
BOOK.mkr Page 231 Wednesday, March 14, 2001 1:11 PM

BOOK.mkr Page 232 Wednesday, March 14, 2001 1:11 PM

� � � � � � �

N Part I we examined how object-oriented programming can help in the

design and implementation of large systems. We did not examine perfor-

mance issues. Generall y, we use a computer because we need to process a large

amount of data. When we run a program on large amounts of input, we must be

certain that the program terminates within a reasonable amount of time. Although

the amount of running time is somewhat dependent on the programming language

we use, and to a smaller extent the methodology we use (such as procedural ver-

sus object-oriented), often those factors are unchangeable constants of the design.

Even so, the running time is most strongly correlated with the choice of algo-

rithms.

An algorithm is a clearly specified set of instructions the computer will fol-

low to solve a problem. Once an algorithm is given for a problem and determined

to be correct, the next step is to determine the amount of resources, such as time

and space, that the algorithm will require. This step is called algorithm analysis.

An algorithm that requires several gigabytes of main memory is not useful for

most current machines, even if it is completely correct.

In this chapter, we show:

BOOK.mkr Page 233 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� � �

• How to estimate the time required for an algorithm

• How to use techniques that drastically reduce the running time of an

algorithm

• How to use a mathematical framework that more rigorously describes the

running time of an algorithm

• How to write a simple binary search routine

� � � � � � � � � ! " # $ % � � & ' � ! (� % �)

* + , - . / 0 / 1 - / 2 3
0 4 / 0 0 4 - 5 , + 6 , / 1
0 / 7 - 3 1 + , - 0 8 1 - 9

The amount of time that any algorithm takes to run almost always depends on the

amount of input that it must process. We expect, for instance, that sorting 10,000

elements requires more time than sorting 10 elements. The running time of an

algorithm is thus a function of the input size. The exact value of the function

depends on many factors, such as the speed of the host machine, the quality of the

compiler, and in some cases, the quali ty of the program. For a given program on a

given computer, we can plot the running time function on a graph. Figure 5.1

il lustrates such a plot for four programs. The curves represent four common func-

tions encountered in algori thm analysis: l inear, , quadratic, and

cubic. The input size N ranges from 1 to 100 items, and the running times range

from 0 to 10 mil liseconds. A quick glance at Figure 5.1 and its companion, Figure

5.2, suggests that the linear, O(N log N), quadratic, and cubic curves represent

running times in order of decreasing preference.

O(N log N)

BOOK.mkr Page 234 Wednesday, March 14, 2001 1:11 PM

: � �
 ; � � � 	
 � �
 � � � � � � � � � � < � � =

> ? 0 4 - @ + 1 1 + 2
? A 2 @ 0 8 + 2 3 - 2 @ + A 2 B
0 - , - . 8 2 / C 6 + , 8 0 4 1
/ 2 / C D 3 8 3 E C 8 2 - / , , - 5 B
, - 3 - 2 0 3 0 4 - 1 + 3 0 - ? ? 8 B
@ 8 - 2 0 / C 6 + , 8 0 4 1 9

An example is the problem of downloading a file over the Internet. Suppose

there is an initial 2-sec delay (to set up a connection), after which the download pro-

ceeds at 1.6 K/sec. Then if the file is N kilobytes, the time to download is described

by the formula . This is a linear function. Downloading an 80K

file takes approximately 52 sec, whereas downloading a file twice as large (160K)

takes about 102 sec, or roughly twice as long. This property, in which time essen-

tially is directly proportional to amount of input, is the signature of a linear algo-

rithm, which is the most efficient algorithm. In contrast, as these first two graphs

show, some of the nonlinear algorithms lead to large running times. For instance,

the linear algorithms is much more efficient than the cubic algorithm.

In this chapter we address several important questions:

• Is it always important to be on the most efficient curve?

• How much better is one curve than another?

• How do you decide which curve a particular algorithm lies on?

• How do you design algorithms that avoid being on less-efficient curves?

T N() N 1.6⁄ 2+=

BOOK.mkr Page 235 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� � F

G H I J K L M N O P Q � � � � 	
 � � R � S
 � � � � � � � � T Q
 �

0

2

4

6

8

10

10 20 30 40 50 60 70 80 90 100

Linear
O(N log N)

Quadratic
Cubic

R
un

ni
ng

 T
im

e
(m

ill
is

ec
on

ds
)

Input Size (N)

BOOK.mkr Page 236 Wednesday, March 14, 2001 1:11 PM

: � �
 ; � � � 	
 � �
 � � � � � � � � � � < � � U

G H I J K L M N V P Q � � � � 	
 � � R � S
 � �
 W R � �
 R � � T Q
 �

A cubic function is a function whose dominant term is some constant times

. As an example, is a cubic function. Similarly, a qua-

dratic function has a dominant term that is some constant times , and a linear

function has a dominant term that is some constant times N. The expression

 represents a function whose dominant term is N times the logarithm

of N. The logarithm is a slowly growing function; for instance, the logarithm of

1,000,000 (with the typical base 2) is only 20. The logarithm grows more slowly

than a square or cube (or any) root. We discuss the logarithm in more depth in

Section 5.5.

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Linear
O(N log N)

Quadratic
Cubic

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Input Size (N)

N3 10N3 N2 40N 80+ + +

N2

O(N log N)

BOOK.mkr Page 237 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� � X

Y 4 - 6 , + Z 0 4 , / 0 - + ? /
? A 2 @ 0 8 + 2 8 3 1 + 3 0 8 1 B
5 + , 0 / 2 0 Z 4 - 2 [8 3
3 A ? ? 8 @ 8 - 2 0 C D C / , 6 - 9

Either of two functions may be smaller than the other at any given point, so

claiming, for instance, that does not make sense. Instead, we mea-

sure the functions’ rates of growth. This is justified for three reasons. First, for

cubic functions such as the one shown in Figure 5.2, when N is 1,000 the value of

the cubic function is almost entirely determined by the cubic term. In the function

, for N = 1,000, the value of the function is 10,001,040,080,

of which 10,000,000,000 is due to the term. If we were to use only the cubic

term to estimate the entire function, an error of about 0.01 percent would result.

For suff iciently large N, the value of a function is largely determined by its domi-

nant term (the meaning of the term sufficiently large varies by function).

F N() G N()<

10N3 N2 40N 80+ + +

10N3

BOOK.mkr Page 238 Wednesday, March 14, 2001 1:11 PM

: � �
 ; � � � 	
 � �
 � � � � � � � � � � < � � \

The second reason we measure the functions’ growth rates is that the exact

value of the leading constant of the dominant term is not meaningful across dif-

ferent machines (although the relative values of the leading constant for identi-

cally growing functions might be). For instance, the quality of the compiler could

have a large influence on the leading constant. The third reason is that small val-

ues of N generally are not important. For N = 20, Figure 5.1 shows that all algo-

rithms terminate within 5 ms. The difference between the best and worst

algorithm is less than a blink of the eye.

] ^ _ ` a b 2 + 0 / 0 8 + 2 8 3
A 3 - . 0 + @ / 5 0 A , - 0 4 -
1 + 3 0 . + 1 8 2 / 2 0
0 - , 1 8 2 / ? A 2 @ 0 8 + 2 9

We use Big-Oh notation to capture the most dominant term in a function and

to represent the growth rate. For instance, the running time of a quadratic algo-

rithm is specified as (pronounced “order en-squared”). Big-Oh notation

also allows us to establish a relative order among functions by comparing domi-

nant terms. We discuss Big-Oh notation more formally in Section 5.4.

For small values of N (for instance, those less than 40), Figure 5.1 shows that

one curve may be initially better than another, which doesn’t hold for larger val-

ues of N. For example, initially the quadratic curve is better than the

curve, but as N gets sufficiently large, the quadratic algorithm loses its advantage.

For small amounts of input, making comparisons between functions is diff icult

because leading constants become very significant. The function N + 2,500 is

larger than when N is less than 50. Eventually, the linear function is always

less than the quadratic function. Most important, for small i nput sizes the running

times are generally inconsequential, so we need not worry about them. For

instance, Figure 5.1 shows that when N is less than 25, all four algorithms run in

O N2()

O(N log N)

N2

BOOK.mkr Page 239 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� � c

less than 10 ms. Consequently, when input sizes are very small, a good rule of

thumb is to use the simplest algorithm.

Figure 5.2 clearly demonstrates the differences between the various curves

for large input sizes. A linear algorithm solves a problem of size 10,000 in a small

fraction of a second. The algorithm uses roughly 10 times as much

time. Note that the actual time differences depend on the constants involved and

thus might be more or less. Depending on these constants, an algo-

rithm might be faster than a linear algorithm for fairly large input sizes. For

equally complex algorithms, however, linear algorithms tend to win out over

 algorithms.

d A / . , / 0 8 @ / C 6 + B
, 8 0 4 1 3 / , - 8 1 5 , / @ 0 8 B
@ / C ? + , 8 2 5 A 0 3 8 e - 3 - f B
@ - - . 8 2 6 / ? - Z
0 4 + A 3 / 2 . 9

g A h 8 @ / C 6 + , 8 0 4 1 3
/ , - 8 1 5 , / @ 0 8 @ / C ? + ,
8 2 5 A 0 3 8 e - 3 / 3 3 1 / C C
/ 3 / ? - Z 4 A 2 . , - . 9

This relationship is not true, however, for the quadratic and cubic algorithms.

Quadratic algorithms are almost always impractical when the input size is more

than a few thousand, and cubic algorithms are impractical for input sizes as small

as a few hundred. For instance, it is impractical to use a naive sorting algorithm

for 100,000 items, because most simple sorting algorithms (such as bubble sort

and selection sort) are quadratic algorithms. The sorting algorithms discussed in

Chapter 8 run in subquadratic time (that is, better than), thus making

sorting large arrays practical.

O(N log N)

O(N log N)

O(N log N)

O N2()

BOOK.mkr Page 240 Wednesday, March 14, 2001 1:11 PM

i j � � T � R �
 S � � 	
 � �
 � � P Q � � � � 	 k � � R � � � l

The most striking feature of these curves is that the quadratic and cubic algo-

rithms are not competitive with the others for reasonably large inputs. We can

code the quadratic algorithm in highly eff icient machine language and do a poor

job coding the linear algorithm, and the quadratic algorithm will stil l lose badly.

Even the most clever programming tricks cannot make an ineff icient algorithm

fast. Thus, before we waste effort attempting to optimize code, we need to opti-

mize the algorithm. Figure 5.3 arranges functions that commonly describe algo-

rithm running times in order of increasing growth rate.

� � m n o � & p ! q � # r ! " # $ % � � & s t ' ' % ' " u % & q �

In this section we examine three problems. We also sketch possible solutions and

determine what kind of running times the algorithms wil l exhibit, without provid-

ing detailed programs. The goal in this section is to provide you with some intu-

v w x y z { | x } ~ � �
� � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � �
� � � � �

� � � � � � � � �
� � � � �

� � � � � � � � � � �

G H I J K L M N � � Q � �
 �
 � � � �
 � W R �
 S � � � � R � � � � 	 	 �
 �
 � � �
 R

c

log N

Nlog2

N

N log N

N2

N3

2N

BOOK.mkr Page 241 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� � �

iti on about algorithm analysis. In Section 5.3 we provide more detail s on the

process, and in Section 5.4 we formally approach an algorithm analysis problem.

We look at the following problems in this section:

� � � � ¡ � ¢ £ ¢ � ¢ ¤ � ¥ ¥ ¦ ¦ ¥ §
¨ © ª « ¬ ­ ¬ ­ ® ® ­ ¯ ° ± ² © ³ « ´ µ ¶ ± © ¬ · ³ ¸ « µ ´ ­ ¹ ¹ « µ ³ © ³ « ´ º

» £ ¼ ½ ¢ ½ ¤ ¾ ¼ � ¤ ½ � ¤ ¿ ¢ ¾ £ ¥ ¢
¨ © ª « ¬ ² À ° © ¬ ³ µ © ¬ ­ À ¹ ­ ¬ « Á ³ ¸ ­ ³ © µ ¶ ­ ¬ Â Ã ¯ Ä ° ° ® · © ¬ ­ ³ « µ ¯ µ ³ « ´ Å ¶ ± © ¬ ·
³ ¸ « À ­ © ® ° ± À ° © ¬ ³ µ ³ ¸ ­ ³ ­ ® « Ä ¹ ° µ « µ ³ ³ ° Æ « ³ ¸ « ® º

» ¼ £ � ¢ ¥ ¦ ¾ ¼ � ¤ ½ � ¤ ¿ ¢ ¾ £ ¥ ¢
¨ © ª « ¬ ² À ° © ¬ ³ µ © ¬ ­ À ¹ ­ ¬ « Á ³ ¸ ­ ³ © µ ¶ ­ ¬ Â Ã ¯ Ä ° ° ® · © ¬ ­ ³ « µ ¯ µ ³ « ´ Å ¶ · « ³ « ® Ã
´ © ¬ « © ± ­ ¬ ¯ ³ ¸ ® « « ± ° ® ´ ­ µ ³ ® ­ © Æ ¸ ³ ¹ © ¬ « º

The minimum element problem is fundamental in computer science. It can be

solved as follows:

1. Maintain a variable mi n that stores the minimum element.
2. Initialize mi n to the first element.
3. Make a sequential scan through the array and update mi n as

appropriate.

The running time of this algorithm wil l be , or l inear, because we will

repeat a fixed amount of work for each element in the array. A linear algorithm is

as good as we can hope for. This is because we have to examine every element in

the array, a process that requires linear time.

The closest points problem is a fundamental problem in graphics that can be

solved as follows:

1. Calculate the distance between each pair of points.
2. Retain the minimum distance.

This calculation is expensive, however, because there are pairs of

points.1 Thus there are roughly pairs of points. Examining all these pairs and

O(N)

N N 1–() 2⁄

N2

BOOK.mkr Page 242 Wednesday, March 14, 2001 1:11 PM

i j � � T � R �
 S � � 	
 � �
 � � P Q � � � � 	 k � � R � � � �

finding the minimum distance among them takes quadratic time. A better algo-

rithm runs in time and works by avoiding the computation of all dis-

tances. There is also an algorithm that is expected to take time. These last

two algorithms use subtle observations to provide faster results and are beyond

the scope of this text.

The colinear points problem is important for many graphics algorithms. The

reason is that the existence of colinear points introduces a degenerate case that

requires special handling. It can be directly solved by enumerating all groups of

three points. This solution is even more computationally expensive than that for

the closest points problem because the number of different groups of three points

is (using reasoning similar to that used for the closest points

problem). This result tells us that the direct approach will yield a cubic algorithm.

There is also a more clever strategy (also beyond the scope of this text) that solves

the problem in quadratic time (and further improvement is an area of continu-

ously active research).

In Section 5.3 we look at a problem that il lustrates the differences among lin-

ear, quadratic, and cubic algorithms. We also show how the performance of these

algorithms compares to a mathematical prediction. Finally, after discussing the

basic ideas, we examine Big-Oh notation more formally.

1. Each of N points can be paired with points, for a total of pairs. However, this pairing double

counts pairs A, B and B, A, so we must divide by two.

N 1– N N 1–()

O(N log N)

O(N)

N N 1–() N 2–() 6⁄

BOOK.mkr Page 243 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� � �

� � Ç u � q È � o % & t & É # ' � % " t # t � Ê t Ë � q Ì t q ' Í q
Ê t & Î $ # Ë ! q &

In this section, we consider the following problem:

� ¥ Ï � � ¡ � » ¼ ¤ � Ð ¡ ¼ ¡ ½ ½ ¡ Ñ ½ ¢ Ò ¡ ¢ » ¢ ½ ¡ � ¾ ¦ ¼ Ñ £ ¢ �
¨ © ª « ¬ Á À ° µ µ © Ó ¹ ¯ ¬ « Æ ­ ³ © ª « Å © ¬ ³ « Æ « ® µ ¶ ± © ¬ · Á ­ ¬ · © · « ¬ ³ © ± ¯
³ ¸ « µ « Ô Õ « ¬ Ä « Ä ° ® ® « µ À ° ¬ · © ¬ Æ ³ ° Å ³ ¸ « ´ ­ Â © ´ Õ ´ ª ­ ¹ Õ « ° ± º

Ö ¸ « ´ ­ Â © ´ Õ ´ Ä ° ¬ ³ © Æ Õ ° Õ µ µ Õ Ó µ « Ô Õ « ¬ Ä « µ Õ ´ © µ × « ® ° © ± ­ ¹ ¹ ³ ¸ « © ¬ ³ « Ã
Æ « ® µ ­ ® « ¬ « Æ ­ ³ © ª « º

As an example, if the input is { –2, 11, –4, 13, –5, 2} , then the answer is 20, which

represents the contiguous subsequence encompassing items 2 through 4 (shown

in boldface type). As a second example, for the input { 1, –3, 4, –2, –1, 6 } , the

answer is 7 for the subsequence encompassing the last four items.

Ø , + 6 , / 1 1 8 2 6 . - B
0 / 8 C 3 / , - @ + 2 3 8 . - , - .
/ ? 0 - , 0 4 - / C 6 + , 8 0 4 1
. - 3 8 6 2 9

Ù C Z / D 3 @ + 2 3 8 . - ,
- 1 5 0 8 2 - 3 3 9

In Java, arrays begin at zero, so a Java program would represent the input as a

sequence to . This is a programming detail and not part of the algorithm

design.

Before the discussion of the algorithms for this problem, we need to com-

ment on the degenerate case in which all input integers are negative. The problem

statement gives a maximum contiguous subsequence sum of 0 for this case. One

might wonder why we do this, rather than just returning the largest (that is, the

smallest in magnitude) negative integer in the input. The reason is that the empty

subsequence, consisting of zero integers, is also a subsequence, and its sum is

clearly 0. Because the empty subsequence is contiguous, there is always a contig-

uous subsequence whose sum is 0. This result is analogous to the empty set being

A1 A2 … AN, , ,
Akk i=

j∑

A0 AN 1–

BOOK.mkr Page 244 Wednesday, March 14, 2001 1:11 PM

k � R Ú � j � � Q � Û
 �
 � 	 Q
 Q � Ü Q Ý � R Þ Q R � � R Ü Q � ß �
 Ý � R � � � =

a subset of any set. Be aware that emptiness is always a possibil ity and that in

many instances it is not a special case at all.

Y 4 - , - / , - C + 0 3 + ?
. , / 3 0 8 @ / C C D . 8 ? ? - , - 2 0
/ C 6 + , 8 0 4 1 3 à 8 2 0 - , 1 3
+ ? - ? ? 8 @ 8 - 2 @ D á 0 4 / 0
@ / 2 h - A 3 - . 0 +
3 + C â - 0 4 - 1 / f 8 1 A 1
@ + 2 0 8 6 A + A 3 3 A h 3 - B
ã A - 2 @ - 3 A 1
5 , + h C - 1 9

The maximum contiguous subsequence sum problem is interesting mainly

because there are so many algorithms to solve it — and the performance of these

algorithms varies drastically. In this section we discuss three such algorithms. The

first is an obvious exhaustive search algorithm, but it is very ineff icient. The sec-

ond is an improvement on the first, which is accomplished by a simple observa-

tion. The third is a very eff icient, but not obvious, algorithm. We prove that its

running time is linear.

In Chapter 7 we present a fourth algorithm, which has running

time. That algorithm is not as efficient as the linear algorithm, but it is much more

efficient than the other two. It is also typical of the kinds of algorithms that result

in running times. The graphs shown in Figures 5.1 and 5.2 are repre-

sentative of these four algorithms.

ä å æ å ç è é ê ë ì í î ï ð ñ ò ó ô õ ö ÷ ø ù ï ú î û é ü

Ù h , A 0 - ? + , @ - / C 6 + B
, 8 0 4 1 8 3 6 - 2 - , / C C D
0 4 - C - / 3 0 - ? ? 8 @ 8 - 2 0
h A 0 3 8 1 5 C - 3 0
1 - 0 4 + . 0 + @ + . - 9

The simplest algorithm is a direct exhaustive search, or a brute force algorithm, as

shown in Figure 5.4. Lines 9 and 10 control a pair of loops that iterate over all

possible subsequences. For each possible subsequence, the value of its sum is

computed at lines 12 to 15. If that sum is the best sum encountered, we update the

value of maxSum, which is eventual ly returned at l ine 25. Two int s —

seq Start and seqEnd (which are static class fields) — are also updated

whenever a new best sequence is encountered.

O(N log N)

O(N log N)

BOOK.mkr Page 245 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� � F

The direct exhaustive search algorithm has the merit of extreme simplicity;

the less complex an algorithm is, the more likely it is to be programmed correctly.

However, exhaustive search algorithms are usually not as efficient as possible. In

the remainder of this section we show that the running time of the algorithm is

cubic. We count the number of times (as a function of the input size) the expres-

sions in Figure 5.4 are evaluated. We require only a Big-Oh result, so once we

have found a dominant term, we can ignore lower order terms and leading con-

stants.

ý
 / * *þ
 * C ubi c m axi mum c ont i guous s ubsequence s um a l gor i t hm.ÿ
 * s eqSt ar t a nd s eqEnd r epr esent t he a ct ual b est s equence.�
 * /�
 publ i c s t at i c i nt m axSubsequenceSum(i nt [] a)�
 {�
 i nt m axSum = 0 ;�

�
 f or (i nt i = 0 ; i < a . l engt h; i ++)ý �
 f or (i nt j = i ; j < a . l engt h; j ++)ý ý
 {ý þ
 i nt t hi sSum = 0 ;ý ÿ

ý �
 f or (i nt k = i ; k < = j ; k ++)ý �
 t hi sSum += a [k] ;ý �

ý �
 i f (t hi sSum > m axSum)ý �
 {ý �
 maxSum = t hi sSum;þ �
 seqSt ar t = i ;þ ý
 seqEnd = j ;þ þ
 }þ ÿ
 }þ �

þ �
 r et ur n maxSum;þ �
 }

G H I J K L M N � � � Q Ý � � � � j � � Q � �
 �
 � 	 Q
 Q � � Q Ý � R Þ Q R � � R � Q � � � 	
 � �
 � �

BOOK.mkr Page 246 Wednesday, March 14, 2001 1:11 PM

k � R Ú � j � � Q � Û
 �
 � 	 Q
 Q � Ü Q Ý � R Þ Q R � � R Ü Q � ß �
 Ý � R � � � U

The running time of the algorithm is entirely dominated by the innermost

f or loop in lines 14 and 15. Four expressions there are repeatedly executed:

1. the initialization k = i ,
2. the test k < = j ,
3. the increment t hi sSum += a [k] , and
4. the adjustment k++.

Ù 1 / 0 4 - 1 / 0 8 @ / C
/ 2 / C D 3 8 3 8 3 A 3 - . 0 +
@ + A 2 0 0 4 - 2 A 1 h - ,
+ ? 0 8 1 - 3 0 4 / 0 @ - , 0 / 8 2
3 0 / 0 - 1 - 2 0 3 / , -
- f - @ A 0 - . 9

The number of times expression 3 is executed makes it the dominant term

among the four expressions. Note that each initialization is accompanied by at

least one test. We are ignoring constants, so we may disregard the cost of the ini-

tializations; the initializations cannot be the single dominating cost of the algo-

rithm. Because the test given by expression 2 is unsuccessful exactly once per

loop, the number of unsuccessful tests performed by expression 2 is exactly equal

to the number of initializations. Consequently, it is not dominant. The number of

successful tests at expression 2, the number of increments performed by expres-

sion 3, and the number of adjustments at expression 4 are all identical. Thus the

number of increments (i.e., the number of times that line 15 is executed) is a dom-

inant measure of the work performed in the innermost loop.

The number of times line 15 is executed is exactly equal to the number of

ordered triplets (i, j, k) that satisfy .2 The reason is that the index i

runs over the entire array, j runs from i to the end of the array, and k runs from i to

j. A quick and dirty estimate is that the number of triplets is somewhat less than

2. In Java, the indices run from 0 to . We have used the algorithmic equivalent 1 to N to simpli fy the

analysis.

1 i k j N≤ ≤ ≤ ≤

N 1–

BOOK.mkr Page 247 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� � X

, or , because i, j, and k can each assume one of N values. The addi-

tional restriction reduces this number. A precise calculation is somewhat

diff icult to obtain and is performed in Theorem 5.1.

The most important part of Theorem 5.1 is not the proof, but rather the result.

There are two ways to evaluate the number of triplets. One is to evaluate the sum

. We could evaluate this sum inside out (see Exercise 5.9).

Instead, we will use an alternative.

The result of Theorem 5.1 is that the innermost f or loop accounts for cubic

running time. The remaining work in the algorithm is inconsequential because it

N N N×× N3

i k j≤ ≤

1
k i=
j

∑j i=
N∑i 1=

N∑

The number of integer ordered triplets (i, j, k) that satisfy

is .
Theorem 5.11 i k j N≤ ≤ ≤ ≤

N N 1+() N 2+() 6⁄

Proof Place the following balls in a box: N balls numbered 1 to N, one

unnumbered red ball, and one unnumbered blue ball . Remove three balls

from the box. If a red ball is drawn, number it as the lowest of the num-

bered balls drawn. If a blue ball i s drawn, number it as the highest of the

numbered balls drawn. Notice that if we draw both a red and blue ball ,

then the effect is to have three balls identically numbered. Order the three

balls. Each such order corresponds to a triplet solution to the equation in

Theorem 5.1. The number of possible orders is the number of distinct

ways to draw three balls without replacement from a collection of

balls. This is similar to the problem of selecting three points from a group

of N that we evaluated in Section 5.2, so we immediately obtain the stated

result.

N 2+

N 2+

BOOK.mkr Page 248 Wednesday, March 14, 2001 1:11 PM

k � R Ú � j � � Q � Û
 �
 � 	 Q
 Q � Ü Q Ý � R Þ Q R � � R Ü Q � ß �
 Ý � R � � � \

is done, at most, once per iteration of the inner loop. Put another way, the cost of

lines 17 to 22 is inconsequential because it is done only as often as the initializa-

tion of the inner f or loop, rather than as often as the repeated body of the inner

f or loop. Consequently, the algorithm is .

� - . + 2 + 0 2 - - .
5 , - @ 8 3 - @ / C @ A C / B
0 8 + 2 3 ? + , / 	 8 6 B > 4 - 3 B
0 8 1 / 0 - 9
 2 1 / 2 D
@ / 3 - 3 E Z - @ / 2 A 3 -
0 4 - 3 8 1 5 C - , A C - + ?
1 A C 0 8 5 C D 8 2 6 0 4 - 3 8 e -
+ ? / C C 0 4 - 2 - 3 0 - .
C + + 5 3 9 � + 0 - @ / , - B
? A C C D 0 4 / 0 @ + 2 3 - @ A B
0 8 â - C + + 5 3 . + 2 + 0
1 A C 0 8 5 C D 9

The previous combinatoric argument allows us to obtain precise calculations

on the number of iterations in the inner loop. For a Big-Oh calculation, this is not

really necessary; we need to know only that the leading term is some constant

times . Looking at the algorithm, we see a loop that is potentially of size N

inside a loop that is potentially of size N inside another loop that is potentially of

size N. This configuration tells us that the triple loop has the potential for

 iterations. This potential is only about six times higher than what our

precise calculation of what actually occurs. Constants are ignored anyway, so we

can adopt the general rule that, when we have nested loops, we should multiply

the cost of the innermost statement by the size of each loop in the nest to obtain

an upper bound. In most cases, the upper bound will not be a gross overestimate.3

Thus a program with three nested loops, each running sequentially through large

portions of an array, is likely to exhibit behavior. Note that three consecu-

tive (nonnested) loops exhibit linear behavior; it is nesting that leads to a combi-

natoric explosion. Consequently, to improve the algorithm, we need to remove a

loop.

