares to a mathematical prediction. Finally, after discussng the

basic ideas, we examine Big-Oh notation more formally.

1 Each of N points can be paired with N — 1 points, for atotal of N(N — 1) pairs. However, this pairing double

counts pairs A, B and B, A, so we must divide by two.

ﬁ%

é BOOK.mkr Page 244 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

Programming de-
tails are considered
after the algorithm

design.

Always consider

emptiness.

5.3 The Maximum Contiguous Subsequence
Sum Problem

In this £dion, we consider the following problem:

MAXIMUM CONTIGUOUS SUBSEQUENCE SUM PROBLEM

Given (possibly negative) integers Aq, A,, ..., Ay . find (and identify
the sequence corresponding to) the maximum value of ! Ak
The maximum contiguous subsequence sum is zero if all the inte-
gers are negative.

Asan example, if theinpu is{-2, 11, 4, 13, -5, 2}, then the answer is 20, which
represents the antiguous subsequence encompassgng items 2 through 4 (shown
in bddface type). As a second example, for theinput { 1, -3, 4, -2, -1, 6 }, the
answer is 7 for the subsequence enxcompassng the last four items.

In Java, arrays begin at zero, so a Java program would represent the input as a
sequence A, to Ay _ ;. Thisisaprogramming cetail and nd part of the dgorithm
design.

Before the discusson d the dgorithms for this problem, we need to com-
ment on the degenerate case in which all input integers are negative. The problem
statement gives a maximum contiguous subsequence sum of O for this case. One
might wonder why we do this, rather than just returning the largest (that is, the
small est in magnitude) negative integer in the inpu. The reasonis that the empty
subsequence, consisting of zero integers, is also a subsequence, and its im is
clealy 0. Because the empty subsequenceis contiguous, there is always a @ntig-

uous subsequencewhase sum is 0. This result is analogous to the empty set being

ﬁ%

é BOOK.mkr Page 245 Wednesday, March 14 2001 1:11PM

The Maximum Contiguous Subsequence Sum Problem

a subset of any set. Be avare that emptiness is always a passhility and that in
many instancesit isnot aspedal case at al.

The maximum contiguaus aubsequence sum problem is interesting mainly
because there ae so many algorithms to solve it — and the performance of these
algorithms varies drasticdly. In this dion we discussthree such algorithms. The
first is an obvous exhaustive seach algorithm, but it is very inefficient. The sec
ond is an improvement on the first, which is accomplished by a ssmple observa-
tion. The third is a very efficient, but not obvious, algorithm. We prove that its
runningtimeislinea.

In Chapter 7 we present a fourth algorithm, which has O(N logN) running
time. That algorithm is not as efficient as the linea algorithm, but it is much more
efficient than the other two. It isalso typicd of the kinds of agorithms that result
in O(NlogN) running times. The graphs shownin Figures 5.1 and 5.2 are repre-

sentative of these four algorithms.

5.3.1 The Obvious O(N3) Algorithm

The simplest algorithm isa dired exhaustive search, or abrute forcealgorithm, as
shown in Figure 5.4. Lines 9 and 10 control a pair of loops that iterate over all
possible subsequences. For each passble subsequence, the value of its sumis
computed at lines 12 to 15. If that sum isthe best sum encourtered, we update the
value of maxSum, which is eventually returned at line 25. Two int s —
seq Start

and seqEnd (which are static classfields) — are dso updated

whenever anew best sequenceis encountered.

ﬁ%

There are lots of
drastically different
algorithms (in terms
of efficiency) that
can be used to
solve the maximum
contfiguous subse-
quence sum

problem.

A brute force algo-
rithm is generally
the least efficient
but simplest

method to code.

—

?

é BOOK.mkr Page 246 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

The direct exhaustive seach algorithm has the merit of extreme simplicity;
the lesscomplex an algorithm is, the more likely it isto be programmed corredly.
However, exhaustive seach agorithms are usually not as efficient as possble. In
the remainder of this sction we show that the running time of the dgorithm is
cubic. We count the number of times (as a function of the input size) the expres-
sions in Figure 5.4 are evaluated. We require only a Big-Oh result, so orce we

have found a dominant term, we can ignore lower order terms and leading con-

stants.
'I /**
2 *C ubi cmaxi mum conti guous s ubsequences umal gorithm
3 *s eqStarta nds eqgEndr epresentt heactualb ests equence.
4 *
5 publics tatici ntm axSubsequenceSum(i nt[]a)
6 {
7 intmaxSum=0 ;
8
9 for(i nti=0 ;i<a .length;i ++)
10 for(i ntj=i ;j<a .length;j ++)
11 {
12 intt hisSum=0 ;
13
14 for(i ntk=i k< =)k ++)
15 thisSum+=al[k] ;
16
17 if(t hisSum>maxSum)
18 {
19 maxSum =t hi sSum
20 seqStart=i ;
21 seqEnd =j ;
22 }
23 }
24
25 returnmaxSum
26 }

Figure 5.4 A cubic maximum contiguous subsequence sum algorithm

ﬁ%

é BOOK.mkr Page 247 Wednesday, March 14 2001 1:11PM é

The Maximum Contiguous Subsequence Sum Problem

?

The running time of the dgorithm is entirely dominated by the innermost

f or loopinlines 14 and 15. Four expressonsthere ae repeaedly exeauted:

theinitidizationk =i

thetestk < =j

theincrementt hi sSum+=a[k] ,and
4. the adjustment k++.

wnN e

The number of times expresdon 3 is exeauted makes it the dominant term A mathematical

among the four expressons. Note that eadh initidization is acoompanied by at @nasisis used fo

)) . o count the number
least one test. We ae ignoring constants, so we may disregard the st of the ini-
of times that certain

tidizaions; the initializations canna be the single dominating cost of the dgo- statements are
rithm. Because the test given by expresson 2 is unsuccessful exactly once per executed.
loop, the number of unsuccesdul tests performed by expresson 2 is exadly equal
to the number of initializaions. Consequently, it is not dominant. The number of
successul tests at expresson 2 the number of increments performed by expres-
sion 3 and the number of adjustments at expresson 4are dl identical. Thus the
number of increments (i.e., the number of timesthat line 15 is executed) is adom-
inant measure of the work performed in the innermost loop.
The number of times line 15 is exeauted is exactly equal to the number of
ordered triplets (i, j, k) that satisfy 1 < i < k<j < N.2 Thereasonisthat the index i
runs over the entire aray, j runsfromi to the end o the aray, and k runsfromii to

j- A quick and drty estimate is that the number of triplets is somewhat lessthan

2 In Java, theindices run from 0 to N — 1. We have used the dgorithmic equivalent 1 to N to simplify the

analysis.

ﬁ%

é BOOK.mkr Page 248 Wednesday, March 14 2001 1:11PM é

?

Algorithm Analysis

N x Nx N, or N3 becaisei, j, andk can each assume one of N values. The aldi-
tional restrictioni < k < j reduces this number. A predse calculation is ©mewhat
difficult to oktain and is performed in Theorem 5.1.

The most important part of Theorem 5.1 is not the proof, but rather the result.
There ae two ways to evaluate the number of triplets. Oneisto evaluate the sum
P 5k _ 1. We aould evaluate this aim inside out (see Exercise 5.9).

Instead, we will use an alternative.

The number of integer ordered triplets (i, j, k) that satisfy 1 <i<k<j<N Theorem 5.1
isSN(N+1)(N+2)/6.
Proof Placethe following N + 2 ballsin a box: N balls numbered 1to N, one

unrumbered red ball, and ane unnumbered blue ball. Removethreeballs
fromthe box. If ared ball is drawn, number it as the lowest of the num-
bered balls drawn. If a blue ball i s drawn, number it as the highest of the
numbered bdls drawn. Noticethat if we draw both ared andblue ball,
then the dfect isto havethreeballsidentically numbered. Order the three
balls. Each such order correspondsto a triplet solutionto the equationin
Theorem 5.1. The number of possble ordersisthe number of distinct
waysto draw threeballs without replacement froma colledion of N + 2
balls. Thisis smilar to the problem of seleding three points froma group
of N that we evaluated in Section 5.2, so we immediately obtain the stated
result.

The result of Theorem 5.1 is that the innermost f or loop accourts for cubic

running time. The remaining work in the dgorithm is inconsequential becaise it

ﬁ%

é BOOK.mkr Page 249 Wednesday, March 14 2001 1:11PM

The Maximum Contiguous Subsequence Sum Problem

is done, at most, once per iteration of the inner loop. Put another way, the cost of
lines 17 to 22 isinconsequential becaise it is done only as often as the initiaiza
tion o the inner f or loop, rather than as often as the repeaed bady of the inner
f or loop. Consequently, the dgorithm is O(N3).

The previous combinatoric agument allows us to dotain precise cdculations
on the number of iterationsin the inner loop. For a Big-Oh calculation, thisis not
redly necessary; we neal to know only that the leading term is ssme @nstant
times N3. Looking at the dgorithm, we see aloop that is potentially of size N
inside aloop that is potentially of size N inside another loop that is potentially of
size N. This configuration tells us that the triple loop has the potentia for
N x N x N iterations. This potential is only about six times higher than what our
precise calculation of what acdually occurs. Constants are ignored anyway, so we
can adopt the general rule that, when we have nested loops, we shoud multiply
the st of the innermost statement by the size of ead loop in the nest to oltain
an wpper bound. In most cases, the upper bound will not beagrossoverestimate.3
Thus a program with three nested loops, each running sequentialy through large
portions of an array, is likely to exhibit O(N3) behavior. Note that three @nsecu-
tive (nonnested) loops exhibit linear behavior; it is nesting that leads to a cmbi-

natoric explosion. Consequently, to improve the dgorithm, we need to remove a

loop.

We do not need

precise calcula-

tions for a Big-Oh es-

timate. In many
cases, we can use
the simple rule of
multiplying the size
of all the nested
loops. Note care-
fully that consecu-
tive loops do not

multiply.

3 Exercise5.16 ill ustrates a case in which the multi plication d loop sizes yields an overestimate in the Big-Oh

result.

ﬁ%

—

1

?

é BOOK.mkr Page 250 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

When we remove a
nested loop from an
algorithm, we gen-
erally lower the run-

ning time.

5.3.2 AnImproved O(N?) Algorithm

When can remove anested loop from the dgorithm, we generedly lower the run-
ning time. How do we remove aloop? Obviously, we cannat aways do so. How-
ever, the previous algorithm has many unnecessary computations. The
inefficiency that the improved algorithm corrects is the unduly expensive compu-
tation in the inner f or loop in Figure 5.4. The improved algorithm makes use of
the fact that zL AT AT z{(—:li A, . In other words, suppose we have just cal-
culated the sum for the subsequencei, ...,] — 1. Then computing the sum for the
subsequencei, ..., j should not take long because we need orly one more aldition.
However, the cubic dgorithm throws away this information. If we use this obser-
vation, we obtain the improved algorithm shown in Figure 5.5. We have two

rather than threenested loops, and the running timeis O(N2).

é BOOK.mkr Page 251 Wednesday, March 14, 2001 1:11PM é

The Maximum Contiguous Subsequence Sum Problem

'I /**
2 *Q uadrati cmaxi numcontiguouss ubsequences umal gorithm
3 *s eqStarta nds eqgEndr epresentt heactualb ests equence.
4 *
5 publics tatici ntm axSubsequenceSum(i nt[]a)
6 {
7 intmaxSum=0 ;
8
9 for(i nti=0 ;i<a .length;i ++)
10 {
11 intt hisSum=0 ;
12
13 for(i ntj=i ;j<a .length;j ++)
14 {
15 thisSum+=al[j]
16
17 if(t hisSum>maxSum)
18 {
19 maxSum =t hi sSum
20 seqStart=i ;
21 seqEnd =j ;
22 }
23 }
24 }
25
» 26 returnmaxSum -
27 }

Figure 5.5 A quadratic maximum contiguous subsequence sum algorithm

- 4~ 4

é BOOK.mkr Page 252 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

If we remove an-
otherloop. we have

a linear algorithm.

The algorithm is
tricky. It uses a
clever observation
to step quickly over
large numbers of
subsequences that

cannot be the best.

5.3.3 A Linear Algorithm
To move from a quadratic dgorithm to a linea algorithm, we need to remove yet
anather loop. However, unlike the reduction illustrated in Figures 5.4 and 55,
where loop removal was smple, getting rid of another loopis not so easy. The
problem isthat the quadratic algorithm is gill an exhaustive search; that is, we ae
trying al possible subsequences. The only difference between the quadratic and
cubic dgorithms is that the aost of testing ead successve subsequenceis a mn-
stant O(1) instead of linea O(N). Because aquadratic number of subsequences
are possible, the only way we can attain a subquadratic boundisto find a dever
way to eliminate from consideration a large number of subsequences, without
actually computing their sum and testing to seeif that sum is a new maximum.
This sdion shows how thisis done.

First, we diminate a large number of possble subsequences from consider-
ation. Let Ai’j be the subsequence encompassngelementsfromi toj, and let S’j

beits am.

Theorem 5.2

Proof

Let A | be any sequence with 3,1- <0.1fg>j,then A g is not the maxi-
mum cortiguous subsequence

The sum of A's elements fromi to gisthe sum of A's elementsfromi to
added to the sum of A's elements from j + 1to g. Thus we have
S q=S,jtS+1q-Because§ ;<0,wekowthat § (<S,; ,. Thus

Ai g is not a maximum contiguous sibsequence

ﬁ%

é BOOK.mkr Page 253 Wednesday, March 14 2001 1:11PM

4

?

The Maximum Contiguous Subsequence Sum Problem

An illustration d the sums generated by i, j, and g is iown on the first two
lines in Figure 5.6. Theorem 5.2 demonstrates that we can avoid examining sev-
eral subsequences by including an additional test: If t hi sSumislessthan 0, we
can br eak from the inner loop in Figure 5.5. Intuitively, if a subsequence’'s aim
is negative, then it cannat be part of the maximum contiguous subsequence The
resson isthat we can get alarge mntiguous sibsequence by nat includingit. This
observation by itself is not sufficient to reduce the running time below quadratic.
A similar observation also holds: All contiguous subsequences that border the
maximum contiguaus subsequence must have negative (or 0) sums (otherwise, we
would include them). This observation also does nat reduce the running time to
below quadratic. However, athird observation, illustrated in Figure 5.7, does, and

we formalizeit with Theorem 5.3.

i jj+1 q
<0 S+1,.q

<§+14q

Figure 5.6 The subsequences used in Theorem 5.2

For any i, let A j be the first sequence, with $’j <0. Then, for any
isp<jandp<q, Ao q either is not a maximum contiguous subse-
guenceor isequal to an already seen maximum contiguous subsequence

Theorem 5.3

é BOOK.mkr Page 254 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

?

If p = i, then Theorem 5.2 appies. Otherwise, asin Theorem 5.2, we Proof
have S’ q= S’ p-1t Sp,q . Sincej isthelowest index for which S’j <0,

itfollowsthat § ,_,20.Thus S, ;<§ .1f q>] (shownontheleft-

hand sidein Figure 5.7), then Theorem 5.2 impliesthat A; q isnot amax-

imum contiguous subsequence, so neither is Ay Otherwise, as rown
ontheright-handsidein Figure 5.7, the subsequence A hasasum

equal to, at most, that of the already seen sub%quenceA’

i jj+1 q i q |
S,q S,q
>=0 <:$’ q >=0 <:$’ q
p-1p p-1p

Figure 5.7 The subsequences used in Theorem 5.3. The sequence from p to
N q has a sum that is, at most, that of the subsequence from ito q. N
On the left-hand side the sequence from ito g is itself not the
moximum (by Theorem 5.2). On the right-hand side, the
sequence from ito g has already been seen

é BOOK.mkr Page 255 Wednesday, March 14,2001 1:11PM é

The Maximum Contiguous Subsequence Sum Problem

'I /**
2 *L inearm axi numcontiguouss ubsequences umal gorithm
3 *s eqStarta nds eqgEndr epresentt heactualb ests equence.
4 *
5 publics tatici ntm axi numSubsequenceSun(i nt[]a)
6 {
7 intmaxSum=0 ;
8 intt hisSum=0 ;
9
10 for(i nti=0 ,i=0 ;j<a .length;j ++)
11 {
12 thisSum+=al[j]
13
14 if(t hisSum>maxSum)
15 {
16 maxSum =t hi sSum
17 seqStart=i ;
18 seqEnd =j ;
19 }
20 elsei f(t hisSum<0)
21 {
22 i=j+1 ;
23 thisSum=0 ;
24 }
25 }
3 26 5
27 returnmaxSum
28 }

Figure 5.8 A linear maximum contiguous subsequence sum algorithm

- 4~ 4

é BOOK.mkr Page 256 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

If we detect a neg-
ative sum, we can
move i all the way

past j.

If an algorithm is

complex, a correct-

ness proof is

required.

Theorem 5.3 tell s us that, when a negative subsequence is deteded, not only
can we br eak the inner loop; but we also can advancei toj +1. Figure 5.8
shows that we can rewrite the dgorithm using only asingleloop. Clealy, the run-
ning time of this algorithm is linea: At each step in the loop, we advancej , so
the loop iterates at most N times. The @rrednessof this agorithm is much less
obvious than for the previous a gorithms, which istypicd. That is, algorithms that
use the structure of a problem to bea an exhaustive search generally require some
sort of correanessproof. We proved that the dgorithm (although not the resulting
Java program) is correct using a short mathematicd argument. The purposeis not
to make the discusson entirely mathematicd, but rather to give aflavor of the

techniques that might be required in advanced work.

5.4 General Big-Oh Rules

Now that we have the basic ideas of algorithm analysis, we @n adopt a slightly
more formal approad. In this sdion we outline the general rules for using Big-
Oh notation. Although we use Big-Oh notation almost exclusively throughout this
text, we dso define threeother types of algorithm notation that are related to Big-

Oh and wsed occasionally later onin the text.

DEFINITION: (Big-Oh) T(N) is O(F(N)) if there ae positive anstants ¢
and N suchthat T(N)<cF(N)when N=N,.

DEFINITION: (Big-Omega) T(N) is Q(F(N)) if there are positive con-
stants ¢ and N such that T(N)=cF(N) when N> N;.

DEFINITION: (Big-Theta) T(N) is ©(F(N)) if and only if T(N) is
O(F(N))and T(N) is Q(F(N)).

ﬁ%

>

é BOOK.mkr Page 257 Wednesday, March 14 2001 1:11PM é

General Big-Oh Rules

1

>

DEFINITION: (Little-Oh) T(N) is o(F(N)) if and only if T(N) is
O(F(N))and T(N) isnot ©(F(N)).

The first definition, Big-Oh notation, states that there is a point N, such that
for all values of N that are past this point, T(N) is bounded by some multiple of
F(N). Thisisthe sufficiently large N mentioned ealier. Thus, if the runningtime
T(N) of an agorithm is O(N?2), then, ignoring constants, we ae guaranteang
that at some point we can bound the running time by a quadratic function. Notice
that if the true running time is linear, then the statement that the running time is
O(N?) is technicdly correct because the inequality holds. However, O(N)
would be the more predse daim.
If we use the traditional inequality operators to compare growth rates, then Big-Oh s similar to

thefirst definition says that the growth rate of T(N) islessthan or equal tothat of 'S fhan or equal

to, when growth
F(N).

rates are being

The second dfinition, T(N) = Q(F(N)), caled Big-Omega, says that the

considered.
growth rate of T(N) is greater than or equal to that of F(N). For instance we

might say that any algorithm that works by examining every possble subse- B9-Omegaissimi-

. .) lar to greater than
quence in the maximum subsequence sum problem must take Q(N?2) time
or equal to, when

because aquadratic number of subsequences are possble. Thisis alower-bound growth rates are be-
argument that is used in more alvanced analysis. Later in the text, we will seeone ing considered.
example of this argument and demonstrate that any general-purpose sorting algo-

rithm requires Q(N logN) time.

é BOOK.mkr Page 258 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

Big-Thetais similar to
equal fo, when
growth rates are be-

ing considered.

Little-Oh is similar to
less than, when
growth rates are be-

ing considered.

Throw out leading

constants, lower-or-
der terms, and relo-
tional symbols when

using Big-Oh.

