é BOOK.mkr Page 95 Wednesday, March 14 2001 1:26 PM

CHAPTER

3 Objects and Classes

HIS chapter begins the discusson d object-oriented programming. A funda-
T mental component of object-oriented programming is the specification,
implementation, and use of objects. In Chapter 2, we saw several examples of
objects, including strings andfiles, that are part of the mandatory Javalibrary. We
also saw that these objeds have an internal state that can be manipulated by

applying the dot operator to select amethod In Java, the state and functionality of

>

an objed is given by defining a class. An oljed isthen an instance of a dass

In this chapter, we will see

» How Java uses the classto achieve encapsulation and information hiding
* How classs are implemented and automaticdly documented

» How classes are grouped into packages

3.1 What Is Object-oriented Programming?
Object-oriented programming emerged as the dominant paradigm of the mid-

1990's. In this sedion we discuss ®me of the things that Java providesin the way

ﬁ%

é BOOK.mkr Page 96 Wednesday, March 14 2001 1:26 PM

m Objects and Classes

Objects are entities
that have structure
and state. Each ob-
ject defines opera-
tions that may ac-
cess or manipulate

that state.

An objectis an
afomic unit: Its parts
cannot be
dissected by the
general users of the

object.

Information hiding
makes implemento-
tion details, includ-
ing components of
an object, inacces-

sible.

of objed-oriented suppat and mention some of the principles of object-oriented
programming.

At the heat of objed-oriented programming is the object. An dbject is adata
type that has gructure and state. Each oljed defines operations that may access
or manipulate that state. As we have dready seen, in Java an oljed is distin-
guished from a primitive type, but this is a particular feaure of Java rather than
the objed-oriented paradigm. In addition to performing general operations, we

can dothe following:

» Crede new objeds, possbly with initialization.
» Copy or test for equality.

» Perform 1/O on these objects.

Also, we view the objed as an atomic unit that the user ought not to dssd.
Most of uswould not even think of fiddling around with the bits that represent a
floating-point number, and we would find it completely ridiculous to try to incre-
ment some floating-point objed by altering its internal representation ourselves.

The aomicity principle is known as information hiding. The user does not
get direct accessto the parts of the object or their implementations; they can be
acces=d only indiredly by methods supplied with the object. We can view each
object as coming with the warning, “Do not open—no user-serviceable parts
inside.” In red life, most people who try to fix things that have such a warning
wind up ddang more harm than good In this resped, programming mimics the

red world. The grouping of data and the operations that apply to them to form an

ﬁ%

é BOOK.mkr Page 97 Wednesday, March 14 2001 1:26 PM

1

What Is Object-oriented Programming?

aggregate, while hiding implementation details of the aggregate, is known as
encapsulation.
An important goal of objed-oriented programming is to support code reuse. Encapsulation’is the

Just as enginea's use mmponents over and over in their designs, programmers 9/0UPINg of data

.)) and the operations
should be able to reuse objeds rather than repeatedly reimplementing them.
that apply

When we have an implementation d the exad objed that we need to use, reuse is i
o them to form an

asimple matter. The challenge isto use an existing djjed when the objed that is aggregate. while

needed is not an exad match but is merely very similar. hiding the imple-

mentation of the
Objed-oriented languages provide several medhanisms to support this goal.
aggregate.
One is the use of generic code. If the implementation is identicd except for the
basic type of the objed, there is no need to completely rewrite code: Instead, we
write the ade genericdly so that it works for any type. For instance, the logic
used to sort an array of objedsisindependent of the types of objeds being sorted,
so ageneric dgorithm could be used.
Theinheritance medhanism allows us to extend the functionality of an objed.
In ather words, we can creae new types with restricted (or extended) properties
of the original type. Inheritance goes alongway toward our goal of code reuse.
Another important objed-oriented principle is polymorphism. A polymorphic
referencetype can reference objects of severa different types. When methods are
applied to the polymorphic type, the operation that is appropriate to the actual ref-
erenced oljed is automaticdly seleded. In Java, this is implemented as part of

inheritance. Polymorphism alows us to implement classes that share cmmon

logic. Asisdiscussed in Chapter 4, thisisillustrated in the Javalibraries. The use

ﬁ%

é BOOK.mkr Page 98 Wednesday, March 14 2001 1:26 PM

m Objects and Classes

A class in Java con-

sists of fields that
store data and
methods that are

applied to in-

stances of the class.