O N3()

3. Exercise 5.16 ill ustrates a case in which the multiplication of loop sizes yields an overestimate in the Big-Oh

result.

N3

N N N××

O N3()

BOOK.mkr Page 249 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� = c

ä å æ å � ÷
 � ü � ú ï í ê � ò ó ô � ö ÷ ø ù ï ú î û é ü

� 4 - 2 Z - , - 1 + â - /
2 - 3 0 - . C + + 5 ? , + 1 / 2
/ C 6 + , 8 0 4 1 E Z - 6 - 2 B
- , / C C D C + Z - , 0 4 - , A 2 B
2 8 2 6 0 8 1 - 9

When can remove a nested loop from the algorithm, we genereally lower the run-

ning time. How do we remove a loop? Obviously, we cannot always do so. How-

ever, the previous algori thm has many unnecessary computations. The

inefficiency that the improved algorithm corrects is the unduly expensive compu-

tation in the inner f or loop in Figure 5.4. The improved algorithm makes use of

the fact that . In other words, suppose we have just cal-

culated the sum for the subsequence i, ..., . Then computing the sum for the

subsequence i, ..., j should not take long because we need only one more addition.

However, the cubic algorithm throws away this information. If we use this obser-

vation, we obtain the improved algorithm shown in Figure 5.5. We have two

rather than three nested loops, and the running time is .

Akk i=
j∑ Aj Akk i=

j 1–∑+=

j 1–

O N2()

BOOK.mkr Page 250 Wednesday, March 14, 2001 1:11 PM

k � R Ú � j � � Q � Û
 �
 � 	 Q
 Q � Ü Q Ý � R Þ Q R � � R Ü Q � ß �
 Ý � R � � = l

ý
 / * *þ
 * Q uadr at i c m axi mum c ont i guous s ubsequence s um a l gor i t hm.ÿ
 * s eqSt ar t a nd s eqEnd r epr esent t he a ct ual b est s equence.�
 * /�
 publ i c s t at i c i nt m axSubsequenceSum(i nt [] a)�
 {�
 i nt m axSum = 0 ;�

�
 f or (i nt i = 0 ; i < a . l engt h; i ++)ý �
 {ý ý
 i nt t hi sSum = 0 ;ý þ

ý ÿ
 f or (i nt j = i ; j < a . l engt h; j ++)ý �
 {ý �
 t hi sSum += a [j] ;ý �

ý �
 i f (t hi sSum > m axSum)ý �
 {ý �
 maxSum = t hi sSum;þ �
 seqSt ar t = i ;þ ý
 seqEnd = j ;þ þ
 }þ ÿ
 }þ �
 }þ �

þ �
 r et ur n maxSum;þ �
 }

G H I J K L M N M � Þ Q � W � �
 � � � � j � � Q � �
 �
 � 	 Q
 Q � � Q Ý � R Þ Q R � � R � Q � � � 	
 � �
 � �

BOOK.mkr Page 251 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� = �

ä å æ å æ ÷ � î
 ê � ú ÷ ø ù ï ú î û é ü

 ? Z - , - 1 + â - / 2 B
+ 0 4 - , C + + 5 E Z - 4 / â -
/ C 8 2 - / , / C 6 + , 8 0 4 1 9

Y 4 - / C 6 + , 8 0 4 1 8 3
0 , 8 @ 7 D 9
 0 A 3 - 3 /
@ C - â - , + h 3 - , â / 0 8 + 2
0 + 3 0 - 5 ã A 8 @ 7 C D + â - ,
C / , 6 - 2 A 1 h - , 3 + ?
3 A h 3 - ã A - 2 @ - 3 0 4 / 0
@ / 2 2 + 0 h - 0 4 - h - 3 0 9

To move from a quadratic algorithm to a linear algorithm, we need to remove yet

another loop. However, unli ke the reduction ill ustrated in Figures 5.4 and 5.5,

where loop removal was simple, getting rid of another loop is not so easy. The

problem is that the quadratic algorithm is still an exhaustive search; that is, we are

trying all possible subsequences. The only difference between the quadratic and

cubic algorithms is that the cost of testing each successive subsequence is a con-

stant instead of linear . Because a quadratic number of subsequences

are possible, the only way we can attain a subquadratic bound is to find a clever

way to eliminate from consideration a large number of subsequences, without

actuall y computing their sum and testing to see if that sum is a new maximum.

This section shows how this is done.

First, we eliminate a large number of possible subsequences from consider-

ation. Let be the subsequence encompassing elements from i to j, and let

be its sum.

.

O 1() O(N)

Ai j, Si j,

Theorem 5.2 Let be any sequence with . If , then is not the maxi-

mum contiguous subsequence.

Proof The sum of A’s elements from i to q is the sum of A’s elements from i to j

added to the sum of A’s elements from to q. Thus we have

. Because , we know that . Thus

 is not a maximum contiguous subsequence.

Ai j, Si j, 0< q j> Ai q,

j 1+
Si q, Si j, Sj 1 q,++= Si j, 0< Si q, Sj 1+ q,<
Ai q,

BOOK.mkr Page 252 Wednesday, March 14, 2001 1:11 PM

k � R Ú � j � � Q � Û
 �
 � 	 Q
 Q � Ü Q Ý � R Þ Q R � � R Ü Q � ß �
 Ý � R � � = �

An il lustration of the sums generated by i, j, and q is shown on the first two

lines in Figure 5.6. Theorem 5.2 demonstrates that we can avoid examining sev-

eral subsequences by including an additional test: If t hi sSum is less than 0, we

can br eak from the inner loop in Figure 5.5. Intuitively, if a subsequence’s sum

is negative, then it cannot be part of the maximum contiguous subsequence. The

reason is that we can get a large contiguous subsequence by not including it. This

observation by itself is not suff icient to reduce the running time below quadratic.

A similar observation also holds: All contiguous subsequences that border the

maximum contiguous subsequence must have negative (or 0) sums (otherwise, we

would include them). This observation also does not reduce the running time to

below quadratic. However, a third observation, illustrated in Figure 5.7, does, and

we formalize it with Theorem 5.3.

G H I J K L M N � k � R � Q Ý � R Þ Q R � � R � Q � R W � � k � R
 � R � � � �

i j j + 1 q

< 0 Sj + 1, q

<Sj + 1, q

For any i, let be the first sequence, with . Then, for any

 and , either is not a maximum contiguous subse-

quence or is equal to an already seen maximum contiguous subsequence.

Theorem 5.3Ai j, Si j, 0<
i p j≤ ≤ p q≤ Ap q,

BOOK.mkr Page 253 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� = �

G H I J K L M N � k � R � Q Ý � R Þ Q R � � R � Q � R W � � k � R
 � R � � � � � k � R � R Þ Q R � � R S �
 � �

� � � � � � Q �
 � �
 � � � �
 �
 �
 �
 � �

 S
 � R � Q Ý � R Þ Q R � � R S �
 � �

 � �

� �
 � R � R S
 � � � � W � � W R
 � R � R Þ Q R � � R S �
 � �

 � � � �
 � R � S �

 � R
� � j � � Q � Ý � k � R
 � R � � � � ! � � �
 � R � � 	 �
 � � � � W � � W R �
 � R

� R Þ Q R � � R S �
 � �

 � � � � � � � R � W � Ý R R � � R R �

If , then Theorem 5.2 applies. Otherwise, as in Theorem 5.2, we

have . Since j is the lowest index for which ,

it follows that . Thus . If (shown on the left-

hand side in Figure 5.7), then Theorem 5.2 implies that is not a max-

imum contiguous subsequence, so neither is . Otherwise, as shown

on the right-hand side in Figure 5.7, the subsequence has a sum

equal to, at most, that of the already seen subsequence .

Proof p i=
Si q, Si p 1–, Sp q,+= Si j, 0<

Si p 1–, 0≥ Sp q, Si q,≤ q j>
Ai q,

Ap q,
Ap q,
Ai q,

i j j + 1 q

Si, q

p – 1 p

>=0 <=Si, q

i q

Si, q

p – 1 p

>=0 <=Si, q

j

BOOK.mkr Page 254 Wednesday, March 14, 2001 1:11 PM

k � R Ú � j � � Q � Û
 �
 � 	 Q
 Q � Ü Q Ý � R Þ Q R � � R Ü Q � ß �
 Ý � R � � = =

ý
 / * *þ
 * L i near m ax i mum c ont i guous s ubsequence s um a l gor i t hm.ÿ
 * s eqSt ar t a nd s eqEnd r epr esent t he a ct ual b est s equence.�
 * /�
 publ i c s t at i c i nt m ax i mumSubsequenceSum(i nt [] a)�
 {�
 i nt m axSum = 0 ;�
 i nt t hi sSum = 0 ;�

ý �
 f or (i nt i = 0 , j = 0 ; j < a . l engt h; j ++)ý ý
 {ý þ
 t hi sSum += a [j] ;ý ÿ

ý �
 i f (t hi sSum > m axSum)ý �
 {ý �
 maxSum = t hi sSum;ý �
 seqSt ar t = i ;ý �
 seqEnd = j ;ý �
 }þ �
 el se i f (t hi sSum < 0)þ ý
 {þ þ
 i = j + 1 ;þ ÿ
 t hi sSum = 0 ;þ �
 }þ �
 }þ �

þ �
 r et ur n maxSum;þ �
 }

G H I J K L M N " � � � � R � � � � j � � Q � �
 �
 � 	 Q
 Q � � Q Ý � R Þ Q R � � R � Q � � � 	
 � �
 � �

BOOK.mkr Page 255 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� = F

 ? Z - . - 0 - @ 0 / 2 - 6 B
/ 0 8 â - 3 A 1 E Z - @ / 2
1 + â - ^ / C C 0 4 - Z / D
5 / 3 0 # 9

 ? / 2 / C 6 + , 8 0 4 1 8 3
@ + 1 5 C - f E / @ + , , - @ 0 B
2 - 3 3 5 , + + ? 8 3
, - ã A 8 , - . 9

Theorem 5.3 tells us that, when a negative subsequence is detected, not only

can we br eak the inner loop; but we also can advance i to j +1. Figure 5.8

shows that we can rewrite the algorithm using only a single loop. Clearly, the run-

ning time of this algorithm is linear: At each step in the loop, we advance j , so

the loop iterates at most N times. The correctness of this algorithm is much less

obvious than for the previous algorithms, which is typical. That is, algorithms that

use the structure of a problem to beat an exhaustive search generally require some

sort of correctness proof. We proved that the algorithm (although not the resulting

Java program) is correct using a short mathematical argument. The purpose is not

to make the discussion entirely mathematical, but rather to give a flavor of the

techniques that might be required in advanced work.

� � $ % q ' q $ � ! & % " ' (� s t ! q �

Now that we have the basic ideas of algorithm analysis, we can adopt a slightly

more formal approach. In this section we outline the general rules for using Big-

Oh notation. Although we use Big-Oh notation almost exclusively throughout this

text, we also define three other types of algorithm notation that are related to Big-

Oh and used occasionally later on in the text.

DEFINITION: (Big-Oh) is if there are positive constants c
and such that when .

DEFI NI TI ON: (Big-Omega) is if there are positive con-
stants c and such that when .

DEFI NI T I ON: (Big-Theta) is i f and only i f is
 and is .

T N() O F N()()
N0 T N() cF N()≤ N N0≥

T N() Ω F N()()
N0 T N() cF N()≥ N N0≥

T N() Θ F N()() T N()
O F N()() T N() Ω F N()()

BOOK.mkr Page 256 Wednesday, March 14, 2001 1:11 PM

) R � R � � � * � 	 � � � P Q � R � � = U

DEFI NI T I ON: (L ittl e-Oh) i s i f and only i f i s
 and is not .

The first definition, Big-Oh notation, states that there is a point such that

for all values of N that are past this point, is bounded by some multiple of

. This is the suff iciently large N mentioned earlier. Thus, if the running time

 of an algorithm is , then, ignoring constants, we are guaranteeing

that at some point we can bound the running time by a quadratic function. Notice

that if the true running time is linear, then the statement that the running time is

 is technically correct because the inequali ty holds. However,

would be the more precise claim.

] ^ _ ` a b 8 3 3 8 1 8 C / , 0 +
C - 3 3 0 4 / 2 + , - ã A / C
0 + E Z 4 - 2 6 , + Z 0 4
, / 0 - 3 / , - h - 8 2 6
@ + 2 3 8 . - , - . 9

] ^ _ ` a + , _ - 8 3 3 8 1 8 B
C / , 0 + 6 , - / 0 - , 0 4 / 2
+ , - ã A / C 0 + E Z 4 - 2
6 , + Z 0 4 , / 0 - 3 / , - h - B
8 2 6 @ + 2 3 8 . - , - . 9

If we use the traditional inequality operators to compare growth rates, then

the first definition says that the growth rate of is less than or equal to that of

.

The second definition, , called Big-Omega, says that the

growth rate of is greater than or equal to that of . For instance, we

might say that any algorithm that works by examining every possible subse-

quence in the maximum subsequence sum problem must take time

because a quadratic number of subsequences are possible. This is a lower-bound

argument that is used in more advanced analysis. Later in the text, we will see one

example of this argument and demonstrate that any general-purpose sorting algo-

rithm requires time.

T N() o F N()() T N()
O F N()() T N() Θ F N()()

N0

T N()

F N()

T N() O N2()

O N2() O(N)

T N()

F N()

T N() Ω F N()()=

T N() F N()

Ω N2()

Ω N log N()

BOOK.mkr Page 257 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� = X

] ^ _ ` . b , / - 8 3 3 8 1 8 C / , 0 +
- ã A / C 0 + E Z 4 - 2
6 , + Z 0 4 , / 0 - 3 / , - h - B
8 2 6 @ + 2 3 8 . - , - . 9

The third definition, , called Big-Theta, says that the

growth rate of equals the growth rate of . For instance, the maximum

subsequence algorithm shown in Figure 5.5 runs in time. In other words,

the running time is bounded by a quadratic function, and that this bound cannot

be improved because it is also lower-bounded by another quadratic function.

When we use Big-Theta notation, we are providing not only an upper bound on

an algorithm but also assurances that the analysis that leads to the upper bound is

as good (tight) as possible. In spite of the additional precision offered by Big-

Theta, however, Big-Oh is more commonly used, except by researchers in the

algorithm analysis field.

0 ^ / / 1 , ` a b 8 3 3 8 1 8 C / , 0 +
C - 3 3 0 4 / 2 E Z 4 - 2
6 , + Z 0 4 , / 0 - 3 / , - h - B
8 2 6 @ + 2 3 8 . - , - . 9

The final definition, , called Little-Oh, says that the

growth rate of is strictly less than the growth rate of . This function

is different from Big-Oh because Big-Oh allows the possibil ity that the growth

rates are the same. For instance, if the running time of an algorithm is ,

then it is guaranteed to be growing at a slower rate than quadratic (that is, it is a

subquadratic algorithm). Thus a bound of is a better bound than .

Figure 5.9 summarizes these four definitions.

Y 4 , + Z + A 0 C - / . 8 2 6
@ + 2 3 0 / 2 0 3 E C + Z - , B + , B
. - , 0 - , 1 3 E / 2 . , - C / B
0 8 + 2 / C 3 D 1 h + C 3 Z 4 - 2
A 3 8 2 6 	 8 6 B > 4 9

A couple of stylistic notes are in order. First, including constants or low-order

terms inside a Big-Oh is bad style. Do not say or

. In both cases, the correct form is . Sec-

ond, in any analysis that requires a Big-Oh answer, all sorts of shortcuts are possi-

ble. Lower-order terms, leading constants, and relational symbols are all thrown

away.

T N() Θ F N()()=

T N() F N()

Θ N2()

T N() o F N()()=

T N() F N()

o N2()

o N2() Θ N2()

T N() O 2N2()=

T N() O N2 N+()= T N() O N2()=

BOOK.mkr Page 258 Wednesday, March 14, 2001 1:11 PM

) R � R � � � * � 	 � � � P Q � R � � = \

Now that the mathematics have formalized, we can relate it to the analysis of

algorithms. The most basic rule is that the running time of a loop is at most the

running time of the statements inside the loop (including tests) times the number

of iterations. As shown earlier, the initialization and testing of the loop condition

is usually no more dominant than are the statements encompassing the body of

the loop.

Ù 2 3 4 5 / ` 6 - 5 , 7 3 8 9 :
8 3 / 6 A / , / 2 0 - - + â - ,
/ C C 8 2 5 A 0 3 + ? 3 + 1 -
3 8 e - 9

The running time of statements inside a group of nested loops is the running

time of the statements (including tests in the innermost loop) multiplied by the

sizes of all the loops. The running time of a sequence of consecutive loops is

equal to the running time of the dominant loop. The time difference between a

nested loop in which both indices run from 1 to N and two consecutive loops that

are not nested but run over the same indices is the same as the space difference

between a two-dimensional array and two one-dimensional arrays. The first case

is quadratic. The second case is linear because N+N is 2N, which is still .

Occasionally, this simple rule can overestimate the running time, but in most

cases it does not. Even if it does, Big-Oh does not guarantee an exact asymptotic

answer — just an upper bound.

; ~ z < � � ~ z { y ~ = > ? @ A � B B { | x C � = ~ z { D � C ~ z � B | E F A | G z <
H � � I � � � J � � � � � I � � � J K
H � � I � � � J � � � � � I � � � J K
H � � I � � � J � � � � � I � � � J K

G H I J K L M N L Ú R � � � � 	 �
 S
 � R M � � �
 Q � 	 �
 �
 � S Q � �
 �
 � �

O(N)

T N() O F N()()= T N() ≤ F N()

T N() Ω F N()()= T N() ≥ F N()

T N() Θ F N()()= T N() = F N()

BOOK.mkr Page 259 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� F c

 2 / 2 - N , 4 - _ , ` 6 - 5 ,
7 3 8 9 : E 0 4 - , A 2 2 8 2 6
0 8 1 - 8 3 1 - / 3 A , - . / 3
/ 2 / â - , / 6 - + â - , / C C
+ ? 0 4 - 5 + 3 3 8 h C - 8 2 B
5 A 0 3 + ? 3 8 e - [9

The analyses we have performed thus far involved use of a worst-case bound,

which is a guarantees over all inputs of some size. Another form of analysis is the

average-case bound, in which the running time is measured as an average over all

of the possible inputs of size N. The average might differ from the worst case if,

for example, a conditional statement that depends on the particular input causes

an early exit from a loop. We discuss average-case bounds in more detail i n Sec-

tion 5.8. For now, simply note that, the fact that one algorithm has a better worst-

case bound than another algorithm implies nothing about their relative average-

case bounds. However, in many cases average-case and worst-case bounds are

closely correlated. When they are not, the bounds are treated separately.

H � � I � � � J � � � � � I � � � J K

v { O w A � P Q R v { O w A � P Q P v { O w A � S Q T U v { O w A � P Q U

V W W K W W W W W X W K W W W W W Y W K W W W W W Z W K W W W W W [
V W W W K W W \] ^ W W K W W W V W X W K W W W W Y] W K W W W W W Z

V _ W W W \ K \ ^ V W V [W K W V W \ W [W K W W W Y ^] W K W W W W [V
V W _ W W W ` a V K \ [\ X W K W W] b V \ W K W W W [V b

V W W _ W W W ` a V [] W K W Z Y Z V ^ W K W W [\ W Z

G H I J K L M N O c � Ý � R � M R W � Q � � � � 	
 � � R � � � � R �
 � W � ! S
 � M � � �
 Q � � � j � � Q � �
 �
 � 	 �
Q
 Q � � Q Ý � R Þ Q R � � R � Q � � � 	
 � �
 � � �

; ~ z < � � ~ z { y ~ = > ? @ A � B B { | x C � = ~ z { D � C ~ z � B | E F A | G z <

G H I J K L M N L Ú R � � � � 	 �
 S
 � R M � � �
 Q � 	 �
 �
 � S Q � �
 �
 � �
T N() o F N()()= T N() < F N()

N O N3() O N2() O(N log N) O(N)

BOOK.mkr Page 260 Wednesday, March 14, 2001 1:11 PM

) R � R � � � * � 	 � � � P Q � R � � F l

The last Big-Oh item we examine is how the running time grows for each

type of curve, as il lustrated in Figures 5.1 and 5.2. We want a more quantitative

answer to this question: If an algorithm takes time to solve a problem of

size N, how long does it take to solve a larger problem? For instance, how long

does it take to solve a problem when there is 10 times as much input? The

answers are shown in Figure 5.10. However, we want to answer the question with-

out running the program and hope our analytical answers will agree with the

observed behavior.

We begin by examining the cubic algorithm. We assume that the running time

is reasonably approximated by . Consequently,

. Mathematical manipulation yields

 .

 ? 0 4 - 3 8 e - + ? 0 4 - 8 2 B

5 A 0 8 2 @ , - / 3 - 3 h D /
? / @ 0 + , + ? d E 0 4 - , A 2 B
2 8 2 6 0 8 1 - + ? / @ A h 8 @
5 , + 6 , / 1 8 2 @ , - / 3 - 3
h D / ? / @ 0 + , + ?
, + A 6 4 C D d e 9

Thus the running time of a cubic program increases by a factor of 1,000 (assum-

ing N is sufficiently large) when the amount of input is increased by a factor of

10. This relationship is roughly confirmed by the increase in running time from

N = 100 to 1,000 shown in Figure 5.10. Recall that we do not expect an exact

answer — just a reasonable approximation. We would also expect that for

N = 10,000, the running time would increase another 1,000-fold. The result would

be that a cubic algorithm requires roughly 35 minutes of computation time. In

general, if the amount of the input increases by a factor of f, then the cubic algo-

rithm’s running time increases by a factor of .

T(N)

T(N) cN3=

T 10N() c 10N()3=

T 10N() 1000cN3 1000T(N)= =

f 3

BOOK.mkr Page 261 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� F �

 ? 0 4 - 3 8 e - + ? 0 4 - 8 2 B
5 A 0 8 2 @ , - / 3 - 3 h D /
? / @ 0 + , + ? d E 0 4 - , A 2 B
2 8 2 6 0 8 1 - + ? / ã A / B
. , / 0 8 @ 5 , + 6 , / 1 8 2 B
@ , - / 3 - 3 h D / ? / @ 0 + ,
+ ? , + A 6 4 C D d f 9

We can perform similar calculations for quadratic and linear algorithms. For

the quadratic algorithm, we assume that . It follows that

. When we expand, we obtain

.

So when the input size increases by a factor of 10, the running time of a quadratic

program increases by a factor of approximately 100. This relationship is also con-

firmed in Figure 5.10. In general, an f-fold increase in input size yields an -fold

increase in running time for a quadratic algorithm.

 ? 0 4 - 3 8 e - + ? 0 4 - 8 2 B
5 A 0 8 2 @ , - / 3 - 3 h D /
? / @ 0 + , + ? d E 0 4 - 2 0 4 -
, A 2 2 8 2 6 0 8 1 - + ? / C 8 2 B
- / , 5 , + 6 , / 1 / C 3 + 8 2 B
@ , - / 3 - 3 h D / ? / @ 0 + ,
+ ? d 9 Y 4 8 3 8 3 0 4 - 5 , - B
? - , , - . , A 2 2 8 2 6 0 8 1 -
? + , / 2 / C 6 + , 8 0 4 1 9

Finally, for a linear algorithm, a similar calculation shows that a 10-fold

increase in input size results in a 10-fold increase in running time. Again, this

relationship has been confirmed experimentally in Figure 5.10. Note, however,

that for a linear program, the term sufficiently large means a somewhat higher

input size than for the other programs. The reason is that of the overhead of

0.000003 sec that is used in all cases. For a linear program, this term is stil l signif-

icant for moderate input sizes.

The analysis used here does not work when there are logarithmic terms.

When an algorithm is presented with 10 times as much input, the

running time increases by a factor slightly larger than ten. Specifically, we have

. When we expand we obtain

.

Here . As N gets very large, the ratio gets closer

and closer to 10 because gets smaller and smaller

T N() cN2=

T 10N() c 10N()2=

T 10N() 100cN2 100T N()= =

f 2

O(N log N)

T 10N() c 10N() 10N()log=

T 10N() 10cN 10N()log 10cN Nlog 10cN 10log+ 10T N() c'N+= = =

c' 10c 10log= T 10N() T N()⁄

c'N T N()⁄ 10 10log() Nlog⁄≈

BOOK.mkr Page 262 Wednesday, March 14, 2001 1:11 PM

k � R g
 	 � � �
 � � � F �

with increasing N. Consequently, i f the algorithm is competitive with a li near

algorithm for very large N, it is likely to remain competitive for slightly larger N.

Does all this mean that quadratic and cubic algorithms are useless? The

answer is no. In some cases, the most eff icient algorithms known are quadratic or

cubic. In others, the most efficient algorithm is even worse (exponential). Further-

more, when the amount of input is small , any algorithm will do. Frequently the

algorithms that are not asymptotically eff icient are nonetheless easy to program.

For small i nputs, that is the way to go. Finally, a good way to test a complex linear

algorithm is to compare its output with an exhaustive search algorithm. In Section

5.8 we discuss some other limitations of the Big-Oh model.

� � � u � q h # " � $ % � � &

The list of typical growth rate functions includes several entries containing the

logarithm. A logarithm is the exponent that indicates the power to which a num-

ber (the base) is raised to produce a given number. In this section we look in more

detail at the mathematics behind the logarithm. In Section 5.6 we show its use in a

simple algorithm.

Y 4 - 1 3 _ - 4 ^ / b + + ? [
à 0 + 0 4 - h / 3 - i á 8 3 0 4 -
â / C A - j 3 A @ 4 0 4 / 0 i
, / 8 3 - . 0 + 0 4 - 5 + Z - ,
+ ? j - ã A / C 3 [9 	 D
. - ? / A C 0 E 0 4 - h / 3 - + ?
0 4 - C + 6 / , 8 0 4 1 8 3 i 9

We begin with the formal definition and then follow with more intuitive view-

points.

DEFINITION: For any , if .

In this definition, B is the base of the logarithm. In computer science, when

the base is omitted, it defaults to 2, which is natural for several reasons, as we

B N, 0> NBlog K= BK N=

BOOK.mkr Page 263 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� F �

show later in the chapter. We will prove one mathematical theorem, Theorem 5.4,

to show that, as far as Big-Oh notation is concerned, the base is unimportant, and

also to show how relations that involve logarithms can be derived.

In the rest of the text, we use base 2 logarithms exclusively. An important fact

about the logarithm is that it grows slowly. Because 210 = 1,024, log 1,024 = 10.

Additional calculations show that the logarithm of 1,000,000 is roughly 20, and

the logarithm of 1,000,000,000 is only 30. Consequently, performance of an

 algorithm is much closer to a linear algorithm than to a qua-

dratic algorithm for even moderately large amounts of input. Before we

look at a realistic algorithm whose running time includes the logarithm, let us

look at a few examples of how the logarithm comes into play.

Ñ � ¤ ½ � ¥ Ñ � ¥ ¦ § ¡ � Ñ ¢ ¦
k ° l ´ ­ ¬ ¯ Ó © ³ µ ­ ® « ® « Ô Õ © ® « · ³ ° ® « À ® « µ « ¬ ³ ² Ä ° ¬ µ « Ä Õ ³ © ª « © ¬ ³ « Æ « ® µ m

The base does not matter. For any constant , . Theorem 5.4

Let . Then . Let . Then . Thus

. Hence, we have , which implies that

. Therefore , thus

completing the proof.