The third definition, T(N) = ©(F(N)), cdled Big-Theta, says that the
growth rate of T(N) equalsthe growth rate of F(N). For instance, the maximum
subsequence dgorithm shown in Figure 5.5 runsin ©(N?2) time. In other words,
the running time is bounded by a quadratic function, and that this bourd canna
be improved becaise it is also lower-bounded by another quadratic function.
When we use Big-Theta notation, we ae providing not only an upper bound on
an algorithm but also asaurances that the analysis that leads to the upper boundis
as good (tight) as possible. In spite of the additional predsion dfered by Big-
Theta, however, Big-Oh is more ommonly used, except by researchers in the
algorithm analysisfield.

The fina definition, T(N) = o(F(N)), cdled Little-Oh, says that the
growth rate of T(N) is grictly lessthan the growth rate of F(N). This function
is different from Big-Oh because Big-Oh allows the possibility that the growth
rates are the same. For instance, if the running time of an agorithm is o(N?2),
then it is guaranteead to be growing at a slower rate than quadratic (that is, it isa
subquadratic algorithm). Thus abound of o(N?2) isa better bound than ©(N?2).
Figure 5.9 summarizes these four definitions.

A couple of stylistic notesarein order. First, including constants or |ow-order
terms inside a Big-Oh is bad style Do ot say T(N)= O(2N2) or
T(N) = O(N2+N). In bah cases, the crrea form is T(N) = O(N2). Sec
ond, in any analysis that requires a Big-Oh answer, all sorts of shortcuts are poss-

ble. Lower-order terms, leading constants, and relational symbals are al thrown

away.

ﬁ%

>

é BOOK.mkr Page 259 Wednesday, March 14 2001 1:11PM é

General Big-Oh Rules

?

Now that the mathematics have formalized, we can relate it to the analysis of
algorithms. The most basic rule is that the running time of a loop is at most the
running time of the statements inside the loop (including tests) times the number
of iterations. As sown ealier, the initialization and testing of the loop condition
is usually no more dominant than are the statements encompassng the body of
the loop.
The running time of statements inside a group of nested loopsis the running A worst-case bound
time of the statements (including tests in the innermost loop) multiplied by the s @ guarantee over
all inputs of some
sizes of al the loops. The running time of a sequence of conseautive loops is .
Size.
equal to the running time of the dominant loop. The time difference between a
nested loopin which bah indices runfrom 1 to N and two consecutive loops that
are not nested but run over the same indices is the same & the spacedifference
between a two-dimensional array and two one-dimensional arrays. The first case
is quadratic. The second case is linear because N+N is 2N, which is gill O(N).
Occasionally, this smple rule can overestimate the running time, but in most

cases it does nat. Even if it does, Big-Oh dces not guarantee an exad asymptotic

answer — just an upper bound.

Mathematical Expression Relative Rates of Growth
T(N) = O(F(N)) Growth of T(N) is < growth of F(N).
T(N) = Q(F(N)) Growth of T(N) is = growth of F(N).
T(N) = O9(F(N)) Growth of T(N) is = growth of F(N).

Figure 5.9 Meanings of the various growth functions

ﬁ%

é BOOK.mkr Page 260 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

?

Mathematical Expression Relative Rates of Growth

T(N) = o(F(N)) Growth of T(N) is < growth of F(N).

Figure 5.9 Meanings of the various growth functions

Figure 5.4 Figure 5.5 Figure 7.18 Figure 5.8
N O(N3) O(N?) O(NlogN) O(N)
10 0.000009 0.000004 0.000006 0.000003
100 0.002580 0.000109 0.000045 0.000006
1,000 2281013 0.010203 0.000485 0.000031
10,000 NA 1.2329 0.005712 0.000317
100,000 NA 135 0.064618 0.003206

Figure 5.10 Observed running times (in seconds) for various maximum contig-
> uous subsequence sum algorithms

>

In an average-case The analyses we have performed thus far involved use of aworst-case bound,
bound.the running \yhich js a guarantees over all inputs of some size. Another form of analysisis the

time is measured as)))])
average-case bound, in which the running time is measured as an average over all
an average over all

of the possible in- of the posshle inpus of size N. The average might differ from the worst case if,
puts of size N. for example, a conditional statement that depends on the particular input causes
an ealy exit from aloop. We discussaverage-case bounds in more detail in Sec
tion 58. For now, simply nate that, the fad that one algorithm has a better worst-
case bound than another algorithm implies nothing abou their relative average-

case bounds. However, in many cases average-case and worst-case bounds are

closely correlated. When they are not, the bounds are treated separately.

ﬁ%

é BOOK.mkr Page 261 Wednesday, March 14 2001 1:11PM

1

General Big-Oh Rules

The last Big-Oh item we examine is how the running time grows for each
type of curve, as illustrated in Figures 5.1 and 52. We want a more quantitative
answer to this question: If an algorithm takes T(N) time to solve aproblem of
size N, how long does it take to solve alarger problem? For instance, how long
does it take to solve aproblem when there is 10 times as much input? The
answers are shown in Figure 5.10. However, we want to answer the question with-
out running the program and hope our analytica answers will agree with the
observed behavior.

We begin by examining the cubic dgorithm. We assume that the running time
is reasonably approximated by T(N) = cN3. Consequently,

T(10N) = c(10N)3. Mathematical manipulation yields

T(10N) = 1000cN3 = 1000T(N).
Thus the runring time of a aubic program increases by afador of 1,000 (assum- Ifthe size of the in-
ing N is sufficiently large) when the amount of input isincreased by afactor of ~PUfincreasesbya

. . _ factor of f, the run-
10. This relationship is roughly confirmed by the increase in running time from
ning time of a cubic

N =100to 1,000 shown in Figure 5.10. Recall that we do not expect an exact :
program increases

answer — just a reasonable goproximation. We would also expect that for by a factor of
3

N = 10,000, the runring time would increase ancther 1,000-fold. The result would ~ "°U9nty 7

be that a aubic dgorithm requires rougHy 35 minutes of computation time. In

general, if the amount of the input increases by a fador of f, then the aubic dgo-

rithm’s running time increases by a factor of f3.

ﬁ%

é BOOK.mkr Page 262 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

If the size of the in-
put increases by a
factor of f, the run-
ning time of a quo-
dratic program in-
creases by a factor

of roughly £2.

If the size of the in-
put increases by a

factor of f, then the

running time of alin-

ear program also in-

creases by a factor
of f. This is the pre-
ferred running time

for an algorithm.

We can perform similar caculations for quadratic and linea algorithms. For
the quadratic dgorithm, we assume that T(N) = cN2. It follows that

T(10N) = c¢(10N)2. When we expand, we obtain

T(10N) = 100cNZ2 = 100T(N).

So when the input sizeincreases by afactor of 10, the running time of aquadratic
program increeses by afador of approximately 100. Thisrelationship is also con-
firmed in Figure 5.10. In general, an f-fold increase in input sizeyields an f2-fold
increasein running time for aquadratic dgorithm.

Finally, for a linea algorithm, a similar calculation shows that a 10-fold
increase in input size results in a 10-fold increase in running time. Again, this
relationship has been confirmed experimentally in Figure 5.10. Note, however,
that for a linea program, the term sufficiently large means a somewhat higher
input size than for the other programs. The reason is that of the overhead o
0.000003 sec that isused in al cases. For alinea program, thisterm is still signif-
icant for moderate input sizes.

The analysis used here does not work when there ae logarithmic terms.
When an O(NlogN) algorithm is presented with 10times as much inpu, the
running time increases by a fador slightly larger than ten. Spedficdly, we have
T(10N) = c(10N)log(10N). When we expand we obtain

T(10N) = 10cNlog(10N) = 10cNlogN + 10cNlog10 = 10T(N)+c'N.
Here ¢ = 10clog10. As N gets very large, the ratio T(10N)/T(N) gets closer

and closer to 10 because ¢'N/T(N)= (10log10)/logN gets snaller and smaller

ﬁ%

é BOOK.mkr Page 263 Wednesday, March 14 2001 1:11PM é

The Logarithm

1

with increasing N. Consequently, if the dgorithm is competitive with a linear
algorithm for very large N, it islikely to remain competitive for slightly larger N.
Does al this mean that quadratic and cubic dgorithms are useless? The
answer is no. In some cases, the most efficient algorithms known are quadratic or
cubic. In others, the most efficient algorithm is even worse (exponential). Further-
more, when the anount of input is snall, any agorithm will do. Frequently the
algorithms that are not asymptotically efficient are nonethelesseasy to program.
For small i npus, that isthe way to go. Finally, agood way to test a mmplex linea
algorithm isto compare its output with an exhaustive search algorithm. In Sedion

5.8 we discuss @me other limitations of the Big-Oh model.

5.5 The Logarithm

The list of typica growth rate functions includes sveral entries containing the
logarithm. A logarithm is the exporent that indicates the power to which a num-
ber (the base) israised to produce agiven number. In this dionwe look in more
detail at the mathematics behind the logarithm. In Section 5.6 we show itsusein a
simple dgorithm.

We begin with the formal definiti on and then follow with more intuitive view- The logarithm of N

points. (to the base 2) is the

value Xsuch that 2

DEFINITION: Forany B,N>0, loggN = K if BK = N. raised fo the power

of X equals N. By
In this definition, B is the base of the logarithm. In computer science, when
default, the base of

the base is omitted, it defaults to 2, which is natural for several reasons, as we i o
e logarithm is 2.

ﬁ%

é BOOK.mkr Page 264 Wednesday, March 14 2001 1:11PM é

Algorithm Analysis

show later in the chapter. We will prove one mathematicd theorem, Theorem 5.4,
to show that, as far as Big-Oh natation is concerned, the base is unimportant, and

also to show how relations that involve logarithms can be derived.

The base does not matter. For any constant B > 1, loggN = O(log N'). Theorem 5.4

Let loggN = K. Then BX = N.Let C = logB. Then 2€ = B. Thus Proof
BK = (2€)K = N. Hence, we have2€K = N, which implies that

logN = CK = CloggN. Therefore loggN = (logN)/ (logB), thus

completing the prodf.

Intherest of the text, we use base 2 logarithms exclusively. An important fad
about the logarithm is that it grows dowly. Because 219 = 1,024, log 1,024 = 10.
Additional cdculations $ow that the logarithm of 1,000,000 is roughly 20, and
the logarithm of 1,000,000,000 is only 30. Consequently, performance of an
O(NlogN) agorithm is much closer to alinear O(N) algorithm than to a qua-
dratic O(N?2) algorithm for even moderately large anounts of input. Before we
look at aredistic dgorithm whose running time includes the logarithm, let us

look at afew examples of how the logarithm comes into play.

BITS IN A BINARY NUMBER
How many bits are required to represent N consecutive integers?

ﬁ%

é BOOK.mkr Page 265 Wednesday, March 14 2001 1:11PM é

The Logarithm

?

A 16-bit shor t integer represents the 65,536 integers in the range —32,768 t0 The number of bits

32,767. In general, B bits are sufficient to represent 2B different integers. Thus ~ "eauired fo repre-

. . L o sent numbers is
the number of bits B required to represent N consecutive integers satisfies the
logarithmic.

equation 2B > N . Hence, we obtain B > log N, so the minimum number of bitsis
[logN. (Here[X isthe aling function and represents the small est integer that
isat least aslarge a X. The corresponding floor function | X | represents the larg-

est integer that is at least as small as X.)

REPEATED DOUBLING

Starting from X = 1, how many times should X be doubled before it
is at least as large as N?

Suppose we start with $1 and double it every yea. How longwould it taketo save The repeated dou-

amillion dollars? In this case, after 1 yr we would have $2; after 2 yr, $4; after 3 P9 Principle holds

that, starting at 1,
yr, $8, and so on. In general, after K yearswe would have 2K ddllars, so we want
we can repeatedly

to find the smallest K satisfying 2K > N.. Thisis the same equation as before, so

double only logo-
K = [logN']. After 20 yr, we would have over a million dollars. The repeated rithmically many

doubling principle holds that, starting from 1, we can repeatedly double only ~ fimes unfilwe reach

N.
[log N times until weread N.

REPEATED HALVING

Starting from X = N, if N is repeatedly halved, how many iterations
must be applied to make N smaller than or equal to 1?

?

é BOOK.mkr Page 266 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

The repeated hav-
ling principle holds
that, starting at N,
we can halve only
logarithmically
many times. This
process is used to
obtain logarithmic

routines for search-

ing.

The Nth harmonic
number is the sum
of the reciprocals of
the first N positive in-
tegers. The growth
rate of the har-

monic number is

If the division rounds up to the nearest integer (or isreal, not integer, division), we
have the same problem as with repeaed daubling, except that we ae going in the
oppasite diredion. Once ajain the answer is| log N iterations. If the division
rounds down, the answer is| log N |. We aan show the difference by starting with
X = Z. Two divisions are necessry, unlessthe division rounds down, in which
case only one is needed.

Many of the dgorithms examined in this text will have logarithms, intro-
duced because of the repeated halving principle, which holds that, starting at N,
we can halve only logarithmicdly many times. In ather words, an algorithm is
O(log N) if it takes constant (O(1)) time to cut the problem size by a mnstant
fradion (which is usually 1/ 2). This condtion follows diredly from the fad that
there will be O(logN) iterations of the loop. Any constant fradion will do
because the fradion is reflected in the base of the logarithm, and Theorem 5.4
tells us that the base does not matter.

All of the remaining cccurrences of logarithms are introduced (either diredly

logarithmic.
or indiredly) by applying Theorem 5.5. This theorem concerns the Nth harmonic
number, which is the sum of the redprocals of the first N positive integers, and
states that the Nth harmonic number, Hy, satisfies Hy = ©(log N). The proof
uses cdculus, but you do not need to understand the proof to use the theorem.
Theorem 5.5 Let Hy = ziN: 1l/i . Then Hy = O(logN). A more precise estimateis

INN +0.577.

4

é BOOK.mkr Page 267 Wednesday, March 14 2001 1:11PM é

1

Static Searching Problem

Proof Theintuition of the proof isthat a discrete sumis well approximated by
the (continuous) integral. The proof uses a construction to show that the
sum Hy, can be bounded above and below by .[dxx with appropriate lim-
its. Detail s are | eft as Exercise 5.18.

The next sedion shows how the repeated halving grinciple leads to an effi-

cient searching algorithm.

5.6 Static Searching Problem

An important use of computersislooking up data. If the data ae not allowed to
change (e.g., it is gored ona CD-ROM), we say that the data ae static. A static
search accesses data that are never altered. The static searching problem is natu-

rally formulated as follows.

STATIC SEARCHING PROBLEM

Given an integer X and an array A, return the position of X in A or
an indication that it is not present. If X occurs more than once,
return any occurrence. The array A is never altered.

An example of static searching islooking up a person in the telephone book.
The efficiency of a static searching algorithm depends on whether the aray being
searched is rted. In the ase of the telephone book, seaching by name is fast,
but seaching by phone number is hopeless (for humans). In this dion, we

examine some solutions to the static seaching problem.

é BOOK.mkr Page 268 Wednesday, March 14 2001 1:11PM

A sequential search
steps through the
data sequentially until

a match is found.

A sequential search is

linear.

5.6.1 Sequential Search

When theinput array is not sorted, we have little choice but to doalinea sequen-
tial search, that steps throughthe array sequentially until a match is found The
complexity of the dgorithm is analyzed in threeways. First, we provide the st
of an unsuccesdul seach. Then, we give the worst-case cost of a successul
search. Finally, we find the average st of a succesgul search. Analyzing suc-
cessul and ursuccessul seaches sparately is typicd. Unsuccessul seaches
usually are more time mnsuming than are successful seaches (just think about
the last time you lost something in you house). For sequential searching, the
analysisis graightforward.

An unsuccessul seach requires the examination of every item in the array,
so thetimewill be O(N). Inthe worst case, asuccessul seach, too, requiresthe
examination of every item in the aray because we might not find a match urtil
the last item. Thus the worst-case running time for a succesul seachisasolin-
ear. On average, however, we search orly half of the aray. That is, for every suc-
cessful seachin pasitioni, thereisa arresponding successul search in position
N—-1-i (assuming we start numbering from 0). However, N/ 2 is still O(N).
As mentioned ealier in the chapter, all these Big-Oh terms shoud corredly be

Big-Thetaterms. However, the use of Big-Oh is more popular.

é BOOK.mkr Page 269 Wednesday, March 14 2001 1:11PM

Static Searching Problem

5.6.2 Binary Search

If the input array has been sorted, we have an alternative to the sequential search,
the binary search, which is performed from the middle of the array rather than
the end. We keep track of | owand hi gh, which delimit the portion d the aray
inwhich an item, if present, must reside. Initially, therangeisfrom Oto N —1. If
| owislarger than hi gh, we know that the item is not present, so we return
NOI _FOUNDOtherwise, we let mid be the halfway point of the range (round
ing down if the range has an even number of elements) and compare the item we
are seaching for with theitem in position i d. If we find a match, we are done
and can return. If the item we ae searching for is less than the item in position
m d, then it must residein therange | owto ni d- 1. If it is greder, then it must
resideintherangem d+1 to hi gh. InFigure5.11, lines 17 to 20alter the poss-
ble range, essentially cutting it in half. By the repeated halving principle, we
know that the number of iterations will be O(log N).

For an unsuccesful seach, the number of iterations in the loop is
Llog N |+ 1. The reason is that we halve the range in each iteration (rounding
down if the range has an odd number of elements); we ald 1 because the final
range encompasses zero elements. For a successul search, the worst case is
| log N | iterations because in the worst case we get down to a range of only one
element. The average cae is only one iteration better because haf of the de-
ments require the worst case for their search, a quarter of the dements sve one
iteration, and only one in 21 elements will savei iterations from the worst case.

The mathematics involves computing the weighted average by calculating the

ﬁ%

If the input array is
sorted, we can use
the binary search,
which we perform
from the middle of the
array rather than the

end.

The binary search is
logarithmic because
the search range is
halved in each itera-

fion.

4

?

?

é BOOK.mkr Page 270 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

sum of afinite series. The battom line, however, isthat the running time for each

seachis O(log N). In Exercise 5.20 you are asked to complete the cdculation.

For reasonably large values of N, the binary search outperforms the sequen-

tial search. For instance, if N is 1,000, then on average a successful sequential

seach requires about 500 comparisons. The average binary search, using the pre-

vious formula, reguires | log N | —1, or eight iterations for a successful search.

Eacdh iteration uses 1.5 comparisons on average (sometimes 1; other times, 2), so

the total is 12 comparisons for a successul search. The binary search wins by

even morein the worst case or when seaches are unsucces<ul.

ONOOGTA WN —

{

O

26 }

Figure 5.11

/**

*P erfornst hes tandardbinarys earch

*u singt woc onparisonsperl evel.

*@ returni ndexwherei temi sf ound,o rN OT_FOUND.
*

publics tatici ntb inarySearch(C onparable[]a

Conpar abl e x)
intl ow=0 ;
inth igh=a .length-1
intmid;

while(l ow<=high)

{
md=(l ow+high)/2
if(a[mid] .compareTo(x)<0)
low=mid+1 ;
elsei f(a[mid] .conpareTo(x)>0)
high=mid-1 ;
el se
returnmid;
}

returnNOT_FOUND;, / /-1

Basic binary search that uses three-way comparisons

ﬁ%

>

é BOOK.mkr Page 271 Wednesday, March 14 2001 1:11PM é

Static Searching Problem

1

>

If we want to make the binary search even faster, we need to make the inner Optimizing the binary

loop tighter. A possble strategy is to remove the (implicit) test for a succesgul S€@reh can cutihe

number of compari-
search from that inner loop and shrink the range down to ore item in all cases.

sons roughly in haif.
Then we can use asingle test outside of the loopto determine if theitemisin the
array or cannd be found, as sown in Figure 5.12 (page 272). If theitem we are
searching for in Figure 5.12 is not larger than theitem in the mi d pasition, then it
isin the range that includes the m d position. When we break the loop, the sub-
rangeis 1, and we @an test to seewhether we have amatch.

In the revised algorithm, the number of iterationsis always| log N | because
we aways drink the rangein half, passbly by rounding down. Thus, the number
of comparisons used isalways| log N | + 1.

Binary seach is surprisingly tricky to code. Exercise 5.6 illustrates sme
ComMmon errors.