Functionality is sup-
plied as additional
members; these
methods manipu-
late the object’s

state.

of inheritance to crede these hierarchies distinguishes objed-oriented program-
ming from the simpler object-based programming.

In Java, generic dgorithms are implemented as part of inheritance. Chapter 4
discusses inheritance and polymorphism. In this chapter, we describe how Java
uses classes to achieve encapsulation and information hiding.

An object in Javais an instance of a dass A classis smilar to a C structure
or Pascal/Ada reaord, except that there ae two important enhancements. First,
members can be both functions and data, known as methods and fields, respec
tively. Seaond, the visibility of these members can be restricted. Because methods
that manipulate the objed’s date ae members of the dass they are accesd by
the dot member operator, just like the fields. In dojed-oriented terminology, when
we make a cHl to a method we ae passng a message to the objed. Types dis-
cussed in Chapter 2, suchasStri ng, ArraylLi st, Stri ngTokeni zer, and

Fi | eReader, are dl classesimplemented in the Java library.

3.2 A Simple Example

Recdl that when youare designing the dass it isimportant to be &le to hide
internal details from the dassuser. Thisis dore in two ways. First, the dass can
define functionality as classmembers, cadled methods. Some of these methods
describe how an instance of the structure is created and initialized, how equality
tests are performed, and how outpuit is performed. Other methods would be spe-
cific to the particular structure. The ideais that the internal data fields that repre-

sent an objed’s state should not be manipulated directly by the dass user but

ﬁ%

é BOOK.mkr Page 99 Wednesday, March 14 2001 1:26 PM é

A Simple Example m

?

instead should be manipulated only through use of the methods. Thisidea ca be
strengthened by hiding members from the user. To dothis, we can spedfy that
they be stored in a private sedion. The compiler will enforcethe rule that mem-
bers in the private section are inaccessble by methods that are nat in the dassof
the objed. Generally speaking, all data members soud be private.
Figure 3.1 illustrates aclassdedaration for an | nt Cel | object.! Thededa Public membersare

ration consists of two parts: public and pivate. Public members represents the ~ Visiole fo nonclass

routines; private
portion that is visible to the user of the object. Since we expect to hide data, gen-

members are not.
eraly only methods and constants would be placed in the public sedion. In ou
example, we have methods that read from and writeto the | nt Cel | objed. The
private sedion contains the data: this is invisible to the user of the objed. The
st or edVal ue member must be acessd through the publicly visible routines

read andwr i t e; it canna be acessed dredly by mai n. Another way of view-

ingthisis srownin Figure 3.2.

L Public dasses must be placed in fil es of the same name. Thus | nt Cel | must bein file IntCell java. We will

discuss the meaning of publ i c at line 5 when we talk about padkages.

ﬁ%

?

é BOOK.mkr Page 100 Wednesday, March 14 2001 1:26 PM

Members that are
declared private
are not visible to

nonclass routines.

A fieldis a member
that stores data; a
methodis a mem-
ber that performs

an action.

m Objects and Classes

1 //1 ntCellc |ass

2 /] intr ead() --> Returnst hestoredv al ue
3 // wvoidwrite(i ntx)- -> Xi sstored

4

5 publicc lassl| ntCell

6 {

7 /1P ublicmethods

8 publici ntr ead() {r eturns toredVal ue;}
9 publicv oidwrite(i ntx){s toredvValue=x ;}
10

11 /IP rivatei nternald atar epresentation

12 privatei nts toredVal ue;

13 }

Figure 3.1 A complete declaration of an | ntCell class

r—- - - - | r— - - — — 1
real write I storedValue I

Figure 3.2 IntC ell members:read andwrite are accessible, but
stor edValue is hidden

Figure 3.3 shows how | nt Cel | objeds are used. Sinceread andwrite
are members of the | nt Cel | class, they are acessd by using the dat member
operator. The st or edVal ue member could also be aacessed by using the dot
member operator, but since it is private, the accssat line 14 would beillegal if it
were not commented ou.