Proof

B 1> NBlog O(log N)=

NBlog K= BK N= C Blog= 2C B=
BK 2C()K N= = 2CK N=
log N CK C NBlog= = NBlog Nlog() Blog()⁄=

O(N log N) O(N)

O N2()

BOOK.mkr Page 264 Wednesday, March 14, 2001 1:11 PM

k � R g
 	 � � �
 � � � F =

Y 4 - 2 A 1 h - , + ? h 8 0 3
, - ã A 8 , - . 0 + , - 5 , - B
3 - 2 0 2 A 1 h - , 3 8 3
C + 6 / , 8 0 4 1 8 @ 9

A 16-bit shor t integer represents the 65,536 integers in the range –32,768 to

32,767. In general, B bits are sufficient to represent different integers. Thus

the number of bits B required to represent N consecutive integers satisfies the

equation . Hence, we obtain , so the minimum number of bits is

. (Here is the ceiling function and represents the smallest integer that

is at least as large as X. The corresponding floor function represents the larg-

est integer that is at least as small as X.)

¦ ¢ ¾ ¢ ¥ ¤ ¢ n n ¼ ¡ Ñ £ � Ð
o ³ ­ ® ³ © ¬ Æ ± ® ° ´ ¶ ¸ ° l ´ ­ ¬ ¯ ³ © ´ « µ µ ¸ ° Õ ¹ · p Ó « · ° Õ Ó ¹ « · Ó « ± ° ® « © ³
© µ ­ ³ ¹ « ­ µ ³ ­ µ ¹ ­ ® Æ « ­ µ ² m

Y 4 - 4 , q , - / , : : 3 8 `
7 1 ^ 9 _ q 4 ^ 9 6 ^ q 1 , 4 + C . 3
0 4 / 0 E 3 0 / , 0 8 2 6 / 0 r E
Z - @ / 2 , - 5 - / 0 - . C D
. + A h C - + 2 C D C + 6 / B
, 8 0 4 1 8 @ / C C D 1 / 2 D
0 8 1 - 3 A 2 0 8 C Z - , - / @ 4

[9

Suppose we start with $1 and double it every year. How long would it take to save

a mill ion dollars? In this case, after 1 yr we would have $2; after 2 yr, $4; after 3

yr, $8, and so on. In general, after K years we would have dollars, so we want

to find the smallest K satisfying . This is the same equation as before, so

. After 20 yr, we would have over a milli on dollars. The repeated

doubli ng principle holds that, starting from 1, we can repeatedly double only

 times until we reach N.

¦ ¢ ¾ ¢ ¥ ¤ ¢ n ¿ ¥ £ s � Ð
o ³ ­ ® ³ © ¬ Æ ± ® ° ´ ¶ © ± ² © µ ® « À « ­ ³ « · ¹ ¯ ¸ ­ ¹ ª « · ¶ ¸ ° l ´ ­ ¬ ¯ © ³ « ® ­ ³ © ° ¬ µ
´ Õ µ ³ Ó « ­ À À ¹ © « · ³ ° ´ ­ t « ² µ ´ ­ ¹ ¹ « ® ³ ¸ ­ ¬ ° ® « Ô Õ ­ ¹ ³ ° u m

2B

2B N≥ B log N≥

log N X

X

X 1=

2K

2K N≥

K log N=

log N

X N=

BOOK.mkr Page 265 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� F F

Y 4 - 4 , q , - / , : b - N `
1 ^ 9 _ q 4 ^ 9 6 ^ q 1 , 4 + C . 3
0 4 / 0 E 3 0 / , 0 8 2 6 / 0 [E
Z - @ / 2 4 / C â - + 2 C D
C + 6 / , 8 0 4 1 8 @ / C C D
1 / 2 D 0 8 1 - 3 9 Y 4 8 3
5 , + @ - 3 3 8 3 A 3 - . 0 +
+ h 0 / 8 2 C + 6 / , 8 0 4 1 8 @
, + A 0 8 2 - 3 ? + , 3 - / , @ 4 B
8 2 6 9

Y 4 - [0 4 b - 4 + 3 9 ^ 6
9 8 + 7 , 4 8 3 0 4 - 3 A 1
+ ? 0 4 - , - @ 8 5 , + @ / C 3 + ?
0 4 - ? 8 , 3 0 [5 + 3 8 0 8 â - 8 2 B
0 - 6 - , 3 9 Y 4 - 6 , + Z 0 4
, / 0 - + ? 0 4 - 4 / , B
1 + 2 8 @ 2 A 1 h - , 8 3
C + 6 / , 8 0 4 1 8 @ 9

If the division rounds up to the nearest integer (or is real, not integer, division), we

have the same problem as with repeated doubling, except that we are going in the

opposite direction. Once again the answer is iterations. If the division

rounds down, the answer is . We can show the difference by starting with

. Two divisions are necessary, unless the division rounds down, in which

case only one is needed.

Many of the algorithms examined in this text will have logarithms, intro-

duced because of the repeated halving principle, which holds that, starting at N,

we can halve only logarithmically many times. In other words, an algorithm is

 if it takes constant () time to cut the problem size by a constant

fraction (which is usually). This condition follows directly from the fact that

there wil l be iterations of the loop. Any constant fraction wil l do

because the fraction is reflected in the base of the logarithm, and Theorem 5.4

tells us that the base does not matter.

All of the remaining occurrences of logarithms are introduced (either directly

or indirectly) by applying Theorem 5.5. This theorem concerns the Nth harmonic

number, which is the sum of the reciprocals of the first N positive integers, and

states that the Nth harmonic number, HN, satisfies . The proof

uses calculus, but you do not need to understand the proof to use the theorem.

log N

log N

X 3=

O(log N) O 1()

1 2⁄

O(log N)

HN Θ log N()=

Theorem 5.5 Let . Then . A more precise estimate is

.

HN 1 i⁄
i 1=
N

∑= HN Θ log N()=
Nln 0.577+

BOOK.mkr Page 266 Wednesday, March 14, 2001 1:11 PM

Ü
 �
 � � Ü R � � � � � � 	 ß �
 Ý � R � � F U

The next section shows how the repeated halving principle leads to an effi-

cient searching algorithm.

� � v Ê � � � % Í Ê q � $ Í � % ' " Î $ # Ë ! q &

An important use of computers is looking up data. If the data are not allowed to

change (e.g., it is stored on a CD-ROM), we say that the data are static. A static

search accesses data that are never altered. The static searching problem is natu-

rally formulated as follows.

½ ¤ ¥ ¤ � » ½ ¢ ¥ ¦ » ¿ � Ð ¾ ¦ ¼ Ñ £ ¢ �
¨ © ª « ¬ ­ ¬ © ¬ ³ « Æ « ® p ­ ¬ · ­ ¬ ­ ® ® ­ ¯ w ¶ ® « ³ Õ ® ¬ ³ ¸ « À ° µ © ³ © ° ¬ ° ± p © ¬ w ° ®
­ ¬ © ¬ · © Ä ­ ³ © ° ¬ ³ ¸ ­ ³ © ³ © µ ¬ ° ³ À ® « µ « ¬ ³ º x ± p ° Ä Ä Õ ® µ ´ ° ® « ³ ¸ ­ ¬ ° ¬ Ä « ¶
® « ³ Õ ® ¬ ­ ¬ ¯ ° Ä Ä Õ ® ® « ¬ Ä « º Ö ¸ « ­ ® ® ­ ¯ w © µ ¬ « ª « ® ­ ¹ ³ « ® « · º

An example of static searching is looking up a person in the telephone book.

The eff iciency of a static searching algorithm depends on whether the array being

searched is sorted. In the case of the telephone book, searching by name is fast,

but searching by phone number is hopeless (for humans). In this section, we

examine some solutions to the static searching problem.

Proof The intuition of the proof is that a discrete sum is well approximated by

the (continuous) integral. The proof uses a construction to show that the

sum can be bounded above and below by , with appropriate lim-

its. Details are left as Exercise 5.18.

HN
xd
x
-----∫

BOOK.mkr Page 267 Wednesday, March 14, 2001 1:11 PM

ä å y å ç z ê { ð ê
 û î � ø z ê � ú | é

Ù 5 , } 8 , 9 / ^ - 1 5 , - 4 6 b
3 0 - 5 3 0 4 , + A 6 4 0 4 -
. / 0 / 3 - ã A - 2 0 8 / C C D A 2 0 8 C
/ 1 / 0 @ 4 8 3 ? + A 2 . 9

When the input array is not sorted, we have little choice but to do a linear sequen-

tial search, that steps through the array sequentially until a match is found. The

complexity of the algorithm is analyzed in three ways. First, we provide the cost

of an unsuccessful search. Then, we give the worst-case cost of a successful

search. Finall y, we find the average cost of a successful search. Analyzing suc-

cessful and unsuccessful searches separately is typical. Unsuccessful searches

usuall y are more time consuming than are successful searches (just think about

the last time you lost something in your house). For sequential searching, the

analysis is straightforward.

Ù 3 - ã A - 2 0 8 / C 3 - / , @ 4 8 3
C 8 2 - / , 9

An unsuccessful search requires the examination of every item in the array,

so the time will be . In the worst case, a successful search, too, requires the

examination of every item in the array because we might not find a match until

the last item. Thus the worst-case running time for a successful search is also lin-

ear. On average, however, we search only half of the array. That is, for every suc-

cessful search in position i, there is a corresponding successful search in position

 (assuming we start numbering from 0). However, is still .

As mentioned earlier in the chapter, all these Big-Oh terms should correctly be

Big-Theta terms. However, the use of Big-Oh is more popular.

O(N)

N 1– i– N 2⁄ O(N)

BOOK.mkr Page 268 Wednesday, March 14, 2001 1:11 PM

Ü
 �
 � � Ü R � � � � � � 	 ß �
 Ý � R � � F \

ä å y å � ~ î
 � ú � z ê � ú | é

 ? 0 4 - 8 2 5 A 0 / , , / D 8 3
3 + , 0 - . E Z - @ / 2 A 3 -
0 4 - 7 ^ 9 - 4 � 5 , - 4 6 b E
Z 4 8 @ 4 Z - 5 - , ? + , 1
? , + 1 0 4 - 1 8 . . C - + ? 0 4 -
/ , , / D , / 0 4 - , 0 4 / 2 0 4 -
- 2 . 9

If the input array has been sorted, we have an alternative to the sequential search,

the binary search, which is performed from the middle of the array rather than

the end. We keep track of l ow and hi gh, which delimit the portion of the array

in which an item, if present, must reside. Initially, the range is from 0 to . If

l ow is larger than hi gh, we know that the item is not present, so we return

NOT_FOUND. Otherwise, we let mid be the halfway point of the range (round-

ing down if the range has an even number of elements) and compare the item we

are searching for with the item in position mi d. If we find a match, we are done

and can return. If the item we are searching for is less than the item in position

mi d, then it must reside in the range l ow to mi d- 1. If it is greater, then it must

reside in the range mi d+1 to hi gh. In Figure 5.11, lines 17 to 20 alter the possi-

ble range, essentially cutting it in half. By the repeated halving principle, we

know that the number of iterations will be .

Y 4 - 7 ^ 9 - 4 � 5 , - 4 6 b 8 3
C + 6 / , 8 0 4 1 8 @ h - @ / A 3 -
0 4 - 3 - / , @ 4 , / 2 6 - 8 3
4 / C â - . 8 2 - / @ 4 8 0 - , / B
0 8 + 2 9

For an unsuccessful search, the number of iterations in the loop is

. The reason is that we halve the range in each iteration (rounding

down if the range has an odd number of elements); we add 1 because the final

range encompasses zero elements. For a successful search, the worst case is

 iterations because in the worst case we get down to a range of only one

element. The average case is only one iteration better because half of the ele-

ments require the worst case for their search, a quarter of the elements save one

iteration, and only one in elements will save i iterations from the worst case.

The mathematics involves computing the weighted average by calculating the

N 1–

O(log N)

log N 1+

log N

2i

BOOK.mkr Page 269 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� U c

sum of a finite series. The bottom line, however, is that the running time for each

search is . In Exercise 5.20 you are asked to complete the calculation.

For reasonably large values of N, the binary search outperforms the sequen-

tial search. For instance, if N is 1,000, then on average a successful sequential

search requires about 500 comparisons. The average binary search, using the pre-

vious formula, requires , or eight iterations for a successful search.

Each iteration uses 1.5 comparisons on average (sometimes 1; other times, 2), so

the total is 12 comparisons for a successful search. The binary search wins by

even more in the worst case or when searches are unsuccessful.

ý
 / * *þ
 * P er f or ms t he s t andar d b i nar y s ear chÿ
 * u s i ng t wo c ompar i sons p er l evel .�
 * @ r et ur n i ndex w her e i t em i s f ound, o r N OT_FOUND.�
 * /�
 publ i c s t at i c i nt b i nar ySear ch(C ompar abl e [] a ,�
 Compar abl e x)�
 {�
 i nt l ow = 0 ;ý �
 i nt h i gh = a . l engt h - 1 ;ý ý
 i nt m i d;ý þ

ý ÿ
 whi l e(l ow < = h i gh)ý �
 {ý �
 mi d = (l ow + h i gh) / 2 ;ý �

ý �
 i f (a [m i d] . compar eTo(x) < 0)ý �
 l ow = m i d + 1 ;ý �
 el se i f (a [m i d] . compar eTo(x) > 0)þ �
 hi gh = m i d - 1 ;þ ý
 el seþ þ
 r et ur n m i d;þ ÿ
 }þ �

þ �
 r et ur n N OT_FOUND; / / - 1þ �
 }

G H I J K L M N O O * � � � � Ý � � � � � � R � � � �
 � �
 Q � R �
 � � R R � � � � �
 � T � � � �
 � �

O(log N)

log N 1–

BOOK.mkr Page 270 Wednesday, March 14, 2001 1:11 PM

Ü
 �
 � � Ü R � � � � � � 	 ß �
 Ý � R � � U l

> 5 0 8 1 8 e 8 2 6 0 4 - h 8 2 / , D
3 - / , @ 4 @ / 2 @ A 0 0 4 -
2 A 1 h - , + ? @ + 1 5 / , 8 B
3 + 2 3 , + A 6 4 C D 8 2 4 / C ? 9

If we want to make the binary search even faster, we need to make the inner

loop tighter. A possible strategy is to remove the (implicit) test for a successful

search from that inner loop and shrink the range down to one item in all cases.

Then we can use a single test outside of the loop to determine if the item is in the

array or cannot be found, as shown in Figure 5.12 (page 272). If the item we are

searching for in Figure 5.12 is not larger than the item in the mi d position, then it

is in the range that includes the mi d position. When we break the loop, the sub-

range is 1, and we can test to see whether we have a match.

In the revised algorithm, the number of iterations is always because

we always shrink the range in half, possibly by rounding down. Thus, the number

of comparisons used is always .

Binary search is surprisingly tricky to code. Exercise 5.6 illustrates some

common errors.

Notice that for small N, such as values smaller than 6, the binary search

might not be worth using. It uses roughly the same number of comparisons for a

typical successful search, but it has the overhead of line 18 in each iteration.

Indeed, the last few iterations of the binary search progress slowly. One can

adopt a hybrid strategy in which the binary search loop terminates when the

range is small and applies a sequential scan to finish. Similarly, people search a

phone book nonsequentially. Once they have narrowed the range to a column,

they perform a sequential scan. The scan of a telephone book is not sequential,

but it also is not a binary search. Instead it is more like the algorithm discussed in

the next section.

log N

log N 1+

BOOK.mkr Page 271 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� U �

ä å y å æ �
 û ê ú � ï ø � û î ï
 z ê � ú | é

The binary search is very fast at searching a sorted static array. In fact, it is so fast

that we would rarely use anything else. A static searching method that is some-

times faster, however, is an interpolation search, which has better Big-Oh perfor-

mance on aveage than binary earch but has limited practicalit y and a bad worst

case. For an interpolation search to be practical, two assumptions must be satis-

fied:

ý
 / * *þ
 * P er f or ms t he s t andar d b i nar y s ear chÿ
 * u s i ng o ne c ompar i son p er l evel .�
 * @ r et ur n i ndex w her e i t em i s f ound o f N OT_FOUND.�
 * /�
 publ i c s t at i c i nt b i nar ySear ch(C ompar abl e [] a ,�
 Compar abl e x)�
 {�
 i f (a . l engt h = = 0)ý �
 r et ur n N OT_FOUND;ý ý

ý þ
 i nt l ow = 0 ;ý ÿ
 i nt h i gh = a . l engt h - 1 ;ý �
 i nt m i d;ý �

ý �
 whi l e(l ow < h i gh)ý �
 {ý �
 mi d = (l ow + h i gh) / 2 ;ý �

þ �
 i f (a [m i d] . compar eTo(x) < 0)þ ý
 l ow = m i d + 1 ;þ þ
 el seþ ÿ
 hi gh = m i d;þ �
 }þ �

þ �
 i f (a [l ow] . compar eTo(x) = = 0)þ �
 r et ur n l ow;þ �

þ �
 r et ur n N OT_FOUND;ÿ �
 }ÿ ý
}

G H I J K L M N O V * � � � � � � R � � � � Q � � � 	
 �
 � � � � �
 � T � � � �
 � �

BOOK.mkr Page 272 Wednesday, March 14, 2001 1:11 PM

Ü
 �
 � � Ü R � � � � � � 	 ß �
 Ý � R � � U �

1. Each access must be very expensive compared to a typical
instruction. For example, the array might be on a disk instead of
in memory, and each comparison requires a disk access.

2. The data must not only be sorted; it must also be fairly uniformly
distributed. For example, a phone book is fairly uniformly distrib-
uted. If the input items are { 1, 2, 4, 8, 16, } , the distribution is
not uniform.

These assumptions are quite restrictive, so you might never use an interpola-

tion search. But it is interesting to see that there is more than one way to solve a

problem and that no algorithm, not even the classic binary search, is the best in

all situations.

The interpolation search requires that we spend more time to make an accu-

rate guess regarding where the item might be. The binary search always uses the

midpoint. However, searching for Hank Aaron in the middle of the phone book

would be silly; somewhere near the start clearly would be more appropriate.

Thus, instead of mi d, we use next to indicate the next item that we wil l try to

access.

Here’s an example of what might work well. Suppose that the range contains

1,000 items, the low item in the range is 1,000, the high item in the range is

1,000,000, and we are searching for an item of value 12,000. If the items are uni-

formly distributed, then we expect to find a match somewhere near the twelfth

item. The applicable formula is

.

The subtraction of 1 is a technical adjustment that has been shown to perform

well in practice. Clearly, this calculation is more costly then the binary search

…

next low x a low[]–
a high[] a low[]–
--- high low– 1–()×+=

BOOK.mkr Page 273 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� U �

calculation. It involves an extra division (the division by 2 in the binary search is

reall y just a bit shift, just as dividing by 10 is easy for humans), multiplication,

and four subtractions. These calculations need to be done using floating-point

operations. One iteration may be slower than the complete binary search. How-

ever, if the cost of these calculations is insignificant when compared to the cost

of accessing an item, speed is immaterial; we care only about the number of iter-

ations.

� 9 / , 4 q 3 1 - / ^ 3 9 5 , - 4 6 b
4 / 3 / h - 0 0 - , 	 8 6 B > 4
h + A 2 . + 2 / â - , / 6 -
0 4 / 2 . + - 3 h 8 2 / , D
3 - / , @ 4 E h A 0 4 / 3 C 8 1 8 0 - .
5 , / @ 0 8 @ / C 8 0 D / 2 . /
h / . Z + , 3 0 @ / 3 - 9

In the worst case, where data is not uniformly distributed, the running time

could be linear and every item might be examined. In Exercise 5.19 you are

asked to construct such a case. However, if we assume that the items are reason-

ably distributed, as with a phone book, the average number of comparisons has

been shown to be . In other words, we apply the logarithm twice in

succession. For N = 4 bil lion, is about 32 and is roughly 5. Of

course, there are some hidden constants in the Big-Oh notation, but the extra log-

arithm can lower the number of iterations considerably, so long as a bad case

does not crop up. Proving the result rigorously, however, is quite complicated.

� � � É � q Í � % ' " � ' ! " # $ % � � & ' � ! (� % �

Once we have performed an algorithm analysis, we want to determine whether it

is correct and as good as we can possibly make it. One way to do this is to code

the program and see if the empiricall y observed running time matches the run-

ning time predicted by the analysis.

O Nloglog()

log N log Nlog

BOOK.mkr Page 274 Wednesday, March 14, 2001 1:11 PM

Û � R � � � � 	 � � � � 	
 � �
 � � � � � � � � � � � U =

When N increases by a factor of 10, the running time goes up by a factor of

ten for linear programs, 100 for quadratic programs, and 1,000 for cubic pro-

grams. Programs that run in take slightly more than 10 times as

long to run under the same circumstances. These increases can be hard to spot if

the lower-order terms have relatively large coefficients and N is not large enough.

An example is the jump from N = 10 to N = 100 in the running time for the vari-

ous implementations of the maximum contiguous subsequence sum problem.

Differentiating linear programs from programs, based purely on

empirical evidence, also can be very difficult.

Another commonly used trick to verify that some program is is to

compute the values for a range of N (usually spaced out by factors

of two), where is the empirically observed running time. If is a

tight answer for the running time, then the computed values converge to a posi-

tive constant. If is an overestimate, the values converge to zero. If is

an underestimate, and hence wrong, the values diverge.

As an example, suppose that we write a program to perform N random

searches using the binary search algorithm. Since each search is logarithmic, we

expect the total running time of the program to be . Figure 5.13

shows the actual observed running time for the routine for various input sizes on

a real (but extremely slow) computer. The last column is most likely the converg-

ing column and thus confirms our analysis, whereas the increasing numbers for

 suggest that is an underestimate and the quickly decreasing values

for suggest that is an overestimate.

O(N log N)

O(N log N)

O F N()()

T N() F N()⁄

T N() F N()

F N() F N()

O(N log N)

T N⁄ O(N)

T N2⁄ O N2()

BOOK.mkr Page 275 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� U F

Note in particular that we do not have definitive convergence. One problem

is that the clock that we used to time the program ticks only every 10 ms. Note

also that there is not a great difference between and . Cer-

tainly an algorithm is much closer to being linear than being qua-

dratic. Finally, note that the machine in this example has enough memory to store

640,000 objects (in the case of this experiment, integers). If your machine does

not have this much available memory, then you will not be able to reproduce sim-

ilar results.

� � � h % & % � � � % # ' � # r & % " ' (� ' � ! (� % �

Big-Oh analysis is a very effective tool, but it does have limitations. As already

mentioned, its use is not appropriate for small amounts of input. For smal l

� � � � { � �
� � { = = { B � y | x � B �

V W _ W W W V W W W K W V W W W W W W W K W W W W W V W W W K W W W b] \] b
\ W _ W W W \ W W W K W V W W W W W W W K W W W W W W] W W K W W W Z X X X W
Y W _ W W W Y Y W W K W V V W W W W W W K W W W W W W \ b W K W W W b V X] [
^ W _ W W W X [W W K W V V Z \] W W W K W W W W W W V] W K W W W b V [b [

V Z W _ W W W V _ X Z W W K W V \ \] W W W W K W W W W W W W ^ W K W W W b W ^ Z W
[\ W _ W W W Y _ V b W W K W V [W [V \] W K W W W W W W W Y W K W W W b V \] b
Z Y W _ W W W ^ _ b b W W K W V [b W [V [W K W W W W W W W \ W K W W W b V W Y Z

G H I J K L M N O � i � T � � � � � � � Q � � � � 	
 � � R S
 � � Ý � � � � � � R � � � � R � � � � � � � �
 R � � � � � �

O(N) O(N log N)

O(N log N)

N T T N⁄ T N2⁄ T N log N()⁄

BOOK.mkr Page 276 Wednesday, March 14, 2001 1:11 PM

g � � �
 �
 �
 � �
 S * � 	 � � � � � � � � � � � � U U

amounts of input, use the simplest algorithm. Also, for a particular algorithm, the

constant implied by the Big-Oh may be too large to be practical. For example, if

one algorithm’s running time is governed by the formula and another

has a running time of , then the first algorithm would most likely be bet-

ter, even though its growth rate is larger. Large constants can come into play

when an algorithm is excessively complex. They also come into play because our

analysis disregards constants and thus cannot differentiate between things li ke

memory access (which is cheap) and disk access (which typically is many thou-

sand times more expensive). Our analysis assumes infinite memory, but in appli-

cations involving large data sets, lack of sufficient memory can be a severe

problem.

� + , 3 - @ / 3 - 8 3 3 + 1 - B
0 8 1 - 3 A 2 @ + 1 1 + 2 / 2 .
@ / 2 h - 3 / ? - C D 8 6 2 + , - . 9
Ù 0 + 0 4 - , 0 8 1 - 3 E 8 0 8 3
â - , D @ + 1 1 + 2 / 2 .
@ / 2 2 + 0 h - 8 6 2 + , - . 9

Sometimes, even when constants and lower-order terms are considered, the

analysis is shown empirically to be an overestimate. In this case, the analysis

needs to be tightened (usually by a clever observation). Or the average-case run-

ning time bound may be significantly less than the worst-case running time

bound, and so no improvement in the bound is possible. For many complicated

algorithms the worst-case bound is achievable by some bad input, but in practice

it is usually an overestimate. Two examples are the sorting algorithms Shellsort

and quicksort (both described in Chapter 8).

2N log N

1000N

BOOK.mkr Page 277 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� U X

Ù â - , / 6 - B @ / 3 - / 2 / C D B
3 8 3 8 3 / C 1 + 3 0 / C Z / D 3
1 A @ 4 1 + , - . 8 ? ? 8 @ A C 0
0 4 / 2 Z + , 3 0 B @ / 3 - / 2 / C B
D 3 8 3 9

However, worst-case bounds are usually easier to obtain than their average-

case counterparts. For example, a mathematical analysis of the average-case run-

ning time of Shellsort has not been obtained. Sometimes, merely defining what

average means is diff icult. We use a worst-case analysis because it is expedient

and also because, in most instances, the worst-case analysis is very meaningful.

In the course of performing the analysis, we frequently can tell whether it will

apply to the average case.

z ð ü ü � ú �

In this chapter we introduced algorithm analysis and showed that algorithmic

decisions generall y influence the running time of a program much more than

programming tricks do. We also showed the huge difference between the running

times for quadratic and linear programs and il lustrated that cubic algorithms are,

for the most part, unsatisfactory. We examined an algorithm that could be viewed

as the basis for our first data structure. The binary search efficiently supports

static operations (i.e., searching but not updating), thereby providing a logarith-

mic worst-case search. Later in the text we examine dynamic data structures that

efficiently support updates (both insertion and deletion).

In Chapter 6 we discuss some of the data structures and algorithms included

in Java’s Collections API. We also look at some applications of data structures

and discuss their efficiency.

BOOK.mkr Page 278 Wednesday, March 14, 2001 1:11 PM

� Ý � R �
 �
 S
 � R) � � R � U \

ë ì � ê | û ñ ï � û é ê � � ü ê

average-case bound Measurement of running time as an average over all the
possible inputs of size N. (260)

Big-Oh The notation used to capture the most dominant term in a function; it

is similar to less than or equal to when growth rates are being considered.

(239)

Big-Omega The notation similar to greater than or equal to when growth rates

are being considered. (257)

Big-Theta The notation similar to equal to when growth rates are being con-

sidered. (258)

binary search The search method used if the input array has been sorted and

is performed from the middle rather than the end. The binary search is

logarithmic because the search range is halved in each iteration. (269)

harmonic numbers The Nth harmonic number is the sum of the reciprocals

of the first N positive integers. The growth rate of the harmonic numbers

is logarithmic. (266)

interpolation search A static searching algorithm that has better Big-Oh per-

formance on average than binary search but has limited practicali ty and a

bad worst case. (274)

linear time algor ithm An algorithm that causes the running time to grow as

. If the size of the input increases by a factor of f, then the running

time also increases by a factor of f. It is the preferred running time for an

algorithm. (262)

O(N)

BOOK.mkr Page 279 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� X c

Little-Oh The notation similar to less than when growth rates are being con-

sidered. (258)

logar ithm The exponent that indicates the power to which a number is raised

to produce a given number. For example, the logarithm of N (to the base

2) is the value X such that 2 raised to the power of X equals N. (263)

repeated-doubling pr inciple Holds that, starting at 1, repeated doubling can

occur only logarithmically many times until we reach N. (265)

repeated-halving pr inciple Holds that, starting at N, repeated halving can

occur only logarithmically many times until we reach 1. This process is

used to obtain logarithmic routines for searching. (266)

sequential search A linear search method that steps through an array until a

match is found. (268)

static search Accesses data that is never altered. (267)

subquadratic An algorithm whose running time is strictly slower than qua-

dratic, which can be written as . (258)

worst-case bound A guarantee over all i nputs of some size. (259)

� ï ü ü ï
 � ú ú ï ú ñ

1. For nested loops, the total time is affected by the product of the loop sizes.

For consecutive loops, it is not.