Notice that for small N, such as values smadler than 6, the binary seach
might not be worth wsing. It uses roughly the same number of comparisons for a
typicd successul search, but it has the overhead of line 18 in each iteration.
Indeed, the last few iterations of the binary seach progress $owly. One can
adopt a hybrid strategy in which the binary seach loop terminates when the
range is gnall and applies a sequential scan to finish. Similarly, people search a
phone bodk norsequentially. Once they have narrowed the range to a column,
they perform a sequential scan. The scan of atelephone bodk is not sequential,

but it alsoisnot abinary search. Insteal it is morelike the dgorithm discussed in

the next section.

ﬁ%

é BOOK.mkr Page 272 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

5.6.3 Interpolation Search

Thebinary seach isvery fast at searching a sorted static aray. Infad, itis o fast
that we would rarely use anything else. A static searching method that is some-
times faster, however, is an interpolation search, which has better Big-Oh perfor-
mance on avegye than binary earch but has limited practicality and a bad worst

case. For an interpolation seach to be pradical, two assumptions must be satis-

fied:

'I /**

2 *P erfornst hes tandardbinarys earch
3 *u singonec onparisonperl evel.

4 *@ returni ndexwherei temisf oundo fN O _FOUND.
5 *

6 publics tatici ntb inarySearch(C onparable[]a ,
7 Conpar abl e x)
8 {

9 if(a .length==0)

10 returnN OT_FOUND;

11

12 intl ow=0 ;

13 inth igh=a .length-1 ;

14 intmid;

15

16 while(l ow<h igh)

17 {

18 md=(l ow+high)/2 ;

19

20 if(a[mid] .conpareTo(x)<0)
21 low=mid+1 ;

22 el se

23 high=md;

24 }

25

26 if(a [l ow].compareTo(x)= =0)
27 returnl ow,

28

29 returnN OT_FOUND;

30 }

31 }

Figure 5.12 Binary search using two-way comparisons

ﬁ%

é BOOK.mkr Page 273 Wednesday, March 14 2001 1:11PM é

Static Searching Problem

1

>

1. Eacd accessmust be very expensive compared to atypicd
instruction. For example, the aray might be onadisk instead of
in memory, and each comparison requires adisk access

2. Thedatamust not only be sorted; it must also be fairly uniformly
distributed. For example, a phone book isfairly uniformly distrib-
uted. If theinpu itemsare {1, 2, 4, 8, 16, ...}, thedistributionis
not uniform.

These assumptions are quite restrictive, so you might never use an interpola-
tion search. But it is interesting to seethat there is more than ore way to solve a
problem and that no algorithm, not even the dassc binary search, is the best in
all situations.

The interpolation search requires that we spend more time to make an aca-
rate guessregarding where the item might be. The binary search always uses the
midpoint. However, seaching for Hank Aaron in the middle of the phone book
would be silly; somewhere nea the start clearly would be more appropriate.
Thus, instead of mi d, we use next to indicate the next item that we will try to
access

Here's an example of what might work well. Suppose that the range contains
1,000 items, the low item in the range is 1,000, the high item in the range is
1,000,000, and we ae searching for an item of value 12,000. If the items are uni-
formly distributed, then we exped to find a match somewhere near the twelfth

item. The gplicable formulais

next = Iow+().(—a[|OW] X(high—low—l)_‘.
alhigh] —a[low]
The subtradion of 1isatednicd adjustment that has been shown to perform

well in pradice Clealy, this calculation is more wstly then the binary seach

ﬁ%

é BOOK.mkr Page 274 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

Interpolation search
has a better Big-Oh
bound on average
than does binary
search, but has limited
practicality and a

bad worst case.

calculation. It involves an extra division (the division by 2 in the binary search is
realy just a bit shift, just as dividing by 10is easy for humans), multiplication,
and four subtracions. These cdculations need to be done using floating-point
operations. One iteration may be slower than the complete binary search. How-
ever, if the cost of these @lculations is insignificant when compared to the st
of accesgng an item, speed isimmaterial; we care only about the number of iter-
ations.

In the worst case, where data is not uniformly distributed, the running time
could be linear and every item might be examined. In Exercise 5.19 you are
asked to construct such a case. However, if we sssime that the items are reason-
ably distributed, as with a phone book, the average number of comparisons has
been shown to be O(loglogN). In ather words, we gply the logarithm twicein
successon. For N = 4 hillion, logN isabout 32 and loglog N is roughly 5. Of
course, there are some hidden constants in the Big-Oh notation, but the extralog-
arithm can lower the number of iterations considerably, so long as a bad case

does nat crop up Proving the result rigorously, however, is quite complicated.

5.7 Checking an Algorithm Analysis

Once we have performed an algorithm analysis, we want to determine whether it
is correct and as good as we can passhly make it. One way to dothisisto code
the program and see if the empiricdly observed running time matches the run-

ning time predicted by the analysis.

ﬁ%

é BOOK.mkr Page 275 Wednesday, March 14 2001 1:11PM é

Checking an Algorithm Analysis 275

When N increases by a factor of 10, the running time goes up by a factor of
ten for linear programs, 100 for quadratic programs, and 1,000 for cubic pro-
grams. Programs that run in O(NlogN) take dightly more than 10 times as
long to run under the same drcumstances. These increases can be hard to spot if
the lower-order terms have relatively large wefficientsand Nisnot large enowgh.
An example isthe jump from N = 10to N = 100in the running time for the vari-
ous implementations of the maximum contiguous subsegquence sum problem.
Differentiating linear programs from O(N logN) programs, based purely on
empiricd evidence, also can be very difficult.

Another commonly used trick to verify that some programis O(F(N)) isto

compute the values T(N)/F(N) for arange of N (usually spaced ou by fadors

>

of two), where T(N) is the empiricdly observed running time. If F(N) isa
tight answer for the running time, then the computed values converge to a posi-
tive anstant. If F(N) isan overestimate, the values convergeto zero. If F(N) is
an underestimate, and hencewrong, the values diverge.

As an example, suppaose that we write aprogram to perform N random
searches using the binary search algorithm. Since each seach islogarithmic, we
expect the total running time of the program to be O(NlogN). Figure 5.13
shows the adual observed running time for the routine for various input sizes on
areal (but extremely slow) computer. The last column is most likely the converg-
ing column and thus confirms our analysis, whereas the increasing numbers for
T/N suggest that O(N) is an urderestimate and the quickly deaeasing values

for T/ N2 suggest that O(N?2) is an overestimate.

ﬁ%

é BOOK.mkr Page 276 Wednesday, March 14, 2001 1:11PM

Algorithm Analysis

Note in particular that we do not have definitive convergence. One problem
is that the dock that we used to time the program ticks only every 10 ms. Note
also that there is not a great difference between O(N) and O(NlogN). Cer-
tainly an O(NlogN) algorithm is much closer to being linea than being que-
dratic. Finally, note that the madine in this example has enoughmemory to store
640,000 oljeds (in the ase of this experiment, integers). If your madcine does

not have this much available memory, then youwill not be able to reproduce sim-

ilar results.
PUTime T

N (r‘;“:i’sec;ds) T/N T/N?2 T/(NlogN)
10,000 100 0.01000000 0.00000100 0.00075257
20,000 200 0.01000000 0.00000050 0.00069990
40,000 440 0.01100000 0.00000027 0.00071953
80,000 930 0.01162500 0.00000015 0.00071373
160,000 1,960 0.01225000 0.00000008 0.00070860
320,000 4,170 0.01303125 0.00000004 0.00071257
640,000 8,770 0.01370313 0.00000002 0.00071046

Figure 5.13 Empirical running time for N binary searches in an N-item array

5.8 Limitations of Big-Oh Analysis
Big-Oh analysisis a very effective todl, but it does have limitations. As alrealy

mentioned, its use is not appropriate for small amounts of input. For small

ﬁ%

é BOOK.mkr Page 277 Wednesday, March 14 2001 1:11PM é

Limitations of Big-Oh Analysis 277

amounts of input, use the simplest algorithm. Also, for a particular algorithm, the
constant implied by the Big-Oh may be too large to be pradicd. For example, if
one algorithm’s running time is governed by the formula 2N log N and another
has arunning time of 1000N, then the first algorithm would most likely be bet-
ter, even though its growth rate is larger. Large constants can come into play
when an algorithm is excessvely complex. They also comeinto play because our
analysis disregards constants and thus cannot differentiate between things like
memory access(which is chegp) and dsk access(which typicdly is many thou
sand times more expensive). Our analysis assumes infinite memory, but in appli-
cations involving large data sets, lack of sufficient memory can be asevere
problem.
Sometimes, even when constants and lower-order terms are awnsidered, the Worse case is some-

analysis is siown empiricaly to be a overestimate. In this case, the anaysis "Mesuncommon and

. . can be safely ignored.
needs to be tightened (usually by a dever observation). Or the average-case run-
At other times, it is

ning time bound may be significantly less than the worst-case running time very common and
bound, and so noimprovement in the bound is possble. For many complicated cannot be ignored.
algorithms the worst-case boundis achievable by some bad input, but in pradice

it is usualy an overestimate. Two examples are the sorting algorithms Shellsort

and quicksort (both described in Chapter 8).

é BOOK.mkr Page 278 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

Average-case analy-
sis is almost always
much more difficult
than worst-case anal-

ySis.

However, worst-case bounds are usually easier to obtain than their average-
case counterparts. For example, a mathematicd analysis of the average-case run-
ning time of Shellsort has not been oltained. Sometimes, merely defining what
average means is difficult. We use aworst-case analysis because it is expedient
and also becaise, in most instances, the worst-case anaysis is very meaningful.
In the course of performing the analysis, we frequently can tell whether it will

apply to the average case.

Summary
In this chapter we introduced algorithm analysis and showed that algorithmic
decisions generally influence the running time of a program much more than
programming tricks do. We also showed the huge difference between the running
times for quadratic and linea programs and illustrated that cubic dgorithms are,
for the most part, unsatisfacory. We examined an algorithm that could be viewed
as the basis for our first data structure. The binary search efficiently supports
static operations (i.e., seaching but not updating), thereby providing alogarith-
mic worst-case seach. Later in the text we examine dynamic data structures that
efficiently support updates (both insertion and del etion).

In Chapter 6 we discuss ®me of the data structures and algorithms included
in Java's Colledions API. We dso look at some applicaions of data structures

and discusstheir efficiency.

ﬁ%

é BOOK.mkr Page 279 Wednesday, March 14 2001 1:11PM é

Objects of the Game

1

>

Objects of the Game Ep N\

B

average-case bound Measurement of running time as an average over all the
posshbleinputs of sizeN. (260)

Big-Oh The notation used to cgpture the most dominant term in a function; it
is smilar to lessthan or equal to when growth rates are being considered.
(239)

Big-Omega The notation similar to greaer than or equal to when growth rates
are being considered. (257)

Big-Theta The notation similar to equal to when growth rates are being cor-
sidered. (258

binary search The search method used if the input array has been sorted and
is performed from the midd e rather than the end. The binary search is
logarithmic because the search range is halved in ead iteration. (269)

harmonic numbers The Nth harmonic number is the sum of the reciprocds
of thefirst N pasitive integers. The growth rate of the harmonic numbers
is logarithmic. (266)

interpolation search A static searching algorithm that has better Big-Oh per-
formance on average than binary search but has limited practicdity and a
bad worst case. (274)

linear time algorithm An algorithm that causes the running time to grow as
O(N). If the size of the input increases by afactor of f, then the running

time dso increases by afador of f. It isthe preferred running time for an

algorithm. (262)

ﬁ%

é BOOK.mkr Page 280 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

Little-Oh The notation similar to lessthan when growth rates are being con-
sidered. (258

logarithm The exporent that indicates the power to which a number is raised
to produce agiven number. For example, the logarithm of N (to the base
2) isthe value X such that 2 raised to the power of X equals N. (263)

repeated-doubling principle Holds that, starting at 1, repeaed dotbling can
occur only logarithmicdly many times until we read N. (265

repeated-halving principle Holds that, starting at N, repeaed halving can
occur only logarithmicdly many times until we read 1. This processis
used to dbtain logarithmic routines for searching. (266)

sequential search A linea search methodthat steps throughan array until a

>

match is found. (268)

static search Accesses data that is never atered. (267)

subquadratic An algorithm whose running timeis grictly slower than qua-
dratic, which can be written as o(N2). (258)

wor st-case bound A guarantee over al inpus of some size. (259)

Common Errors

1. For nested loops, the total time is affeded by the product of theloop sizes.

For conseautive loops, it is not.

2. Do not just blindly count the number of loops. A pair of nested loops that

each runfrom 1 to N2 aacourtsfor O(N#) time.

ﬁ%

é BOOK.mkr Page 281 Wednesday, March 14 2001 1:11PM é

On the Internet

1

3. Do not write expressons sich as O(2N?2) or O(N2+ N). Only the dom-
inant term, with the leading constant removed, is needed.

4. Use gquadlities with Big-Oh, Big-Omega, and so on. Writing that the run-
ning timeis > O(N?2) makes no sense because Big-Oh is an upper bound.
Do not write that the runningtimeis < O(N?2); if theintention is to say
that therunning timeisstrictly lessthan quedratic, use Little-Oh naation.

5. Use Big-Omega, not Big-Oh, to expressalower bourd.

6. Usethelogarithm to describe the running time for a problem solved by
halving its szein constant time. If it takes more than constant time to
halve the problem, the logarithm does not apply.

7. Thebase (if it isa cnstant) of the logarithm isirrelevant for the purpases N

of Big-Oh. To includeit isan error.

On the Internet
The threemaximum contiguous subsequence sum algorithms, as well as afourth

taken from Sedion 7.5, are avail able, along with amai n that conducts the timing

tests.
MaxSumTest.java Contains four algorithms for the maximum subse-
guencesum problem.
BinarySearch.java Contains the binary seach shown in Figure 5.11.

The codein Figure 5.12 is nat provided, but a

similar versionthat is part of the Colledions API

ﬁ%

é BOOK.mkr Page 282 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

?

and isimplemented in Figure 6.15isin

Arr aysjava aspart of wei ss. util .

@ Exercises

In Short

5.1. Balsare drawn from a box as gecified in Theorem 5.1 in the combina-
tionsgivenin (a) — (d). What are the corresponding values of i, j, and k?
a Red, 5,6
b. Blue, 5,6
c. Blue, 3, Red

d. 6,5, Red

>

» 5.2. Why isn't an implementation based solely on Theorem 5.2 sufficient to
obtain a subquadratic running time for the maximum contiguous ubse-
guencesum problem?

5.3. Suppose T;(N) = O(F(N)) and T,(N) = O(F(N)). Which of the
following are true:
a Ty(N)+T,(N)= O(F(N))
b. T;(N)-T,(N) = O(F(N))
c. Ti(N)/T,(N)= 0O(1)
d. T;(N) = O(T,(N))

5.4. Group the followinginto equivalent Big-Oh functions:

X2, X, X2+x x°—x and (&/(x-1)).

ﬁ%

é BOOK.mkr Page 283 Wednesday, March 14 2001 1:11PM

\

55.

5.6.

57.

Programs A and B are analyzed and are foundto have worst-case running

times no geaer than 150N log N and N2, respectively. Answer the fol-

lowing questions, if posshle.

a. Which program has the better guaranteeon the running time for large
values of N (N > 10,000)?

b. Which program has the better guaranteeon the running time for small
values of N (N < 100)?

¢. Which program will runfaster on average for N = 1,000?

d. Can program B will runfaster than program A on all possbleinputs?

For the binary search routine in Figure 5.11, show the consequences of

the following replacement code fragments:

a Linel3: usingthetest! ow <h igh

b. Linel5 asdgningnmid=1 ow+h igh/2

c. Linel8 asdgningl ow=mid

d. Line20: assgninghigh=m id

In Theory

For the typicd algorithms that you wse to perform caculations by hand,

determine the running time to

a. Addtwo N-digit integers.

b. Multiply two N-digit integers.

c. Dividetwo N-digit integers.

Exercises

4

1

>

é BOOK.mkr Page 284 Wednesday, March 14 2001 1:11PM

284

Algorithm Analysis

5.8. Intermsof N, what isthe running time of the foll owing algorithm to com-

pute XN

public staticd oublep ower(d oublex ,i nt n)

{

doubler esult =1.0;

for(i nti=0;i<n o)
result* = x;
returnr esult;

}
5.9. Diredly evaluate the triple summation that preceades Theorem 5.1. Verify

that the answers are identicd.

5.10. For the quadratic algorithm for the maximum contiguous subsequence
sum problem, determine predsely how many times the innermost state-
ment is exeauted.

5.11. An agorithm takes 0.5 ms for input size 100. How long will it take for
input size 500 (asuming that low-order terms are negligible) if the run-
ningtimeis
a. linea.

b. O(NlogN).
c. quadratic.
d. cubic.

5.12. Anadgorithm takes 0.5 msfor input size 100. How large aproblem can be
solved in 1 min (asauming that low-order terms are negligible) if the run-
ningtimeis

a linea.

é BOOK.mkr Page 285 Wednesday, March 14 2001 1:11PM é

Exercises 285

b. O(NlogN).
c. quadratic.
d. cubic.

5.13. Complete Figure 5.10 with estimates for the running times that were too
long to simulate. Interpolate the running times for all four algorithms and
estimate the time required to compute the maximum contiguous subse-
guence sum of 10,000,000 numbers. What assumptions have you made?

5.14. Order the following functions by growth rate: N, ./N, N5, N2, Nlog N,
NloglogN, Nlog2N, Nlog(N?), 2/N, 2N, 2N/2 37 N3 and N2logN .
Indicate which functions grow at the same rate.

5.15. For each o the following program fragments,

a. give aBig-Oh analysis of the running time.
b. implement the code and runfor severa values of N.

c. compare your analysis with the adual running times.

/lF ragment# 1
for(i nti=0 i <n;i ++)
sum+;

/lF ragment# 2

for(i nti=0 ;o <ngi+ =2)
sum-+;

/lF ragment# 3

for(i nti=0 po<ni ++)
for(i ntj=0;j<n o)
sSumt+;

é BOOK.mkr Page 286 Wednesday, March 14 2001 1:11PM

286 Algorithm Analysis

5.16.

5.17.

/IF ragment# 4

for(i nti=0 i <n;i ++)
sum-+;

for(i ntj=0] <n;j ++)
sum-+;

/1F ragment# 5

for(i nti=0 i <n;i ++)
for(i ntj=0;j<n*n yoiEr)
SUM++;

/1F ragment# 6

for(i nti=0 b <ni ++)
for(i ntj=0;j<i o)
sumr+;

[1F ragment# 7

for(i nti=0 i <n;i ++)
for(i ntj=0;j<n*n yoiE)
for(i ntk =0;k<j ;o k)
sumt+;
/I'F ragment# 8
for(i nti=0 i <n:i=i* 2)
sum-+;

Occasionally, multiplying the sizes of nested loops can give an overesti-
mate for the Big-Oh running time. This result happens when an innermost
loop isinfrequently executed. Repea Exercise 5.15 for the following pro-

gram fragment:

for(i nti=1 i <=n;i ++)
for(i ntj=1;j< =iri)
if(j%i ==0)
for(in tk=0 ;k< j;k ++)
Sumt+;

In acourt cese, ajudge dted acity for contempt and ordered a fine of $2

for the first day. Each subsequent day, until the dty foll owed the judge’'s

ﬁ%

é BOOK.mkr Page 287 Wednesday, March 14 2001 1:11PM

5.18.

5.19.

5.20.

521

522

order, the fine was gquared (that is, the fine progressed as follows. $2, $4,
$16, $256, $65636, . . .).

a. What would bethe fine on day N?

b. How many dayswould it take for the fineto read D ddlars (aBig-Oh

answer will do)?

Prove Theorem 5.5. Hint: Show that zg% <[; d;X Then show a similar
lower bound.

Construct an example whereby an interpolation seach examines every
element in theinput array.

Analyze the st of an average successul seach for the binary seach

algorithmin Figure 5.11.

In Practice

Give an efficient algorithm to determine whether an integer i exists such

that A; = i inanarray of increasingintegers. What is the running time of

your algorithm?