Here is a summary of the terminology. The class defines members, which
may be dther fields (data) or methods (functions). The methods can ad on the
fields and may cdl other methods. The visibility modifier publ i ¢ means that

the member is accessble to anyone via the dot operator. The visibility modifier

ﬁ%

>

é BOOK.mkr Page 101 Wednesday, March 14 2001 1:26 PM é

Javadoc m

1

privat e means that the member is acessble only by other methods of this
class With no vsibility modifier, we have padage visible acces which is dis-
cussd in Sedion 36.4. There is aso a fourth modifier known as pr ot ect ed,

which isdiscussed in Chapter 4.

1 //E xerciset hel ntCellc |ass
2
3 publicc lassTestlntCell
4 {
5 publics taticvoidmain(String[]a rgs)
6 {
7 IntCellm=n ewl ntCell () ;
8
9 mwite(5) ;
10 Systemout.printin(" Cellc ontents:"+m .read())
11
12 /1T henextl inewouldbei Ilegali fu ncommented
13 /b ecauses toredValuei sap rivatemenber
N 14 /1 mstoredvalue=0 ; N
15
16 }
Figure 3.3 A simple test routine to show how IntCell objects are

accessed

3.3 Javadoc

When designing a dass the class specification represents the dassdesign and The class specifica-

tell s us what can be done to an olject. The implementation represents the inter- /0" descrioes what

.. . . . can be done to an
nals of how thisisacmmplished. Asfar asthe dassuser is concerned, theseinter-
object. The imple-

nal details are not important. In many cases, the implementation represents .
mentation repre-

proprietary information that the dass designer may not wish to share. However, sentsthe internals of
the spedfication must be shared; otherwise, the classis unusable. how the specifica-

tions are met.

ﬁ%

é BOOK.mkr Page 102 Wednesday, March 14 2001 1:26 PM

Objects and Classes

The javadoc pro-
gram automati-
cally generates
documentation for

classes.

Jjavadoc tags
include @ut hor,
@ar am

@ et urn,and

@ hr ows. They are
used in javadoc

comments.

In many languages, the simultaneous saring of the spedfication and hiding
of the implementation is accomplished by pladng the specificaion and imple-
mentation in separate source files. For instance, C++ has the dass interface,
whichisplacedina. h file and a dassimplementation, whichisina. cpp file.
Inthe. h file, the dassinterfacerestates the methods (by providing method head-
ers) that are implemented bythe dass

Javatakes a different approach. It is easy to seethat alist of the methodsin a
class with signatures and return types, can be auitomaticaly documented from the
implementation. Java uses this idea The program javadoc, which comes with all
Java systems, can be run to automaticdly generate documentation for classes.
The output of javadoc isa set of HTML files that can be viewed or printed with a
browser.

The Javaimplementation file an also add javadoc comments that begin with
the token starter / * * . Those cmments are automatically added in auniform and
consistent manner to the documentation produced by javadoc.

There dso are severa specia tags that can be included in the javadoc com-
ments. Some of these are @ut hor, @ar am @ et ur n, and @ hr ows. Figure
3.4 illustrates the use of the javadoc commenting featuresfor thel nt Cel | class
At line 3, the @wut hor tag is used. This tag must precele the dassdefinition.
Line 10 illustrates the use of the @ et ur n tag and line 19, the @ar amtag.
These tags must appea prior to amethod dedaration. The first token that foll ows
the @ar amtag is the parameter name. The @ hr ows tag is nat shown, but it

has the same syntax as @ar am

ﬁ%

é BOOK.mkr Page 103 Wednesday, March 14 2001 1:26 PM é

Javadoc

1

Some of the output that results from running javadoc is siown in Figure 3.5
(on page 105). Run javadoc by supplying the name (including the . j ava exten-
sion) of the sourcefile.