2. Do not just blindly count the number of loops. A pair of nested loops that

each run from 1 to accounts for time.

o N2()

N2 O N4()

BOOK.mkr Page 280 Wednesday, March 14, 2001 1:11 PM

� �
 � R ; �
 R � � R
 � X l

3. Do not write expressions such as or . Only the dom-

inant term, with the leading constant removed, is needed.

4. Use equalities with Big-Oh, Big-Omega, and so on. Writing that the run-

ning time is makes no sense because Big-Oh is an upper bound.

Do not write that the running time is ; if the intention is to say

that the running time is strictly less than quadratic, use Little-Oh notation.

5. Use Big-Omega, not Big-Oh, to express a lower bound.

6. Use the logarithm to describe the running time for a problem solved by

halving its size in constant time. If it takes more than constant time to

halve the problem, the logarithm does not apply.

7. The base (if it is a constant) of the logarithm is irrelevant for the purposes

of Big-Oh. To include it is an error.

ë
 û é ê �
 û ê ú
 ê û

The three maximum contiguous subsequence sum algorithms, as well as a fourth

taken from Section 7.5, are available, along with a mai n that conducts the timing

tests.

MaxSumTest.java Contains four algorithms for the maximum subse-

quence sum problem.

BinarySearch.java Contains the binary search shown in Figure 5.11.

The code in Figure 5.12 is not provided, but a

similar version that is part of the Collections API

O 2N2() O N2 N+()

O> N2()

O< N2()

BOOK.mkr Page 281 Wednesday, March 14, 2001 1:11 PM

� � 	
 � �
 � � � � � � � � � �� X �

and is implemented in Figure 6.15 is in

Arr ays.java as part of wei ss. ut i l .

� � � � � � � � �

� � � � � �

5.1. Balls are drawn from a box as specified in Theorem 5.1 in the combina-

tions given in (a) – (d). What are the corresponding values of i, j, and k?

a. Red, 5, 6

b. Blue, 5, 6

c. Blue, 3, Red

d. 6, 5, Red

5.2. Why isn’t an implementation based solely on Theorem 5.2 suff icient to

obtain a subquadratic running time for the maximum contiguous subse-

quence sum problem?

5.3. Suppose and . Which of the

following are true:

a.

b.

c.

d.

5.4. Group the following into equivalent Big-Oh functions:

 x2, x, x2 + x, x2 – x, and (x3 / (x – 1)).

T1 N() O F N()()= T2 N() O F N()()=

T1 N() T2 N()+ O F N()()=

T1 N() T2 N()– O F N()()=

T1 N() T2 N()⁄ O 1()=

T1 N() O T2 N()()=

BOOK.mkr Page 282 Wednesday, March 14, 2001 1:11 PM

¡ ¢ £ ¤ ¥ ¦ § £ § ¨ © ª

5.5. Programs A and B are analyzed and are found to have worst-case running

times no greater than and , respectively. Answer the fol-

lowing questions, if possible.

a. Which program has the better guarantee on the running time for large

values of N (N > 10,000)?

b. Which program has the better guarantee on the running time for small

values of N (N < 100)?

c. Which program will run faster on average for N = 1,000?

d. Can program B will run faster than program A on all possible inputs?

5.6. For the binary search routine in Figure 5.11, show the consequences of

the following replacement code fragments:

a. Line 13: using the test l ow < h i gh

b. Line 15: assigning mi d = l ow + h ig h / 2

c. Line 18: assigning l ow = m i d

d. Line 20: assigning hi gh = m i d

� � « � ¬ � � ­

5.7. For the typical algorithms that you use to perform calculations by hand,

determine the running time to

a. Add two N-digit integers.

b. Multiply two N-digit integers.

c. Divide two N-digit integers.

150N log N N2

BOOK.mkr Page 283 Wednesday, March 14, 2001 1:11 PM

® ¯ ° ± ¤ ¦ ² ³ ´ ® µ ¶ ¯ · § ¦ §¨ © ¸

5.8. In terms of N, what is the running time of the following algorithm to com-

pute :

publ i c st at i c d oubl e p ower (d oubl e x , i nt n)
{
 doubl e r esul t = 1 . 0;

 f or(i nt i = 0; i < n ; i ++)
 r esul t * = x;
 r etu r n r esul t ;
}

5.9. Directly evaluate the triple summation that precedes Theorem 5.1. Verify

that the answers are identical.

5.10. For the quadratic algorithm for the maximum contiguous subsequence

sum problem, determine precisely how many times the innermost state-

ment is executed.

5.11. An algorithm takes 0.5 ms for input size 100. How long will it take for

input size 500 (assuming that low-order terms are negligible) if the run-

ning time is

a. linear.

b. .

c. quadratic.

d. cubic.

5.12. An algorithm takes 0.5 ms for input size 100. How large a problem can be

solved in 1 min (assuming that low-order terms are negligible) if the run-

ning time is

a. linear.

XN

O(N log N)

BOOK.mkr Page 284 Wednesday, March 14, 2001 1:11 PM

¡ ¢ £ ¤ ¥ ¦ § £ § ¨ © ¹

b. .

c. quadratic.

d. cubic.

5.13. Complete Figure 5.10 with estimates for the running times that were too

long to simulate. Interpolate the running times for all four algorithms and

estimate the time required to compute the maximum contiguous subse-

quence sum of 10,000,000 numbers. What assumptions have you made?

5.14. Order the following functions by growth rate: N, , , , ,

, , , , , , 37, , and .

Indicate which functions grow at the same rate.

5.15. For each of the following program fragments,

a. give a Big-Oh analysis of the running time.

b. implement the code and run for several values of N.

c. compare your analysis with the actual running times.

/ / F r agment # 1
f or (i nt i = 0 ; i < n ; i ++)
 sum++;

/ / F r agment # 2
f or (i nt i = 0 ; i < n ; i + = 2)
 sum++;

/ / F r agment # 3
f or (i nt i = 0 ; i < n ; i ++)
 f or(i nt j = 0; j < n ; j ++)
 sum++;

O(N log N)

N N1.5 N2 N log N

N Nloglog N Nlog2 N N2()log 2 N⁄ 2N 2N 2/ N3 N2 Nlog

BOOK.mkr Page 285 Wednesday, March 14, 2001 1:11 PM

® ¯ ° ± ¤ ¦ ² ³ ´ ® µ ¶ ¯ · § ¦ §¨ © º

/ / F r agment # 4
f or (i nt i = 0 ; i < n ; i ++)
 sum++;
f or (i nt j = 0 ; j < n ; j ++)
 sum++;

/ / F r agment # 5
f or (i nt i = 0 ; i < n ; i ++)
 f or(i nt j = 0; j < n * n ; j ++)
 sum++;

/ / F r agment # 6
f or (i nt i = 0 ; i < n ; i ++)
 f or(i nt j = 0; j < i ; j ++)
 sum++;

/ / F r agment # 7
f or (i nt i = 0 ; i < n ; i ++)
 f or(i nt j = 0; j < n * n ; j ++)
 f or (i nt k = 0 ; k < j ; k++)
 sum++;
/ / F r agment # 8
f or (i nt i = 0 ; i < n ; i = i * 2)
 sum++;

5.16. Occasionally, multiplying the sizes of nested loops can give an overesti-

mate for the Big-Oh running time. This result happens when an innermost

loop is infrequently executed. Repeat Exercise 5.15 for the following pro-

gram fragment:

f or (i nt i = 1 ; i <= n ; i ++)
 f or(i nt j = 1; j < = i * i ; j ++)
 i f (j % i == 0)
 f or (in t k = 0 ; k < j ; k ++)
 sum++;

5.17. In a court case, a judge cited a city for contempt and ordered a fine of $2

for the first day. Each subsequent day, until the city followed the judge’s

BOOK.mkr Page 286 Wednesday, March 14, 2001 1:11 PM

¡ ¢ £ ¤ ¥ ¦ § £ § ¨ © »

order, the fine was squared (that is, the fine progressed as follows: $2, $4,

$16, $256, $65536, . . .).

a. What would be the fine on day N?

b. How many days would it take for the fine to reach D dollars (a Big-Oh

answer wil l do)?

5.18. Prove Theorem 5.5. Hint: Show that . Then show a similar

lower bound.

5.19. Construct an example whereby an interpolation search examines every

element in the input array.

5.20. Analyze the cost of an average successful search for the binary search

algorithm in Figure 5.11.

� � ¼ � ½ ¾ ¿ ¾ ¬

5.21. Give an efficient algorithm to determine whether an integer i exists such

that in an array of increasing integers. What is the running time of

your algorithm?

5.22. A prime number has no factors besides 1 and itself. Do the following:

a. Write a program to determine if a positive integer N is prime. In terms

of N, what is the worst-case running time of your program?

b. Let B equal the number of bits in the binary representation of N. What

is the value of B?

c. In terms of B, what is the worst-case running time of your program?

1
i

2
N

∑ xd
x

1
N∫<

Ai i=

BOOK.mkr Page 287 Wednesday, March 14, 2001 1:11 PM

® ¯ ° ± ¤ ¦ ² ³ ´ ® µ ¶ ¯ · § ¦ §¨ © ©

d. Compare the running times to determine if a 20-bit number and a 40-

bit number are prime.

5.23. An important problem in numerical analysis is to find a solution to the

equation for some arbitrary F. If the function is continuous

and has two points low and high such that and have

opposite signs, then a root must exist between low and high and can be

found by either a binary search or an interpolation search. Write a func-

tion that takes as parameters F, low, and high and solves for a zero. What

must you do to ensure termination?

5.24. A majority element in an array A of size N is an element that appears

more than times (thus there is at most one such element). For exam-

ple, the array

3, 3, 4, 2, 4, 4, 2, 4, 4

has a majority element (4), whereas the array
3, 3, 4, 2, 4, 4, 2, 4

does not. Give an algorithm to find a majority element if one exists,
or reports that one does not. What is the running time of your algorithm?
(Hint: There is an solution.)

5.25. The input is an N × N matrix of numbers that is already in memory. Each

individual row is increasing from left to right. Each individual column is

increasing from top to bottom. Give an worst-case algorithm that

decides if a number X is in the matrix.

5.26. Design eff icient algorithms that take an array of positive numbers a, and

determine

a. the maximum value of a[j]+a[i] , for j i .

F X() 0=

F low() F high()

N 2⁄

O(N)

O(N)

≥

BOOK.mkr Page 288 Wednesday, March 14, 2001 1:11 PM

¡ ¢ £ ¤ ¥ ¦ § £ § ¨ © À

b. the maximum value of a[j]-a[i] , for j i .

c. the maximum value of a[j]*a[i] , for j i .

d. the maximum value of a[j]/a[i] , for j i .

¼ � � Á � ½ Â Â ¿ � Á ¼ � � Ã ¬ ¾ Ä

5.27. The Sieve of Eratosthenes is a method used to compute all primes less

than N. Begin by making a table of integers 2 to N. Find the smallest inte-

ger, i, that is not crossed out. Then print i and cross out i, 2i, 3i, . When

, the algorithm terminates. The running time has been shown to be

. Write a program to implement the Sieve and verify that

the running time claim. How diff icult is it to differentiate the running time

from and ?

5.28. The equation has exactly one integral

solution that satisfies . Write a program

to find the solution. Hint: First, precompute all values of and store

them in an array. Then, for each tuple , you only need to

verify that some F exists in the array. (There are several ways to check for

F, one of which is to use a binary search to check for F. Other methods

might prove to be more eff icient.)

5.29. Implement the maximum contiguous subsequence sum algorithms to

obtain data equivalent to the data in Figure 5.10. Compile the programs

with the highest optimization settings.

≥

≥

≥

…

i N>

O N Nloglog()

O(N) O(N log N)

A5 B5 C5 D5 E5+ + + + F5=

0 A B C D E F 75≤ ≤ ≤ ≤ ≤ ≤<

X5

A B C D E, , , ,()

BOOK.mkr Page 289 Wednesday, March 14, 2001 1:11 PM

® ¯ ° ± ¤ ¦ ² ³ ´ ® µ ¶ ¯ · § ¦ §¨ À Å

Æ � Ç � � � È � � �

The maximum contiguous subsequence sum problem is from [5]. References [4],

[5], and [6] show how to optimize programs for speed. Interpolation search was

first suggested in [14] and was analyzed in [13]. References [1], [8], and [17]

provide a more rigorous treatment of algorithm analysis. The three-part series

[10], [11], and [12], newly updated, remains the foremost reference work on the

topic. The mathematical background required for more advanced algorithm anal-

ysis is provided by [2], [3], [7], [15], and [16]. An especiall y good book for

advanced analysis is [9].

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

2. M. O. Albertson and J. P. Hutchinson, Discrete Mathematics with Algo-

rithms, John Wiley & Sons, New York, NY, 1988.

3. Z. Bavel, Math Companion for Computer Science, Reston Publishing

Company, Reston, Va., 1982.

4. J. L. Bentley, Writing Efficient Programs, Prentice-Hall, Englewood

Cliffs, N.J., 1982.

5. J. L. Bentley, Programming Pearls, Addison-Wesley, Reading, Mass.,

1986.

6. J. L. Bentley, More Programming Pearls, Addison-Wesley, Reading,

Mass., 1988.

BOOK.mkr Page 290 Wednesday, March 14, 2001 1:11 PM

É £ Ê £ ¤ £ µ ¥ £ § ¨ À Ë

7. R. A. Brualdi, Introductory Combinatorics, North-Holland, New York,

N.Y., 1977.

8. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo-

rithms, MIT Press, Cambridge, Mass., 1990.

9. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics,

Addison-Wesley, Reading, Mass., 1989.

10. D. E. Knuth, The Art of Computer Programming, Vol 1: Fundamental

Algorithms, 3d ed., Addison-Wesley, Reading, Mass, 1997.

11. D. E. Knuth, The Art of Computer Programming, Vol 2: Seminumerical

Algorithms, 3d ed., Addison-Wesley, Reading, Mass., 1997.

12. D. E. Knuth, The Art of Computer Programming, Vol 3: Sorting and

Searching, 2d ed., Addison-Wesley, Reading, Mass., 1998.

13. Y. Pearl, A. Itai, and H. Avni, “ Interpolation Search – A log log N

Search,” Communications of the ACM 21 (1978), 550–554.

14. W. W. Peterson, “Addressing for Random Storage,” IBM Journal of

Research and Development 1 (1957), 131–132.

15. F. S. Roberts, Applied Combinatorics, Prentice-Hall, Englewood Cliffs,

N.J., 1984.

BOOK.mkr Page 291 Wednesday, March 14, 2001 1:11 PM

® ¯ ° ± ¤ ¦ ² ³ ´ ® µ ¶ ¯ · § ¦ §¨ À ¨

16. A. Tucker, Applied Combinatorics, 2d ed., John Wiley & Sons, New

York, N.Y., 1984.

17. M. A. Weiss, Data Structures and Algorithm Analysis in Java, Addi-

son-Wesley, Reading, Mass., 1999.

BOOK.mkr Page 292 Wednesday, March 14, 2001 1:11 PM

Ì Í Î Ï Ð Ñ Ò

Many algorithms require the use of a proper representation of data to achieve effi-

ciency. This representation and the operations that are allowed for it are known as

a data structure. Each data structure allows arbitrary insertion but differs in how it

allows access to members in the group. Some data structures al low arbitrary

access and deletions, whereas others impose restrictions, such as allowing access

only to the most recently or least recently inserted item in the group.

As part of Java, a supporting library known as the Collections API is pro-

vided. Most of the Collections API resides in j ava. ut i l . This API provides a

collection of data structures. It also provides some generic algorithms, such as

sorting. The Collections API makes heavy use of inheritance.

Our primary goal is to describe, in general terms, some examples and appli-

cations of data structures. Our secondary goal is to describe the basics of the Col-

lections API, so that we can use it in Part III . We do not discuss the theory behind

an eff icient Collections API implementation until Part IV, at which point we pro-

vide simpli fied implementations of some core Collections API components. But

delaying the discussion of the Collection API’s implementation until after we use

it is not a problem. We do not need to know how something is implemented so

long as we know that it is implemented.

BOOK.mkr Page 293 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Ö¨ À ¸

In this chapter, we show:

• common data structures, their allowed operations, and their running times;

• some applications of the data structures; and

• the organization of the Collections API, and its integration with the rest of

the language

× Ø Ù Ú Û Ü Ý Þ ß à á Ü â Þ Û

ã ä å æ å ç æ 4 è é æ è 4 ê ë ì í
î ï ð î ï ì ï ñ ò í ò ë ó ñ ó ô
õ í ò í í ñ õ ò ö ï ó ð ï î ÷
í ò ë ó ñ ì í ø ø ó ù ï õ ó ñ
ò ö í ò õ í ò í ú

Data structures all ow us to achieve an important object-oriented programming

goal: component reuse. The data structures described in this section (and imple-

mented later in Part IV) have recurring uses. When each data structure has been

implemented once, it can be used over and over in various applications.

A data structure is a representation of data and the operations allowed on that

data. Many, but by no means all, of the common data structures store a collection

of objects, and then provide methods to add a new object to, remove an existing

object from, or access a contained object in the collection.

û í ò í ì ò î ü ý ò ü î ï ì í ø ÷
ø ó ù ü ì ò ó í ý ö ë ï þ ï
ý ó ÿ ð ó ñ ï ñ ò î ï ü ì ï ú

In this chapter we examine some of the fundamental data structures and their

applications. Using a high-level protocol, we describe typical operations that are

usually supported by the data structures, and briefly describe their uses. When

possible, we give an estimate of the cost of implementing these operations effi-

ciently. This estimate is often based on analogy with non-computer applications

of the data structure. Our high-level protocol usually supports only a core set of

basic operations. Later, when describing the basics of how the data structures can

BOOK.mkr Page 294 Wednesday, March 14, 2001 1:11 PM

Ö µ ² ¤ ± � � ¥ ² ¦ ± µ ¨ À ¹

be implemented (in general there are multiple competing ideas), we can more eas-

ily focus on language-independent algorithmic details if we restrict the set of

operations to a minimum core set.

As an example, Figure 6.1 illustrates a generic protocol that many data struc-

tures tend to follow. We do not actually use this protocol directly in any code.

However, an inheritance-based hierarchy of data structures could use this class as

a starting point.

� ö ï � ó ø ø ï ý ò ë ó ñ ì ã � �
ë ì ò ö ï ó ñ ï ø ë � î í î � ô ó î
õ í ò í ì ò î ü ý ò ü î ï ì í ñ õ
í ø � ó î ë ò ö ÿ ì ò ö í ò ë ì
� ü í î í ñ ò ï ï õ ò ó � ï
í þ í ë ø í � ø ï ú

 Then, we give a description of the Collections API interface that is provided

for these data structures. By no means does the Collections API represent the best

way of doing things. However, it represents the one library for data structures and

algorithms guaranteed to be available. Its use also il lustrates some of the core

issues that must be dealt with once the theory is taken care of.

	
package w ei ss . nonst andar d;
�
/ / S i mpl eCont ai ner p r ot ocol�
publ i c i nt er f ace S i mpl eCont ai ner

{�
 voi d i nser t (O bj ect x) ;�
 voi d r emove(O bj ect x) ;�
 Obj ect f i nd(O bj ect x) ;�
 	 �
 bool ean i sEmpt y() ;	 	
 voi d makeEmpt y() ; 	

}

� � � � � � � � � ® ° £ µ £ ¤ ¦ ¥ � ¤ ± ² ± ¥ ± ¯ Ê ± ¤ ´ ¶ µ · � ¶ ² ¶ § ² ¤ � ¥ ² � ¤ £ §

We defer consideration of eff icient implementation of data structures to Part

IV. At that point we will provide, as part of package wei ss. nonst andar d,

some competing implementations for data structures that follow the simple proto-

BOOK.mkr Page 295 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Ö¨ À º

cols developed in this chapter. We wil l also provide one implementation for the

basic Collections API components described in the chapter, in package

wei ss. ut i l . Thus we are separating the interface of the Collections API (that

is, what it does, which we describe in the chapter) from its implementation (that

is, how it is done, which we describe in Part IV). This approach — the separation

of the interface and implementation — is part of the object-oriented paradigm.

The user of the data structure needs to see only the available operations, not the

implementation. Recall this is the encapsulation and information-hiding part of

object-oriented programming.

The rest of this chapter is organized as follows: First, we discuss the basics of

the iterator pattern, which is used throughout the Collections API. Then we dis-

cuss the interface for containers and iterators in the Collections API. Next we

describe some Collections API algorithms, and finally, we examine some other

data structures many of which are supported in the Collections API.

× Ø � � � Ú Ü Ý ! Ü Þ Ý " ! Ü Ü Ý Û

The Collections API makes heavy use of a common technique known as the itera-

tor pattern. So before we begin our discussion of the Collections API, we examine

the ideas behind the iterator pattern.

ã ñ # æ ê 4 å æ 3 4 ó � $ ï ý ò
ý ó ñ ò î ó ø ì ë ò ï î í ò ë ó ñ ó ô
í ý ó ø ø ï ý ò ë ó ñ ú

Consider the problem of printing the elements in a collection. Typically, the

collection is an array, so assuming that the object v is an array, its contents are

easily printed with code like:

BOOK.mkr Page 296 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ö ² £ ¤ ¶ ² ± ¤ Õ ¶ ² ² £ ¤ µ ¨ À »

f or (i nt i = 0 ; i < v . l engt h; i ++)
 Syst em. out . pr in t l n(v [i]) ;

In this loop, i is an iterator object, because it is the object that is used to control

the iteration. However, using the integer i as an iterator constrains the design: We

can only store the collection in an array-like structure. A more flexible alternative

is to design an iterator class that encapsulates a position inside of a collection.

The iterator class provides methods to step through the collection.

% ö ï ñ ù ï ð î ó � î í ÿ
ò ó í ñ ë ñ ò ï î ô í ý ï & ù ï
ù î ë ò ï ý ó õ ï ò ö í ò ü ì ï ì
ò ö ï ÿ ó ì ò í � ì ò î í ý ò
ÿ ï ò ö ó õ ì ú � ö ï ì ï
ÿ ï ò ö ó õ ì ù ë ø ø � ï í ð ÷
ð ø ë ï õ ò ó ò ö ï í ý ò ü í ø
ý ó ñ ý î ï ò ï ò � ð ï ì ú

The key is the concept of programming to an interface: We want the code that

performs access of the container to be as independent of the type of the container

as possible. This is done by using only methods that are common to all containers

and their iterators.

There are many different possible iterator designs. If we replace i nt i with

I t er at or Type i t r , then the loop above expresses

f or (i tr = v . f i r s t() ; i t r . i sVal i d() ; it r . advance())
 Syst em. out . pr in t l n(i t r . get Dat a());

This suggests an iterator class that contains methods such as i sVal i d,

advance, get Dat a, etc.

We describe two designs, outside of the Collections API context, that lead to

the Collections API iterator design. We discuss the specifics of the Collections

iterators in Section 6.3.2, deferring implementations to Part IV.

BOOK.mkr Page 297 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Ö¨ À ©

' () (* + , � � � - . � � , . / � 0 � � � 1 È

i t er at or î ï ò ü î ñ ì
í ñ í ð ð î ó ð î ë í ò ï ë ò ï î ÷
í ò ó î ô ó î ò ö ï ý ó ø ø ï ý ÷
ò ë ó ñ ú

The first iterator design uses only three methods. The container class is required

to provide an i t er at or method. i t er at or returns an appropriate iterator for

the coll ection. The iterator class has only two methods, hasNex t and next .

hasNext returns true if the iteration has not yet been exhausted. next returns

the next item in the collection (and in the process, advances the current position).

This iterator interface is similar to the interface provided in the Collections API.

To illustrate the implementation of this design, we outline the collection class

and provide an iterator class, MyCont ai ner and MyCont ai ner I t era t or ,

respectively. Their use is shown in Figure 6.2. The data members and i t er at or

method for MyCont ai ner are written in Figure 6.3. To simplify matters, we

omit the constructors, and methods such as add, si ze, etc. The Ar r ayLi st

class from earlier chapters can be reused to provide an implementation of these

methods.

� ö ï ë ò ï î í ò ó î ë ì ý ó ñ ÷
ì ò î ü ý ò ï õ ù ë ò ö í î ï ô ÷
ï î ï ñ ý ï ò ó ò ö ï ý ó ñ ÷
ò í ë ñ ï î ò ö í ò ë ò ë ò ï î í ò ï ì
ó þ ï î ú

i t er at or simply returns a new iterator; notice that the iterator must have

information about the container that it is iterating over. Thus the iterator is con-

structed with a reference to the MyCont ai ner .

Figure 6.4 shows the MyCont ai ner I t er at or . The iterator keeps a vari-

able (cur r ent) that represents the current position in the container, and a refer-

ence to the container. The implementation of the constructor and two methods is

straightforward. The constructor initializes the container reference, hasNext

simply compares the current position with the container size, and next uses the

current position to index the array (and then advances the current position).

BOOK.mkr Page 298 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ö ² £ ¤ ¶ ² ± ¤ Õ ¶ ² ² £ ¤ µ ¨ À À

� ö ï � ï ò ò ï î õ ï ì ë � ñ
ù ó ü ø õ ð ü ò ÿ ó î ï
ô ü ñ ý ò ë ó ñ í ø ë ò � ë ñ ò ö ï
ë ò ï î í ò ó î

A limitation of this iterator design is the relatively limited interface. Observe

that it is impossible to reset the iterator back to the beginning, and that the next

method couples access of an item with advancing. The next , hasNext design

is what is used in the Java Collections API; many people feel that the API should

have provided a more flexible iterator. It is certainly possible to put more func-

tionali ty in the iterator, while leaving the MyCont ai ner class implementation

completely unchanged. On the other hand, doing so illustrates no new principles.

	
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)

 { �
 MyCont ai ner v = n ew MyCont ai ner () ;�

 v . add(" 3") ;�
 v . add(" 2") ;��
 Syst em. out . pr i nt l n(" Cont ai ner c ont ent s : ") ;�
 MyCont ai ner I t er at or i t r = v . i t er at or () ;	 �
 whi l e(i t r . hasNext ())	 	
 Syst em. out . pr i nt l n(i t r . next ()) ;	

 }

� � � � � � � � 2
main

´ £ ² ³ ± � ² ± ¦ ¯ ¯ � § ² ¤ ¶ ² £ ¦ ² £ ¤ ¶ ² ± ¤ � £ § ¦ ° µ 3 4

	
package w ei ss . ds;
�
publ i c c l ass M yCont ai ner�
{

 Obj ect [] i t ems;�
 i nt s i ze;��
 publ i c M yCont ai ner I t er at or i t er at or ()�
 { r et ur n n ew MyCont ai ner I t er at or (t hi s) ; }	 �
 	 	
 / / O t her m et hods	

}

� � � � � � � � 5 Ó ³ £
MyContainer

¥ ¯ ¶ § § 6 � £ § ¦ ° µ 3 4

BOOK.mkr Page 299 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Öª Å Å

	
/ / A n i t er at or c l ass t hat s t eps t hr ough a M yCont ai ner .
�
package w ei ss . ds;�

publ i c c l ass M yCont ai ner I t er at or�
{�
 pr i vat e i nt c ur r ent = 0 ;�
 pr i vat e M yCont ai ner c ont ai ner ;�	 �
 MyCont ai ner I t er at or (M yCont ai ner c)	 	
 { c ont ai ner = c ; }	

 	 �
 publ i c b ool ean h asNext ()	 �
 { r et ur n c ur r ent < c ont ai ner . s i ze; }	
	 �
 publ i c O bj ect n ext ()	 �
 { r et ur n c ont ai ner . i t ems[c ur r ent ++] ; }	 �
}

� � � � � � � � 7 Ö ´ � ¯ £ ´ £ µ ² ¶ ² ¦ ± µ ± Ê ² ³ £
MyContainerItera t or

6 � £ § ¦ ° µ 3 4

Note that in the implementation of MyCont ai ner , the data members

i t ems and s i ze are package visible, rather than being private. This unfortunate

relaxation of the usual privacy of data members is necessary because these data

members need to be accessed by MyCont ai ner I t er at or . Similarly, the

MyCont ai ner I t er at or constructor is package visible, so that it can be

called by MyCont ai ner .