A prime number has no fadors besides 1 and itself. Do the following:

a. Write aprogram to determine if a positive integer N is prime. In terms
of N, what is the worst-case running time of your program?

b. Let B equal the number of bitsin the binary representation d N. What
isthe value of B?

c. Intermsof B, what is the worst-case running time of your program?

ﬁ%

Exercises

4

1

é BOOK.mkr Page 288 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

5.23.

5.24.

5.25.

5.26.

d. Compare the running times to determine if a 20-bit number and a 40-
bit number are prime.

An important problem in numerical analysis is to find a solution to the
equation F(X) = 0 for some abitrary F. If the function is continuous
and has two pdnts low and high such that F(low) and F(high) have
oppasite signs, then a root must exist between low and high and can be
found by either a binary search or an interpolation search. Write afunc-
tion that takes as parameters F, low, and high and solves for a zeo. What
must you do to ensure termination?

A majority element in an array A of size N is an element that appeas
more than N/ 2 times (thusthereis at most one such element). For exam-
ple, the array

3,3,4,2,4,4,2,4,4

has a majority element (4), whereas the array
3,3,4,2,4,4,2,4

does nat. Give an algorithm to find a majority element if one exists,
or reports that one does not. What is the running time of your algorithm?
(Hint: Thereisan O(N) solution.)
Theinput isan N x N matrix of numbers that is already in memory. Each
individual row is increasing from left to right. Each individual column is
increasing from top to bottom. Give an O(N) worst-case dgorithm that
decides if anumber X isin the matrix.
Design efficient algorithms that take an array of positive numbers a, and

determine

a. the maximum value of a[j]+ali] forj =i.

ﬁ%

>

é BOOK.mkr Page 289 Wednesday, March 14 2001 1:11PM

5.27.

5.28.

5.20.

b. the maximum value of a[j]-ali] forj =i .
c. the maximum vaue of alj]*ali] Jforj =i
d. the maximum value of a[j}/ali] Jforj =i,
Programming Projects

The Sieve of Eratosthenes is a method used to compute all primes less
than N. Begin by making atable of integers 2 to N. Find the smallest inte-
ger, i, that isnot crossed ou. Then printi andcrossout i, 2i, 3i, When
i>./N,the dgorithm terminates. The running time has been shown to be
O(NloglogN). Write aprogram to implement the Sieve and verify that
the running time daim. How difficult isit to dfferentiate the runningtime
from O(N) and O(N logN)?

The euation A>+B®+ C°+D®+E® = F° has exadly ore integral
solution that satisfies 0<A<B<C<D<E<F<75. Write aprogram
to find the solution. Hint: First, precompute all values of X° and store
them in an array. Then, for ead tuple (A, B, C, D, E), you only need to
verify that some F existsin the aray. (There are several waysto ched for
F, one of which is to use abinary search to ched for F. Other methods
might prove to be more dficient.)

Implement the maximum contiguous subsequence sum algorithms to
obtain data equivalent to the data in Figure 5.10. Compil e the programs

with the highest optimization settings.

ﬁ%

Exercises

4

1

>

é BOOK.mkr Page 290 Wednesday, March 14 2001 1:11PM

Algorithm Analysis

References

The maximum contiguous subsequence sum problem is from [5]. References[4],

[5], and [6] show how to optimize programs for speed. Interpalation seach was

first suggested in [14] and was analyzed in [13]. References [1], [8], and [17]

provide amore rigorous treadment of algorithm analysis. The threepart series

[10Q], [11], and [12], newly updated, remains the foremost reference work onthe

topic. The mathematical background required for more advanced a gorithm anal-

ysisis provided by [2], [3], [7], [15], and [16]. An especially good book for

advanced analysisis[9].

1

4.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading, Mass, 1974.

M. O. Albertson and J. P. Hutchinson, Discrete Mathematics with Algo-

rithms, John Wiley & Sons, New York, NY, 1988.

Z. Bavel, Math Companion for Computer Science, Reston Publishing

Company, Reston, Va., 19&.

J. L. Bentley, Writing Efficient Programs, Prentice-Hall, Englewood

Cliffs, N.J., 1982.

J. L. Bentley, Programning Pearls, Addison-Wesley, Reading, Mass,

1986.

J. L. Bentley, More Programming Pearls, Addison-Wesley, Realing,

Mass, 1988.

ﬁ%

>

é BOOK.mkr Page 291 Wednesday, March 14 2001 1:11PM

10.

11

12.

13

14.

15.

R. A. Brualdi, Introductory Combinatorics, North-Holland, New York,

N.Y., 1977.

T. H. Cormen, C. E. Leiserson, andR. L. Rivest, Introduction to Algo-

rithms, MIT Press Cambridge, Mass, 1990.

R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics,

Addison-Wesley, Reading, Mass, 1989.

D. E. Knuth, The Art of Computer Programning, Vol 1: Fundamental

Algorithms, 3d ed., Addison-Wesl ey, Realing, Mass 1997.

D. E. Knuth, The Art of Computer Programming, Vol 2: Seminumerical

Algorithms, 3d ed., Addison-Wesley, Realing, Mass, 1997.

D. E. Knuth, The Art of Computer Programming, Vol 3; Sating and

Searching, 2d ed., Addison-Wesley, Reading, Mass, 1998.

Y. Pearl, A. Itai, and H. Avni, “Interpolation Search —A loglog N

Seach,” Comnunications of the ACM 21 (1978), 550-554.

W. W. Peterson, “Addressng for Random Storage,” 1BM Journal of

Research and Development 1 (1957), 131-132.

F. S. Roberts, Applied Combinatorics, Prentice-Hall, Englewood Cliffs,

N.J., 1984.

References

4

1

é BOOK.mkr Page 292 Wednesday, March 14, 2001 1:11PM

Algorithm Analysis

16. A. Tucker, Applied Combinatorics, 2d ed., JohnWiley & Sons, New

York, N.Y., 1984.

17. M. A. Weiss Data Sructures and Algorithm Analysisin Java, Addi-

son-Wesley, Realing, Mass, 1999,

é BOOK.mkr Page 293 Wednesday, March 14 2001 1:11PM

CHAPTER

6 The Collections API

Many algorithms require the use of a proper representation of data to achieve fi-
ciency. This representation and the operations that are allowed for it are known as
adata structure. Each data structure allows arbitrary insertion but differsin how it
allows access to members in the group. Some data structures allow arbitrary
accessand deletions, whereas others impose restrictions, such as allowing access
only to the most recently or least recently inserted item in the group.

As part of Java, a supporting library known as the Colledions API is pro-
vided. Most of the Colledions API residesinj ava. uti | . This API provides a
colledion d data structures. It also provides some generic dgorithms, such as
sorting. The Colledions APl makes heavy use of inheritance

Our primary goal is to describe, in general terms, some examples and appli-
cations of data structures. Our secondary goal isto describe the basics of the Col-
ledions API, so that we can useit in Part 111. We do not discussthe theory behind
an efficient Colledions API implementation until Part 1V, at which point we pro-
vide simplified implementations of some cre Colledions APl components. But
delaying the discusson of the Collection API'simplementation until after we use
it is not a problem. We do na need to know how something is implemented so

long as we know that it isimplemented.

ﬁ%

é BOOK.mkr Page 294 Wednesday, March 14 2001 1:11PM

294 The Collections API

A data structureis a
representation of
data and the oper-
ations allowed on

that data.

Data structures al-
low us to achieve

component reuse.

In this chapter, we show:

» common data structures, their allowed operations, and their running times;
» some applications of the data structures; and

 theorganization of the Colledions API, and itsintegration with the rest of

the language

6.1 Infroduction

Data structures all ow us to achieve an important objed-oriented programming
goal: component reuse. The data structures described in this ®dion (and imple-
mented later in Part 1V) have recurring uses. When each data structure has been
implemented once, it can be used over and over in various applications.

A data structure is a representation of data and the operations alowed on that
data. Many, but by no means al, of the cmmmon data structures gore a ©lledion
of objeds, and then provide methods to add a new object to, remove an existing
object from, or acessa mntained oljed in the collection.

In this chapter we examine some of the fundamental data structures and their
applications. Using a high-level protocol, we describe typical operations that are
usually supported by the data structures, and briefly describe their uses. When
possble, we give an estimate of the cost of implementing these operations effi-
ciently. This estimate is often based on analogy with nonrcomputer applicaions
of the data structure. Our high-level protocol usualy supports only a @re set of

basic operations. Later, when describing the basics of how the data structures can

ﬁ%

é BOOK.mkr Page 295 Wednesday, March 14 2001 1:11PM

1

Introduction 295

beimplemented (in general there are multiple competing ideas), we car more ea-
ily focus on language-independent algorithmic details if we restrict the set of
operations to a minimum core set.
As an example, Figure 6.1 illustrates a generic protocol that many data struc-
tures tend to follow. We do na adually use this protocol diredly in any code.
However, an inheritance-based hierarchy of data structures could use this classas
astarting point.
Then, we give adescription of the Colledions API interfacethat is provided The Collections API

for these data structures. By nomeans does the Colledions API represent the best 8 e one fibrary for

. . . . data structures and
way of doing things. However, it represents the one library for data structures and
algorithms that is

algorithms guaranteed to be available. Its use dso illustrates ssme of the core
guaranteed to be

isaues that must be dedt with oncethe theory is taken care of. available.

1 package wei ss. nonst andar d;
2

3 /1S inpleContainerp rotocol
4 publici nterfaceSinpleContainer
5 {

6 voidi nsert (O bjectx)
7 voidr enmove(O bjectx)
8 bj ectf ind(O bjectx)

9

10 bool eani sEmpty() ;
11 voi d makeEmpty() ;
12 }

Figure 6.1 A generic protocol for many data structures

We defer consideration of efficient implementation of data structures to Part
IV. At that point we will provide, as part of package wei ss. nonst andar d,

some competing implementations for data structures that foll ow the simple proto-

ﬁ%

é BOOK.mkr Page 296 Wednesday, March 14 2001 1:11PM

296 The Collections API

\

An iteratfor object
controls iteration of

a collection.

cols developed in this chapter. We will also provide one implementation for the
basic Colledions APl components described in the dapter, in padkage
wei ss. uti | . Thuswe are separating the interface of the Colledions API (that
is, what it does, which we describe in the chapter) from its implementation (that
is, how it is dore, which we describe in Part IV). This approach — the separation
of the interface &d implementation — is part of the objed-oriented paradigm.
The user of the data structure needs to seeonly the available operations, not the
implementation. Recdl this is the encgpsulation and information-hiding part of
object-oriented programming.

Therest of this chapter is organized as follows: First, we discussthe basics of
the iterator pattern, which is used throughout the Collections API. Then we dis-
cuss the interface for containers and iterators in the Colledions API. Next we
describe some Colledions API agorithms, and finally, we examine some other

data structures many of which are supported in the Collections API.

6.2 The lterator Pattern
The Colledions API makes heavy use of acommon technique known as the itera-
tor pattern. So before we begin our discusson of the Collections API, we examine
the ideas behind the iterator pattern.

Consider the problem of printing the dements in a collection. Typicdly, the
colledion is an array, so asauming that the objed v is an array, its contents are

easily printed with code like:

ﬁ%

é BOOK.mkr Page 297 Wednesday, March 14 2001 1:11PM é

1

The lterator Pattern

for(i nti=0 ;i <v.length; i++)
Systemout.printlin(v [i 1) ;

Inthisloop, i isaniterator object, becaise it isthe objed that is used to control

the iteration. However, using theinteger i asan iterator constrains the design: We

can only store the wlledion in an array-like structure. A more flexible alternative

isto design an iterator classthat encapsulates a positioninside of a wlledion.

The iterator classprovides methods to step through the wlledion.

The key isthe mncept of programming to an interface We want the codethat when we program

performs accessof the container to be as independent of the type of the ntainer '€ an interface, we

write code that uses

aspossble. Thisis done by using only methods that are ommon to al containers
the most abstract

and their iterators. methods. These
There ae many different posdble iterator designs. If we replacei nt i with methods will be ap- N
It erator Typeitr,thentheloopabove expresses plied o the actual

concrete types.

for(i tr=v .first() ;i tr.isvalid() ;it r.advance())
Systemout.println(i tr.getData());

This suggests an iterator class that contains methods such as i sVali d,
advance, get Dat a, etc.

We describe two designs, outside of the Colledions API context, that lead to
the Collections API iterator design. We discussthe spedfics of the Colledions

iteratorsin Sedion 6.3.2, deferring implementations to Part 1V.

- 4~

é BOOK.mkr Page 298 Wednesday, March 14 2001 1:11PM

298 The Collections API

i terator returns
an appropriate iter-
ator for the collec-

tion.

The iterator is con-
structed with a ref-
erence fo the con-
tainer that it iterates

over.

6.2.1 Basic Iterator Design

Thefirst iterator design wses only three methods. The container classis required
to provide ani t er at or method. i t er at or returns an appropriate iterator for
the mlledion. The iterator class has only two methods, hasNext and next .
hasNext returnstrueif the iteration has not yet been exhausted. next returns
the next item in the mlledion (and in the process, advances the airrent position).
Thisiterator interfaceis smilar to the interfaceprovided in the Colledions API.

To illustrate the implementation o this design, we outline the lledion class
and provide an iterator class MyCont ai ner and MyCont ai nerlterat or,
respectively. Their useis iown in Figure 6.2. The datamembersandi t er at or
method for MyCont ai ner are written in Figure 6.3. To simplify matters, we
omit the constructors, and methods such as add, si ze, etc. The ArrayLi st
classfrom ealier chapters can be reused to provide an implementation of these
methods.

i terator simply returns a new iterator; notice that the iterator must have
information about the container that it is iterating over. Thus the iterator is con-
structed with areferenceto the My Cont ai ner.

Figure 6.4 shows the MyCont ai ner | t er at or. The iterator keeps a vari-
able (cur r ent) that represents the aurrent position in the mntainer, and a refer-
enceto the container. The implementation of the constructor and two methods is
straightforward. The mnstructor initializes the cntainer reference, hasNext
simply compares the aurrent paosition with the mntainer size and next uses the

current position to index the aray (and then advances the aurrent position).

ﬁ%

é BOOK.mkr Page 299 Wednesday, March 14 2001 1:11PM é

The lterator Pattern

1

A limitation o thisiterator designisthe relatively limited interface. Observe The better design
that it is impossble to reset the iterator badk to the beginning, and that the next ~ Would put more
)))) functionality in the
method couples accessof an item with advancing. The next , hasNext design
iterator
iswhat is used in the Java Colledions API; many people fed that the API should
have provided a more flexible iterator. It is certainly posdble to put more func-
tionality in the iterator, while leaving the My Cont ai ner classimplementation

completely unchanged. On the other hand, doing so illustrates no new principles.

1 publics taticvoidmain(String[]a rgs)
2 {
3 MyCont ai nerv=n ew MyContai ner() ;
4
5 v.add(" 3") ;
6 v.add(" 2")
> 7 >
8 Systemout.println(" Containerc ontents:")
9 MyCont ai nerlteratori tr=v .iterator()
10 while(i tr.hasNext())
11 Systemout.printin(i tr.next())
12 }

Figure 6.2 main method to illustrate iterator design #1

1 package wei ss. ds;

2

3 publicc | assMyContai ner

4 {

5 oj ect[]i temns;

6 ints ize;

7

8 publicMyContainerlteratori terator()
9 {r eturnnewMyContainerlterator(t his) ;}
10

11 /10O therm et hods

12 }

Figure 6.3 The MyCmtainer class, design #1

ﬁ%

é BOOK.mkr Page 300 Wednesday, March 14 2001 1:11PM

300 The Collections API

/1A ni teratorc lasst hats tepst hroughaM yContai ner.
package wei ss. ds;

1
2
3
4
5 publicc lassMyContainerlterator
6
7
8

{
privatei ntc urrent=0
pri vat e MyCont ai nerc ontai ner;
9
10 MyCont ai ner |t erat or (M yCont ai nerc)
11 {c ontainer=c ;}
12
13 publicb ool ean h asNext ()
14 {r eturncurrent<c ontainer.size;}
15
16 publicObjectn ext()
17 {r eturncontainer.itens[c urrent++] ;}
18 }

Figure 6.4 Implementation of the My Containerltera t or, design #1

Note that in the implementation d MyCont ai ner, the data members

>

P i tens andsi ze are package visible, rather than being private. This unfortunate
relaxation o the usual privacy of data members is necessary because these data
members need to be acessed by MyCont ai nerlterator. Similarly, the
MyCont ai ner |t erat or constructor is package visible, so that it can be

caled by MyCont ai ner.

6.2.2 Inheritance-based Iterators and Factories

The iterator designed so far manages to abstract the concept of iteration into an
iterator class. Thisis good, because it means that if the wll ection changes from
an array-based collection to something else, the basic code such aslines9and 11

in Figure 6.2 does nat nead to change.

ﬁ%

é BOOK.mkr Page 301 Wednesday, March 14 2001 1:11PM é

The lterator Pattern

1

While thisis a significant improvement, changes from an array-based collec
tion to something else require that we change dl the dedarations of the iterator.
For instance, in Figure 6.2, we would nead to change line 9. We discussan alter-
native in this sction.
Our basic ideais to define an interfacel t er at or. Corresponding to each An inheritance-

different kind of container is an iterator that implementsthe |l t er at or protocol, P@sed fferation

. . . scheme defines an
In our example, this gives three dasss. MyCont ai ner, Iterator, and
iterator interface.

MyCont ai nerl t erator. The relationship that holds is Clients program 1o
MyCont ai nerlterator ISAlterator. Thereaonwedo thisisthat each this interface.
container can now create an appropriate iterator, but pass it back as an abstrad
Iterator.

Figure 6.5 shows MyCont ai ner. In the revised MyCont ai ner, the
i t erat or method returns areferenceto an | t er at or objed; the acdual type

turns out to be aMyCont ai ner | t er at or. SinceMyCont ai ner | t er at or

ISAlterator,thisis sfeto do.

1 package wei ss. ds;

2

3 publicc | ass MyCont ai ner

4 {

5 oj ect[]i temns;

6 ints ize;

7

8 publicl teratori terator()
9 {r eturnnewMyContainerlterator(t his) ;}
10

11 //0O therm ethodsn ots hown.
12 }

Figure 6.5 The MyCmtainer class, design #2

ﬁ%

é BOOK.mkr Page 302 Wednesday, March 14,2001 1:11PM

302 The Collections API

1 packagewei ss. ds;

2

3 publici nterfacel terator
4 {

5 bool ean h asNext () ;

6 bj ectn ext() ;

7

Figure 6.6 The Itera t or interface, design #2

1 //A ni teratorc lasst hats tepst hroughaM yContai ner.

2
3 packagewei ss. ds;
4
5 classMyContainerlteratori nplenments!| terator
6 {
7 privatei ntc urrent=0 ;
8 pri vat e MyCont ai nerc ont ai ner;
9
10 MyCont ai ner | t erat or (M yCont ai nerc)
11 {c ontainer=c ;}
12
13 publ i cb ool ean h asNext ()
N 14 {r eturncurrent<c ontainer.size;} N
15
16 publicObjectn ext()
17 {r eturncontainer.itens[c urrent++] ;}
18 }

Figure 6.7 Implementation of the My Containerltera t or, design #2

1 publics taticvoidmain(String[]a rgs)
2 {

3 MyCont ai nerv=n ew MyContai ner() ;

4

5 v.add(" 3") ;

6 v.add(" 2") ;

7

8 Systemout.println(" Containerc ontents:") ;
9 Iteratori tr=v .iterator() ;

10 while(i tr.hasNext())

11 Systemout.printin(i tr.next()) ;
12 }

Figure 6.8 main method to illustrate iterator design #2

ﬁ%

é BOOK.mkr Page 303 Wednesday, March 14 2001 1:11PM

Collections API: Containers and Iterators 303

Becaise i t er at or creaes and returns a new | t er at or objed, whose
actual type is unknown, it is commonly known as a factory method The iterator
interface which serves smply to establi sh the protocol by which all subclasses of
I t erat or can be a&cessd, is shown in Figure 6.6. There ae only two changes
to the implementation of MyCont ai ner | t er at or, shown in Figure 6.7. and
both changes are at line 5. First, the i npl enment s clause has been added. Sec
ond, MyCont ai ner | t er at or nolonger needsto be apublic class

Figure 6.8 demonstrates how the inheritance-based iterators are used. At line
9, we seethe declaration d' i t r : it isnow areferencetoan It er at or. Nowhere
inmai n isthere any mention of the actual MyCont ai ner | t er at or type. The
fad that a MyCont ai ner |t erat or existsis not used by any clients of the
My Cont ai ner class Thisis avery slick design, and illustrates nicdy the idea
of hiding an implementation and programming to an interface. The implementa-
tion can be made even slicker by use of nested classes, and a Java feaure known

asinner classes. Those implementation details are deferred until Chapter 15.