The output of javadoc is purely commentary, except for the method headers.
The compiler does not chedk that these cmmments are implemented. Nonetheless
the importance of proper documentation of classes can never be overstated. java-

doc makes the task of generating well-formatted documentation easier.

'I /**
2 *Ac lassf ors inulatingani ntegermenoryc ell
3 *@ authorMarkA .Weiss

4 */
5
6 publicc lassl| ntCell
> 7 { >
8 /**
9 *G ett hestoredv al ue.
10 *@ returnt hestoredv al ue.
11 * |
12 publici ntr ead()
13 {
14 returns toredVal ue;
15 }
16
17 [**
18 *S toreav alue.
19 *@ paramxt henumbert os tore.
20 * |
21 publicv oidwrite(i ntx)
22 {
23 storedValue=x ;
24 }
25
26 privatei nts toredVal ue;
27 }
Figure 3.4 IntC ell declaration with javadoc comments

ﬁ%

?

é BOOK.mkr Page 104 Wednesday, March 14 2001 1:26 PM

m Objects and Classes

A constructor tells
how an object is
declared and initial-

ized.

3.4 Basic Methods

Some methods are common to all classes. This section discusses mutators, acces-
sors, and threespedal methods: the constructors, t oSt ri ng, and equal s.

Also discussdismai n.

3.4.1 Constructors

As mentioned earlier, abasic property of objectsis that they can be defined, pos-
sibly with initialization. In Java, the method that controls how an dbjed is creaed
and initiali zed is the constructor. Because of overloading, an object may define

multiple constructors.

|

% é BOOK.mkr Page 105 Wednesday, March 14, 2001 1:26 PM g%

Basic Methods 105

4} : Class IntCell - Microsoft Internet Explorer -0l x|

J File Edit “iew | Go Favortez Help “Linksﬁ
[

Overview Package [HEEE) Tree Deprecated Index Help

FREV CLOES HEST CLAES FRAMCE HOFRAMCE
SUMMWARY: INKNER |FIELD [CONSTR | METHOO DETAIL: FIELD |COHETE | METHOD
Class IntCell

Jawva. lang.Object
|
+--IntCell

public class IntCell
extends jara lang Chject

& class for simulating an infeger mernotyr cell

Constructor Summary

IntCell ()

MMethod Summary

ink

read)
et the stored walue.

id - .
% lgrite (int x)

Store avalue

Methods inherited from class java.lang. Ohject

clone, equals, finalize, getClass, hashCode, notify, nocifydll,
toltring, wait, wait, wait

Constructor Detail

Figure 3.5 javadoc output for Figure 3.4 (partial output)

=

4~ 4

é BOOK.mkr Page 106 Wednesday, March 14 2001 1:26 PM

m Objects and Classes

Q(%

The default con-
structor is a mem-
ber-by-member ap-
plication of a

default initialization.

If no constructor is provided, asin the cae for thel nt Cel | classin Figure
3.1, adefault constructor is generated that initializes each data member using the
normal defaults. This means that primitive fields are initialized to zero and refer-
encefields areinitialized to the null reference (These defaults can be replaced by
inline field initialization, which is exeauted prior to exeaution of constructor bod-
ies.) Thus,inthecaseof | nt Cel | , thest or edVal ue comporent isO.

To write a ©nstructor, we provide amethod that has the same name & the
classand noreturn type. In Figure 3.6, there are two constructors: one begins at
line 7 and the other at line 15. Using these cnstructors, we @n construct Dat e

objectsin either of the following ways:

Dated 1=n ew Date() ;
Dated 2=n ew Date(4 ,1 5,2 002) ;

Note that once a onstructor is written, a default zero-parameter constructor
isno longer generated. If you want one, you have to write it. Thus the constructor

atline 7 isrequiredin order to alow construction of the objed that d1 references.

3.4.2 Mutators and Accessors
Classfields are typically dedared private. Thus they canna be directly accessed
by nonclassroutines. Sometimes, however, we would like to examine the value of

afield. We may even want to changeit.