' () () - È 8 � � � . , È � � 9 : , � � ; - . � � , . / � � , È ; < , � . / � � � �

The iterator designed so far manages to abstract the concept of iteration into an

iterator class. This is good, because it means that if the collection changes from

an array-based collection to something else, the basic code such as lines 9 and 11

in Figure 6.2 does not need to change.

BOOK.mkr Page 300 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ö ² £ ¤ ¶ ² ± ¤ Õ ¶ ² ² £ ¤ µ ª Å Ë

While this is a significant improvement, changes from an array-based collec-

tion to something else require that we change all the declarations of the iterator.

For instance, in Figure 6.2, we would need to change line 9. We discuss an alter-

native in this section.

ã ñ ë ñ ö ï î ë ò í ñ ý ï ÷
� í ì ï õ ë ò ï î í ò ë ó ñ
ì ý ö ï ÿ ï õ ï ô ë ñ ï ì í ñ
ë ò ï î í ò ó î ë ñ ò ï î ô í ý ï ú
� ø ë ï ñ ò ì ð î ó � î í ÿ ò ó
ò ö ë ì ë ñ ò ï î ô í ý ï ú

Our basic idea is to define an interface I t er at or . Corresponding to each

different kind of container is an iterator that implements the I t er at or protocol.

In our example, this gives three classes: MyCont ai ner , I t er at or , and

MyCont ai ner I t er at or . The relationship that holds is

MyCont ai ner I t er at or IS-A I t er at or . The reason we do this is that each

container can now create an appropriate iterator, but pass it back as an abstract

I t er at or .

Figure 6.5 shows MyCont ai ner . In the revised MyCont ai ner , the

i t er at or method returns a reference to an I t er at or object; the actual type

turns out to be a MyCont ai ner I t er at or . Since MyCont ai ner I t er at or

IS-A I t er at or , this is safe to do.

	
package w ei ss . ds;
�
publ i c c l ass M yCont ai ner�
{

 Obj ect [] i t ems;�
 i nt s i ze;��
 publ i c I t er at or i t er at or ()�
 { r et ur n n ew MyCont ai ner I t er at or (t hi s) ; }	 �
 	 	
 / / O t her m et hods n ot s hown.	

}

� � � � � � � � = Ó ³ £
MyContainer

¥ ¯ ¶ § § 6 � £ § ¦ ° µ 3 >

BOOK.mkr Page 301 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Öª Å ¨

	
package w ei ss . ds;
�
publ i c i nt er f ace I t er at or�
{

 bool ean h asNext () ;�
 Obj ect n ext () ;�
}

� � � � � � � � � Ó ³ £
Itera t or

¦ µ ² £ ¤ Ê ¶ ¥ £ 6 � £ § ¦ ° µ 3 >

	
/ / A n i t er at or c l ass t hat s t eps t hr ough a M yCont ai ner .
�
package w ei ss . ds;�

c l ass M yCont ai ner I t er at or i mpl ement s I t er at or�
{�
 pr i vat e i nt c ur r ent = 0 ;�
 pr i vat e M yCont ai ner c ont ai ner ;�
 	 �
 MyCont ai ner I t er at or (M yCont ai ner c)	 	
 { c ont ai ner = c ; }	

 	 �
 publ i c b ool ean h asNext ()	 �
 { r et ur n c ur r ent < c ont ai ner . s i ze; }	

 	 �
 publ i c O bj ect n ext ()	 �
 { r et ur n c ont ai ner . i t ems[c ur r ent ++] ; }	 �
}

� � � � � � � � ? Ö ´ � ¯ £ ´ £ µ ² ¶ ² ¦ ± µ ± Ê ² ³ £
MyContainerItera t or

6 � £ § ¦ ° µ 3 >

	
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)

 { �
 MyCont ai ner v = n ew MyCont ai ner () ;�

 v . add(" 3") ;�
 v . add(" 2") ;��
 Syst em. out . pr i nt l n(" Cont ai ner c ont ent s : ") ;�
 I t er at or i t r = v . i t er at or () ;	 �
 whi l e(i t r . hasNext ())	 	
 Syst em. out . pr i nt l n(i t r . next ()) ;	

 }

� � � � � � � � @
main

´ £ ² ³ ± � ² ± ¦ ¯ ¯ � § ² ¤ ¶ ² £ ¦ ² £ ¤ ¶ ² ± ¤ � £ § ¦ ° µ 3 >

BOOK.mkr Page 302 Wednesday, March 14, 2001 1:11 PM

Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Ö A Ô ± µ ² ¶ ¦ µ £ ¤ § ¶ µ � Ö ² £ ¤ ¶ ² ± ¤ § ª Å ª

ã B å é æ 3 4 C D ê æ E 3 ä
ý î ï í ò ï ì í ñ ï ù ý ó ñ ÷
ý î ï ò ï ë ñ ì ò í ñ ý ï & � ü ò
î ï ò ü î ñ ì ë ò ü ì ë ñ � í î ï ô ÷
ï î ï ñ ý ï ò ó ò ö ï ë ñ ò ï î ÷
ô í ý ï ò � ð ï ú

Because i t er at or creates and returns a new I t er at or object, whose

actual type is unknown, it is commonly known as a factory method. The iterator

interface, which serves simply to establish the protocol by which all subclasses of

I t er at or can be accessed, is shown in Figure 6.6. There are only two changes

to the implementation of MyCont ai ner I t er at or , shown in Figure 6.7. and

both changes are at line 5. First, the i mpl ement s clause has been added. Sec-

ond, MyCont ai ner I t er at or no longer needs to be a public class.

F ó ù ö ï î ï ë ñ mai n
ë ì

ò ö ï î ï í ñ � ÿ ï ñ ò ë ó ñ
ó ô ò ö ï í ý ò ü í ø ë ò ï î í ÷
ò ó î ò � ð ï ú

Figure 6.8 demonstrates how the inheritance-based iterators are used. At line

9, we see the declaration of i t r : it is now a reference to an It er at or . Nowhere

in mai n is there any mention of the actual MyCont ai ner I t er at or type. The

fact that a MyCont ai ner I t er at or exists is not used by any clients of the

MyCont ai ner class. This is a very slick design, and il lustrates nicely the idea

of hiding an implementation and programming to an interface. The implementa-

tion can be made even slicker by use of nested classes, and a Java feature known

as inner classes. Those implementation details are deferred until Chapter 15.

× Ø G H Þ I I á Ü â Þ Û J K " Ú L H Þ Û Ü ! â Û Ý J ! Û ß Ú Ü Ý ! Ü Þ Ý J

This section describes the basics of the Collection API iterators, and how they

interact with containers. We know that an iterator is an object that is used to

traverse a col lection of objects. In the Coll ections API such a col lection is

abstracted by the Coll ecti on interface, and the iterator is abstracted by the

I t er at or interface.

BOOK.mkr Page 303 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Öª Å ¸

The Collection API iterators are somewhat inflexible, in that they provide

few operations. It uses an inheritance model described in Section 6.2.2.

' (M (* N 8 �
Collection

� È . � � Ç , � �

� ö ï Col l ect i on

ë ñ ò ï î ô í ý ï î ï ð î ï ÷
ì ï ñ ò ì í � î ó ü ð ó ô ó � ÷

$ ï ý ò ì & O ñ ó ù ñ í ì ë ò ì
ï ø ï ÿ ï ñ ò ì ú

The Col l ect i on interface represents a group of objects, known as its elements.

Some implementations, such as vectors and li sts, are unordered; others, such as

sets and maps, may be ordered. Some implementations allow dupli cates; others

do not. All containers support the following operations.

boolean isEmpty()

returns t r ue if the container contains no elements and f al se otherwise.

int size()

returns the number of elements in the container.

boolean add(Object x)

adds item x to the container. Returns t r ue if this operation succeeds and
f al se otherwise (e.g. if the container does not allow duplicates and x is
already in the container).

boolean contains(Object x)

returns true if x is in the container and f al se otherwise.

boolean remove(Object x)

Removes item x from the container. Returns t r ue if x was removed and
f al se otherwise.

BOOK.mkr Page 304 Wednesday, March 14, 2001 1:11 PM

Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Ö A Ô ± µ ² ¶ ¦ µ £ ¤ § ¶ µ � Ö ² £ ¤ ¶ ² ± ¤ § ª Å ¹

	
package w ei ss . ut i l ;
�
/ * *�
 * C ol l ec t i on i nt er f ace; t he r oot o f a l l 1 . 2 c ol l ec t i ons.

 * /�
publ i c i nt er f ace C ol l ec t i on e xt ends j ava. i o. Ser i al i zabl e�
{�
 / * *�
 * R et ur ns t he n umber o f i t ems i n t hi s c ol l ec t i on.	 �
 * /	 	
 i nt s i ze() ;	

 	 �
 / * *	 �
 * T est s i f t hi s c ol l ec t i on i s e mpt y.	

 * /	 �
 bool ean i sEmpt y() ;	 �
 	 �
 / * *	 �
 * T est s i f s ome i t em i s i n t hi s c ol l ec t i on.
 �
 * /
 	
 bool ean c ont ai ns(O bj ect x) ;

 �
 / * *
 �
 * A dds a n i t em t o t hi s c ol l ect i on.

 * /
 �
 bool ean a dd(O bj ect x) ;
 �

 �
 / * *
 �
 * R emoves a n i t em f r om t hi s c ol l ec t i on.� �
 * /� 	
 bool ean r emove(O bj ect x) ;�

 � �
 / * *� �
 * C hange t he s i ze o f t hi s c ol l ec t i on t o z er o.�

 * /� �
 voi d c l ear () ;� �
 � �
 / * *� �
 * O bt ai ns a n I t er at or u sed t o t r aver se t he c ol l ect i on.� �
 * /� 	
 I t er at or i t er at or () ;�

 � �
 / * *� �
 * O bt ai ns a p r i mi t i ve a r r ay v i ew o f t he c ol l ec t i on.�

 * /� �
 Obj ect [] t oAr r ay() ;� �
}

� � � � � � � � P Q ¶ ´ � ¯ £ § � £ ¥ ¦ Ê ¦ ¥ ¶ ² ¦ ± µ ± Ê ² ³ £
Collecti on

¦ µ ² £ ¤ Ê ¶ ¥ £

BOOK.mkr Page 305 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Öª Å º

void clear()

makes the container empty

Object [] toArray()

returns an array that contains references to all items in the container.

Iterator iterator()

returns an i t er at or that can be used to begin traversing all locations in the
container.

Figure 6.9 illustrates a specification of the Col l ect i on interface. The

Col l ect i on interface in j ava. ut i l contains some additional methods, but

we wil l be content with this subset. By convention, all implementations supply

both a zero-parameter constructor that creates an empty collection and a construc-

tor that creates a collection that refers to the same elements as another collection.

This is basically a shallow-copy of a collection. However, there is no syntax in the

language that forces the implementation of these constructors.

The Collections API also codifies the notion of an optional interface method.

For instance, suppose we want an immutable collection: once it is constructed, its

state should never change. An immutable collection appears incompatible with

Col l ect i on, since add and r emove do not make sense for immutable collec-

tions.

However, there is an existing loophole: although the implementor of the

immutable collection must implement add and r emove, there is no rule that

says these methods must do anything. Instead, the implementor can simply throw

a runtime Unsuppor t edOper at i onExcept i on. In doing so, the imple-

mentor has technically implemented the interface, while not really providing add

and r emove.

BOOK.mkr Page 306 Wednesday, March 14, 2001 1:11 PM

Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Ö A Ô ± µ ² ¶ ¦ µ £ ¤ § ¶ µ � Ö ² £ ¤ ¶ ² ± ¤ § ª Å »

By convention, interface methods that document that they are optional can be

implemented in this manner. If the implementation chooses not to implement an

optional method, then it should document that fact. It is up to the client user of the

API to verify that the method is implemented by consulting the documentation,

and if the client ignores the documentation and calls the method anyway, the

runtime Unsuppor t edOper at i onExcept io n is thrown, signifying a pro-

gramming error.

Optional methods are somewhat controversial, but they do not represent any

new language additions. They are simply a convention.

We wil l eventually implement all methods. The most interesting of these

methods is i t er at or , which is a factory method that creates and returns an

I t er at or object. The operations that can be performed by an I t er at or are

described in Section 6.3.2.

' (M ()
Iterator

� È . � � Ç , � �

ã ñ # æ ê 4 å æ 3 4 ë ì í ñ ó � ÷
$ ï ý ò ò ö í ò í ø ø ó ù ì ü ì ò ó

ë ò ï î í ò ï ò ö î ó ü � ö í ø ø
ó � $ ï ý ò ì ë ñ í ý ó ø ø ï ý ÷
ò ë ó ñ ú

As described in Section 6.2, an i terator is an object that allows us to i terate

through all objects in a collection. The technique of using an iterator class was

discussed in the context of read-only vectors in Section 6.2.

The I t er at or interface is the Collections API is small , and contains only

three methods:

boolean hasNext()

returns true if there are more items to view in this iteration.

BOOK.mkr Page 307 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Öª Å ©

Object next()

returns a reference to the next object not yet seen by this iterator. The object
becomes seen, and thus advances the iterator.

void remove()

removes the last item viewed by next . This can be called only once between
calls to next .� ö ï It er at or

ë ñ ÷
ò ï î ô í ý ï ý ó ñ ò í ë ñ ì
ó ñ ø � ò ö î ï ï ÿ ï ò ö ÷
ó õ ì R

next &
hasNext & í ñ õ

r emove
ú

Each collection defines its own implementation of the I t er at or interface,

in a class that is invisible to users of the j ava. ut i l package.

The iterators also expect a stable container. An important problem that occurs

in the design of containers and iterators is to decide what happens if the state of

container is modified while an iteration is in progress. The Collections API takes

a strict view: any external structural modification of the container (adds, removes,

etc.) will result in a Concur r ent Modi f i cat i onExcept i on by the iterator

methods when one of the methods is called. In other words, if we have an iterator,

and then an object is added to the container, and then we invoke the next method

on the iterator, the iterator wil l detect that it is now invalid, and an exception will

be thrown by next .

� ö ï It er at or

ÿ ï ò ö ó õ ì ò ö î ó ù í ñ
ï S ý ï ð ò ë ó ñ ë ô ë ò ì ý ó ñ ÷
ò í ë ñ ï î ö í ì � ï ï ñ
ì ò î ü ý ò ü î í ø ø � ÿ ó õ ë ÷
ô ë ï õ ú

This means that it is impossible to remove an object from a container when

we have seen it via an iterator, without invalidating the iterator. This is one reason

why there is a r emove method in the iterator class. Calling the iterator r emove

causes the last seen object to be removed from the container. It invalidates all

other iterators that are viewing this container, but not the iterator that performed

the r emove. It is also likely to be more eff icient than the container’s r emove

method, at least for some collections. However, r emove cannot be called twice

in a row. Furthermore, re move preserves the semantics of next and hasNext ,

BOOK.mkr Page 308 Wednesday, March 14, 2001 1:11 PM

Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Ö A Ô ± µ ² ¶ ¦ µ £ ¤ § ¶ µ � Ö ² £ ¤ ¶ ² ± ¤ § ª Å À

because the next unseen item in the iteration remains the same. This version of

r emove is listed as an optional method, so the programmer needs to check that it

is implemented. r emove has been criticized as poor design, but we wil l use it at

one point in the text.

Figure 6.10 provides a sample specification of the I t er at or interface. As

an example of using the I t er at or , the routine in Figure 6.11 prints each ele-

ment in any container. If the container is an ordered set, its elements are output in

sorted order.

	
package w ei ss . ut i l ;
�
/ * *�
 * I t er at or i nt er f ace.

 * /�
publ i c i nt er f ace I t er at or�
{�
 / * *�
 * T est s i f t her e a r e i t ems n ot y et i t er at ed o ver .	 �
 * /	 	
 bool ean h asNext () ;	

 	 �
 / * *	 �
 * O bt ai ns t he n ext (as y et u nseen) i t em i n t he c ol l ect i on.	

 * /	 �
 Obj ect n ext () ;	 �
 	 �
 / * *	 �
 * R emove t he l as t i t em r et ur ned b y n ext .
 �
 * C an o nl y b e c al l ed o nce a f t er n ext .
 	
 * /

 voi d r emove() ;
 �
}

� � � � � � � � � T Q ¶ ´ � ¯ £ § � £ ¥ ¦ Ê ¦ ¥ ¶ ² ¦ ± µ ± Ê
I terator

BOOK.mkr Page 309 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Öª Ë Å

	
 / / P r i nt t he c ont ent s o f C ol l ec t i on c

 publ i c s t at i c v oi d p r i nt Col l ect i on(C ol l ect i on c)�
 {�
 I t er at or i t r = c . i t er at or () ;

 whi l e(i t r . hasNext ()) �
 Syst em. out . pr i nt l n(i t r . next ()) ;�
 }

� � � � � � � � � � Õ ¤ ¦ µ ² ² ³ £ ¥ ± µ ² £ µ ² § ± Ê ¶ µ ·
Col lection

× Ø U V Û Ý â á K I W Þ Ý â Ü � X J
� ö ï

Col l ections

ý ø í ì ì ý ó ñ ò í ë ñ ì í ì ï ò
ó ô ì ò í ò ë ý ÿ ï ò ö ó õ ì
ò ö í ò ó ð ï î í ò ï ó ñ
Col l ecti on

ó � ÷
$ ï ý ò ì ú

The Collections API provides a few general purpose algorithms that operate on

all of the containers. These are static methods in the Col l ec t io ns class (note

that this is a different class than the Col l ec t i on interface). There are also

some static methods in the Ar r ays class that manipulate arrays (sorting, search-

ing, etc.). Most of those methods are overloaded — for Object and once for

each of the primitive types (except bool ean).

We examine only a few of the algorithms, with the intention of showing the

general ideas that pervade the Collections API, while documenting the specific

algorithms that will be used in Part III .

� ö ï ÿ í ò ï î ë í ø ë ñ Y ï ý ÷
ò ë ó ñ Z ú [ë ì í ñ ï ì ì ï ñ ÷
ò ë í ø ð î ï î ï \ ü ë ì ë ò ï ò ó
ò ö ë ì ì ï ý ò ë ó ñ ú

Some of the algorithms make use of function objects. Consequently, the

material in Section 4.7 is an essential prerequisite to this section.

' (] (*
Comparator

< ^ È � . � / È _ : ` � � . �

Many Collections API classes and routines require the ability to order objects.

There are two ways to do this. One possibilit y is that the objects implement the

Compar abl e interface, and provide a compar eTo method. The other possibil-

BOOK.mkr Page 310 Wednesday, March 14, 2001 1:11 PM

a £ µ £ ¤ ¦ ¥ ® ¯ ° ± ¤ ¦ ² ³ ´ § ª Ë Ë

ity is that the comparison function is embedded as the compar e method in an

object that implements the Compar ato r interface. Compar at or is defined in

ja v a. uti l ; a sample implementation was shown in Figure 4.29, and is

repeated in Figure 6.12.

	
package w ei ss . ut i l ;
�
/ * *�
 * C ompar at or f unct i on o bj ect i nt er f ace.

 * /�
publ i c i nt er f ace C ompar at or�
{�
 / * *�
 * R et ur n t he r esul t o f c ompar i ng l hs a nd r hs .	 �
 * @ par am l hs f i r st o bj ec t .	 	
 * @ par am r hs s econd o bj ect .	

 * @ r et ur n < 0 i f l hs i s l ess t han r hs,	 �
 * 0 i f l hs i s e qual t o r hs ,	 �
 * > 0 i f l hs i s g r eat er t han r hs .	

 * @ t hr ows C l assCast Except i on i f o bj ect s	 �
 * c annot b e c ompar ed.	 �
 * /	 �
 i nt c ompar e(O bj ect l hs , O bj ect r hs) ;	 �
}

� � � � � � � � � 2 Ó ³ £
Comparator

¦ µ ² £ ¤ Ê ¶ ¥ £ 6 ± ¤ ¦ ° ¦ µ ¶ ¯ ¯ · � £ Ê ¦ µ £ � ¦ µ
java . util¤ £ b ¤ ¦ ² ² £ µ Ê ± ¤ ² ³ £

weiss.util
� ¶ ¥ c ¶ ° £ d

BOOK.mkr Page 311 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Öª Ë ¨

	
package w ei ss . ut i l ;
�
/ * *�
 * I nst ancel ess c l ass c ont ai ns s t at i c m et hods

 * t hat o per at e o n c ol l ec t i ons.�
 * /�
publ i c c l ass C ol l ec t i ons�
{�
 pr i vat e C ol l ect i ons()	 �
 {	 	
 }	

 	 �
 / * *	 �
 * R et ur ns a c ompar at or t hat i mposes t he r ever se o f t he	

 * d ef aul t o r der i ng o n a c ol l ec t i on o f o bj ect s t hat	 �
 * i mpl ement t he C ompar abl e i nt er f ace.	 �
 * @ r et ur n t he c ompar at or .	 �
 * /	 �
 publ i c s t at i c C ompar at or r ever seOr der ()
 �
 {
 	
 r et ur n R EVERSE_COMPARATOR;

 }
 �

 �
 pr i vat e s t at i c c l ass R ever seCompar at or

 i mpl ement s C ompar at or
 �
 {
 �
 publ i c i nt c ompar e(O bj ect l hs, O bj ect r hs)
 �
 {
 �
 r et ur n - ((Compar abl e) l hs) . compar eTo(r hs) ;� �
 }� 	
 }�

 � �
 pr i vat e s t at i c c l ass D ef aul t Compar at or� �
 i mpl ement s C ompar at or�

 {� �
 publ i c i nt c ompar e(O bj ect l hs, O bj ect r hs)� �
 {� �
 r et ur n ((Compar abl e) l hs) . compar eTo(r hs) ;� �
 }� �
 }� 	�

 pr i vat e s t at i c f i nal C ompar at or R EVERSE_COMPARATOR =� �
 n ew Rever seCompar at or () ;� �
 s t at i c f i nal C ompar at or D EFAULT_COMPARATOR =�

 n ew Def aul t Compar at or () ;

� � � � � � � � � 5
Coll ections

¥ ¯ ¶ § § e � ¶ ¤ ² 4 f A � ¤ ¦ g ¶ ² £ ¥ ± µ § ² ¤ � ¥ ² ± ¤ ¶ µ �
reve r seOrder

BOOK.mkr Page 312 Wednesday, March 14, 2001 1:11 PM

a £ µ £ ¤ ¦ ¥ ® ¯ ° ± ¤ ¦ ² ³ ´ § ª Ë ª

� �
 / *� �
 * R et ur ns t he maxi mum obj ect i n t he c ol l ec t i on� �
 * u s i ng d ef aul t o r der i ng.� �
 * @ par am c ol l t he c ol l ec t i on.
 �
 * @ r et ur n t he maxi mum obj ect .
 	
 * @ t hr ows N oSuchEl ement Except i on i f c ol l i s e mpt y.

 * @ t hr ows C l assCast Except i on i f o bj ect s i n c ol l ect i on
 �
 * c annot b e c ompar ed.
 �
 * /

 publ i c s t at i c O bj ect m ax(C ol l ect i on c ol l)
 �
 {
 �
 r et ur n max(c ol l , D EFAULT_COMPARATOR) ;
 �
 }
 �
 � �
 / * *� 	
 * R et ur ns t he maxi mum obj ect i n t he c ol l ec t i on.�

 * @ par am c ol l t he c ol l ec t i on.� �
 * @ par am c mp t he c ompar at or .� �
 * @ r et ur n t he maxi mum obj ect .�

 * @ t hr ows N oSuchEl ement Except i on i f c ol l i s e mpt y.� �
 * @ t hr ows C l assCast Except i on i f o bj ect s i n c ol l ect i on� �
 * c annot b e c ompar ed.� �
 * /� �
 publ i c s t at i c O bj ect m ax(C ol l ect i on c ol l , C ompar at or c mp)� �
 {� 	
 i f (c ol l . s i ze() = = 0)�

 t hr ow n ew NoSuchEl ement Except i on() ;� �
 � �
 I t er at or i t r = c ol l . i t er at or () ;�

 Obj ect m axVal ue = i t r . next () ;� �
 � �
 whi l e(i t r . hasNext ())� �
 {� �
 Obj ect c ur r ent = i t r . next () ;� �
 i f (c mp. compar e(c ur r ent , m axVal ue) > 0)� 	
 cur r ent = m axVal ue;�

 } � �
 r et ur n maxVal ue; � �
 }�

}

� � � � � � � � � 7
Coll ections

¥ ¯ ¶ § § e � ¶ ¤ ² > f A
max

' (] () N 8 �
Collections h i , � �

Although we will not make use of the Col l ect i ons class in this text, it has two

methods that are thematic of how generic algorithms for the Collections API are

BOOK.mkr Page 313 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Öª Ë ¸

written. We write these methods in the Col l ect i ons class implementation that

spans Figures 6.13 and 6.14.

r ever seOr der
ë ì

í ô í ý ò ó î � ÿ ï ò ö ó õ
ò ö í ò ý î ï í ò ï ì í

Compar at or î ï ð ÷
î ï ì ï ñ ò ë ñ � ò ö ï î ï ÷
þ ï î ì ï ñ í ò ü î í ø ó î õ ï î ú

Figure 6.13 begins by illustrating the common technique of declaring a pri-

vate constructor in classes that contain only static methods. This prevents instanti-

ation of the class. It continues by providing the r ever seOrder method. This is

a factory method that returns a Compar at or that provides the reverse of the nat-

ural ordering for Compar abl e objects. The returned object, declared at lines 42

and 43 is a shared static instance of the Rever seCompar at or class written in

lines 24 to 31. In the Rever seCompar at or class, we eventually downcast

r hs to a Compar abl e and use the compar eTo method. If the objects are not

comparable, this throws a Cl assCast Except i on.1 This is an example of the

type of code that might be implemented with an anonymous class. We have a sim-

ilar declaration for the default comparator; since the standard API does not pro-

vide a public method to return this, we have not either, and instead declare a

package visible DEFAULT_COMPARATOR instance that can be used by methods

that need one.

Figure 6.14 illustrates the max method, which returns the largest element in

any Col l ect i on. The one-parameter max calls the two parameter max by sup-

plying the DEFAULT_COMPARATOR. The two-parameter max combines the iter-

1. Although not well -documented, the compare method in j ava. uti l . Compar ato r is allowed to throw a

Nul l Poin t er Except io n if either reference is nul l — even if both are nul l .

BOOK.mkr Page 314 Wednesday, March 14, 2001 1:11 PM

a £ µ £ ¤ ¦ ¥ ® ¯ ° ± ¤ ¦ ² ³ ´ § ª Ë ¹

ator pattern with the function object pattern to step through the collection, and at

line 80 uses calls to the function object to update the maximum item.