6.3 Collections API: Containers and lterators

This sedion describes the basics of the Colledion API iterators, and how they
interad with containers. We know that an iterator is an oljed that is used to
traverse acolledion of objeds. In the Colledions API such a wlledionis
abstraded by the Coll ecti on interface, and the iterator is abstraded by the

I t er at or interface

ﬁ%

A factory method
creates a new con-
crete instance, but
returns it using a ref-
erence tfo the inter-

face type.

Nowhere in mai nis
there any mention
of the actual itera-

tor type.

é BOOK.mkr Page 304 Wednesday, March 14 2001 1:11PM

304 The Collections API

The Colledion API iterators are somewhat inflexible, in that they provide

few operations. It uses an inheritance model described in Section 62.2.

6.3.1 The Col | ect i on interface

The Col l ection TheCol | ecti on interfacerepresents agroup of objeds, known asits elements.

inferface repre- Some implementations, such as vectors and lists, are unordered; others, such as

sents a group of ob-]))
sets and maps, may be ordered. Some implementations allow dupli cates; others
jects, known as ifs

do nat. All containers support the foll owing operations.
elements.

bool ean i sEnpty()
returnst r ue if the container contains no elements and f al se otherwise.

int size()
returns the number of elementsin the container.

’ bool ean add(Object x)
adds item x to the container. Returnst r ue if this operation succeeds and
f al se otherwise (e.g. if the container does nat all ow duplicatesand x is
areay in the mntainer).
bool ean contains(Object x)
returnstrueif x isinthe container andf al se otherwise.

bool ean renmove(Object x)

Removesitem x from the container. Returnst r ue if x was removed and
f al se otherwise.

- 4~

é BOOK.mkr Page 305 Wednesday, March 14,2001 1:11PM é

Collections API: Containers and Iterators 305

1 packageweiss.util;
2
3 /**
4 *C ollectioni nterface;t her ooto fa II1 .2c ollections.
5 */
6 publici nterfaceCollectione xtendsj ava.io. Serializable
7 {
8 /**
9 *R eturnst henunbero fi tenmsi nt hisc ollection.
10 *
11 ints ize() ;
12
13 [**
14 *T estsi ft hiscollectioni se npty.
15 *
16 bool eani sEnmpty() ;
17
18 [**
19 *T estsi fs omei temisi nt hisc ollection.
20 *
21 bool eanc ontai ns(O bjectx) ;
22
23 [**
24 *A ddsani temtot hisc ollection.
25 *
» 26 bool eana dd(O bjectx) ; -
27
28 [**
29 *R enmovesani temfromthisc ollection.
30 *
31 bool eanr enmove(O bjectx) ;
32
33 [**
34 *C hanget hesizeoft hiscollectiont oz ero.
35 *
36 voidc lear() ;
37
38 [**
39 *O btainsanl teratoru sedt ot raverset hec oll ection.
40 *
41 Iteratori terator() ;
42
43 [**
44 *O btainsap rimtivearrayviewoft hec ollection.
45 *
46 Qbject[]t oArray() ;
47 }

Figure 6.9 Sample specification of the Collecti on interface

ﬁ%

é BOOK.mkr Page 306 Wednesday, March 14 2001 1:11PM

306 The Collections API

void clear()
makes the container empty

hject [] toArray()
returns an array that contains referencesto all itemsin the container.

Iterator iterator()

returnsani t er at or that can be used to begin traversing all locationsin the
container.

Figure 6.9 illustrates a spedfication o the Col | ecti on interface The
Col | ecti on interfacein j ava. uti | contains ssme alditional methods, but
we will be mntent with this subset. By convention, all implementations supply
both a zeo-parameter constructor that creaes an empty colledion and a construc-
tor that credes a coll edion that refers to the same elements as another coll edion.
Thisisbasicdly a shallow-copy of a clledion. However, there isno syntax in the

> language that forces the implementation of these constructors. >

The Colledions API aso codifies the nation of an optional interface method.
For instance, suppose we want an immutable coll edion: onceit is constructed, its
state shoud never change. An immutable llection appeas incompatible with
Col | ecti on, sinceadd andr enpve do mt make sense for immutable mllec
tions.

However, there is an existing loophole: although the implementor of the
immutable ollection must implement add and r enove, there is no rule that
says these methods must do anything. Instead, the implementor can simply throw
a runtime Unsupport edQper ati onExcepti on. In ddng so, the imple-
mentor has technicaly implemented the interface while not really providing add

andr enove.

ﬁ%

é BOOK.mkr Page 307 Wednesday, March 14 2001 1:11PM é

Collections API: Containers and Iterators

?

By convention, interface methods that document that they are optional can be
implemented in this manner. If the implementation chooses not to implement an
optional method, then it should document that fact. It isupto the dient user of the
API to verify that the method is implemented by consulting the documentation,
and if the client ignores the documentation and calls the method anyway, the
runtime Unsuppor t edOper at i onExcept io n is thrown, signifying a pro-
gramming error.

Optional methods are somewhat controversial, but they do not represent any
new language additions. They are simply a convention.

We will eventually implement all methods. The most interesting o these
methods is i t er at or, which is a fadory method that creaes and returns an
| t er at or object. The operations that can be performed by an | t er at or are

described in Sedion 6.3.2.

6.3.2 |terator interface

As described in Section 6.2, an iterator is an object that allows us to iterate An iteratoris an ob-

through all objects in a collection. The technique of using an iterator classwas ¢! thatalowsusto

]]]] iterate through all
discussed in the context of read-only vectorsin Sedion 6.2.
objectsin a collec-

Thel t er at or interfaceis the Colledions APl is gnall, and contains only fion

threemethods:

bool ean hasNext ()
returns true if there are more itemsto view in this iteration.

ﬁ%

é BOOK.mkr Page 308 Wednesday, March 14 2001 1:11PM

308 The Collections API

The It erator in-
terface contains
only three meth-
ods: next ,
hasNext , and

renove.

The It erat or
methods throw an
exception if its con-
tainer has been
structurally modi-

fied.

hj ect next()

returns areferenceto the next objed not yet seen by thisiterator. The object
becomes ®a, and thus advances the iterator.

void renove()

removes the last item viewed by next . Thiscan be cdled only once between
calsto next .

Eadh collection defines its own implementation of the | t er at or interface,
ina dassthat isinvisibleto users of thej ava. uti | padkage.

Theiterators also exped a stable mntainer. An important problem that occurs
in the design of containers and iterators is to dedde what happens if the state of
container is modified while an iterationisin progress The Colledions API takes
astrict view: any external structural modification of the container (adds, removes,
etc.) will resultinaConcur rent Modi fi cati onExcept i on by the iterator
methods when one of the methods is called. In ather words, if we have an iterator,
and then an objed is added to the mntainer, and then weinvoke the next method
on the iterator, the iterator will deted that it is now invalid, and an exception will
be thrown by next .

This means that it is impossble to remove an dbjed from a container when
we have seen it via an iterator, without invalidating the iterator. Thisis one reason
why thereisar enpbve method in the iterator class Calling the iterator r enove
causes the last seen objed to be removed from the cntainer. It invalidates all
other iterators that are viewing this container, but not the iterator that performed
ther enpve. It is aso likely to be more dficient than the mntainer’'sr enove
method, at least for some colledions. However, r enove canna be cdled twice

in arow. Furthermore, re nove preserves the semantics of next andhasNext ,

ﬁ%

é BOOK.mkr Page 309 Wednesday, March 14 2001 1:11PM é

Collections API: Containers and Iterators

because the next unseen item in the iteration remains the same. This version d
r enove islisted as an optional method so the programmer needs to chedk that it
isimplemented. r enove has been criticized as poar design, but we will use it at
one point in the text.

Figure 6.10 provides a sample spedfication of the | t er at or interface As
an example of using the | t er at or, the routine in Figure 6.11 prints ead ele-

ment in any container. If the mntainer isan ordered set, its elements are output in

sorted order.
1 packageweiss.util;
2
3 /**
4 *| teratori nterface.
4 5 */ =‘
6 publici nterfacel terator
7 {
8 /**
9 *T estsi ft herearei temsn oty eti teratedo ver.
10 *
11 bool ean h asNext () ;
12
13 [**
14 *O btainst henext(asy etu nseen)i temint hec ollection.
15 *
16 bj ectn ext() ;
17
18 [**
19 *R enovet hel asti temreturnedbyn ext.
20 *C anonlybecalledonceaftern ext.
21 *
22 voidr enove() ;
23 }

Figure 6.10 Sample specification of | terator

- 4~ 4

é BOOK.mkr Page 310 Wednesday, March 14 2001 1:11PM

310 The Collections API

The Col | ections
class contains a set
of static methods
that operate on
Col | ecti on ob-

jects.

The material in Sec-
tion 4.7 is an essen-
tial prerequisite to

this section.

1 /[P rintt hecontentso fC ol |l ectionc

2 publics taticvoidprintCollection(C ollectionc)
3 {

4 Iteratori tr=c .iterator() ;

5 while(i tr.hasNext())

6 Systemout.printin(i tr.next()) ;

7 }

Figure 6.11 Print the contents of any Cal lection

6.4 Generic Algorithms

The Collections API provides a few general purpose dgorithms that operate on
all of the mntainers. These ae static methods in the Col | ect io ns class(note
that this is a different classthan the Col | ect i on interface). There are dso
some static methodsin the Ar r ays classthat manipulate arays (sorting, seach-
ing, etc.). Most of those methods are overloaded — for Cbject and orce for
each of the primitive types (except bool ean).

We examine only afew of the dgorithms, with the intention of showing the
general ideas that pervade the Collections API, while documenting the specific
algorithms that will be used in Part IIl .

Some of the dgorithms make use of function objects. Consequently, the

material in Sedion 4.7 is an esential prerequisite to this edion.

6.4.1 Conpar at or Function Objects
Many Colledions API classes and routines require the aility to order objeds.
There ae two ways to do this. One posghility is that the objects implement the

Compar abl e interface, and provide aconpar eTo method. The other posshil-

ﬁ%

é BOOK.mkr Page 311 Wednesday, March 14 2001 1:11PM

Generic Algorithms

ity is that the comparison function is embedded as the conpar e method in an
objed that implements the Conpar ato r interface Conpar at or isdefinedin
ja va. uti | ; asample implementation was shown in Figure 4.29, and is

repeded in Figure 6.12.

packageweiss. util;

1

2

3

4 *C onparatorf unctiono bjecti nterface.
5 */

6 publici nterface Conparator

7
8

{
/**
9 *R eturnt her esulto fc onmparingl hsandr hs.
10 *@ param| hsf irsto bject.
11 *@ paramr hss econd o bj ect.
12 *@return<0i fl hsi sl esst hanr hs,
13 * 0i fl hsi sequalt or hs,
N 14 * >0i fl hsi sgreatert hanr hs. N
15 *@ throws Cl assCast Exceptioni fo bjects
16 * c annotb ec onpared.
17 *
18 intc onpare(O bjectl hs,O bjectr hs) ;

19 }

Figure 6.12 The Comparator interface, originally defined in java . util
rewritten for the weiss. util package.

- 4~

é BOOK.mkr Page 312 Wednesday, March 14 2001 1:11PM

312 The Collections API

packagewei ss. util;

/**
4 *| nstancelessc lassc ontainss taticmethods
5 *t hato perateonc ollections.
6 */
7 publicc lassCollections
8 {
9 privateCol |l ections()
10 {
11 }
12
13 [**
14 *R eturnsac onparatort hati nposest her everseoft he
15 *d efaulto rderingonac ollectionofo bjectst hat
16 *i nplementt he Conparablei nterface.
17 *@ returnt hec onparator.
18 *
19 publics taticConparatorr everseOrder()
20 {
21 r et ur n R EVERSE _COVPARATOR;
22 }
23
24 privates taticc | ass R everseConpar at or
25 i mpl ement s C onpar at or

b 26 {
27 publici ntc onpare(O bjectl hs,O bjectr hs)
28 {
29 return- ((Comparable)l hs) .conpareTo(r hs) ;
30 }
31 }
32
33 privates taticc | assD efaul t Conpar at or
34 i mpl ement s C onpar at or
35 {
36 publici ntc onpare(O bjectl hs,O bjectr hs)
37 {
38 return((Conparable)l hs) .conpareTo(r hs) ;
39 }
40 }
41
42 privates taticf i nalC onparat or R EVERSE _COVPARATOR =
43 n ew ReverseConparator() ;
44 staticf i nalC onparator D EFAULT_COVPARATOR =
45 n ew Def aul t Conparator () ;

>

Figure 6.13 Coll ections closs (part 1): private constructor and
reve r seOrder

ﬁ%

é BOOK.mkr Page 313 Wednesday, March 14 2001 1:11PM

Generic Algorithms

46 /*

47 *R eturnst hemaxi numobjecti nt hec ollection

48 *u singdefaulto rdering.

49 *@ paramcol It hec ollection.

50 *@ returnt he maxi numobject.

51 *@ throws NoSuchEl enent Exceptioni fc olli se npty.
52 *@ throws Cl assCast Exceptioni fo bjectsi ncollection
53 * c annotb ec onpared.

54 *

55 publics taticObjectmax(C ollectionc oll)

56 {

57 returnmax(c oll,D EFAULT_COVPARATOR) ;

58 }

59

60 [**

61 *R eturnst hemaxi numobjecti nt hec ollection.
62 *@ paramcol It hec ollection.

63 *@ paramcnpt hec onparator.

64 *@ returnt he maxi mumobj ect.

65 *@ throws N oSuchEl enent Exceptioni fc olli se npty.
66 *@ throws Cl assCast Exceptioni fo bjectsi nc ollection
67 * c annotb ec onpared.

68 *

69 publics taticObjectmax(C ollectioncoll,C onparatorc np)
70 {

71 if(c oll.size()= =0)

72 t hr ow n ew NoSuchEl enent Exception() ;

73

74 Iteratori tr=c oll.iterator() ;

75 Obj ectm axValue=i tr.next() ;

76

77 while(i tr.hasNext())

78 {

79 Cbj ectc urrent=i tr.next() ;

80 if(c np.conpare(c urrent, m axValue)>0)

81 current=m axVal ue;

82 }

83 returnmaxVal ue;

84 }

85 }

Figure 6.14 Coll ections closs (part 2): max

6.4.2 The Col | ecti ons Class
Although we will not make use of the Col | ect i ons classin thistext, it hastwo

methods that are thematic of how generic dgorithms for the Colledions APl are

ﬁ%

—

é BOOK.mkr Page 314 Wednesday, March 14 2001 1:11PM

314 The Collections API

Q(%

reverseOrder is
a factory method
that creates a
Conpar at or rep-
resenting the re-

verse natural order.

written. We write these methodsin the Col | ect i ons classimplementation that
spans Figures 6.13 and 6.14.

Figure 6.13 begins by illustrating the common technique of declaring a pri-
vate @nstructor in classes that contain only static methods. This prevents instanti-
ation o the dass It continues by providingther ever seOrder method Thisis
afadory method that returnsa Conpar at or that provides the reverse of the nat-
ural ordering for Conrpar abl e objeds. The returned dbject, dedared at lines 42
and 43 is a shared static instance of the Rever seConpar at or classwrittenin
lines 24 to 31 In the Rever seConpar at or class we eventually downcast
r hs to aConpar abl e and wse the conpar eTo method. If the objects are not
comparable, this throws a Cl assCast Except i on.! Thisis an example of the
type of code that might be implemented with an anonymous class We have asim-
ilar declaration for the default comparator; since the standard APl does not pro-
vide a public method to return this, we have nat either, and instead dedare a
package visible DEFAULT_COVMPARATOR instance that can be used by methods
that need one.

Figure 6.14 illustrates the max method, which returns the largest element in
any Col | ect i on. The one-parameter max cdlsthe two parameter max by sup-

plying the DEFAULT _COMPARATOR. The two-parameter max combinesthe iter-

L Although rot well-documented, the compare method in j ava. uti | . Conpar ato r isallowed to throw a

Nul | Poin t er Exceptio n if either referenceisnul | — evenif botharenul | .

ﬁ%

é BOOK.mkr Page 315 Wednesday, March 14 2001 1:11PM é

Generic Algorithms

?

ator pattern with the function oljed pattern to step through the wlledion, and at

line 80 uses calls to the function objed to update the maximum item.

6.4.3 Binary Search
The Colledions APl implementation of the binary search is the static method bi nar ySear ch

Arrays. bi nar ySear ch. There are adually seven overloaded versions— one 1SS binary search

L and returns the in-
for eath of the primitive types except bool ean, plus two more overloaded ver-
dex of the matched

sions that work on Qbj ect s (one works with a amparator, one uses the default .
item or a negative

comparator). We will implement the Obj ect versions; the other seven are mind- number if the item is
lesscopy and peste. not found.
As usual the aray must be sorted; if it is nat, the results are undefined (veri-
fying that the array is orted would destroy the logarithmic time bound for the
operation).
If the search for the item is successul, the index of the match is returned. If
the search is unsuccessful, we determine the first position that contains a larger
item, add one to this position, and then return the negative of the value. Thus, the
return value is always negative, because is at most - 1 (which occurs if the item
we are seacching for is smaller than al other items) and is at least - a. | engt h-
1 (which occursif the item we are seaching for is larger than all other items).
The implementation is $own in Figure 6.15. As was the cae for the max
routines, the two-parameter bi narySearch cdls the threeparameter

bi nar ySear ch (seelines 16 and 17). The three-parameter binary search rou-

tine mirrors the implementation in Figure 5.12.

ﬁ%

é BOOK.mkr Page 316 Wednesday, March 14 2001 1:11PM

316 The Collections API

We use the bi nar ySear ch methodin Sedion 10.1.

é BOOK.mkr Page 317 Wednesday, March 14 2001 1:11PM

Generic Algorithms

1 packageweiss.util;

2

3 /**

4 *| nstancelessc lasst hatc ontainss taticmethods
5 *t omanipulatearrays.

6 */

7 publicc lassArrays

8 {

9 privateArrays(){}

10

11 [**

12 *S earchsortedarrayarru singdefaultc onparator.

13 *

14 publics tatici ntb inarySearch(O bject[]a rr,O bjectx)
15 {

16 returnbinarySearch(a rr,x ,

17 Col |l ecti ons. DEFAULT_COVPARATOR) ;
18 }

19

20 [**

21 *S earchsortedarrayarru singac onparator.

22 *] fa rri snots orted,r esultsa reu ndefined.

23 *@ paramarrt hearrayt os earch.

24 *@ paramxt heo bjectt os earchf or.

25 *@ paramcnpt hec onparator.

26 *@returni fxi sf ound,r eturnsi ndexwherei ti sf ound.
27 * otherwise,xi snotf ound.l nt hatc ase,an egative
28 * nunberi salwaysr eturned,a ndt hisn unberi se qual
29 * to- (pt1l) ,wW hichpi st hef irstp ositiongreater
30 * thanx .T hisc anr angef rom-1downt o- (arr.|ength+l).
31 *@ throws Cl assCast Exceptioni fi tensaren otc onparable.
32 *

33 publics tatici ntb inarySearch(O bject[]a rr,O bjectx ,
34 Conparatorc np)

35 {

36 intl ow=0 ,mid=0 ;

37 inth igh=a rr.length;

38

39 while(l ow<h igh)

40 {

41 md=(l ow+high)/2 ;

42 if(c mp.conpare(x ,arr[mid])>0)

43 low=mid+1 ;

44 el se

45 high=mid;

46 }

47 if(c nmp.conpare(x ,a rr[mid])= =0)

48 return-(l ow+1) ;

49 returnl ow,

50 }

51 }

Figure 6.15 Implementation of binarySe arch methodin Ar rays class

ﬁ%

—

>

é BOOK.mkr Page 318 Wednesday, March 14 2001 1:11PM

318 The Collections API

The Arr ays class
contains a set of
static methods that

operate on arrays.