é BOOK.mkr Page 107 Wednesday, March 14 2001 1:26 PM

Basic Methods

One dternative to do this is to declare the fields public. Thisis typicdly a A method that ex-

poor choice, however, becaise it violates information-hiding principles. Instead,
we can provide methods to examine and change ead field. A method that exam-
ines but does nat change the state of an objed is an accessor. A method that
changesthe state is a mutator (because it mutates the state of the objed).

Spedal cases of acaessors and mutators examine only a single field. These
accesrs typically have names beginning with get , such as get Mont h, while
these mutators typically have names beginning with set , such asset Mont h.

The avantage of using a mutator is that the mutator can ensure that changes
in the state of the object are mnsistent. Thus a mutator that changes the day field

inaDat e objed can make sure that only legal dates result.

3.4.3 OutputandtoStri ng

Typicaly, we want to ouput the state of an oljed using pri nt . The way thisis
done is by writing the classmethodt oSt r i ng. This method returnsa St ri ng
suitable for output. As an example, Figure 3.6 shows a bare-bones implementa-

tion d thet oSt r i ng methodfor the Dat e class

amines but does
not change the
state of an object
is an accessor.

A method that
changes the state is

a mutator.

ThetoStri ng
method can be
provided. It returns
a St ring based

on the object state.

—

?

é BOOK.mkr Page 108 Wednesday, March 14, 2001 1:26 PM

m Objects and Classes

1 //MinimalD atec lasst hati |lustratess omeJ avaf eatures
2 //INoerrorc hecksorj avadocc oments
3
4 publicclassDate
5 {
6 /1Z ero-paraneterc onstructor
7 publicDate()
8 {
9 mnth=1 ;
10 day=1 ;
11 year=2 002;
12 }
13
14 /1T hree-paraneterc onstructor
15 publicDate(i ntt heMonth,i ntt heDay,i ntt heYear)
16 {
17 month =t heMont h;
18 day =t heDay;
19 year =t heYear;
20 }
21
22 /IR eturnt ruei ft woe qualv al ues
23 publicb ool eane qual s(O bjectr hs)
24 {
25 if(r(r hsi nstanceofD ate))
» 26 returnf al se; -
27 Dater hDate=(D ate)r hs;
28 returnr hDate.month==month&&r hDate.day==d ay & &
29 r hDat e. year= =y ear;
30 }
31
32 /1C onversiont oString
33 publicStringt oString()
34 {
35 returnmonth+" /"+d ay+" /"+y ear;
36 }
37
38 [1F ields
39 privatei ntm onth;
40 privatei ntd ay;
41 privatei nty ear;
42 }

Figure 3.6 A minimal Date class that illustrates constructors and the
equal s andtoString methods

- 4~

é BOOK.mkr Page 109 Wednesday, March 14 2001 1:26 PM é

Basic Methods m

1

344 equals
The equal s methodis used to test if two dbjeds represent the same value. The The equals

signature is aways method can be

provided to test if
publ i c b ool ean equal s(O bj ectr hs) two references are

Notice that the parameter is of referencetype Obj ect , rather than the dasstype 'éferming fo the

same value.
(thereasonfor thisis discussed in Chapter 4). Typicdly, theequal s method for
class Cla ssNameisimplemented to return tru e only if r hs is an instance of
Cl ass Nane, and after the mnversion to Cl assNarre, al the primitive fields
are gual (via==) and all the referencefields are equal (via member-by-member
application o equal s).
An example of how equal s isimplemented is provided in Figure 3.6 for the The parameter to N

Dat e class Thei nst anceof operator is discussed in Section 3.5.3. equal s is of type

bj ect .

345 main

When the java command isisaued to start the interpreter, the mai n method in the
class file referenced by the java command is cdled. Thus each classcan have its
own main function, without problem. This makes it easy to test the basic func-
tionality of individual classes. However, although functionality can be tested,
placing main in the classgives main more visibility than would be dlowed in
general. Thus calls from main to nonpublic methods will succeed in the test,

even though they will beillegal in amore general setting.