' (] (M + � È , � j k � , � � 8

bi nar ySear ch

ü ì ï ì � ë ñ í î � ì ï í î ý ö
í ñ õ î ï ò ü î ñ ì ò ö ï ë ñ ÷
õ ï S ó ô ò ö ï ÿ í ò ý ö ï õ
ë ò ï ÿ ó î í ñ ï � í ò ë þ ï
ñ ü ÿ � ï î ë ô ò ö ï ë ò ï ÿ ë ì
ñ ó ò ô ó ü ñ õ ú

The Coll ections API implementation of the binary search is the static method

Ar r ays. bi nar ySear ch. There are actually seven overloaded versions — one

for each of the primitive types except boo l ean , plus two more overloaded ver-

sions that work on Obj ect s (one works with a comparator, one uses the default

comparator). We will implement the Obj ect versions; the other seven are mind-

less copy and paste.

As usual the array must be sorted; if it is not, the results are undefined (veri-

fying that the array is sorted would destroy the logarithmic time bound for the

operation).

If the search for the item is successful, the index of the match is returned. If

the search is unsuccessful, we determine the first position that contains a larger

item, add one to this position, and then return the negative of the value. Thus, the

return value is always negative, because is at most - 1 (which occurs if the item

we are searching for is smaller than all other items) and is at least - a. l engt h-

1 (which occurs if the item we are searching for is larger than all other items).

The implementation is shown in Figure 6.15. As was the case for the max

routines, the two-parameter bi nar ySear ch calls the three-parameter

bi nar ySear ch (see lines 16 and 17). The three-parameter binary search rou-

tine mirrors the implementation in Figure 5.12.

BOOK.mkr Page 315 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Öª Ë º

We use the bi nar ySear ch method in Section 10.1.

BOOK.mkr Page 316 Wednesday, March 14, 2001 1:11 PM

a £ µ £ ¤ ¦ ¥ ® ¯ ° ± ¤ ¦ ² ³ ´ § ª Ë »

	
package w ei ss . ut i l ;
�
/ * *�
 * I nst ancel ess c l ass t hat c ont ai ns s t at i c m et hods

 * t o m ani pul at e a r r ays.�
 * /�
publ i c c l ass A r r ays�
{�
 pr i vat e A r r ays() { }	 �
 	 	
 / * *	

 * S ear ch s or t ed a r r ay a r r u s i ng d ef aul t c ompar at or .	 �
 * /	 �
 publ i c s t at i c i nt b i nar ySear ch(O bj ect [] a r r , O bj ect x)	

 {	 �
 r et ur n b i nar ySear ch(a r r , x ,	 �
 C ol l ec t i ons. DEFAULT_COMPARATOR) ;	 �
 }	 �

 �
 / * *
 	
 * S ear ch s or t ed a r r ay a r r u s i ng a c ompar at or .

 * I f a r r i s n ot s or t ed, r esul t s a r e u ndef i ned.
 �
 * @ par am a r r t he a r r ay t o s ear ch.
 �
 * @ par am x t he o bj ec t t o s ear ch f or .

 * @ par am c mp t he c ompar at or .
 �
 * @ r et ur n i f x i s f ound, r et ur ns i ndex w her e i t i s f ound.
 �
 * ot her wi se, x i s n ot f ound. I n t hat c ase, a n egat i ve
 �
 * number i s a l ways r et ur ned, a nd t hi s n umber i s e qual
 �
 * t o - (p + 1) , w hi ch p i s t he f i r st p os i t i on g r eat er� �
 * t han x . T hi s c an r ange f r om - 1 d own t o - (ar r . l engt h+1) .� 	
 * @ t hr ows C l assCast Except i on i f i t ems a r e n ot c ompar abl e.�

 * /� �
 publ i c s t at i c i nt b i nar ySear ch(O bj ect [] a r r , O bj ect x ,� �
 Compar at or c mp)�

 {� �
 i nt l ow = 0 , m i d = 0 ;� �
 i nt h i gh = a r r . l engt h;� �� �
 whi l e(l ow < h i gh)� �
 {� 	
 mi d = (l ow + h i gh) / 2 ;�

 i f (c mp. compar e(x , a r r [m i d]) > 0)� �
 l ow = m i d + 1 ;� �
 el se�

 hi gh = m i d;� �
 } � �
 i f (c mp. compar e(x , a r r [m i d]) = = 0)� �
 r et ur n - (l ow + 1) ;� �
 r et ur n l ow;
 �
 }
 	
}

� � � � � � � � � = Ö ´ � ¯ £ ´ £ µ ² ¶ ² ¦ ± µ ± Ê
binarySe arch

´ £ ² ³ ± � ¦ µ
Ar rays

¥ ¯ ¶ § §

BOOK.mkr Page 317 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Öª Ë ©

' (] (] k / � . � È 1
� ö ï

Arr ays
ý ø í ì ì

ý ó ñ ò í ë ñ ì í ì ï ò ó ô
ì ò í ò ë ý ÿ ï ò ö ó õ ì ò ö í ò
ó ð ï î í ò ï ó ñ í î î í � ì ú

The Collections API provides a set of overloaded sor t methods in the Ar r ays

class. Simply pass an array of primitives, or an array of Obj ect that implement

Compar abl e, or an array of Obje c t and a Compar ato r . We have not pro-

vided a sor t method in our Ar r ays class.

void sort(Object [] arr)

rearranges the elements in the array to be in sorted order, using the natural
order.

void sort(Object [] arr, Comparator cmp)

rearranges the elements in the array to be in sorted order, using the order
specified by the comparator.

The generic sorting algorithms are required to run in time.

× Ø l � �
List

Ú Û Ü Ý m ! á
ã n # ç æ ë ì í ý ó ø ø ï ý ò ë ó ñ
ó ô ë ò ï ÿ ì ë ñ ù ö ë ý ö
ò ö ï ë ò ï ÿ ì ö í þ ï í
ð ó ì ë ò ë ó ñ ú

A li st is a collection of items in which the items have a position. The most obvi-

ous example of a list is an array. In an array, items are placed in position 0, 1, etc.

O(N log N)

BOOK.mkr Page 318 Wednesday, March 14, 2001 1:11 PM

Ó ³ £
List

Ö µ ² £ ¤ Ê ¶ ¥ £ ª Ë À

	
package w ei ss . ut i l ;
�
/ * *�
 * L i st i nt er f ace. C ont ai ns m uch l ess t han j ava. ut i l .

 * /�
publ i c i nt er f ace L i st e xt ends C ol l ect i on�
{�
 Obj ect g et (i nt i dx) ; �
 Obj ect s et (i nt i dx , O bj ect n ewVal) ;	 �	 	
 / * *	

 * O bt ai ns a L i st I t er at or o bj ec t u sed t o t r aver se	 �
 * t he c ol l ec t i on b i di r ec t i onal l y .	 �
 * @ r et ur ns a n i t er at or p os i t i oned	

 * pr i or t o t he r equest ed e l ement .	 �
 * @ par am i dx t he i ndex t o s t ar t t he i t er at or .	 �
 * Use s i ze() t o d o c ompl et e r ever se t r aver sal .	 �
 * Use 0 t o d o c ompl et e f or war d t r aver sal .	 �
 * @ t hr ows I ndexOut Of BoundsExcept i on i f i dx i s n ot
 �
 * bet ween 0 a nd s i ze() , i nc l usi ve.
 	
 * /

 Li s t I t er at or l i s t I t er at or (i nt p os) ;
 �
}

� � � � � � � � � � Q ¶ ´ � ¯ £
List

¦ µ ² £ ¤ Ê ¶ ¥ £

BOOK.mkr Page 319 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Öª ¨ Å

	
package w ei ss . ut i l ;
�
/ * *�
 * L i st I t er at or i nt er f ace f or L i s t i nt er f ace.

 * /�
publ i c i nt er f ace L i st I t er at or e xt ends I t er at or�
{�
 / * *�
 * T est s i f t her e a r e m or e i t ems i n t he c ol l ect i on	 �
 * w hen i t er at i ng i n r ever se.	 	
 * @ r et ur n t r ue i f t her e a r e mor e i t ems i n t he c ol l ec t i on	

 * when t r aver si ng i n r ever se.	 �
 * /	 �
 bool ean h asPr ev i ous() ;	

 	 �
 / * *	 �
 * O bt ai ns t he p r ev i ous i t em i n t he c ol l ect i on.	 �
 * @ r et ur n t he p r ev i ous (as y et u nseen) i t em i n t he	 �
 * col l ect i on w hen t r aver s i ng i n r ever se.
 �
 * /
 	
 Obj ect p r ev i ous() ;

 �
 / * *
 �
 * R emove t he l as t i t em r et ur ned b y n ext o r p r evi ous.

 * C an o nl y b e c al l ed o nce a f t er n ext o r p r ev i ous.
 �
 * /
 �
 voi d r emove() ;
 �
}

� � � � � � � � � ? Q ¶ ´ � ¯ £
ListIte r ator

¦ µ ² £ ¤ Ê ¶ ¥ £

� ö ï Li st
ë ñ ò ï î ô í ý ï

ï S ò ï ñ õ ì ò ö ï
Col l ecti on

ë ñ ÷
ò ï î ô í ý ï í ñ õ í � ÷
ì ò î í ý ò ì ò ö ï ñ ó ò ë ó ñ ó ô
í ð ó ì ë ò ë ó ñ ú

The Li st interface extends the Col l ect i on interface and abstracts the

notion of a position. The interface in j ava. ut i l adds numerous methods to the

Col l ect i on interface. We are content to add the three shown in Figure 6.16.

The first two methods are get and set , which are similar to the methods

that we have already seen in Ar r ayLi s t . The third method returns a more flex-

ible iterator, the Li s t I t er at or .

BOOK.mkr Page 320 Wednesday, March 14, 2001 1:11 PM

Ó ³ £
List

Ö µ ² £ ¤ Ê ¶ ¥ £ ª ¨ Ë

' (o (* N 8 �
ListIterator

- È . � � Ç , � �

Li st I t er at or
ë ì

í � ë õ ë î ï ý ò ë ó ñ í ø þ ï î ÷
ì ë ó ñ ó ô

I t er at or
ú

As shown in Figure 6.17, ListIte r ator is just like an I terato r , except

that it is bidirectional. Thus we can both advance and retreat. Because of this, the

l i s t I t er at or factory method that creates it must be given a value that is log-

ically equal to the number of elements that have already been visited in the for-

ward direction. If this value is zero, the Li stI t er ator is initi ali zed at the

front, just like an I t er at or . If this value is the size of the Li st , the iterator is

initialized to have processed all elements in the forward direction. Thus in this

state, hasNext returns false, but we can use hasPr ev i ous and pr ev i ous to

traverse the list in reverse.

Figure 6.18 il lustrates that we can use i t r 1 to traverse a list in the forward

direction, and then once we reach the end, we can traverse the list backwards. It

also illustrates it r 2, which is positioned at the end, and simply processes the

Ar r ayLi s t in reverse.

One diff iculty with the Li s t I t er at or is that the semantics for r emove

must change slightly. The new semantics are that r emove deletes from the Li st

the last object returned as a result of calli ng either next or pr evi ous , and

r emove can only be called once between calls to either next of pr evi ous . In

order to override the Javadoc that is generated for r emove, it is listed in the

Li st I t er at or interface.

BOOK.mkr Page 321 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Öª ¨ ¨

	
i mpor t j ava. ut i l . Ar r ayLi s t ;

i mpor t j ava. ut i l . Li st I t er at or ;��
c l ass T est Ar r ayLi st

{�
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)�
 {�
 Ar r ayLi st l s t = n ew A r r ayLi st () ;�
 l s t . add(" 2") ; l s t . add(" 4") ;	 �
 Li s t I t er at or i t r 1 = l st . l i s t I t er at or (0) ;	 	
 Li s t I t er at or i t r 2 = l st . l i s t I t er at or (l s t . s i ze()) ;	
	 �
 Syst em. out . pr i nt (" For war d: ") ;	 �
 whi l e(i t r 1. hasNext ())	

 Syst em. out . pr i nt (i t r 1. next () + " ") ; 	 �
 Syst em. out . pr i nt l n() ; 	 �	 �
 Syst em. out . pr i nt (" Backwar d: ") ;	 �
 whi l e(i t r 1. hasPr ev i ous())
 �
 Syst em. out . pr i nt (i t r 1. pr ev i ous() + " ") ;
 	
 Syst em. out . pr i nt l n() ;

 �
 Syst em. out . pr i nt (" Backwar d: ") ;
 �
 whi l e(i t r 2. hasPr ev i ous())

 Syst em. out . pr i nt (i t r 2. pr ev i ous() + " ") ;
 �
 Syst em. out . pr i nt l n() ;
 �
 }
 �
}

� � � � � � � � � @ Q ¶ ´ � ¯ £ � ¤ ± ° ¤ ¶ ´ ² ³ ¶ ² ¦ ¯ ¯ � § ² ¤ ¶ ² £ § p ¦ � ¦ ¤ £ ¥ ² ¦ ± µ ¶ ¯ ¦ ² £ ¤ ¶ ² ¦ ± µ

' (o ()
LinkedList h i , � �

There are two basic Li s t implementations in the Collections API. One is the

Ar r ay Li st , which we have already seen. The other is a Li nkedLi st , which

stores items internally in a different manner than ArrayList , yielding perfor-

mance trade-offs. A third version is Vecto r , which is like ArrayList , but is

from an older library, and is present mostly for compatibility with legacy (old)

code. Using Vect or is no longer in vogue.

BOOK.mkr Page 322 Wednesday, March 14, 2001 1:11 PM

Ó ³ £
List

Ö µ ² £ ¤ Ê ¶ ¥ £ ª ¨ ª

� ö ï Li nkedLi st

ý ø í ì ì ë ÿ ð ø ï ÿ ï ñ ò ì í
ø ë ñ O ï õ ø ë ì ò ú

The Ar r ayLi st may be appropriate if insertions are performed only at the

high end of the array (using add), for the reasons discussed in Section 2.4.3. The

Ar r ayLi s t doubles the array if an insertion at the high-end would exceed an

internal capacity. Although this gives good Big-Oh performance, especially if we

add a constructor that allows the caller to suggest initial capacity for the internal

array, the Ar r ayLi s t is a poor choice if insertions are not made at the end,

because then we must move items out of way.

� ö ï ø ë ñ O ï õ ø ë ì ò ë ì ü ì ï õ
ò ó í þ ó ë õ ø í î � ï
í ÿ ó ü ñ ò ì ó ô õ í ò í
ÿ ó þ ï ÿ ï ñ ò ú � ò ì ò ó î ï ì
ë ò ï ÿ ì ù ë ò ö í ñ í õ õ ë ÷
ò ë ó ñ í ø ó ñ ï î ï ô ï î ÷
ï ñ ý ï ð ï î ë ò ï ÿ
ó þ ï î ö ï í õ ú

In a linked list, we store items noncontiguously rather than in the usual con-

tiguous array. To do this, we store each object in a node that contains the object

and a reference to the next node in the list, as shown in Figure 6.19. In this sce-

nario, we maintain references to both the first and last node in the list.

To be more concrete, a typical node looks like this:

cl ass Li s t Node
{
 Obje ct dat a; / / S ome el ement
 Li st Node n ext ;
}

� � � � � � � � � P ® § ¦ ´ � ¯ £ ¯ ¦ µ c £ � ¯ ¦ § ²

At any point, we can add a new last item x by doing this:

A0 A1 A2 A3

first last

BOOK.mkr Page 323 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Öª ¨ ¸

l ast . nex t = n ew L is t Node() ; / / A t t ach a ne w L i s t Node
l ast = l ast . next ; / / A dj ust l ast
l ast . dat a = x ; / / P l ace x i n t he n ode
l ast . nex t = n ul l ; / / I t ' s t he la st ; a dj ust next

� ö ï � í ì ë ý ò î í õ ï ÷ ó ô ô
� ï ò ù ï ï ñ

Ar r ayLis t
í ñ õ

Li nkedLi st
ë ì

ò ö í ò
get

ë ì ñ ó ò ï ô ô ë ÷
ý ë ï ñ ò ô ó î

Li nkedLi st &
ù ö ë ø ï ë ñ ì ï î ò ë ó ñ í ñ õ
î ï ÿ ó þ í ø ô î ó ÿ ò ö ï
ÿ ë õ õ ø ï ó ô í ý ó ñ ÷
ò í ë ñ ï î ë ì ÿ ó î ï ï ô ô ë ÷
ý ë ï ñ ò ø � ì ü ð ð ó î ò ï õ
� � ò ö ï
Li nkedLi st

ú

Now, an arbitrary item can no longer be found in one access. Instead, we must

scan down the list. This is similar to the difference between accessing an item on

a compact disk (one access) or a tape (sequential). While this may appear to make

linked li sts less attractive than arrays, they still have advantages. First, an inser-

tion into the middle of the list does not require moving all of the items that follow

the insertion point. Data movement is very expensive in practice, and the linked

list allows insertion with only a constant number of assignment statements.

Insertions and deletions toward the middle of the sequence are ineff icient in

the Ar r ayLi s t . An Ar r ayLi s t allows direct access by the index, but a

Li nkedLi st should not. It happens, that in the Collections API, get and set

are part of the Li st interface, so Li nkedLi st supports these operations,

slowly. Thus, the Li nkedLi st can always be used unless eff icient indexing is

needed. The Ar r ayLi s t may stil l be a better choice if insertions occur only at

the end.

ã ý ý ï ì ì ò ó ò ö ï ø ë ì ò ë ì
õ ó ñ ï ò ö î ó ü � ö í ñ ë ò ÷
ï î í ò ó î ý ø í ì ì ú

To access items in the list, we need a reference to the corresponding node,

rather than an index. The reference to the node would typically be hidden inside

an iterator class.

Because Li nkedLi st performs adds and r emoves more efficiently, it has

more operations than the Ar r ayLi s t . Some of the additional operations avail-

able for Li nkedLi s t are:

BOOK.mkr Page 324 Wednesday, March 14, 2001 1:11 PM

Q ² ¶ ¥ c § ¶ µ � q � £ � £ § ª ¨ ¹

void addLast(Object element)

appends el ement at the end of this Li nkedLi st .

void addFirst(Object element)

prepends el ement to the front of this Li nkedLi s t .

Object getFirst()

returns the first element in this Li nkedLi s t .

Object getLast()

returns the last element in this Li nkedLi st .

void removeFirst()

removes the first element from this Li nkedLi st .

void removeLast()

removes the last element from this Li nkedLi s t .

We implement the Li nkedLi s t class in Part IV.

× Ø × r Ü ! á s J ! Û ß t à à J

In this section we describe two containers: the stack and queue. In principle, both

have very simple interfaces (but not in the Collections API) and very eff icient

implementations. Even so, as we will see, they are very useful data structures.

' (' (* k . , � u �

ã ç æ å é v î ï ì ò î ë ý ò ì í ý ÷
ý ï ì ì ò ó ò ö ï ÿ ó ì ò î ï ÷
ý ï ñ ò ø � ë ñ ì ï î ò ï õ ë ò ï ÿ ú

A stack is a data structure in which access is restricted to the most recently

inserted element. It behaves very much li ke the common stack of bil ls, stack of

plates, or stack of newspapers. The last item added to the stack is placed on the

top and is easily accessible, whereas items that have been in the stack for a while

are more difficult to access. Thus the stack is appropriate if we expect to access

only the top item; all other items are inaccessible.

BOOK.mkr Page 325 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Öª ¨ º

In a stack the three natural operations of i nser t , r emove, and f i nd are

renamed push, pop, and t op. These basic operations are illustrated in Figure

6.20.

The interface shown in Figure 6.21 illustrates the typical protocol. It is simi-

lar to the protocol previously seen in Figure 6.1. By pushing items and then pop-

ping them, we can use the stack to reverse the order of things.

Y ò í ý O ó ð ï î í ò ë ó ñ ì
ò í O ï í ý ó ñ ì ò í ñ ò
í ÿ ó ü ñ ò ó ô ò ë ÿ ï ú

Each stack operation should take a constant amount of time, independent of

the number of items in the stack. By analogy, finding today’s newspaper in a stack

of newspapers is fast, no matter how deep the stack is. However, arbitrary access in

a stack is not efficiently supported, so we do not list it as an option in the protocol.

� � � � � � � � 2 T Q ² ¶ ¥ c ´ ± � £ ¯ A ¦ µ � � ² ² ± ¶ § ² ¶ ¥ c ¦ § p ·
push

6 ± � ² � � ² ¦ § p ·
top

6 � £ ¯ £ w
² ¦ ± µ ¦ § p ·

pop

Stack

pop , toppush

BOOK.mkr Page 326 Wednesday, March 14, 2001 1:11 PM

Q ² ¶ ¥ c § ¶ µ � q � £ � £ § ª ¨ »

	
/ / S t ack p r ot ocol
�
package w ei ss . nonst andar d;�

publ i c i nt er f ace S t ack�
{�
 voi d push(O bj ect x) ; / / i nser t�
 voi d pop() ; / / r emove�
 Obj ect t op() ; / / f i nd	 �
 Obj ect t opAndPop() ; / / f i nd + r emove	 		

 bool ean i sEmpt y() ;	 �
 voi d makeEmpt y() ;	 �
}

� � � � � � � � 2 � Õ ¤ ± ² ± ¥ ± ¯ Ê ± ¤ ² ³ £ § ² ¶ ¥ c

What makes the stack useful are the many applications for which we need to

access only the most recently inserted item. An important use of stacks is in com-

piler design.

' (' () k . , � u � , È ; h / x y ^ . � � z , È 1 ^ , 1 � �

Compilers check your programs for syntax errors. Often, however, a lack of one

symbol (e.g. a missing comment-ender * / or }) causes the compiler to spill out a

hundred lines of diagnostics without identifying the real error; this is especiall y

true when using anonymous classes.

A useful tool in this situation is a program that checks whether everything is

balanced, that is, every { corresponds to a } , every [to a] , and so on. The

sequence [()] is legal but [(]) is not — so simply counting the numbers of

each symbol is insuff icient. (Assume for now that we are processing only a

sequence of tokens and wil l not worry about problems such as the character con-

stant ' { ' not needing a matching ' }' .)

BOOK.mkr Page 327 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Öª ¨ ©

ã ì ò í ý O ý í ñ � ï
ü ì ï õ ò ó ý ö ï ý O ô ó î
ü ñ � í ø í ñ ý ï õ ì � ÿ ÷
� ó ø ì ú

A stack is useful for checking unbalanced symbols because we know that

when a closing symbol such as) is seen, it matches the most-recently seen

unclosed (. Therefore, by placing opening symbols on a stack, we can easily

check that a closing symbol makes sense. Specifically, we have the following

algorithm.

1. Make an empty stack.
2. Read symbols until the end of the file.

a. If the token is an opening symbol, push it onto the stack.

b. If it is a closing symbol and if the stack is empty, report an error.

c. Otherwise, pop the stack. If the symbol popped is not the correspond-

ing opening symbol, report an error.

3. At the end of the file, if the stack is not empty, report an error.

In Section 11.1 we wil l develop this algorithm to work for (almost) all Java

programs. Details include error reporting, processing of comments, strings, and

character constants, as well as escape sequences.

� ö ï ì ò í ý O ë ì ü ì ï õ ò ó
ë ÿ ð ø ï ÿ ï ñ ò ÿ ï ò ö ó õ
ý í ø ø ì ë ñ ÿ ó ì ò ð î ó ÷
� î í ÿ ÿ ë ñ � ø í ñ ÷
� ü í � ï ì ú

The algorithm to check balanced symbols suggests a way to implement

method calls. The problem is that, when a call is made to a new method, all the

variables local to the call ing method need to be saved by the system; otherwise,

the new method would overwrite the calling routine’s variables. Furthermore, the

current location in the call ing routine must be saved so that the new method

knows where to go after it is done. The reason that this problem is similar to bal-

ancing symbols is because a method call and a method return are essentially the

same as an open parenthesis and a closed parenthesis, so the same ideas should

BOOK.mkr Page 328 Wednesday, March 14, 2001 1:11 PM

Q ² ¶ ¥ c § ¶ µ � q � £ � £ § ª ¨ À

apply. This indeed is the case: as discussed in Section 7.3, the stack is used to

implement method calls in most programming languages.

� ö ï { | ê } å æ { } | } ê é ê ~
ä ê � é ê | å } ç # � � í ø ÷

� ó î ë ò ö ÿ ü ì ï ì í ì ò í ý O
ò ó ï þ í ø ü í ò ï ï S ð î ï ì ÷
ì ë ó ñ ì ú

A final important application of the stack is the evaluation of expressions in

computer languages. In the expression 1+2* 3, we see that at the point that the *

is encountered, we have already read the operator + and the operands 1 and 2.

Does * operate on 2, or 1+2? Precedence rules tell us that * operates on 2, which

is the most recently seen operand. After the 3 is seen, we can evaluate 2* 3 as 6

and then apply the + operator. This process suggests that operands and intermedi-

ate results should be saved on a stack. It also suggests that the operators be saved

on the stack (since the + is held until the higher precedence * is evaluated). An

algorithm that uses this strategy is operator precedence parsing, and is described

in Section 11.2.

' (' (M � ^ � ^ � �

� ö ï � è ê è ê î ï ì ò î ë ý ò ì
í ý ý ï ì ì ò ó ò ö ï ø ï í ì ò
î ï ý ï ñ ò ø � ë ñ ì ï î ò ï õ
ë ò ï ÿ ú

Another simple data structure is the queue, which restricts access to the least

recently inserted item. In many cases being able to find and/or remove the most-

recently inserted item is important. But in an equal number of cases, it is not only

unimportant — but it is actually the wrong thing to do. In a multiprocessing sys-

tem, for example, when jobs are submitted to a printer, we expect the least recent

or most senior job to be printed first. This order is not only fair but it is also

required to guarantee that the first job does not wait forever. Thus you can expect

to find printer queues on all large systems.

The basic operations supported by queues are

BOOK.mkr Page 329 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Öª ª Å

• enqueue, or insertion at the back of the line;

• dequeue, or removal of the item from the front of the line; and

• get Fr ont , or access of the item at the front of the line.

� ü ï ü ï ó ð ï î í ò ë ó ñ ì
ò í O ï í ý ó ñ ì ò í ñ ò
í ÿ ó ü ñ ò ó ô ò ë ÿ ï ú

Figure 6.22 il lustrates these queue operations. Historically, dequeue and

get Fr ont have been combined into one operation; we do this by having

dequeue return a reference to the item that it has removed.

� � � � � � � � 2 2 q � £ � £ ´ ± � £ ¯ A ¦ µ � � ² ¦ § p ·
enqueue

6 ± � ² � � ² ¦ § p ·
getFront

6
� £ ¯ £ ² ¦ ± µ ¦ § p ·

dequeue

	
/ / Q ueue p r ot ocol
�
package w ei ss . nonst andar d;�

publ i c i nt er f ace Q ueue�
{�
 voi d enqueue(O bj ect x) ; / / i nser t�
 Obj ect g et Fr ont () ; / / f i nd�
 Obj ect d equeue() ; / / r emove + f i nd	 �	 	
 bool ean i sEmpt y() ;	

 voi d makeEmpt y() ;	 �
}

� � � � � � � � 2 5 Õ ¤ ± ² ± ¥ ± ¯ Ê ± ¤ ² ³ £ � � £ � £

Figure 6.23 il lustrates a possible protocol for queues. Because the queue

operations and the stack operations are restricted similarly, we expect that they

should also take a constant amount of time per query. This is indeed the case. All

Queue
enqueue dequeue

getFront

BOOK.mkr Page 330 Wednesday, March 14, 2001 1:11 PM

Q £ ² § ª ª Ë

of the basic queue operations take time. We will see several applications of

queues in the case studies.