A listis a collection
of items in which
the items have a

position.

6.4.4 Sorting

The Colledions APl provides a set of overloaded sort methodsinthe Arrays
class Simply pass an array of primitives, or an array of Cbj ect that implement
Compar abl e, or an array of Cbje ct and a Conrpar ato r . We have not pro-

vided asort methodin our Ar r ays class

void sort(Cbject [] arr)

rearanges the dementsin the array to bein sorted order, using the natural
order.

void sort(Object [] arr, Conparator cnp)

rearanges the dementsin the array to bein sorted order, using the order
specified by the comparator.

The generic sorting algorithms are required to runin O(N logN) time.

6.5 The Li St Interface

A listisa olledion o itemsin which the items have aposition. The most obvi-

ous example of alistisan array. In an array, items are placed in position Q 1, etc.

é BOOK.mkr Page 319 Wednesday, March 14,2001 1:11PM

é(%

The List Inferface

packagewei ss. util;

1

2

3

4 *L isti nterface.C ontainsmuchl esst hanj ava.util.
5 */

6 publici nterfaceListe xtendsCollection

7
8

{
Cbj ectg et (i nti dx) ;

9 bj ects et(i nti dx,O bjectn ewval) ;
10
11 [**
12 *O btainsal istlteratoro bjectu sedt ot raverse
13 *t hecollectionbidirectionally.
14 *@returnsani teratorp ositioned
15 * priort ot her equestede | enent.
16 *@ parami dxt hei ndext ostartt hei terator.
17 * Usesize()t odoconpleter everset raversal.
18 * UseOt odoconpletef orwardt raversal.
19 *@ throws | ndexCQut O BoundsExceptioni fi dxi sn ot
20 * betweenOa ndsize(),i nclusive.
21 *
22 Listlteratorl istlterator(i ntp os) ;
23 }

Figure 6.16 Sample List interface

—

>

é BOOK.mkr Page 320 Wednesday, March 14 2001 1:11PM

320 The Collections API

Q(%

The Li st interface
extends the

Col | ecti onin-
terface and ab-
stracts the notion of

a position.

1 packageweiss.util;

2

3 /**

4 *L istlteratori nterfacef orL isti nterface.

5 */

6 publici nterfaceListlteratore xtends!| terator

7 {

8 /**

9 *T estsi ft herearemorei tensi nt hec ollection
10 *w heni teratingi nr everse.

11 *@ returnt ruei ft herearemorei temsi nt hec ollection
12 * whent raversingi nr everse.

13 *

14 bool ean h asPrevious() ;

15

16 [**

17 *O btainst hepreviousi temint hec ollection.

18 *@ returnt heprevious(asy etu nseen)i temint he
19 * collectionwhent raversingi nr everse.

20 *

21 Cbj ectp revious() ;

22

23 [**

24 *R enovet hel asti temreturnedbyn exto rp revious.
25 *C anonlybecalledonceaftern exto rp revious.
26 *

27 voidr enmove() ;

28 }

Figure 6.17 Sample Listlte rator interface

The Li st interface extends the Col | ect i on interface and abstrads the
notion of aposition. Theinterfaceinj ava. ut i | adds numerous methodsto the
Col | ecti on interface We ae content to add the threeshown in Figure 6.16.

The first two methods are get and set , which are similar to the methods
that we have dready seenin Arr ayLi st . The third method returns a more flex-

ibleiterator, theLi st |t er at or.

é BOOK.mkr Page 321 Wednesday, March 14 2001 1:11PM é

?

The List Inferface

6.5.1 Theli stlterator Interface
As sown in Figure 6.17, Listlte rator isjustlike anlterato r,except Listlterator is
that it is bidiredional. Thus we can both advance and retrea. Because of this, the © Pidirectional ver-
sionof | terator.
I'istlterator fadory method that creaesit must be given avauethat islog-
icaly equal to the number of elements that have dready been visited in the for-
ward diredion. If thisvalueis zero, the Li stl t er ator isinitialized at the
front, just likean | t er at or. If thisvalueisthe sizeof the Li st , the iterator is
initialized to have processd all elements in the forward diredion. Thusin this
state, hasNext returnsfalse, but we @an usehasPr evi ous and pr evi ous to
traversethelist in reverse.
Figure 6.18 illustrates that we can usei t r 1 to traverse alist in the forward
diredion, and then once we reech the end, we can traverse the list backwards. It
also illustrates it r 2, which is positioned at the end, and simply processes the
ArraylLi st inreverse.
One difficulty with the Li st 1 t er at or is that the semantics for r enove
must change slightly. The new semantics arethat r enove deletes fromtheLi st
the last objed returned as a result of cdling either next or previ ous, and
r emove can only be cdled oncebetween cdlsto either next of previ ous. In
order to override the Javadoc that is generated for r enpve, it is listed in the

Li stlterator interface

é BOOK.mkr Page 322 Wednesday, March 14 2001 1:11PM

322 The Collections API

1 inportj ava.util.ArraylList;
2 inportj ava.util.Listlterator;

3

4 classT estArraylLi st

5 {

6 publics taticvoidmain(String[]a rgs)

7 {

8 ArraylListl st=n ewArrayList() ;

9 I st.add(" 2") ;I st.add(" 4") ;

10 Listlteratori trl=1 st.listlterator(0) ;

11 Listlteratori tr2=1 st.listlterator(l st.size()) ;

12

13 Systemout.print(" Forward:") ;

14 while(i trl.hasNext())

15 Systemout.print(i trl.next()+"") ;

16 Systemout.println() ;

17

18 Systemout. print(" Backward:") ;

19 whil e(i trl.hasPrevious())

20 Systemout.print(i trl.previous()+"") ;

21 Systemout.println() ;

22

23 Systemout. print(" Backward:") ;

24 whil e(i tr2.hasPrevious())

25 Systemout.print(i tr2.previous()+"") ;
» 26 Systemout.printlin() ; -

27 }

28 }

Figure 6.18 Sample program that illustrates bidirectional iteration

6.5.2 Li nkedLi st Class

There are two basic Li st implementations in the Collections API. One is the
ArraylLi st , which we have drealy seen. The other isaLi nkedLi st , which
stores items internally in a different manner than ArrayList | yielding perfor-
mance trade-offs. A third version is Vecto r, whichislike ArrayList , but is
from an dder library, andis present mostly for compatibility with legacy (old)

code. Using Vect or isno longer in vogue.

ﬁ%

é BOOK.mkr Page 323 Wednesday, March 14 2001 1:11PM é

The List Inferface 323

The ArrayLi st may be gpropriate if insertions are performed orly at the The Li nkedLi st

high end d the aray (using add), for the reasons discussed in Section 24.3. The ¢0ss implements o

linked list.
ArraylLi st douldesthe aray if an insertion at the high-end would exceed an

internal capacity. Although this gives goad Big-Oh performance, espedally if we
add a constructor that allows the cdler to suggest initial cgpadty for the internal
array, the ArrayLi st is a poor choice if insertions are not made at the end,
because then we must move items out of way.

In alinked list, we store items noncontiguously rather than in the usual con- The linked list is used

tiguous array. To dothis, we store eab objed in a node that contains the objea '© oveid large

. amounts of data
and a reference to the next node in the list, as own in Figure 6.19. In this e
movement. It stores

nario, we maintain references to bah the first and last node in the li st. . . ,
items with an addi-
To be more mncrete, atypicd node looks like this: tional one refer-

ence per item
cl assLi stNode

{ overhead.
oje ct dat a; /1S ome el ement
Li st Node n ext ;
}
I I I
Ao:__>A1:__>A2:_ A3:_1
\ | | B
first last

Figure 6.19 A simple linked list

At any point, we can add a new last item x by doing this:

ﬁ%

é BOOK.mkr Page 324 Wednesday, March 14 2001 1:11PM

324 The Collections API

The basic trade-off
between
Arraylis t and
Li nkedLi st is
that get is not effi-
cient for

Li nkedLi st,
while insertion and
removal from the
middle of a con-
tainer is more effi-
ciently supported
by the

Li nkedLi st.

Access to the list is
done through an it-

erator class.

last.next=n ewlLis tNode() ; //A ttachane wListNode

| ast= | ast.next; /1A djustl ast

| ast.data=x ; /P lacexi n then ode
last.next=n ull; /11 t'st hela st;a djust next

Now, an arbitrary item can nolonger be found in ore acces Instead, we must
scan down the list. Thisis smilar to the difference between accessng an item on
a compact disk (one acces9 or atape (sequential). Whil e this may appea to make
linked lists less attractive than arrays, they still have alvantages. First, an inser-
tioninto the middle of the list does not require moving all of the items that foll ow
the insertion point. Data movement is very expensive in practice, and the linked
list all ows insertion with orly a mnstant number of assgnment statements.

Insertions and dkletions toward the middle of the sequence are inefficient in
the ArraylLi st. An Arrayli st alows direct access by the index, but a
Li nkedLi st should not. It happens, that in the Colledions API, get and set
are part of the Li st interface so Li nkedLi st supports these operations,
dowly. Thus, the Li nkedLi st can always be used unlessefficient indexing is
needed. The ArrayLi st may still be abetter choiceif insertions occur only at
the end.

To accessitems in the list, we need a reference to the arresponding rode,
rather than an index. The reference to the node would typicdly be hidden inside
an iterator class

Because Li nkedLi st performsaddsandr enovesmore dficiently, it has
more operations than the Ar r ayLi st . Some of the additional operations avail-

ablefor Li nkedLi st are:

ﬁ%

é BOOK.mkr Page 325 Wednesday, March 14 2001 1:11PM é

Stacks and Queues 325

voi d addLast(Cbject elenent)
appendsel enent at the end of thisLi nkedLi st .

voi d addFirst(Object el ement)
prepends el enent to the front of thisLi nkedLi st .

bject getFirst()
returns the first element in thisLi nkedLi st .

hj ect getlLast()
returns the last element in thisLi nkedLi st .

void renoveFirst()
removes the first element from thisLi nkedLi st .

void renovelLast()
removes the last element from thisLi nkedLi st .

We implement the Li nkedLi st classin Part IV.

b 6.6 Stacks and Queues 3
In this sction we describe two containers: the stack and queue. In principle, both
have very simple interfaces (but not in the Collections API) and very efficient

implementations. Even so, as we will see they are very useful data structures.

6.6.1 Stacks
A stack is a data structure in which access is restricted to the most recently A stackrestricts ac-

inserted element. It behaves very much like the common stack of bills, stack of ~ ©©ss fo fhe most re-

cently inserted item.
plates, or stack of newspapers. The last item added to the stack is placed on the
topand is easily accessble, whereas items that have been in the stad for awhile

are more difficult to access. Thus the stack is appropriate if we expect to access

only the topitem; al other items are inaccesshle.

ﬁ%

é BOOK.mkr Page 326 Wednesday, March 14 2001 1:11PM é

326 The Collections API

In a stadk the threenatural operations of i nsert, remove, and fi nd are
renamed push, pop, and t op. These basic operations are illustrated in Figure
6.20.

The interface shown in Figure 6.21 illustrates the typicd protocol. It is smi-
lar to the protocol previously seen in Figure 6.1. By pushing items and then pop-
ping them, we can use the stack to reverse the order of things.

Stack operations Ead stack operation should take aconstant amount of time, independent of
fake a constant the number of itemsin the stack. By analogy, finding today’s newspaper in a stack
amount of time.

of newspapersisfast, nomatter how deep the stadk is. However, arbitrary accessin

astack isnot efficiently supported, sowedo nd list it asan ogtion in the protocol.

push pop, top N

Stack

Figure 6.20 Stack model: input to a stack is by push , output is by top , dele-
tionis by pop

é BOOK.mkr Page 327 Wednesday, March 14 2001 1:11PM é

Stacks and Queues

1

1 //S tackp rotocol

2

3 package wei ss. nonst andar d;

4

5 publici nterfaceStack

6 {

7 voi d push(O bjectx) ; [/ /i nsert
8 voi d pop() [Ir enpve
9 Qoj ect top() ; //f ind
10 Obj ect topAndPop() ; / I1f ind+r enove
11

12 bool eani sEnmpty() ;

13 voi d makeEmpty() ;

14 }

Figure 6.21 Protocol for the stack

What makes the stadk useful are the many applications for which we need to
accessonly the most recently inserted item. An important use of stacksisin com-

piler design.

6.6.2 Stacks and Computer Languages

Compilers check your programs for syntax errors. Often, however, aladk of one
symbol (e.g. amissng comment-ender */ or }) causes the awmpiler to spill out a
hundred lines of diagnostics without identifying the real error; thisis especialy
true when using anonymous classes.

A useful tool in this stuation is a program that checks whether everything is
balanced, that is, every { correspondsto a}, every [toa], and so on The
sequence [()] islega but [(]) isnot — so simply counting the numbers of
each symbol is insufficient. (Assume for now that we ae processng only a
sequence of tokens and will not worry about problems such as the character con-

stant' {' not needingamatching' }' .)

ﬁ%

é BOOK.mkr Page 328 Wednesday, March 14 2001 1:11PM

328 The Collections API

A stack can be
used to check for
unbalanced sym-

bols.

The stack is used to
implement method
calls in most pro-
gramming lan-

guages.

A stadk is useful for chedking untalanced symbols becaise we know that
when a closing symbol such as) is e, it matches the most-recantly seen
unclosed (. Therefore, by pacing opening symbols on a stack, we can easily
ched that a dosing symbol makes snse. Spedficdly, we have the following

algorithm.

1. Make a1 empty sta.
2. Reda symbdsuntil the end of thefile.
a. If thetoken isan opening symbal, push it onto the stadk.

b. If itisa dosing symbol and if the stad is empty, report an error.
c. Otherwise, pop the stack. If the symbol popped is not the @rrespond-
ing opEning symbal, report an error.

3. At the end of thefile, if the stack is nat empty, report an error.
In Section 11.1 we will develop this algorithm to work for (almost) all Java

programs. Details include error reporting, processng of comments, strings, and
charader constants, as well as escape sequences.

The agorithm to check balanced symbols suggests a way to implement
method cdls. The problem is that, when a cdl is made to a new method, al the
variables local to the cdling method need to be saved by the system; otherwise,
the new methodwould overwrite the calling routine's variables. Furthermore, the
current locaion in the cdling routine must be saved so that the new method
knows where to goafter it is done. The reason that this problem is smilar to bal-
ancing symbadls is because amethod cal and a method return are essentialy the

same & an open parenthesis and a closed parenthesis, so the same ideas sould

ﬁ%

>

é BOOK.mkr Page 329 Wednesday, March 14 2001 1:11PM

Stacks and Queues

apply. This inded is the case: as discussed in Sedion 7.3, the stack is used to
implement method cdlsin most programming languages.
A final important applicaion d the stad is the evaluation o expressionsin The operator prece-

computer languages. In the expresson 1+2* 3, we see that at the point that the* ~ 9ence parsing ak

) gorithm uses a stack
is encountered, we have aready real the operator + and the operands 1 and 2.
to evaluate expres-

Does* operateon 2, or 1+27? Precedencerulestell usthat * operateson 2, which sions.
is the most recently seen operand. After the 3 is e, we @n evaluate 2* 3 as 6
and then apply the + operator. This process siggests that operands and intermedi-
ate results should be saved on a stack. It also suggests that the operators be saved
on the stad (since the + is held until the higher precedence * is evaluated). An

algorithm that uses this grategy is operator precedence parsing, and is described

in Sedion 112.

6.6.3 Queues
Another simple data structure is the queue, which restricts accessto the least The queue restricts

recently inserted item. In many cases being able to find and/or remove the most- 9¢cess fo the least

recently inserted
recently inserted item isimportant. But in an equal number of cases, it is not only .
unimportant — but it is actually the wrong thing to da In a multiprocessng sys-
tem, for example, when jobs are submitted to a printer, we expect the least recent
or most senior job to be printed first. This order is not only fair but it is also
required to guaranteethat the first job daes not wait forever. Thus you can exped

to find printer queues on all large systems.

The basic operations supparted by queues are

ﬁ%

é BOOK.mkr Page 330 Wednesday, March 14 2001 1:11PM

330 The Collections API

* engueue, or insertion at the bad of thelineg;
» dequeue, or removal of the item from the front of the line; and

» get Front, or accessof theitem at the front of the line.

Queue operations Figure 6.22 illustrates these queue operations. Historicdly, dequeue and

fake a constant get Front have been combined into ore operation; we do this by having

amount of time.]]
dequeue return areferenceto the item that it has removed.

enqueue dequeue
™ Queue >
getFront

Figure 6.22 Queue model: input is by enqueue , output is by getFront
deletion is by dequeue

/1 Q ueue p rotocol
package w ei ss. nonst andar d;

1
2
3
4
5 publici nterfaceQueue
6
7
8

{
void enqueue(O bjectx) ; /11 nsert
bj ectg etFront() ; /1f ind
9 bj ectd equeue() ; /lr enpve+f ind
10
11 bool eani sEnmpty() ;
12 voi d makeEnpty() ;
13 }

Figure 6.23 Protocol for the queue

Figure 6.23 illustrates a possble protocol for queues. Because the queue
operations and the stack operations are restricted similarly, we expect that they

should aso take a onstant amount of time per query. Thisisindeed the ase. All

ﬁ%

é BOOK.mkr Page 331 Wednesday, March 14 2001 1:11PM é

Sets

?

of the basic queue operations take O(1) time. We will seeseveral applicaions of

gueuesin the case studies.

6.6.4 Stacks and Queues in the Collections API
The Collections API provides a Stac k classbut no queue dass The Stac k The Collections API

methods are pus h, pop, and peek. However, the St ack classextends Vect or ~ Provides a Stack

)))]]) class, but no queue
and is dower than it needs to be; like Vect or, itsuseis no longer in vogue, and
class.
can be replaced with Li st operations. The queue operations must be done using

alLi nkedLi st (eg.addLast,renoveFirst,get First).

6.7 Sets N
A Set is a container that contains no dugicates. It supports all of the A Set contains no
Col | ecti on methods. Figure 6.24 illustrates that the interfacedoes little more 9uPlicates.
than dedare atype.
A Sort edSet isaSet that maintains (internally) itsitemsin sorted order. The Sort edSet is
The objeds that are ailded into the Sor t edSet must either be comparable, or a O ©rdered con-
]) o) tainer. It allows no
Conparat or has to be provided when the @ntainer is instantiated. A
duplicates.
Sort edSet supports all of the Set methods, but its iterator is guaranteed to
step throuch items in its orted order. The Sort edSet also allows usto find the

smallest and largest item. The interface for our subset of Sort edSet is down

in Figure 6.25.

é BOOK.mkr Page 332 Wednesday, March 14, 2001 1:11PM

332 The Collections API

packagewei ss. util;

1

2

3 /**

4 *S eti nterface.

5 */

6 publici nterfaceSete xtendsCollection
7
8

{
}

Figure 6.24 Possible Set implementation.

packageweiss. util;

1

2

3 /**

4 *S ortedSeti nterface.

5 */

6 publici nterfaceSortedSete xtendsS et
7
8

{
/**
9 *R eturnt hec onparatoru sedbyt hisSortedSet.
10 *@ returnt hec onparatoro rn ulli ft he
11 *d efaultc onparatori su sed.
12 *
N 13 Conparatorc onparator() ; N
14
15 [**
16 *F indt hesmallesti temint hes et.
17 *@ returnt hes nallesti tem
18 *@ throws N oSuchEl enent Exceptioni ft hes eti se npty.
19 *
20 Cbj ectf irst() ;
21
22 [**
23 *F indt hel argesti temint hes et.
24 *@returnt hel argesti tem
25 *@ throws N oSuchEl enent Exceptioni ft hes eti se npty.
26 *
27 Obj ectl ast() ;
28 }

Figure 6.25 Possible SortedSet interface

- 4~

é BOOK.mkr Page 333 Wednesday, March 14 2001 1:11PM é

Sets

?

publics taticvoidmain(String[]a rgs)
{
Sets=n ewTreeSet(C ollections.reverseOder())
s.add(" joe") ;
s.add(" bob") ;
s.add(" hal") ;
printCollection(s) ; / IF igure7.8

ONOOA WN—

}

Figure 6.26 lllustration of the TreeSet , using reverse order.