ﬁ%

?

é BOOK.mkr Page 110 Wednesday, March 14 2001 1:26 PM

m Objects and Classes

A static methodis a
method that does
not need a control-

ling object.

3.4.6 static Fields and Methods
A static method is a method that does not need a controlli ng dbject, and thusis
typicdly called by suppying a dass name instead of the controlling olject. The
most common static method is main . Other static methods are foundin the
I nt eger and Mat h classes. Examples arethe methods| nt eger . par sel nt
Math.si n, and Ma h.max . Access to a static method ses the same visibil ity
rules as do static fields. These methods mimic global functions found in non-
object-oriented languages.

Recdl from Chapter 1 that some fields of the dassuse the modifier st ati c.
Spedfically, in conjunction with the keyword f i nal , we have constants. With-
out the word f i nal , we have static fields, which have another meaning, and

another use of static methods, both of which are discussed in Sedion 3.5.5.

é BOOK.mkr Page 111 Wednesday, March 14 2001 1:26 PM é

?

Additional Constructs ||EEH

3.5 Additional Constructs

Three alditional keywordsaret hi s, i nst anceof ,andstati c.thi s has
several usesin Java; two are discussed in this sction. instan ceof also has
several general uses; it is used here to ensure that a type-conversion can succeed.
Likewise, sta tic has several uses. We have already discussd static methods.

This sdion covers the static field and static initializer.

t hi s is arefer-

3.5.1 The't hi s Reference ence fo the current

. object. It can be
Thefirst use of this is as areference to the aurrent objed. Think df the this

used to send the
reference & a homing device that, at any instant in time, tells you where you are. ,
current object, as a

An important use of thet hi s referenceisin handling the special case of self- unit,

asignment. An example of thisis a program that copies one file to ancther. A 0 some other

method.
normal agorithm begins by truncating the target file to zero length. If noched is

performed to make sure the source and target file ae indeed different, then the
sourcefile will be truncated — hardly adesirable feature. When deding with two
objects, one of which is written and one of which is read, we first should check
for this pecia case, which is known as aliasing.

For a second example, suppose we have a ¢assAccount that has amethod Aliasing is a special

final Transf er. This method moves al the money from one acount into C9se fhaf occurs

L. L. . . when the same ob-
another. In principle, thisis an easy routine to write:

ject appears in

more than one role.

?

é BOOK.mkr Page 112 Wednesday, March 14 2001 1:26 PM

t hi s can be used
to make a call to
another construc-
tor in the same

class.

Objects and Classes

/1 Transfera Ilm oneyf romrhst oc urrenta ccount
publicv oidf in al Transfer(A ccountr hs)

{

dollars+ = rhs.dol | ars;
rhs.dollars=0 ;

}

However, consider the result:

Accounta ccount1;
Accounta ccount 2;

account 2= account1;
account 1. fi nal Transfer(a ccount?2);

Since we ae transferring money between the same account, there should be no
change in the accourt. However, the last statement in f i nal Tr ansf er assures

that the account will be empty. One way to avoid thisisto use an alias test:

/1 Transfera Ilm oneyf romrhst oc urrenta ccount
publicv oidf in al Transfer(A ccountr hs)

{
if(t his==r hs) /1A liast est
return;
dollars+ = rhs.dol |l ars;
rhs.dollars=0 ;
}

3.5.2 The't hi s Shorthand for Constructors
Many classes have multiple mnstructors that behave similarly. We @n uset hi s
inside a constructor to call one of the other classconstructors. An alternative to

the zero-parameter Dat e constructor in Figure 3.6 would be

publicDate()
{

}

this(1,1,2 002) ;/C allt he3-paramconstr uctor

ﬁ%

>

é BOOK.mkr Page 113 Wednesday, March 14 2001 1:26 PM

Additional Constructs

More complicaed uses are possble, but the call to t hi s must be the first

statement in the constructor; thereafter more statements may foll ow.