' (' (] k . , � u � , È ; � ^ � ^ � � � È . 8 � h / i i � � . � / È � � � -
� ö ï � ó ø ø ï ý ò ë ó ñ ì ã � �
ð î ó þ ë õ ï ì í

St ack

ý ø í ì ì & � ü ò ñ ó \ ü ï ü ï
ý ø í ì ì ú

The Coll ections API provides a Stac k class but no queue class. The Stac k

methods are pus h, pop, and peek . However, the St ack class extends Vect or

and is slower than it needs to be; like Vect or , its use is no longer in vogue, and

can be replaced with Li st operations. The queue operations must be done using

a Li nkedLi s t (e.g. addLast , r emoveFi r s t , get Fi r st).

× Ø � r Ü J
ã

Set ý ó ñ ò í ë ñ ì ñ ó
õ ü ð ø ë ý í ò ï ì ú

A Set i s a container that contains no dupli cates. I t supports all of the

Col l ect i on methods. Figure 6.24 illustrates that the interface does little more

than declare a type.

� ö ï Sor t edSet
ë ì

í ñ ó î õ ï î ï õ ý ó ñ ÷
ò í ë ñ ï î ú � ò í ø ø ó ù ì ñ ó
õ ü ð ø ë ý í ò ï ì ú

A Sor t edSet is a Set that maintains (internally) its items in sorted order.

The objects that are added into the Sor t edSet must either be comparable, or a

Compar at or has to be provided when the container is instantiated. A

Sor t edSet supports all of the Set methods, but its iterator is guaranteed to

step through items in its sorted order. The Sor t edSet also allows us to find the

smallest and largest item. The interface for our subset of Sor t edSet is shown

in Figure 6.25.

O 1()

BOOK.mkr Page 331 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Öª ª ¨

	
package w ei ss . ut i l ;
�
/ * *�
 * S et i nt er f ace.

 * /�
publ i c i nt er f ace S et e x t ends C ol l ec t i on�
{�
}

� � � � � � � � 2 7 Õ ± § § ¦ p ¯ £
Set

¦ ´ � ¯ £ ´ £ µ ² ¶ ² ¦ ± µ d

	
package w ei ss . ut i l ;
�
/ * *�
 * S or t edSet i nt er f ace.

 * /�
publ i c i nt er f ace S or t edSet e x t ends S et�
{�
 / * *�
 * R et ur n t he c ompar at or u sed b y t hi s S or t edSet .	 �
 * @ r et ur n t he c ompar at or o r n ul l i f t he	 	
 * d ef aul t c ompar at or i s u sed.	

 * /	 �
 Compar at or c ompar at or () ;	 �
 	

 / * *	 �
 * F i nd t he s mal l es t i t em i n t he s et .	 �
 * @ r et ur n t he s mal l est i t em.	 �
 * @ t hr ows N oSuchEl ement Except i on i f t he s et i s e mpt y .	 �
 * /
 �
 Obj ect f i r s t () ;
 	

 / * *
 �
 * F i nd t he l ar gest i t em i n t he s et .
 �
 * @ r et ur n t he l ar gest i t em.

 * @ t hr ows N oSuchEl ement Except i on i f t he s et i s e mpt y .
 �
 * /
 �
 Obj ect l ast () ;
 �
}

� � � � � � � � 2 = Õ ± § § ¦ p ¯ £
SortedSet

¦ µ ² £ ¤ Ê ¶ ¥ £

BOOK.mkr Page 332 Wednesday, March 14, 2001 1:11 PM

Q £ ² § ª ª ª

	
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)

 {�
 Set s = n ew T r eeSet (C ol l ec t i ons. r ever seOr der ()) ;�
 s . add(" j oe") ;

 s . add(" bob") ;�
 s . add(" hal ") ;�
 pr i nt Col l ec t i on(s) ; / / F i gur e 7 . 8�
 }

� � � � � � � � 2 � Ö ¯ ¯ � § ² ¤ ¶ ² ¦ ± µ ± Ê ² ³ £
TreeSet

6 � § ¦ µ ° ¤ £ g £ ¤ § £ ± ¤ � £ ¤ d

' (� (* N 8 �
TreeSet h i , � �

� ö ï Tr eeSet
ë ì í ñ

ë ÿ ð ø ï ÿ ï ñ ò í ò ë ó ñ ó ô

Sor t edSet
ú

The Sorte dSet is implemented by a TreeS et . The underlying implementa-

tion of the Tr eeSet is a balanced-binary search tree, and is discussed in Chapter

19.

By default, ordering uses the default comparator. An alternate ordering can

be specified by providing a Compar at or to the constructor. As an example, Fig-

ure 6.26 il lustrates how a Sor t edSet that stores strings is constructed. The call

to pr i nt Col l ect i on will output elements in decreasing sorted order.

The Sor t edSet , like all Set s, does not allow duplicates. Two items are

considered equal if the comparator’s compar e method returns 0.

In Section 5.6 we examined the static searching problem and saw that if the

items are presented to us in sorted order, then we can support the f i nd operation

in logarithmic worst-case time. This is static searching because, once we are pre-

sented with the items, we cannot add or remove items. The Sor t edSet , allows

us to add and remove items.

We are hoping that the worst-case cost of the cont ai ns , add, and r emove

operations is because that would match the bound obtained for theO(log N)

BOOK.mkr Page 333 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Öª ª ¸

static binary search. Unfortunately, for the simplest implementation of the

Tr eeSet , this is not the case. The average case is logarithmic, but the worst case

is and occurs quite frequently. However, by applying some algorithmic

tricks, we can obtain a more complex structure that does indeed have

cost per operation. The Collections API Tr eeSet is guaranteed to have this per-

formance, and in Chapter 19, we discuss how to obtain it using the binary search

tree and its variants, and provide an implementation of the Tr eeSet , with an

iterator.

% ï ý í ñ í ø ì ó ü ì ï í
� ë ñ í î � ì ï í î ý ö ò î ï ï
ò ó í ý ý ï ì ì ò ö ï � ò ö
ì ÿ í ø ø ï ì ò ë ò ï ÿ ë ñ ø ó � ÷
í î ë ò ö ÿ ë ý ò ë ÿ ï ú

We mention in closing that although we can find the smallest and largest item

in a Sor t edSet in time, finding the Kth smallest item, where K is a

parameter, is not supported in the Collections API. However, it is possible to per-

form this operation in time, while preserving the running time of the

other operations, if we do more work.

' (� () N 8 �
HashSet h i , � �

� ö ï HashSet
ë ÿ ÷

ð ø ï ÿ ï ñ ò ì ò ö ï Set

ë ñ ò ï î ô í ý ï ú � ò õ ó ï ì
ñ ó ò î ï \ ü ë î ï í ý ó ÿ ÷
ð í î í ò ó î ú

In addition to the Tr eeSet , the Collections API provides a HashSet class that

implements the Set interface. The Has hSet differs from the Tre eSet in that

it cannot be used to enumerate items in sorted order, nor can it be used to obtain

the smallest or largest item. Indeed, the items in the HashSet do not have to be

comparable in any way. This means that the HashSet is less powerful than the

Tr eeSet . If being able to enumerate the items in a Set in sorted order is not

important, than it is often preferable to use the HashSet because not having to

maintain sorted order allows the HashSet to obtain faster performance. To do

O(N)

O(log N)

O(log N)

O(log N)

BOOK.mkr Page 334 Wednesday, March 14, 2001 1:11 PM

Q £ ² § ª ª ¹

so, elements placed in the HashSet must provide hints to the HashSet algo-

rithms. This is done by having each element implement a special hashCode

method; we describe this method later in this subsection.

Figure 6.27 illustrates the use of the HashSet . It is guaranteed that if we

iterate through the entire HashSet , we wil l see each item once, but the order that

the items are visited is unknown. It is almost certain that the order will not be the

same as the order of insertion, nor wil l it be any kind of sorted order.

Like all Set s, the HashSet does not allow duplicates. Two items are con-

sidered equal if the equal s method says so. Thus, any object that is inserted into

the HashSet must have a properly overridden equal s method.

Recall that in Section 4.8, we discussed that it is essential that equal s is

overridden (by providing a new version that takes an Obj ect as parameter)

rather than overloaded.

� �
equal s

ÿ ü ì ò � ï
ì � ÿ ÿ ï ò î ë ý � ò ö ë ì ë ì
ò î ë ý O � ù ö ï ñ ë ñ ö ï î ë ò ÷
í ñ ý ï ë ì ë ñ þ ó ø þ ï õ ú

Overloading equal s is very tricky when inheritance is involved. The contract

for equals states that if p and q are not null , p.equals(q) should return

the same value as q. equa l s(p) . This does not occur in Figure 6.28. In that

example, clearly b. equal s(c) returns true, as expected. a. equal s(b) also

returns true, because BaseCl ass ’s equal s method is used, and that only com-

pares the x components. However, b. equals (a) returns false, because

Der i vedCl ass ’s equal s method is used, and the i nst anceof test will fail

(a is not an instance of Der i vedCl ass) at line 29.

BOOK.mkr Page 335 Wednesday, March 14, 2001 1:11 PM

Ó ³ £ Ô ± ¯ ¯ £ ¥ ² ¦ ± µ § ® Õ Öª ª º

	
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)

 {�
 Set s = n ew HashSet () ;�
 s . add(" j oe") ;

 s . add(" bob") ;�
 s . add(" hal ") ;�
 pr i nt Col l ec t i on(s) ; / / F i gur e 7 . 8�
 }

� � � � � � � � 2 ? Ö ¯ ¯ � § ² ¤ ¶ ² ¦ ± µ ± Ê ² ³ £
HashSet

6 ¦ ² £ ´ § ¶ ¤ £ ± � ² � � ² ¦ µ § ± ´ £ ± ¤ � £ ¤ d

BOOK.mkr Page 336 Wednesday, March 14, 2001 1:11 PM

Q £ ² § ª ª »

	
c l ass B aseCl ass

{�
 publ i c B aseCl ass(i nt i)�
 { x = i ; }

 �
 publ i c b ool ean e qual s(O bj ect r hs)�
 {�
 / / T hi s i s t he w r ong t est (ok i f f i nal c l ass)�
 i f (! (r hs i nst anceof B aseCl ass))	 �
 r et ur n f al se; 	 	
 	

 r et ur n x = = ((BaseCl ass) r hs) . x ; 	 �
 }	 �
 	

 pr i vat e i nt x ;	 �
}	 �	 �
c l ass D er i vedCl ass e xt ends B aseCl ass	 �
{
 �
 publ i c D er i vedCl ass(i nt i , i nt j)
 	
 {

 super (i) ;
 �
 y = j ;
 �
 }

 �
 publ i c b ool ean e qual s(O bj ect r hs)
 �
 {
 �
 / / T hi s i s t he w r ong t est .
 �
 i f (! (r hs i nst anceof D er i vedCl ass))� �
 r et ur n f al se;� 	�

 r et ur n s uper . equal s(r hs) & &� �
 y = = ((Der i vedCl ass) r hs) . y; � �
 }�

 � �
 pr i vat e i nt y ;� �
}� �� �
publ i c c l ass E qual sWi t hI nher i t ance� �
{� 	
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)�

 {� �
 BaseCl ass a = n ew B aseCl ass(5) ;� �
 Der i vedCl ass b = n ew Der i vedCl ass(5 , 8) ;� �
 Der i vedCl ass c = n ew Der i vedCl ass(5 , 8) ;� �
 � �
 Syst em. out . pr i nt l n(" b. equal s(c) : " + b . equal s(c)) ;� �
 Syst em. out . pr i nt l n(" a. equal s(b) : " + a . equal s(b)) ;�
 Syst em. out . pr i nt l n(" b. equal s(a) : " + b . equal s(a)) ;� ¡
 }� ¢
}

£ ¤ ¥ ¦ § ¨ © ª « ¬ ­ ® ® ¯ ° ± ² ³ ± ´ µ ¶ µ · ³ ¸ ² µ ¹ º ¶ ´ » ¼ ® º » º ¶ ± ³ ± ´ µ ¶ µ ·
equals

BOOK.mkr Page 337 Wednesday, March 14, 2001 1:11 PM

½ ¾ º ¿ µ ® ® º À ± ´ µ ¶ ° Á Â ­Ã Ã Ä
Å Æ Ç È É Ê Æ Ë Ì Ê Í É Æ Ë Æ É
Æ Î Ï Ð Ð Ê Ñ Ï

equal s

Ò Ï Ç Æ Ó É Ô Ï Ò Õ Í Ï
Ö Ç Õ Í Í × Å Æ Ç È É Ê Æ Ë Ø Ê Í É Æ
Ð Ï Ù È Ê Ð Ï Ê Ñ Ï Ë É Ê Ö Õ Ç Ç Ú
É Ú Û Ï Ñ Æ Ò Ü Ï Ö É Í È Í Ê Ë Ý
get Cl ass

×

There are two standard solutions to this problem. One is to make the equal s

method final in BaseCl ass . This avoids the problem of conflicting equal s .

The other solution is to strengthen the equals test to require that the types are

identical, and not simply compatible, since the one-way compatibility is what

breaks equal s . In this example, a BaseCl ass and Der i vedCl ass object

would never be declared equal. Figure 6.29 shows a correct implementation. Line

8 contains the idiomatic test. get Cl ass returns a special object of type Cl ass

(note the capital C) that represents information about any object’s class.

get Cl ass is a final method in the Obj ect class. If it returns the same Cl ass

instance, then the two objects have identical types.

BOOK.mkr Page 338 Wednesday, March 14, 2001 1:11 PM

Þ º ± ° Ã Ã ß

¢
c l ass B aseCl assà
{á
 publ i c B aseCl ass(i nt i)�
 { x = i ; }�
 â
 publ i c b ool ean e qual s(O bj ect r hs)�
 {�
 i f (r hs = = n ul l | | g et Cl ass() ! = r hs . get Cl ass())
 r et ur n f al se;¢ ¡
 ¢ ¢
 r et ur n x = = ((BaseCl ass) r hs) . x ; ¢ à
 }¢ á
 ¢ �
 pr i vat e i nt x ;¢ �
}¢ â¢ �
c l ass D er i vedCl ass e xt ends B aseCl ass¢ �
{¢
 publ i c D er i vedCl ass(i nt i , i nt j)à ¡
 {à ¢
 super (i) ;à à
 y = j ;à á
 }à �
 à �
 publ i c b ool ean e qual s(O bj ect r hs)à â
 {à �
 / / C l ass t est n ot n eeded; g et Cl ass() i s d oneà �
 / / i n s uper cl ass e qual sà
 r et ur n s uper . equal s(r hs) & &á ¡
 y = = ((Der i vedCl ass) r hs) . y; á ¢
 }á à
 á á
 pr i vat e i nt y ;á �
}

£ ¤ ¥ ¦ § ¨ © ª « ã ¿ µ ² ² º À ± ´ » ¼ ® º » º ¶ ± ³ ± ´ µ ¶ µ ·
equals

BOOK.mkr Page 339 Wednesday, March 14, 2001 1:11 PM

½ ¾ º ¿ µ ® ® º À ± ´ µ ¶ ° Á Â ­Ã ä å

¢
/ * *à
 * T est p r ogr am f or H ashSet .á
 * /�
c l ass I t er at or Test�
{ â
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)�
 {�
 Li s t s t ud1 = n ew Ar r ayLi s t () ;
 s t ud1. add(n ew S i mpl eSt udent (" Bob" , 0)) ;¢ ¡
 s t ud1. add(n ew S i mpl eSt udent (" Joe" , 1)) ;¢ ¢
 s t ud1. add(n ew S i mpl eSt udent (" Bob" , 2)) ; / / d up¢ à¢ á
 / / w i l l o nl y h ave 2 i t ems, i f h ashCode i s¢ �
 / / i mpl ement ed. O t her wi se w i l l h ave 3 b ecause¢ �
 / / d upl i cat e w i l l n ot b e d et ect ed. ¢ â
 Set s t ud3 = n ew HashSet (s t ud1) ;¢ �
 ¢ �
 pr i nt Col l ec t i on(s t ud1) ; / / B ob J oe B ob¢
 pr i nt Col l ec t i on(s t ud3) ; / / 2 i t ems i n s ome o r derà ¡
 }à ¢
}à àà á
/ * *à �
 * I l l ust r at es u se o f h ashCode/ equal s f or a u ser - def i ned c l ass.à �
 * S t udent s a r e m at ched o n b asi s o f n ame o nl y .à â
 * /à �
c l ass S i mpl eSt udentà �
{ à
 St r i ng n ame;á ¡
 i nt i d; á ¢
 á à
 publ i c S i mpl eSt udent (S t r i ng n , i nt i)á á
 { n ame = n ; i d = i ; }á �á �
 publ i c S t r i ng t oSt r i ng()á â
 { r et ur n n ame + " " + i d; }á �
 á �
 publ i c b ool ean e qual s(O bj ect r hs)á
 {� ¡
 i f (r hs = = n ul l | | g et Cl ass() ! = r hs . get Cl ass())� ¢
 r et ur n f al se;� à
 � á
 Si mpl eSt udent o t her = (Si mpl eSt udent) r hs ;� �
 r et ur n n ame. equal s(o t her . name) ;� �
 }� â
 � �
 publ i c i nt h ashCode()� �
 { r et ur n n ame. hashCode() ; }�
}

£ ¤ ¥ ¦ § ¨ © ª æ ç ­ ® ® ¯ ° ± ² ³ ± º ° ± ¾ º
equals

³ ¶ è
hashCode

» º ± ¾ µ è ° · µ ² ¯ ° º ´ ¶
HashSet

BOOK.mkr Page 340 Wednesday, March 14, 2001 1:11 PM

Þ º ± ° Ã ä é
ê Ô Ï

hashCode

ë Ï É Ô Æ Ñ ë È Í É Ò Ï
Æ Î Ï Ð Ð Ê Ñ Ñ Ï Ë Ê ì
equal s

Ê Í Æ Î Ï Ð Ð Ê Ñ í
Ñ Ï Ë Æ Ð É Ô Ï
HashSet

Ó Ê Ç Ç Ë Æ É
Ó Æ Ð î ×

When using a HashSet , we must also override the special hashCode

method that is specified in Obj ect ; hashcode returns an i nt . Think of

hashCode as providing a trusted hint of where the items are stored. If the hint is

wrong, the item is not found, so if two objects are equal, they should provide

identical hints. The contract for hashCode is that if two objects are declared

equal by the equal s method, then the hashCode method must return the same

value for them. If this contract is violated, the HashSet will fail to find objects,

even if equal s declares that there is a match. If equal s declares the objects

are not equal, the hashCode method should return a different value for them,

but this is not required. However, it is very beneficial for HashSet performance

if hashCode rarely produces identical results for unequal objects. How hash-

Code and HashSet interact is discussed in Chapter 20.

Figure 6.30 illustrates a Si mpl eSt udent class in which two

Si mpl eSt udent s are equal i f they have the same name (and are both

Si mpl eSt udent s). This could be overridden using the techniques in Figure

6.29 as needed, or this method could be declared final. If it was declared final,

then the test that is present allows only two identically-typed Si mpl eSt udent s

to be declared equal. If, with a final equal s , we replace the test at line 40 with

an i ns t anceof test, then any two objects in the hierarchy can be declared

equal if their names match.

The hashCode method at lines 47 and 48 simply uses the hashCode of the

name field. Thus if two Si mpl eSt udent objects have the same name (as

BOOK.mkr Page 341 Wednesday, March 14, 2001 1:11 PM

½ ¾ º ¿ µ ® ® º À ± ´ µ ¶ ° Á Â ­Ã ä ï

declared by equal s) they wil l have the same hashCode, since, presumably,

the implementors of St r i ng honored the contract for hashCode.

The accompanying test program is part of a larger test that il lustrates all the

basic containers. Observe that if hashCode is unimplemented, all three

Si mpl eSt udent objects will be added to the HashSet because the duplicate

will not be detected.

It turns out that on average, the HashSet operations can be performed in

constant time. This seems like an astounding result because it means that the cost

of a single HashSet operation does not depend on whether the HashSet con-

tains 10 items or 10,000 items. The theory behind the HashSet is fascinating

and is described in Chapter 20.

ð ñ ò ó ô õ ö
÷

Map
Ê Í È Í Ï Ñ É Æ

Í É Æ Ð Ï Õ Ö Æ Ç Ç Ï Ö É Ê Æ Ë Æ ì
Ï Ë É Ð Ê Ï Í É Ô Õ É Ö Æ Ë Í Ê Í É Í
Æ ì ø ù ú û Õ Ë Ñ É Ô Ï Ê Ð

ü ý þ ÿ ù û × ê Ô Ï
map

ë Õ Û Í î Ï Ú Í É Æ Î Õ Ç í
È Ï Í ×

A Map is used to store a collection of entries that consists of keys and their values.

The Map maps keys to values. Keys must be unique, but several keys can map to

the same value. Thus values need not be unique. There is a Sor t edMap interface

that maintains the map logically in key-sorted order.

Not surprisingly, there are two implementations: the HashMap and

Tr eeMap. The HashMap does not keep keys in sorted order, whereas the

Tr eeMap does. For simplicity, we do not implement the Sor t edMap interface

but we do implement HashMap and Tr eeMap.

BOOK.mkr Page 342 Wednesday, March 14, 2001 1:11 PM

� ³ ¼ ° Ã ä Ã

¢
package w ei ss . ut i l ;àá
/ * *�
 * M ap i nt er f ace.�
 * A m ap s t or es k ey/ val ue p ai r s .â
 * I n o ur i mpl ement at i ons, d upl i cat e k eys a r e n ot a l l owed.�
 * /�
publ i c i nt er f ace Map e xt ends j ava. i o. Ser i al i zabl e
{¢ ¡
 / * *¢ ¢
 * R et ur ns t he n umber o f k eys i n t hi s m ap.¢ à
 * /¢ á
 i nt s i ze() ;¢ �
 ¢ �
 / * *¢ â
 * T est s i f t hi s m ap i s e mpt y .¢ �
 * /¢ �
 bool ean i sEmpt y() ;¢ à ¡
 / * *à ¢
 * T est s i f t hi s m ap c ont ai ns a g i ven k ey.à à
 * /à á
 bool ean c ont ai nsKey(O bj ect k ey) ;à �à �
 / * *à â
 * R et ur ns t he v al ue t hat m at ches t he k ey o r n ul là �
 * i f t he k ey i s n ot f ound. S i nce n ul l v al ues a r e a l l owed,à �
 * c hecki ng i f t he r et ur n v al ue i s n ul l m ay n ot b e aà
 * s af e w ay t o a scer t ai n i f t he k ey i s p r esent i n t he m ap.á ¡
 * /á ¢
 Obj ect g et (O bj ect k ey) ;á àá á
 / * *á �
 * A dds t he k ey/ val ue p ai r t o t he m ap, o ver r i di ng t heá �
 * o r i gi nal v al ue i f t he k ey w as a l r eady p r esent .á â
 * R et ur ns t he o l d v al ue a ssoci at ed w i t h t he k ey, o rá �
 * n ul l i f t he k ey w as n ot p r esent p r i or t o t hi s c al l .á �
 * /á
 Obj ect p ut (O bj ect k ey, O bj ect v al ue) ;� ¡� ¢
 / * *� à
 * R emoves t he k ey a nd i t s v al ue f r om t he m ap.� á
 * R et ur ns t he p r ev i ous v al ue a ssoc i at ed w i t h t he k ey,� �
 * o r n ul l i f t he k ey w as n ot p r esent p r i or t o t hi s c al l .� �
 * /� â
 Obj ect r emove(O bj ect k ey) ;

£ ¤ ¥ ¦ § ¨ © ª æ � Þ ³ » ¼ ® º
Map

´ ¶ ± º ² · ³ À º � Â ³ ² ± � �

BOOK.mkr Page 343 Wednesday, March 14, 2001 1:11 PM

½ ¾ º ¿ µ ® ® º À ± ´ µ ¶ ° Á Â ­Ã ä ä

� �
 / * *� �
 * R emoves a l l k ey/ val ue p ai r s f r om t he m ap. �
 * /� ¡
 voi d c l ear () ;� ¢� à
 / * *� á
 * R et ur ns t he k eys i n t he map.� �
 * /� �
 Set k eySet () ;� â� �
 / * *� �
 * R et ur ns t he v al ues i n t he map. T her e m ay b e d upl i cat es .�
 * /â ¡
 Col l ect i on v al ues() ;â ¢â à
 / * *â á
 * R et ur n a s et o f M ap. Ent r y o bj ect s c or r espondi ng t oâ �
 * t he k ey/ val ue p ai r s i n t he m ap.â �
 * / â â
 Set e nt r ySet () ;â �â �
 / * *â
 * I nt er f ace u sed t o a ccess t he k ey/ val ue p ai r s i n a m ap.� ¡
 * F r om a m ap, u se e nt r ySet () . i t er at or t o o bt ai n a i t er at or� ¢
 * o ver a S et o f p ai r s. T he n ext () m et hod o f t hi s i t er at or� à
 * y i el ds o bj ec t s o f t ype M ap. Ent r y .� á
 * /� �
 publ i c i nt er f ace E nt r y e x t ends j ava. i o. Ser i al i zabl e� �
 {� â
 / * *� �
 * R et ur ns t hi s p ai r ' s k ey.� �
 * /�
 Obj ect g et Key() ;� ¡� ¢
 / * *� à
 * R et ur ns t hi s p ai r ' s v al ue.� á
 * /� �
 Obj ect g et Val ue() ;� �
 }� â
}

£ ¤ ¥ ¦ § ¨ © ª æ « Þ ³ » ¼ ® º
Map

´ ¶ ± º ² · ³ À º � Â ³ ² ± � �

The map can be implemented as a Set instantiated with a pair (see Section

3.7), whose comparator or equal s /hashCode implementation refers only to

the key. The Map interface does not extend Col l ect i on ; instead it exists on its

BOOK.mkr Page 344 Wednesday, March 14, 2001 1:11 PM

� ³ ¼ ° Ã ä �

own. A sample interface that contains the most important methods is shown in

Figures 6.31 and 6.32.

Most of the methods have intuitive semantics. put is used to add a key/value

pair, r emove is used to remove a key/value pair (only the key is specified), and

get returns the value associated with a key. nul l values are allowed, which

complicates issues for get , because the return value from get will not distin-

guish between a failed search and a successful search that returns nul l for the

value. cont ai nsKey can be used if nul l values are known to be in the map.

The Map does not provide an i t er at or method or class. Instead it returns

a Col l ect i on that can be used to view the contents of the map.

The keySet method gives a Col l ect i on that contains all the keys. Since

duplicate keys are not allowed, the result of keySet is a Set , for which we can

obtain an iterator. If the Map is a Sor t edMap, the Set is a Sor t edSet .