6.7.1 The Tr eeSet Class
The Sorte dSet isimplemented by a TreeS et . The underlying implementa- The Tr eeSet is an
tion d the Tr eeSet isabalanced-binary search tree, andis discussed in Chapter MPlementation of
Sort edSet .
19.
By default, ordering wses the default comparator. An alternate ordering can
be spedfied by providing a Conpar at or to the mnstructor. As an example, Fig- N
ure 6.26 il lustrates how a Sor t edSet that stores gringsis constructed. The call
toprint Col | ecti on will output elementsin deaeasing sorted order.
The Sort edSet, like dl Set s, does not allow duplicates. Two items are
considered equal if the mmparator’'s conpar e method returns 0.
In Section 56 we examined the static searching problem and saw that if the
items are presented to usin sorted arder, then we aan support thef i nd operation
in logarithmic worst-case time. Thisis datic seaching becaise, oncewe are pre-
sented with the items, we canot add or remove items. The Sor t edSet , allows
usto add and remove items.

We ae hopingthat the worst-case st of thecont ai ns, add, andr enove

operations is O(log N) becaise that would match the bound olained for the

ﬁ%

é BOOK.mkr Page 334 Wednesday, March 14 2001 1:11PM

334 The Collections API

We can also use a
binary search tree
to access the Kth
smallest item in log-

arithmic time.

The HashSet im-
plements the Set
interface. It does
not require a com-

parator.

static binary search. Unfortunately, for the simplest implementation d the
Tr eeSet , thisisnat the ase. The average caeislogarithmic, but the worst case
is O(N) and occurs quite frequently. However, by applying some agorithmic
tricks, we can obtain a more complex structure that does indeed have O(log N)
cost per operation. The Colledions API Tr eeSet is guaranteed to have this per-
formance, and in Chapter 19, we discusshow to oltain it using the binary search
tree and its variants, and provide an implementation of the Tr eeSet , with an
iterator.

We mention in closing that although we can find the smallest and largest item
inaSortedSet in O(log N) time, finding the Kth smallest item, whereK isa
parameter, is not supported in the Colledions API. However, it is possble to per-
form this operation in O(log N) time, while preserving the running time of the

other operations, if we do more work.

6.7.2 The HashSet Class

In addition to the Tr eeSet , the Collections API providesaHashSet classthat
implements the Set interface The HashSet differs from the Tre eSet in that
it canna be used to enumerate items in sorted order, nor can it be used to olktain
the smallest or largest item. Indeed, the itemsin the HashSet do nd haveto be
comparable in any way. This means that the HashSet isless powerful than the
Tr eeSet . If being able to enumerate the itemsin a Set in sorted order is not
important, than it is often preferable to use the HashSet because not having to

maintain sorted order allows the HashSet to obtain faster performance. To do

ﬁ%

é BOOK.mkr Page 335 Wednesday, March 14 2001 1:11PM é

Sets

1

so, elements placed in the HashSet must provide hints to the HashSet algo-
rithms. Thisis done by having each element implement a special hashCode
method; we describe this method later in this subsedion.

Figure 6.27 illustrates the use of the HashSet . It is guaranteed that if we
iterate through the entire HashSet , we will see eahitem once, but the order that
the items are visited is unknown. It is almost certain that the order will not be the
same & the order of insertion, nor will it be any kind of sorted order.

Like dl Set s, the HashSet does nat allow duplicates. Two items are @+
sidered equal if theequal s method says . Thus, any object that isinserted into
the HashSet must have a properly overridden equal s method

Recdl that in Sedion 48, we discussd that it is esential that equal s is
overridden (by providing a new version that takes an Obj ect as parameter)

rather than overloaded.

Implementing equals and hashCode

Overloading equal s isvery tricky when inheritanceis involved. The contrad equal s must be

symmetric; this is

for equals statesthat if p andq are not null , p.equals(q) shoud return

))] tricky when inherit-
the same value as q. equal s(p) . Thisdoes not occur in Figure 6.28. In that
ance is involved.
example, clealy b. equal s(c) returnstrue, as expeded. a. equal s(b) aso
returnstrue, becaise BaseC ass’sequal s method is used, and that only com-
pares the x components. However, b. equals (a) returns false, because

Deri vedCd ass’sequal s methodisused, and thei nst anceof test will fail

(aisnotaninstance of Der i vedCl ass) at line 29.

ﬁ%

é BOOK.mkr Page 336 Wednesday, March 14,2001 1:11PM

336 The Collections API

1 publics taticvoidmain(String[]a rgs)
2 {

3 Sets=n ewHashSet() ;

4 s.add(" joe") ;

5 s.add(" bob") ;

6 s.add(" hal") ;

7 printCollection(s) ; / IF igure7.8
8 }

Figure 6.27 lllustration of the HashSet , items are output in some order.

- 4~

é BOOK.mkr Page 337 Wednesday, March 14 2001 1:11PM

Sets

1 classB aseC ass
2 {
3 publicB ased ass(i nti)
4 {x=i ;}
5
6 publicb ool eane qual s(O bjectr hs)
7 {
8 /1T hisi st hewrongt est(oki ff inalc |ass)
9 if(! (r hsi nstanceofB aseCl ass))
10 returnf al se;
11
12 returnx= =((BaseCass)r hs) .x;
13 }
14
15 privatei ntx ;
16 }
17
18 classDerivedCd asse xtends B aseC ass
19 {
20 publicDerivedC ass(i nti ,i ntj)
21 {
22 super (i) ;
23 y=j ;
24 }
25
» 26 publicb ool eane qual s(O bjectr hs) -
27 {
28 /1T hisi st hewrongt est.
29 if(! (r hsi nstanceofD erivedC ass))
30 returnf al se;
31
32 returns uper.equals(r hs)& &
33 y= =((DerivedC ass)r hs) .y;
34 }
35
36 privatei nty ;
37 }
38
39 publicc lassE qual sWthlnheritance
40 {
41 publics taticvoidmain(String[]a rgs)
42 {
43 BaseClassa=n ewBaseC ass(5) ;
44 Derivedd assb=n ewDerivedC ass(5 ,8) ;
45 Derivedd assc=n ewDerivedC ass(5 ,8) ;
46
47 Systemout.println(" b.equals(c):"+b .equals(c)) ;
48 Systemout.println(" a.equals(b):"+a .equals(b)) ;
49 Systemout.println(" b.equals(a):"+b .equals(a)) ;
50 }
51 }

Figure 6.28 lllustration of a broken implementation of equals

ﬁ%

é BOOK.mkr Page 338 Wednesday, March 14 2001 1:11PM

338 The Collections API

Solution 1 is fo not
override equal s
below the base
class. Solution 2 is o
require identically
typed objects using

get Ol ass.

There are two standard solutionsto this problem. Oneisto maketheequal s
method final in BaseCl ass. Thisavoidsthe problem of conflictingequal s.

The other solution is to strengthen the equals test to require that the types are
identicd, and not simply compatible, since the one-way compatibility is what
breaks equal s. In this example, a BaseC ass and Deri vedCl ass objed
would never be dedared equal. Figure 6.29 shows a crrect implementation. Line
8 contains the idiomatic test. get Cl ass returns a spedal object of type Cl ass
(note the cagital C) that represents information about any objed’s class
get Cl ass isafinal method in the Obj ect class If it returnsthe same Cl ass

instance, then the two objeds have identica types.

é BOOK.mkr Page 339 Wednesday, March 14, 2001 1:11PM

Sets

1 classB aseC ass

2 {

3 publicB ased ass(i nti)

4 {x=i ;}

5

6 publicb ool eane qual s(O bjectr hs)
7 {

8 if(r hs==null| |g etClass()! =r hs.getC ass())
9 returnf al se;

10

11 returnx= =((BaseCass)r hs) .x;
12 }

13

14 privatei ntx ;

15 }

16

17 classDerivedCd asse xtends B aseC ass
18 {

19 publicDerivedC ass(i nti ,i ntj)
20 {

21 super (i) ;

22 y=j ;

23 }

24

25 publicb ool eane qual s(O bjectr hs)

3 26 { 5
27 //C lasst estn otn eeded;g etClass()i sd one
28 /i ns uperclasse quals
29 returns uper.equal s(r hs)& &

30 y= =((DerivedC ass)r hs) .y;
31 }

32

33 privatei nty ;

34 }

Figure 6.29 Correct implementation of equals

- 4~

é BOOK.mkr Page 340 Wednesday, March 14 2001 1:11PM

340 The Collections API

'I /**
2 *T estp rogramf orH ashSet.
3 */
4 class| teratorTest
5 {
6 publics taticvoidmain(String[]a rgs)
7 {
8 Lists tudl=n ewArrayList() ;
9 studl. add(n ew Si npl eSt udent (" Bob",0)) ;
10 studl. add(n ew Si npl eStudent (" Joe", 1)) ;
11 studl. add(n ew Si npl eSt udent (" Bob",2)) i/ /d up
12
13 [/willo nlyhave2i tens,i fh ashCodei s
14 /[/i nmplemented.O therwisewillh ave3b ecause
15 [/ /d uplicatewilln otb ed etected.
16 Sets tud3=n ewHashSet(s tudl) ;
17
18 printCollection(s tudl) ;/ /B obJoeBob
19 printCollection(s tud3) ;/ /2i temsi ns onmeorder
20 }
21 }
22
23 /**
24 *| llustratesu seo fh ashCode/equalsf orau ser-definedc |ass.
25 *S tudentsarematchedonbasisofn aneonly.
» 26 */ -
27 classSinpl eStudent
28 {
29 Stringn ane;
30 inti d;
31
32 publicSinpleStudent(S tringn,i nti)
33 {n ame=n ;i d=i ;}
34
35 publicStringt oString()
36 {r eturnname+""+i d;}
37
38 publicb ool eane qual s(O bjectr hs)
39 {
40 if(r hs==null| |g etClass()! =r hs.getC ass())
41 returnf al se;
42
43 Si npl eStudento ther=(SinpleStudent)r hs;
44 returnn ame. equal s(o ther.nane) ;
45 }
46
47 publici nth ashCode()
48 {r eturnn ane. hashCode() ;}
49 }

Figure 6.30 lllustrates the equals and hashCode methods for use in
Hash Set

ﬁ%

é BOOK.mkr Page 341 Wednesday, March 14 2001 1:11PM é

Sets

When wsing a HashSet , we must also override the special hashCode The hashCode

1

method that is pecified in Obj ect; hashcode returns an i nt. Think of Mefhod mustbe

o]) o overridden if
hashCode as providing atrusted hint of where the items are stored. If the hint is
equal s is overrid-

wrong, the item is nat found, so if two objeds are equal, they should provide den or the

identicd hints. The ontrad for hashCode is that if two oljeds are dedared HashSet will not
equal by the equal s method, then the hashCode methodmust return the same VO'¥
value for them. If this contrad is violated, the HashSet will fail to find objeds,
even if equal s dedares that there is a match. If equal s declares the objeds
are nat equal, the hashCode method should return a different value for them,
but thisis not required. However, it is very beneficia for HashSet performance
if hashCode rarely produces identical results for unequal objeds. How hash-
Code andHashSet interad isdiscussed in Chapter 20.
Figure 6.30 illustrates a Si npl eStudent class in which two
Si npl eSt udent s are eua if they have the same name (and are both
Si npl eSt udent s). This could be overridden using the techniques in Figure
6.29 as needed, or this method could be dedared final. If it was dedared final,
then the test that is present all ows only two identicaly-typed Si npl eSt udent s
to be dedared equdl. If, with afina equal s, we replace the test at line 40 with
an i nst anceof test, then any two objeds in the hierarchy can be dedared
equal if their names match.

ThehashCode methodat lines47 and 48 simply usesthe hashCode of the

nane field. Thus if two Si npl eSt udent objeds have the same name (as

ﬁ%

é BOOK.mkr Page 342 Wednesday, March 14 2001 1:11PM

342 The Collections API

A Map is used to
store a collection of
entries that consists
of keys and their
values. The map
maps keys to val-

ues.

declared by equal s) they will have the same hashCode, since presumably,
the implementors of St r i ng honored the contrad for hashCode.

The acompanying test program is part of alarger test that illustrates all the
basic containers. Observe that if hashCode is unimplemented, al three
Si mpl eSt udent objects will be added to the HashSet because the duplicae
will not be deteded.

It turns out that on average, the HashSet operations can be performed in
constant time. This sems like an astounding result because it means that the cost
of asingle HashSet operation does not depend onwhether the HashSet con
tains 10 items or 10,000 items. The theory behind the HashSet is fascinating

and is described in Chapter 20.

6.8 Maps
A Map isused to store a ©llection of entriesthat consists of keys andtheir values.
The Map maps keys to values. Keys must be unique, but several keys can map to
the same value. Thus values need not be unique. Thereisa Sor t edMap interface
that maintains the map logicdly in key-sorted order.

Not surprisingly, there are two implementations. the HashMap and
TreeMap. The HashMap does not keep keys in sorted order, whereas the
Tr eeMap does. For simplicity, we do nd implement the Sor t edMap interface

but we do implement HashMap and Tr eeMap.

ﬁ%

é BOOK.mkr Page 343 Wednesday, March 14 2001 1:11PM

Maps

1 packageweiss.util;

2

3 /**

4 *M api nterface.

5 *Am apstoresk ey/valuepairs.

6 *I nouri nplementations,d uplicatek eysarenota || owed.
7 */

8 publici nterfaceMape xtendsj ava.io. Serializable
9 {

10 [**

11 *R eturnst henunbero fk eysi nt hismap.
12 *

13 ints ize() ;

14

15 [**

16 *T estsi ft hismapi se npty.

17 *

18 bool eani sEmpty() ;

19

20 [**

21 *T estsi ft hismapcontainsag ivenk ey.
22 *

23 bool ean c ont ai nsKey(O bjectk ey) ;

24

25 [**

» 26 *R eturnst hev aluet hatm atchest hek eyorn ull -
27 *i ft hekeyi snotf ound.S incenullv aluesareallowed,
28 *c heckingi ft her eturnvaluei snullmaynotb ea
29 *s afewayt oascertaini ft hekeyi spresenti nt hemap.
30 *

31 bj ectg et (O bjectk ey) ;

32

33 [**

34 *A ddst hek ey/valuepairt ot hemap,o verridingt he
35 *o0 riginalv aluei ft hekeywasalreadyp resent.

36 *R eturnst heoldv alueassociatedwitht hekey,o r
37 *n ulli ft hekeywasnotp resentp riort ot hisc all.
38 *

39 Obj ectp ut(O bjectk ey,O bjectv alue) ;

40

41 [**

42 *R enovest hekeyandi tsv aluef romt hemap.

43 *R eturnst hepreviousv aluea ssociatedwitht hek ey,
44 *o rnulli ft hekeywasnotp resentp riort ot hisc all.
45 *

46 bj ectr enmove(O bjectk ey) ;

Figure 6.31 Sample Mapinterface (Part 1)

ﬁ%

é BOOK.mkr Page 344 Wednesday, March 14 2001 1:11PM

344

The Collections API

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86 }

/**

*R enovesallk ey/valuepairsf romt hemap.
*

voidc lear() ;

/**

*R eturnst hek eysi nt hemap.
*

Setk eySet () ;

/**

*R eturnst hevaluesi nt hemap. T heremayb ed uplicates.
*

Col | ectionv alues() ;

/**

*R eturnas eto fMap.Entryo bjectsc orrespondingt o
*t hekey/valuepairsi nt hemap.

*

Sete ntrySet() ;

/**
*| nterfaceusedt oaccesst hekey/valuepairsi nam ap.
*F romamap,u seentrySet().iteratort oobtainai terator
*o veraS eto fp airs.T henext()methodo ft hisi terator
*y ieldso bjectso ft ypeMap. Entry.
*
publici nterfaceEntrye xtendsj ava.io. Serializable
{

/**

*R eturnst hispair'sk ey.

*

Cbj ectg etKey() ;

/**

*R eturnst hispair'sv al ue.
*
Cbj ectg etVal ue() ;

Figure 6.32 Sample Mapinterface (Part 2)

The map can be implemented as a Set instantiated with a pair (see Sedion

3.7), whose comparator or equal s/hashCode implementation refers only to

the key. The Map interface does not extend Col | ect i on; insteal it exists on its

ﬁ%

é BOOK.mkr Page 345 Wednesday, March 14 2001 1:11PM

own. A sample interfacethat contains the most important methods is iown in
Figures 6.31 and 6.32.

Most of the methods have intuitive semantics. put is used to add a key/value
pair, r emove is used to remove a key/value pair (only the key is Pecified), and
get returns the value associated with a key. nul | values are dlowed, which
complicates isaues for get , because the return value from get will not distin-
guish between a failed seach and a successul seach that returns nul | for the
value. cont ai nsKey canbeused if nul | values are known to be in the map.

The Map does nat providean i t er at or method or class Instead it returns
aCol | ecti on that can be used to view the contents of the map.

ThekeySet methodgivesaCol | ecti on that contains al the keys. Since
duplicate keys are not all owed, the result of key Set isaSet , for which we can

obtain an iterator. If the Map isaSor t edMap, the Set isaSort edSet .

Maps

345

1

é BOOK.mkr Page 346 Wednesday, March 14 2001 1:11PM

346 The Collections API

Q(%

Map. Entr y ab-
stracts the notion of

a pair in the map.

1 inportw
2 inmportw
3 inportw
4 inportw
5 inportw
6

7 publicc
8 {

9 publ
10 {
11

12

13

14

15

16

17

18

19

20

21 }
22

23 /1D
24 publ
25 {
26

27

28

29

30

31

32

33

34

35

36

37 }
38 }

Figure 6.33

eiss.util.Map;
eiss.util.TreeMap;
eiss.util. Set;
eiss.util.lterator;
eiss.util.Conparator;

| ass MapDeno

icstaticvoidprintMap(S tringmsg, M apm)
Systemout.printin(msg+" :") ;

Sete ntries=m .entrySet() ;

Iteratori tr=e ntries.iterator() ;

while(i tr.hasNext())

{
Map. Entryt hisPair=(Map.Entry)i tr.next() ;
Systemout.print(t hisPair.getKey()+" ")y
Systemout.println(t hisPair.getValue()) ;

}

osonei nsertsandprinting(donei nprinthMp).
icstaticvoidmain(String[]a rgs)

Map p honel=n ew TreeMap() ;

phonel. put (" JohnDoe"," 212-555-1212") ;

phonel. put (" JaneDoe"," 312-555-1212") ;

phonel. put (" HollyDoe"," 213-555-1212") ;

Systemout.println(" phonel.get(\"JaneDoe\"):"
+p honel.get(" JaneDoe")) ;

Systemout.println() ;

print Map(" phonel",p honel) ;

llustration of the using the Mapinterface

Similarly, the val ues methodreturnsa Col | ect i on that contains al the

values. Thisredly isaCol | ect io n, sincedudicate values are allowed.

Finaly, the entrySet method returns a colledion o key/value pairs.

Again, thisis a Set , because the pairs must have different keys. The objects in

the Set returned by theent r ySet are pairs, there must be atype that represents

ﬁ%

é BOOK.mkr Page 347 Wednesday, March 14 2001 1:11PM é

Priority Queues

1

>

key/value pairs. Thisis spedfied by the Ent r y interface that is nested in the Map
interface Thusthe type of objed that isintheent r ySet isMap. Ent ry.

Figure 6.33illustrates the use of the Map witha Tr eeMap. An empty map is
created at line 26 and then pgoulated with a series of put cdls at lines 28 to 30.
Lines 32 and 33 print the result of a cdl to get , which is used to obtain the value
for thekey " Jane Doe".Moreinterestingisthe pri nt Map routine that spans
lines9to 21

In print Map, a line 12, we obtain a Set containing Map. Ent ry pairs.
From the Set , we can oktainan | t er at or at line13. The cdl to next at line
17 produces a Map. Ent ry objed, and at that point we can oktain the key and

value information using get Key and get Val ue, as siown onlines 18 and 19.

6.9 Priority Queues
Althoughjobs nt to a printer are generally placed ona queue, that might not The priority queue

supports access of

always be the best thing to da For instance, one job might be particularly impor-

the minimum item
tant, so we might want to all ow that job to be run as ©onas the printer is avail- oniy
able. Conversely, when the printer finishes ajob and several 1-page jobs and one
100-page job are waiting, it might be reasonable to print the long job last, even if
it is not the last job submitted. (Unfortunately, most systems do rot do this, which
can be particularly annoying at times.)