3.5.3 Thei nst anceof Operator

Thei nst anceof operator performs arun-timetest. The result of

expi nstanceof C | assNare

istrue if exp isaninstanceof Cla ssName andfa | se otherwise. If exp is
nul |, theresult isawaysf al se. Thei nst anceof operator istypicaly used
prior to performing atype conversion andist r ue if the type conversion can suc-
ceed.
3.5.4 Instance Members vs. Static Members

Fields and methods declared with the keyword st at i ¢ are static members. If
they are declared without the keyword st at i ¢, we will refer to them asinstance
members. The next subsedion explains the distinction between instance and static

members.

3.5.5 Static Fields and Methods
Static fields are used when we have avariable that all the members of some dass
need to share. Typically, thisis a symbolic constant, but it need not be. When a

class variable is declared static , only ore instance of the variable is ever cre-

ﬁ%

The i nst anceof
operator is used to
test if an expression
is an instance of

some class.

Instance members
are fields or meth-
ods declared with-
outthestatic

modifier.

Static fields are
essentially global
variables with class

scope.

—

1

é BOOK.mkr Page 114 Wednesday, March 14 2001 1:26 PM é

m Objects and Classes

ated. It isnot part of any instanceof the class Instead, it behaves like asingle glo-

bal variable but with the scope of the class In ather words, in the declaration

publicc | ass Sa npl e
{

privatei ntx ;
privatestatici nty ;

}

each Sanpl e object storesits own x, but thereisonly one shared y.
A common use of a static field is as a onstant. For instance, the dass

I nt eger definesthefield MAX_VALUE as

publics tatic finali ntMA X VALUE =2 147483647,
If this constant was not a static field, then each instance of an In t eger would
b have adata field named MAX_VAL UE, thus wasting space ad initialization time.
Instead, there is only a single variable named MAX_VAL UE. It can be accessed by
any of the | nt eger methods by using the identifier MAX_VALUE. It can also be
accessd viaan | nt eger objed obj using obj . MAX_VALUE, as would any
field. Note that thisis allowed only because MAX VALUEis public. Finaly,
MAX_VALUE can be accessed by using the class name as | nte -
ger . MAX_VALUE (again allowable because it is public). This would not be
allowed for anonstatic field. Thelast form is preferable, because it communicates
to the reader that thefield isindeed a static field. Another example of astatic field
isthe constant Mat h. Pl .
Even without the fi nal qudifier, static fields are still useful. Figure 3.7

illustrates a typicd example. Here we want to construct Ti cket objeds, giving

ﬁ%

é BOOK.mkr Page 115 Wednesday, March 14 2001 1:26 PM é

Additional Constructs

?

each ticket a unigue serial number. In order to do this, we have to have some way
of keeping tradk of all the previously used serial numbers; this is clearly shared
data, and nd part of any one Ti cket objed.
Each Tic ket objed will haveitsinstancemember ser i al Nurber ; thisis A stafic field is

instance data because esch instance of Ti cket has its own seri al Number ~ Shared by all (possi

bly zero) instances
field. All Ti cket objedswill sharethevariablet i cket Count , which denctes
of the class.
the number of Ti cket objedsthat have been creaed. Thisvariableis part of the
class rather than dbject-specific, so it is dedared st ati c. There is only one
ti cket Count, whether thereis1 Ti cket, 10 Ti cket s, or even no Ti cket
objects. The last point — that the static data exists even before any instances of
the classare aeaed — is important, because it means the static data cannot be

initialized in constructors. One way of doing the initializaion isinline, when the

field is dedared. More complex initialization is described in Section 3.5.6.