BOOK.mkr Page 345 Wednesday, March 14, 2001 1:11 PM

½ ¾ º ¿ µ ® ® º À ± ´ µ ¶ ° Á Â ­Ã ä �

¢
i mpor t w ei ss. ut i l . Map;à
i mpor t w ei ss. ut i l . Tr eeMap;á
i mpor t w ei ss. ut i l . Set ;�
i mpor t w ei ss. ut i l . I t er at or ;�
i mpor t w ei ss. ut i l . Compar at or ;â�
publ i c c l ass M apDemo�
{
 publ i c s t at i c v oi d p r i nt Map(S t r i ng m sg, M ap m)¢ ¡
 {¢ ¢
 Syst em. out . pr i nt l n(m sg + " : ") ;¢ à
 Set e nt r i es = m . ent r ySet () ;¢ á
 I t er at or i t r = e nt r i es. i t er at or () ;¢ �
 ¢ �
 whi l e(i t r . hasNext ())¢ â
 {¢ �
 Map. Ent r y t hi sPai r = (Map. Ent r y) i t r . next () ;¢ �
 Syst em. out . pr i nt (t hi sPai r . get Key() + " : ") ;¢
 Syst em. out . pr i nt l n(t hi sPai r . get Val ue()) ;à ¡
 }à ¢
 }à àà á
 / / D o s ome i nser t s a nd p r i nt i ng (done i n p r i nt Map) .à �
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)à �
 {à â
 Map p hone1 = n ew T r eeMap() ;à �
 à �
 phone1. put (" John D oe" , " 212- 555- 1212") ;à
 phone1. put (" Jane D oe" , " 312- 555- 1212") ;á ¡
 phone1. put (" Hol l y D oe" , " 213- 555- 1212") ; á ¢á à
 Syst em. out . pr i nt l n(" phone1. get (\ " Jane D oe\ ") : "á á
 + p hone1. get (" Jane D oe")) ;á �
 Syst em. out . pr i nt l n() ;á �
 á â
 pr i nt Map(" phone1" , p hone1) ;á �
 }á �
}

£ ¤ ¥ ¦ § ¨ © ª æ æ ­ ® ® ¯ ° ± ² ³ ± ´ µ ¶ µ · ± ¾ º ¯ ° ´ ¶ � ± ¾ º
Map

´ ¶ ± º ² · ³ À º

Similarly, the val ues method returns a Col l ect i on that contains all the

values. This really is a Col l ect io n, since duplicate values are allowed.

Map. Entr y
Õ Ò í

Í É Ð Õ Ö É Í É Ô Ï Ë Æ É Ê Æ Ë Æ ì
Õ Û Õ Ê Ð Ê Ë É Ô Ï ë Õ Û ×

Finally, the ent r ySet method returns a collection of key/value pairs.

Again, this is a Set , because the pairs must have different keys. The objects in

the Set returned by the ent r ySet are pairs, there must be a type that represents

BOOK.mkr Page 346 Wednesday, March 14, 2001 1:11 PM

Â ² ´ µ ² ´ ± 	
 ¯ º ¯ º ° Ã ä �

key/value pairs. This is specified by the Ent r y interface that is nested in the Map

interface. Thus the type of object that is in the ent r ySet is Map. Ent r y.

Figure 6.33 illustrates the use of the Map with a Tr eeMap. An empty map is

created at line 26 and then populated with a series of put calls at lines 28 to 30.

Lines 32 and 33 print the result of a call to get , which is used to obtain the value

for the key " Jane Doe" . More interesting is the pr i nt Map routine that spans

lines 9 to 21.

In pr i nt Map, at line 12, we obtain a Set containing Map. Ent r y pairs.

From the Set , we can obtain an I t er at or at line 13. The call to next at line

17 produces a Map. Ent r y object, and at that point we can obtain the key and

value information using get Key and get Val ue, as shown on lines 18 and 19.

ð ñ �
 � � � � � � � � � � � � ö
ê Ô Ï � � � � � � � ú � ÿ ù ÿ ù
Í È Û Û Æ Ð É Í Õ Ö Ö Ï Í Í Æ ì
É Ô Ï ë Ê Ë Ê ë È ë Ê É Ï ë
Æ Ë Ç Ú ×

Although jobs sent to a printer are generally placed on a queue, that might not

always be the best thing to do. For instance, one job might be particularly impor-

tant, so we might want to allow that job to be run as soon as the printer is avail-

able. Conversely, when the printer finishes a job and several 1-page jobs and one

100-page job are waiting, it might be reasonable to print the long job last, even if

it is not the last job submitted. (Unfortunately, most systems do not do this, which

can be particularly annoying at times.)

Similarly, in a multiuser environment the operating system scheduler must

decide which of several processes to run. Generally, a process is allowed to run

BOOK.mkr Page 347 Wednesday, March 14, 2001 1:11 PM

½ ¾ º ¿ µ ® ® º À ± ´ µ ¶ ° Á Â ­Ã ä Ä

only for a fixed period of time. A poor algorithm for such a procedure involves

use of a queue. Jobs are initially placed at the end of the queue. The scheduler

repeatedly takes the first job from the queue, runs it until either it finishes or its

time limit is up, and places it at the end of the queue if it does not finish. Gener-

ally, this strategy is not appropriate because short jobs must wait and thus seem to

take a long time to run. Clearly, users that are running an editor should not see a

visible delay in the echoing of typed characters. Thus short jobs (that is, those

using fewer resources) should have precedence over jobs that have already con-

sumed large amounts of resources. Furthermore, some resource-intensive jobs,

such as jobs run by the system administrator, might be important and should also

have precedence.

If we give each job a number to measure its priority, then the smaller number

(pages printed, resources used) tends to indicate greater importance. Thus we

want to be able to access the smallest item in a collection of items and remove it

from the collection. To do so we use the f i ndMi n and del et eMi n operations.

The data structure that supports these operations is the priority queue and sup-

ports access of the minimum item only. Figure 6.34 illustrates the basic priority

queue operations.

Unfortunately, although the priority queue is a fundamental data structure,

there is no implementation of it in the Collections API. One idea might be to use a

Sor t edSet , but that is not sufficient because it is important for a priority queue

to allow duplicate items.

BOOK.mkr Page 348 Wednesday, March 14, 2001 1:11 PM

Â ² ´ µ ² ´ ± 	
 ¯ º ¯ º ° Ã ä ß

A typical priority queue protocol is shown in Figures 6.35 and 6.36.

Although it is possible to use comparators, we keep the implementation simple by

assuming all items in the priority queue are Compar abl e.

£ ¤ ¥ ¦ § ¨ © ª æ � Â ² ´ µ ² ´ ± 	 � ¯ º ¯ º » µ è º ® � µ ¶ ® 	 ± ¾ º » ´ ¶ ´ » ¯ » º ® º » º ¶ ± ´ ° ³ À À º ° ° ´ ¸ ® º

¢
package w ei ss . nonst andar d;àá
/ * *�
 * P r i or i t yQueue i nt er f ace.�
 * S ome p r i or i t y q ueues m ay s uppor t a d ecr easeKey o per at i on,â
 * b ut t hi s i s c ons i der ed a n a dvanced o per at i on. I f s o,
 * a P osi t i on i s r et ur ned b y i nser t .�
 * N ot e t hat a l l " mat chi ng" i s b ased o n t he c ompar eTo m et hod.
 * /¢ ¡
publ i c i nt er f ace P r i or i t yQueue¢ ¢
{¢ à
 / * *¢ á
 * I nser t i nt o t he p r i or i t y q ueue, m ai nt ai ni ng h eap o r der .¢ �
 * M ay r et ur n a P os i t i on u sef ul f or d ecr easeKey.¢ �
 * /¢ â
 publ i c P osi t i on i nser t (C ompar abl e x) ;¢ ¢ �
 / * *¢
 * R et ur ns t he s mal l est i t em i n t he p r i or i t y q ueue.à ¡
 * @ t hr ows U nder f l owExcept i on i f e mpt y.à ¢
 * /à à
 publ i c C ompar abl e f i ndMi n() ;

£ ¤ ¥ ¦ § ¨ © ª æ ! Â ² µ ± µ À µ ® · µ ² ¼ ² ´ µ ² ´ ± 	 � ¯ º ¯ º ´ ¶
wei ss.nonstandard

� Â ³ ² ± � �

Pr ior ity
Queue

insert deleteMin
findMin

BOOK.mkr Page 349 Wednesday, March 14, 2001 1:11 PM

½ ¾ º ¿ µ ® ® º À ± ´ µ ¶ ° Á Â ­Ã � å

à á
 / * *à �
 * R emove a nd r et ur n t he s mal l est i t em.à �
 * @ t hr ows U nder f l owExcept i on i f e mpt y.à â
 * /à
 publ i c C ompar abl e d el et eMi n() ;à �
 / * *à
 * R et ur ns t r ue i f e mpt y, f al se o t her wi se.á ¡
 * /á ¢
 publ i c b ool ean i sEmpt y() ;á àá á
 / * *á �
 * M ake t he p r i or i t y q ueue l ogi cal l y e mpt y.á �
 * /á â
 publ i c v oi d m akeEmpt y() ;á
 á �
 / * *á
 * R et ur ns t he s i ze.� ¡
 * /� ¢
 publ i c i nt s i ze() ;� à� á
 / * *� �
 * T he P osi t i on i nt er f ace r epr esent s a t ype t hat c an� �
 * b e u sed f or t he d ecr easeKey o per at i on.� â
 * /�
 publ i c i nt er f ace P osi t i on� �
 {�
 / * *� ¡
 * R et ur ns t he v al ue s t or ed a t t hi s p os i t i on.� ¢
 * /� à
 Compar abl e g et Val ue() ;� á
 }� �
 � �
 / * *� â
 * C hange t he v al ue o f t he i t em s t or ed i n t he p ai r i ng h eap.�
 * T hi s i s c ons i der ed a n a dvanced o per at i on a nd m i ght n ot� �
 * b e s uppor t ed b y a l l p r i or i t y q ueues. A p r i or i t y q ueue�
 * w i l l s i gnal i t s i nt ent i on t o n ot s uppor t d ecr easeKey b yâ ¡
 * h avi ng i nser t r et ur n n ul l c ons i s t ent l y .â ¢
 * @ par am p a ny n on- nul l P osi t i on r et ur ned b y i nser t .â à
 * @ par am n ewVal t he n ew v al ue, w hi ch m ust b e s mal l erâ á
 * t han t he c ur r ent l y s t or ed v al ue.â �
 * @ t hr ows I l l egal Ar gument Except i on i f p i nval i dâ �
 * /â â
 publ i c v oi d d ecr easeKey(P osi t i on p , C ompar abl e n ewVal) ;â
}

£ ¤ ¥ ¦ § ¨ © ª æ © Â ² µ ± µ À µ ® · µ ² ¼ ² ´ µ ² ´ ± 	 � ¯ º ¯ º ´ ¶
wei ss.nonstandard

� Â ³ ² ± � �

BOOK.mkr Page 350 Wednesday, March 14, 2001 1:11 PM

Â ² ´ µ ² ´ ± 	
 ¯ º ¯ º ° Ã � é

¢
i mpor t w ei ss. nonst andar d. Pr i or i t yQueue;à
i mpor t w ei ss. nonst andar d. Bi nar yHeap;á�
publ i c c l ass P r i or i t yQueueDemo�
{â
 publ i c s t at i c v oi d d umpPQ(S t r i ng m sg, P r i or i t yQueue p q)
 {�
 Syst em. out . pr i nt l n(m sg + " : ") ;
 whi l e(! pq. i sEmpt y())¢ ¡
 Syst em. out . pr i nt l n(p q. del et eMi n()) ;¢ ¢
 }¢ à¢ á
 / / D o s ome i nser t s a nd r emoves (done i n d umpPQ) .¢ �
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)¢ �
 {¢ â
 Pr i or i t yQueue m i nPQ = n ew B i nar yHeap() ;¢
 ¢ �
 mi nPQ. i nser t (n ew I nt eger (4)) ;¢
 mi nPQ. i nser t (n ew I nt eger (3)) ;à ¡
 mi nPQ. i nser t (n ew I nt eger (5)) ;à ¢à à
 dumpPQ(" mi nPQ" , m i nPQ) ;à á
 }à �
}

£ ¤ ¥ ¦ § ¨ © ª æ " # µ ¯ ± ´ ¶ º ± µ è º » µ ¶ ° ± ² ³ ± º ± ¾ º
PriorityQu eue

´ ¶
weis s.nonstandard

Most of the interface is straightforward. The tricky method, which is consid-

ered part of advanced priority queue implementations only, is decr easeKey.

This operation reduces the value of an item that is in the priority queue. In order

to do so, the entry in the priority queue must have a known position that is immu-

table. Essentially, this position must be established when an item is inserted, and

can never change. The abstraction of a position is expressed in the Posi t i on

nested interface, and i nser t returns a Posi t i on object when an item is added

to the priority queue. If a priority queue does not support the decr easeKey

operation, i nse r t can simply return nul l . Figure 6.37 il lustrates the use of the

priority queue.

BOOK.mkr Page 351 Wednesday, March 14, 2001 1:11 PM

½ ¾ º ¿ µ ® ® º À ± ´ µ ¶ ° Á Â ­Ã � ï
ê Ô Ï $ � % ý � ú & ù ý � Ê ë í
Û Ç Ï ë Ï Ë É Í É Ô Ï Û Ð Ê Æ Ð í
Ê É Ú Ù È Ï È Ï Ê Ë Ç Æ Ý Õ í
Ð Ê É Ô ë Ê Ö É Ê ë Ï Û Ï Ð
Æ Û Ï Ð Õ É Ê Æ Ë Ó Ê É Ô Ç Ê É É Ç Ï
Ï ' É Ð Õ Í Û Õ Ö Ï ×

As the priority queue supports only the del et eMi n and f i ndMi n opera-

tions, we might expect performance that is a compromise between the constant-

time queue and the logarithmic time set. Indeed, this is the case. The basic prior-

ity queue supports all operations in logarithmic worst-case time, uses only an

array, supports insertion in constant average time, is simple to implement, and is

known as a binary heap. This structure is one of the most elegant data structures

known. In Chapter 21 we provide details on the implementation of the binary

heap. The binary heap does not support the dec r easeKey operation. However,

the pairing heap, described in Chapter 23 does.

÷ Ë Ê ë Û Æ Ð É Õ Ë É È Í Ï Æ ì
Û Ð Ê Æ Ð Ê É Ú Ù È Ï È Ï Í Ê Í

ù ü ù % � () � � ü ù % û � * ÿ þ ý (
� � � % ×

An important application of the priority queue is event-driven simulation.

Consider, for example, a system such as a bank in which customers arrive and

wait in line until one of K tellers is available. Customer arrival is governed by a

+ , - ,
. - / 0 1 - 0 / 2 3 1 1 2 4 4 5 6 7 7 2 8 - 4

9 : ; < = > ? @ : A B < B C : ? C D E F
pop

F G B A E H B A E I ; @ :

J K B K B L B ; @ : A B < B C : ? C D E F
dequeue

F G B A E H B A E I ; @ :
L M @ : N C E M : B O

P A B B 9 B : N C E M : B O Q E C ; O B ? A A ; C = F N H B A ; R B < ; @ B B ; @ E : ?
S ? T U ? A @ : < ; @ B A B V K M A B @

B I I ? A :
W ; @ X 9 B : N C E M : B O Q E C ; O B F N H B A ; R B < ; @ B

Y A M ? A M : E
J K B K B findMin

F F

del eteMin
F

insert
M @ ? C

; H B A ; R B U ? A @ :
< ; @ B

£ ¤ ¥ ¦ § ¨ © ª æ ¬ Þ ¯ » » ³ ² 	 µ · ° µ » º è ³ ± ³ ° ± ² ¯ À ± ¯ ² º °

O 1()

O 1()

O(N)

O(log N)

O 1()

O 1()

O(log N)

O 1()

O(log N)

BOOK.mkr Page 352 Wednesday, March 14, 2001 1:11 PM

Þ ¯ » » ³ ² 	 Ã � Ã

probabil ity distribution function, as is the service time (the amount of time it

takes a teller to provide complete service to one customer). We are interested in

statistics such as how long on average a customer has to wait or how long a line

might be.

With certain probabili ty distributions and values of K, we can compute these

statistics exactly. However, as K gets larger, the analysis becomes considerably

more diff icult, so the use of a computer to simulate the operation of the bank is

appealing. In this way the bank’s off icers can determine how many tellers are

needed to ensure reasonably smooth service. An event-driven simulation consists

of processing events. The two events here are (1) a customer arriving and (2) a

customer departing, thus freeing up a teller. At any point we have a collection of

events waiting to happen. To run the simulation, we need to determine the next

event, this is the event whose time of occurrence is minimum. Hence we use a pri-

ority queue that extracts the event of minimum time to process the event list effi-

ciently. We present a complete discussion and implementation of event-driven

simulation in Section 13.2.

Z [\ \] ^ _

In this chapter we examined the basic data structures that will be used throughout

the book. We provided generic protocols and explained what the running time

should be for each data structure. We also described the interface provided by the

Collections API. In later chapters we show how these data structures are used and

eventually give an implementation of each data structure that meets the time

BOOK.mkr Page 353 Wednesday, March 14, 2001 1:11 PM

½ ¾ º ¿ µ ® ® º À ± ´ µ ¶ ° Á Â ­Ã � ä

bounds we have claimed here. Figure 6.38 summarizes the results that will be

obtained for the generic i nser t , f i nd, r emove sequence of operations.

Chapter 7 describes an important problem-solving tool known as recursion.

Recursion allows many problems to be efficiently solved with short algorithms

and is central to the efficient implementation of a sorting algorithm and several

data structures.

` a b c d e f g h e i c j] \ c

Arrays Contains a set of static methods that operate on arrays. (318)

binary heap Implements the priority queue in logarithmic time per operation

using an array. (348)

binary search tree A data structure that supports insertion, removal, and

searching. We can also use it to access the Kth smallest item. The cost is

logarithmic average-case time for a simple implementation and logarith-

mic worst-case time for a more careful implementation. (334)

Collection Interface that represents a group of objects, known as its ele-

ments. (304)

Collections Class contains a set of static methods that operate on

Col l ect i on objects. (310)

data structure A representation of data and the operations allowed on that

data, permitting component reuse. (294)

factory method A method that creates new concrete instances, but returns

them using a pointer (or reference) to an abstract class. (303)

BOOK.mkr Page 354 Wednesday, March 14, 2001 1:11 PM

k ¸ l º À ± ° µ · ± ¾ º m ³ » º Ã � �

hashCode Method used by HashSet that must be overridden for objects if

the object’s equal s method is overridden. (341)

HashMap The Collections API implementation of a Map with unordered keys.

(342)

HashSet The Collections API implementation of a (unordered) Set . (334)

iterator An object that allows access to elements in a container. (307)

Iterator An object that allows access to elements in a container. (307)

li st a collection of items in which the items have a position. (318)

List The Collections API interface that specifies the protocol for a list. (320)

ListIterator The Collections API interface that provides bidirectional

iteration. (321)

linked list A data structure that is used to avoid large amounts of data move-

ment. It uses a small amount of extra space per item. (323)

LinkedList The Collections API class that implements a linked list. (323)

Map The Collections API interface that abstracts a collection of pairs consist-

ing of keys and their values and maps keys to values. (342)

Map.Entry Abstracts the idea of a pair in a map. (346)

operator precedence parsing An algorithm that uses a stack to evaluate

expressions. (329)

pr ior ity queue A data structure that supports access of the minimum item

only. (347)

BOOK.mkr Page 355 Wednesday, March 14, 2001 1:11 PM

½ ¾ º ¿ µ ® ® º À ± ´ µ ¶ ° Á Â ­Ã � �

programming to an interface The technique of using classes by writing in

terms of the most abstract interface. Attempts to hide even the name of the

concrete class that is being operated on. (301)

queue A data structure that restricts access to the least-recently-inserted item.

(329)

Set The Collections API interface that abstracts a collection with no dupli-

cates. (331)

SortedSet The Collections API interface that abstracts a sorted set with no

duplicates. (331)

stack A data structure that restricts access to the most-recently-inserted item.

(325)

TreeMap The Collections API implementation of a Map with ordered keys.

(342)

TreeSet The Collections API implementation of a Sor t edSet . (333)

n g \ \ g o p ^ ^ g ^ f

1. Do not worry about low-level optimizations until after you have concen-

trated on basic design and algorithmic issues.

2. When you send a function object as a parameter, you must send a con-

structed object, and not simply the name of the class.

BOOK.mkr Page 356 Wednesday, March 14, 2001 1:11 PM

k ¶ ± ¾ º ­ ¶ ± º ² ¶ º ± Ã � �

3. When using a Map, if you are not sure if a key is in the map, you may need

to use cont ai nsKey rather than checking the result of get .

4. A priority queue is not a queue. It just sounds like it is.

` o e i c q o e c ^ o c e

There is lots of code in this chapter. Test code is in the root directory, nonstandard

protocols are in package weiss.nonstandard , and everything else is in

package wei ss. ut i l .

Stack.java Contains the nonstandard protocol in Figure 6.21.

UnderflowException.java Contains a nonstandard exception.

Queue.java Contains the nonstandard protocol in Figure 6.23.

Collection.java Contains the code in Figure 6.9.

I terator.java Contains the code in Figure 6.10.

Collections.java Contains the code in Figures 6.13 and 6.14.

Arr ays.java Contains the code in Figure 6.15.

List.java Contains the code in Figure 6.16.

ListI terator.java Contains the code in Figure 6.17.

TestArr ayL ist.java Illustrates the Ar ra yLi st , as in Figure 6.18.

Set.java Contains the code in Figure 6.24. The online code

contains an extra method that is not part of Java

1.2.

Sor ted.java Contains the code in Figure 6.25.

BOOK.mkr Page 357 Wednesday, March 14, 2001 1:11 PM

½ ¾ º ¿ µ ® ® º À ± ´ µ ¶ ° Á Â ­Ã � Ä

TreeSetDemo.java Contains the code in Figures 6.11 and 6.26.

I teratorTest.java Contains the code that il lustrates all the iterators,

including code in Figures 6.11, 6.27 and 6.30.

EqualsWithInher itance.java Contains the code in Figures 6.28 and 6.29,

combined as one.

Map.java Contains the code in Figures 6.31 and 6.32.

MapDemo.java Contains the code in Figure 6.33.

Pr ior ityQueue.java Contains the nonstandard protocol in Figures 6.35

and 6.36.

Pr ior ityQueueDemo.java Contains the code in Figure 6.37.

p r c ^ d s f c f

t u v w x y z

6.1. Show the results of the following sequence: add(4) , add(8) , add(1) ,

add(6) , r emove() , and r emove() when the add and r emove oper-

ations correspond to the basic operations in the following:

a. stack

b. queue

c. priority queue

t u { w | x y }

6.2. Suppose that you want to support the following three operations exclu-

sively: i nser t , f i ndMax , and del et eMax . How fast do you think

these operations can be performed?

BOOK.mkr Page 358 Wednesday, March 14, 2001 1:11 PM

~ � º ² À ´ ° º ° Ã � ß

6.3. Can all of the following be supported in logarithmic time: i nser t ,

del et eMi n, del et eMax , f i ndMi n, and f i ndMax?

6.4. Which of the data structures in Figure 6.38 lead to sorting algorithms that

could run in less than quadratic time (by inserting all i tems into the data

structure and then removing them in order)?

6.5. Show that the following operations can be supported in constant time

simultaneously: push, pop, and f i ndMi n. Note that del et eMi n is

not part of the repertoire. Hint: Maintain two stacks — one to store items

and the other to store minimums as they occur.

6.6. A double-ended queue supports insertions and deletions at both the front

and end of the line. What is the running time per operation?

t u � y � � z � � |

6.7. Write a routine that uses the Collections API to print out the items in any

Col l ect i on in reverse order. Do not use a Li st I t er at or .

6.8. Show how to implement a St ack eff iciently by using a Li s t as a data

member.

6.9. Show how to implement a Queue eff iciently by using a Li s t as a data

member.

� y x � y � � � � u � � y x � | � z �

6.10. A queue can be implemented by using an array and maintaining the cur-

rent size. The queue elements are stored in consecutive array positions,

BOOK.mkr Page 359 Wednesday, March 14, 2001 1:11 PM

½ ¾ º ¿ µ ® ® º À ± ´ µ ¶ ° Á Â ­Ã � å

with the front item always in position 0. Note that this is not the most effi-

cient method. Do the following:

a. Describe the algorithms for get Fr ont , enqueue, and dequeue.

b. What is the Big-Oh running time for each of get Fr ont , enqueue,

and dequeue using these algorithms?

c. Write an implementation that uses these algorithms using the protocol

in Figure 6.23.

6.11. The operations that are supported by the Sor t edSet can also be imple-

mented by using an array and maintaining the current size. The array ele-

ments are stored in sorted order in consecutive array positions. Thus

cont ai ns can be implemented by a binary search. Do the following:

a. Describe the algorithms for add and r emove.

b. What is the running time for these algorithms?

c. Write an implementation that uses these algorithms, using the protocol

in Figure 6.1.

d. Write an implementation that uses these algorithms, using the standard

Sor t edSet protocol.

6.12. A priority queue can be implemented by using a sorted array (as in Exer-

cise 6.11). Do the following:

a. Describe the algorithms for f i ndMi n, del et eMi n, and i nser t .

b. What is the Big-Oh running time for each of f i ndMi n, del et eMi n,

and i ns er t using these algorithms?

c. Write an implementation that uses these algorithms.

BOOK.mkr Page 360 Wednesday, March 14, 2001 1:11 PM

~ � º ² À ´ ° º ° Ã � é

6.13. A priority queue can be implemented by storing items in an unsorted array

and inserting items in the next available location. Do the following:

a. Describe the algorithms for f i ndMi n, del et eMi n, and i nser t .

b. What is the Big-Oh running time for each of f i ndMi n, del et eMi n,

and i nser t using these algorithms?

c. Write an implementation that uses these algorithms.

6.14. By adding an extra data member to the priority queue class in Exercise

6.13, you can implement both i nser t and f i ndMi n in constant time.

The extra data member maintains the array position where the minimum is

stored. However, del et eMi n is still be expensive. Do the following:

a. Describe the algorithms for i nser t , f i ndMi n, and del et eMi n.

b. What is the Big-Oh running time for del et eMi n?

c. Write an implementation that uses these algorithms.

6.15. By maintaining the invariant that the elements in the priority queue are

sorted in nonincreasing order (that is, the largest item is first, the smallest

is last), you can implement both f i ndMi n and del et eMi n in constant

time. However, i nser t is expensive. Do the following:

a. Describe the algorithms for i nser t , f i ndMi n, and del et eMi n.

b. What is the Big-Oh running time for i nser t ?

c. Write an implementation that uses these algorithms.

6.16. A double-ended priority queue allows access to both the minimum and

maximum elements. In other words, all of the following are supported:

BOOK.mkr Page 361 Wednesday, March 14, 2001 1:11 PM

½ ¾ º ¿ µ ® ® º À ± ´ µ ¶ ° Á Â ­Ã � ï

f i ndMi n, del et eMin , f i ndMax , and del et eMax . Do the follow-

ing:

a. Describe the algorithms for f i ndMi n, del et eMi n, f i ndMax ,

del et eMax , and i nser t .

b. What is the Big-Oh running time for each of f i ndMi n, del et eMi n,

f i ndMax , del et eMax , and i nser t using these algorithms?

c. Write an implementation that uses these algorithms.

6.17. A median heap supports the following operations: in ser t , f i ndKt h,

and r emoveKt h. The last two find and remove, respectively, the Kth

smallest element. The simplest implementation maintains the data in

sorted order. Do the following:

a. Describe the algorithms that can be used to support median heap oper-

ations.

b. What is the Big-Oh running time for each of the basic operations using

these algorithms?

c. Write an implementation that uses these algorithms.

6.18. Write a program that reads strings from input and outputs them sorted, by

length, shortest string first. If a subset of strings that have the same length,

output them in alphabetical order.

6.19. Col l ect i ons. f i l l takes a Li st and a val ue, and places val ue in

all positions in the list. Implement f i l l .

6.20. Col l ect i ons. r ever se takes a Li s t and reverses its contents.

Implement r ever se.

BOOK.mkr Page 362 Wednesday, March 14, 2001 1:11 PM

º · º ² º ¶ À º ° Ã � Ã
� c h c ^ c o d c f

References for the theory that underlies these data structures are provided in Part

IV. The Collections API is described in most recent Java books (see the references

in Chapter 1).

BOOK.mkr Page 363 Wednesday, March 14, 2001 1:11 PM

½ ¾ º ¿ µ ® ® º À ± ´ µ ¶ ° Á Â ­Ã � ä

BOOK.mkr Page 364 Wednesday, March 14, 2001 1:11 PM