Similarly, in a multiuser environment the operating system scheduler must

decide which of severa processes to run. Generally, a processis allowed to run

ﬁ%

é BOOK.mkr Page 348 Wednesday, March 14 2001 1:11PM é

348 The Collections API

only for a fixed period of time. A poor algorithm for such a procedure involves
use of a queue. Jobs are initially placel at the end of the queue. The scheduler
repeatedly takes the first job from the queue, runs it until either it finishes or its
time limit isup, and places it a the end d the queue if it does nat finish. Gener-
aly, this drategy is not appropriate becaise short jobs must wait and thus emto
take along time to run. Clealy, users that are running an editor should na see a
visible delay in the etoing d typed charaders. Thus short jobs (that is, those
using fewer resources) should have precalence over jobs that have aready con-
sumed large amounts of resources. Furthermore, some resource-intensive jobs,
such as jobs run by the system administrator, might be important and should aso

have precelence

>

If we give each job a number to measure its priority, then the smaller number
(pages printed, resources used) tends to indicae greaer importance Thus we
want to be able to accessthe smallest item in a collection d items and remove it
from the ollection. To doso we usethefi ndM n anddel et eM n operations.
The data structure that supports these operations is the priority queue and sup-
ports access of the minimum item only. Figure 6.34 illustrates the basic priority
gueue operations.

Unfortunately, although the priority queue is a fundamental data structure,
thereisnoimplementation d it in the Coll edions API. Oneideamight beto use a
Sort edSet , but that isnot sufficient because it isimportant for a priority queue

to alow duplicate items.

ﬁ%

é BOOK.mkr Page 349 Wednesday, March 14 2001 1:11PM

Priority Queues

A typical priority queue protocol is down in Figures 6.35 and 6.36.
Althoudh it is possbleto use mmparators, we keep the implementation simple by

asuuming all itemsin the priority queue ae Compar abl e.

insert deleteMin
findMin

Priority
Queue

Figure 6.34 Priority queue model: only the minimum element is accessible

package wei ss. nonst andar d;

/**

1
2
3
4 *P riorityQueuei nterface.

5 *S omepriorityqueuesmays upportad ecreaseKeyo peration,
6 *b utt hisi sc onsidereda nadvancedo peration.|l fs o,

7 *aP ositioni sr eturnedbyi nsert.

8 *N otet hata II" matching"i sb asedont hec onpareTomet hod.
9 */

10 publici nterfacePriorityQeue

11 {

12 [**

13 *| nserti ntot hepriorityqg ueue, maintainingheaporder.
14 *M ayr eturnaP ositionusefulf ord ecreaseKey.

15 *

16 publicPositioni nsert(C onparablex) ;

17

18 [**

19 *R eturnst hes mallesti temint hepriorityq ueue.
20 *@ throws Underfl owExceptioni fe npty.

21 *

22 public Conmparablef indMn() ;

Figure 6.35 Protocol for priority queue in wei ss.nonstandard (Part 1)

- 4~

—

é BOOK.mkr Page 350 Wednesday, March 14 2001 1:11PM

350 The Collections API

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67 }

/**

*R enoveandr eturnt hes mallesti tem
*@ throws Underfl owkExceptioni fe npty.

*

publicConparabledeleteMn() ;

/**

*R eturnst ruei fe npty,f alseo therw se.
*

publicb ool eani sEnpty() ;

/**

*M aket hepriorityq ueuel ogicallye npty.
*

publicv oi d makeEnpty() ;

/**
*R eturnst hesize.
*
publici nts ize() ;

/**

*T hePositioni nterfacer epresentsat ypet hatc an
*h eusedf ort hed ecreaseKeyo peration.

*

publici nterfacePosition

{
/**
*R eturnst hevaluestoredatt hisp osition.
*
Conpar abl e g et Val ue() ;
}

/**

*C hanget hev alueoft hei temstoredi nt hepairingh eap.
*T hisi sconsideredanadvancedo perati ona ndmightn ot
*bh esupportedbyallp riorityqueues.Ap riorityq ueue
*w ills ignali tsi ntentiont onots upportd ecreaseKeyb y
*h avingi nsertr eturnnullc onsistently.

*@ parampa nynon-nullP ositionr eturnedbyi nsert.

*@ paramnewVvalt henewvalue,w hichmustb es naller

* thant hecurrentlys toredv al ue.
*@ throws| Il egal Argunent Exceptioni fpi nvalid
*

publicv oidd ecreaseKey(P ositionp,C onparablenewal) ;

Figure 6.36 Protocol for priority queue in wei ss.nonstandard (Part 2)

é(%

>

é BOOK.mkr Page 351 Wednesday, March 14 2001 1:11PM é

Priority Queues

1

1 inportw eiss.nonstandard. PriorityQueue;
2 inportw eiss. nonstandard. Bi nar yHeap;
3
4 publicc lassPriorityQueueDenp
5 {
6 publics taticv oidd unpPQ(S tringmsg,P riorityQueuepq)
7 {
8 Systemout.printin(msg+" :") ;
9 while(! pg.isEmpty())
10 Systemout.printin(p q.deleteMn())
11 }
12
13 /ID osonei nsertsandr enoves (donei nd unpPQ .
14 publics taticvoidmain(String[]Ja rgs)
15 {
16 PriorityQueueminPQ=n ewBinaryHeap() ;
17
18 m nPQ insert(n ewl nteger(4)) ;
19 m nPQ insert(n ewl nteger(3))
20 m nPQ insert(n ewl nteger(5))
21
22 dumpPQ" m nPQ', minPQ) ;
23 }
24 }
d Figure 6.37 Routine to demonstrate the PriorityQu eue in 2

weis s.nonstandard

Most of the interfaceis graightforward. The tricky method, which is consid-
ered part of advanced priority queue implementations only, is decr easeKey.
This operation reduces the value of an item that is in the priority queue. In order
to do so, the entry in the priority queue must have aknown pasition that isimmu-
table. Essentially, this position must be established when an item is inserted, and
can never change. The abstraction a position is expressd in the Posi ti on
nested interface andi nsert returnsaPosi t i on object when an item is added
to the priority queue. If a priority queue does not support the decr easeKey
operation, i nsert cansimply return nul | . Figure 6.37 illustrates the use of the

priority queue.

ﬁ%

é BOOK.mkr Page 352 Wednesday, March 14 2001 1:11PM

352 The Collections API

The binary heap im- As the priority queue suppats only the del et eM n andfi ndM n opera
plementsthe prior- ions, we might exped performance that is a compromise between the mnstant-

ity queue in loga-)) o o))
time queue and the logarithmic time set. Indeed, thisis the case. The basic prior-
rithmic time per

operation with little ity queue supports all operations in logarithmic worst-case time, uses only an
extra space. array, supports insertion in constant average time, is smple to implement, and is
known as a binary heap. This gructure is one of the most elegant data structures
known. In Chapter 21 we provide details on the implementation o the binary

heap. The binary heap does nat suppart the decr easeKey operation. However,

the pairing heap, described in Chapter 23 does.

Data Access Comments
Structure
y >
Stack Most recent only, pop, O(1) Very very fast
Queue Least recent only, dequeue , O(1) Very very fast
List Any item O(N)
TreeSet Any item by name or rank, Average case easy to
O(logN) do; worst case requires
effort
HashSet Any item by name, O(1) Average case
gioriw findMin , O(1), insert is O(1) on
ueue .
del eteMin , O(logN) average O(log N) worst
case

Figure 6.38 Summary of some data structures

An important use of An important application o the priority queue is event-driven simulation.

priority queues is Consider, for example, a system such as a bank in which customers arrive and
event-driven simula-

wait in line urtil one of K tellers is available. Customer arrival is governed by a
tion.

ﬁ%

é BOOK.mkr Page 353 Wednesday, March 14 2001 1:11PM é

Summary

?

probability distribution function, as is the service time (the amount of time it
takes a teller to provide complete serviceto ore austomer). We ae interested in
statistics such as how long an average acustomer has to wait or how long aline
might be.

With certain probability distributions and values of K, we can compute these
statistics exadly. However, as K gets larger, the analysis beaomes considerably
more difficult, so the use of a mmputer to simulate the operation of the bank is
appeding. In this way the bank’s officers can determine how many tellers are
needed to ensure reasonably smoath service. An event-driven simulation consists
of processng events. The two events here ae (1) a wstomer arriving and (2) a
customer departing, thus freeing up ateller. At any point we have acolledion of
events waiting to happen. To run the simulation, we need to determine the next
event, thisisthe event whaose time of occurrenceis minimum. Hencewe use apri-
ority queue that extrads the event of minimum time to processthe event list effi-
ciently. We present a oomplete discusson and implementation d event-driven

simulation in Section 132.

Summary

In this chapter we examined the basic data structures that will be used throughou
the book. We provided generic protocols and explained what the running time
should be for each data structure. We aso described the interfaceprovided by the
Callections API. In later chapters we show how these data structures are used and

eventually give an implementation o ead data structure that meds the time

ﬁ%

é BOOK.mkr Page 354 Wednesday, March 14 2001 1:11PM

354

The Collections API

bounds we have claimed here. Figure 6.38 summarizes the results that will be
obtained for the generici nsert, fi nd, r enbve sequenceof operations.
Chapter 7 describes an important problem-solving tool known as recursion.
Reaursion allows many problems to be efficiently solved with short algorithms
and is centra to the efficient implementation o a sorting algorithm and several

data structures.

ﬁﬁ Objects of the Game

Ar rays Contains aset of static methods that operate on arrays. (318)

binary heap Implements the priority queue in logarithmic time per operation
using an array. (348)

binary search tree A data structure that supportsinsertion, removal, and
seaching. We can aso useit to accessthe Kth smallest item. The cost is
logarithmic average-case time for a simple implementation and logarith-
mic worst-case time for a more careful implementation. (334

Col | ect i on Interface that represents a group of objeds, known asits ele-
ments. (304)

Col | ecti ons Classcontains a set of static methods that operate on
Col | ecti on objeds. (310

data structure A representation o data and the operations allowed on that
data, permitting comporent reuse. (294)

factory method A method that creaes new concrete instances, but returns

them using a pointer (or reference) to an abstrad class (303)

ﬁ%

4

é BOOK.mkr Page 355 Wednesday, March 14 2001 1:11PM é

Objects of the Game 355

hashCode Method used by HashSet that must be overridden for objeds if
the objed’sequal s method isoverridden. (341)

HashMap The Colledions APl implementation of aMap with unadered keys.
(342)

HashSet The Collections APl implementation d a (unordered) Set . (334)

iterator An oljed that allows accessto elementsin a container. (307)

I t er at or Anobjed that allows acessto elementsin a container. (307)

list a wlledion of itemsin which the items have aposition. (318

Li st The Colledions API interfacethat specifies the protocol for alist. (320)

Li st |t erator TheColledions APl interfacethat provides bidirectiond
iteration. (321)

linked list A data structure that is used to avoid large amounts of data move-
ment. It uses a small amourt of extra space per item. (323)

Li nkedLi st The Colledions API classthat implements alinked list. (323)

Map The Collections API interface that abstrads a @lledion of pairs consist-
ing d keys and their values and maps keys to values. (342)

Map. Ent r y Abstradsthe ideaof a pair in amap. (346

operator precedence parsing An agorithm that uses a stadk to evaluate
expressons. (329

priority queue A data structure that supports accessof the minimum item

only. (347)

é BOOK.mkr Page 356 Wednesday, March 14 2001 1:11PM

356 The Collections API

programming to an interface The technique of using classes by writingin
terms of the most abstrad interface. Attemptsto hide even the name of the
concrete dassthat is being operated on. (301)

gueue A data structure that restricts aacessto the least-recently-inserted item.
(329)

Set The Collections API interface that abstrads a mlledion with nodupli-
cates. (331)

Sort edSet The Collections APl interface that abstrads a sorted set with no
duplicates. (331)

stack A data structure that restricts accessto the most-recently-inserted item.
(325)

Tr eeMap The Collections API implementation o a Map with ordered keys.
(342

Tr eeSet The Collections APl implementation d aSor t edSet . (333)

Common Errors

1. Do not worry about low-level optimizations until after you have mncen-
trated on basic design and algorithmic isaues.
2. When you send afunction objed as a parameter, you must send a @mn-

structed objed, and nd simply the name of the dass

é BOOK.mkr Page 357 Wednesday, March 14 2001 1:11PM

On the Internet

3. When usingaMap, if you are not sureif akey isin the map, you may ned

to use cont ai nsKey rather than checking the result of get .

4. A priority queueisnot aqueue. It just soundslikeit is.

On the Internet
Thereislots of codein this chapter. Test codeisin theroat diredory, nonstandard
protocols are in package weiss.nonstandard , and everything elseisin

packagewei ss. uti | .

Stack.java Contains the nonstandard protocol in Figure 6.21.

UnderflowException.java Contains a nonstandard exception.

Queuejava Contains the nonstandard protocol in Figure 6.23.
Colledion.java Contains the codein Figure 6.9.

Iterator.java Contains the codein Figure 6.10.
Colledionsjava Contains the codein Figures 6.13 and 6.14.

Arr aysjava Contains the codein Figure 6.15.

List.java Contains the codein Figure 6.16.
Listlterator.java Contains the codein Figure 6.17.

TestArr ayList.java [llustratesthe Ar ra yLi st , asin Figure 6.18.
Set.java Contains the code in Figure 6.24. The online mde

contains an extramethod that is not part of Java
12

Sorted.java Contains the code in Figure 6.25.

ﬁ%

1

é BOOK.mkr Page 358 Wednesday, March 14 2001 1:11PM

358 The Collections API

TreeSetDemo.java Contains the codein Figures 6.11 and 6.26.

Iterator Test.java Contains the code that illustrates all the iterators,
including codein Figures 6.11, 6.27 and 6.30.

EqualsWithlnheritancejava Contains the cde in Figures 6.28 and 6.29,
combined as one.

Map.java Contains the codein Figures 6.31 and 6.32.

MapDemo.java Contains the codein Figure 6.33.

PriorityQueuejava Contains the nonstandard protocol in Figures 6.35
and 6.36.

PriorityQueueDemo.java Contains the code in Figure 6.37.

Exercises

In Short
6.1. Show theresults of the following sequence add(4) , add(8),add(1),

add(6),renpove(),andrenpve() whentheadd andr enove oper-
ations correspond to the basic operations in the foll owing:

a stadk

b. queue

c. priority queue

In Theory
6.2. Suppose that you want to support the following three operations exclu-

sively: i nsert, fi ndvax, and del et eMax. How fast do you think

these operations can be performed?

ﬁ%

é BOOK.mkr Page 359 Wednesday, March 14 2001 1:11PM

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

Can dl of the following be suppated in logarithmic time: i nsert,
del et eM n, del et eMax, fi ndM n, andf i ndMax?

Which of the data structures in Figure 6.38 lead to sorting algorithms that
could run in lessthan quedratic time (by inserting all items into the data
structure and then removing them in order)?

Show that the following operations can be supported in constant time
simultaneoudly: push, pop, and fi ndM n. Note that del et eM n is
not part of the repertoire. Hint: Maintain two stadks — one to store items
and the other to store minimums as they occur.

A doube-ended queue supports insertions and celetions at both the front

and end of the line. What is the running time per operation?

In Practice

Write aroutine that uses the Collections API to print out the items in any
Col | ecti oninreverseorder. Do not use alLi st |t erator.

Show how to implement a St ack efficiently by usingalLi st asadata
member.

Show how to implement a Queue efficiently by usingalLi st asadata

member.

Programming Projects

A queue can be implemented by using an array and maintaining the ar-

rent size. The queue elements are stored in consecutive array positions,

ﬁ%

Exercises

4

1

é BOOK.mkr Page 360 Wednesday, March 14 2001 1:11PM

360 The Collections API

with the front item always in position Q Note that thisis not the most effi-

cient method. Do the following:

a. Describethe dgorithmsfor get Fr ont , enqueue, anddequeue.

b. What is the Big-Oh running time for eat of get Fr ont, enqueue,
and dequeue using these dgorithms?

c. Write an implementation that uses these dgorithms using the protocol
in Figure 6.23.

6.11. The operations that are supported by the Sor t edSet can also be imple-
mented by using an array and maintaining the aurrent size. The aray ele-
ments are stored in sorted order in conseautive array positions. Thus

cont ai ns can beimplemented by a binary search. Do the foll owing:

>

a. Describe the dgorithmsfor add and r enove.

b. What isthe running time for these dgorithms?

c. Write an implementation that uses these a gorithms, using the protocol
in Figure 6.1.

d. Write an implementation that uses these dgorithms, using the standard
Sor t edSet protocol.

6.12. A priority queue can be implemented by using a sorted array (asin Exer-

cise 6.11). Do thefollowing:

a. Describethe dgorithmsfor f i ndM n, del et eM n,andi nsert.

b. What isthe Big-Oh runningtime for each of f i ndM n, del et eM n,
andi nsert usingthese dgorithms?

c. Write an implementation that uses these dgorithms.

ﬁ%

é BOOK.mkr Page 361 Wednesday, March 14 2001 1:11PM

6.13.

6.14.

6.15.

6.16.

A priority queue can be implemented by storingitemsin an unsorted array

and inserting items in the next available location. Do the foll owing:

a. Describethealgorithmsfor f i ndM n, del et eM n,andi nsert.

b. What isthe Big-Oh runningtime for each of f i ndM n, del et eM n,
andi nsert using these dgorithms?

c. Write an implementation that uses these dgorithms.

By adding an extra data member to the priority queue dass in Exercise

6.13, you can implement both i nsert andfi ndM n in constant time.

The extra data member maintainsthe array position where the minimum is

stored. However, del et eM n is dill be expensive. Do the following:

a. Describethealgorithmsfori nsert,fi ndM n,anddel et eM n.

b. What isthe Big-Oh runningtime for del et eM n?

c. Write an implementation that uses these dgorithms.

By maintaining the invariant that the dements in the priority queue ae

sorted in nonincreasing ader (that is, the largest item is first, the smallest

is last), you can implement both fi ndM n and del et eM n in constant

time. However, i nsert isexpensive. Do the following:

a. Describethealgorithmsfori nsert,fi ndM n,anddel et eM n.

b. What isthe Big-Oh runningtimefori nsert ?

c. Write an implementation that uses these dgorithms.

A double-ended priority queue dlows aacessto both the minimum and

maximum elements. In other words, al of the following are supparted:

ﬁ%

Exercises

1

é BOOK.mkr Page 362 Wednesday, March 14 2001 1:11PM

362

The Collections API

6.17.

6.18.

6.19.

6.20.

fi ndM n, del et eMn , fi ndvax, and del et eMax. Do the follow-

ing:

a. Describe the dgorithms for fi ndM n, del eteM n, fi ndMvax,
del et eVbax, andi nsert.

b. What isthe Big-Oh runningtime for each of f i ndM n, del et eM n,
fi ndMax, del et eMax, andi nsert usingthese algorithms?

c. Write an implementation that uses these dgorithms.

A median heap supports the following operations: in sert, fi ndKt h,

and renpovekKt h. The last two find and remove, respectively, the Kth

smallest element. The simplest implementation maintains the data in

sorted arder. Do the following:

a. Describe the dgorithms that can be used to support median hegp oper-
ations.

b. What isthe Big-Oh running time for ead o the basic operations using
these dgorithms?

c. Write an implementation that uses these dgorithms.

Write aprogram that reads grings from input and outputs them sorted, by

length, shortest string first. If asubset of strings that have the same length,

output them in alphabetical order.

Col l ections.fill takesali st andaval ue, and placesval ue in

al positionsinthelist. Implementfil | .

Col | ections. reverse takes a Li st and reverses its contents.

Implement r ever se.

ﬁ%

>

é BOOK.mkr Page 363 Wednesday, March 14, 2001 1:11PM é

?

References

References
References for the theory that underlies these data structures are provided in Part

IV. The Colledions API is described in most recent Java books (seethe references

in Chapter 1).

é BOOK.mkr Page 364 Wednesday, March 14, 2001 1:11PM

364 The Collections API

- 4~