é BOOK.mkr Page 116 Wednesday, March 14, 2001 1:26 PM

m Objects and Classes

1 classTicket
2 {
3 publicTicket()
4 {
5 Systemout.println(" Callingc onstructor") ;
6 seri al Nunber=+ +ticket Count;
7 }
8
9 publici ntg etSerial()
10 {
11 returns erial Nunber;
12 }
13
14 publicStringt oString()
15 {
16 return" Ticket# "+g etSerial () ;
17 }
18
19 publics tatici ntg etTi cket Count ()
20 {
21 returnt i cket Count;
22 }
23
24 privatei nts erial Nunber;
25 privates tatici ntt icketCount=0 |;
3 26 } 5
27
28 classT estTicket
29 {
30 publics taticv oidmain(String[la rgs)
31 {
32 Tickett 1;
33 Ti ckett 2;
34
35 Systemout.println(" Ticketc ounti s"+
36 T icket.getTicketCount()) ;
37 tl=n ewTicket() ;
38 t2=n ewTicket() ;
39
40 Systemout.println(" Ticketc ounti s"+
41 Ticket.getTicketCount()) ;
42
43 Systemout.printin(t 1.getSerial()) ;
44 Systemout.printin(t 2.getSerial()) ;
45 }
46 }

Figure 3.7 Ticket class: an example of static fields and methods

ﬁ%

é BOOK.mkr Page 117 Wednesday, March 14 2001 1:26 PM é

Additional Constructs

?

In Figure 3.7, we can now seethat construction d Ti cket objectsis done
by using tic ket Count as the serid number, and incrementing
ti cket Count. We dso provide astatic method, get Ti cket Count, that
returns the number of tickets. Because it is datic, it can be invoked without pro-
viding an oljed reference, as own onlines 36 and 41 The @l on line 41 could
have been made using either t 1 or t 2, though many argue that invoking a static
method using an objed reference is poor style, and we would never do so in this
text. However, it is sgnificant that the cal on line 36 clearly could not be made
through an objed reference, since d thispaoint there aeno valid Ti cket objeds.
This is why it is important for get Ti cket Count to be dedared as a static
method; if it was dedared as an instance method, it could only be cdled through
an objed reference.

When amethod is dedared as a static method, thereisnoimplicit t hi s ref- Astati ¢ method

erence. As such, it canna accessinstance data or cal instance methods, withour @t has no implicit

t hi s reference,
providing an objed reference In ather words, from inside get Ti cket Count ,
and can be in-

unqualified access of seri al Nunmber would imply t hi s. seri alN unber, voked without an
but sincethereisnot hi s, the compiler will issue an error message. Thus, anon- object reference.
static field, which is part of ead instance of the class can be acessd by a static

classmethod only if acontrolling ojed is provided.

é BOOK.mkr Page 118 Wednesday, March 14 2001 1:26 PM

m Objects and Classes

?

3.5.6 Static Initializers

A static initializerisa Static fields are initialized when the dassisloaded. Occasionally, we need a mm-

block of code that ey jniti ali zation. For instance, suppase we need a static aray that stores the

is used to initialize
square roots of the first 100 integers. It would be best to have these values com-

static fields.
puted automaticdly. One possbility isto provide a static method and require the
programmer to cdl it prior to using the aray.

An aternative is the static initializer. An example is own in Figure 3.8.
There, the static initializer extends from lines 5 to 9. The simplest use of the static
initializer places initialization code for the static fields in a block that is preceded
by the keyword st at i c. The static initializer must foll ow the dedaration d the
static member.

1 publicc | ass S quares

2 {

3 privates taticd oubles quareRoots[]=n ewdouble[l 00] ;
4

5 static

6 {

7 for(i nti=0 ;i<s quareRoots. |l ength;i ++)

8 squar eRoots[i]=M ath.sqrt((d ouble)i)

9 }
10 /IR esto fc |ass

1}

Figure 3.8 Example of a static initializer

é BOOK.mkr Page 119 Wednesday, March 14 2001 1:26 PM é

Additional Constructs || LG

'I /**
2 *T heStringArraylListi nplementsag rowablearrayo fS tring.
3 *| nsertionsarealwaysdoneatt hee nd.

4 */
5 publicc lassStringArraylist
6 {
7 /**
8 *R eturnst henunbero fi temsi nt hisc ollection.
9 *@ returnt henunbero fi temsi nt hisc ollection.
10 *
11 publici nts ize()
12 {
13 returnt heSize;
14 }
15
16 [**
17 *R eturnst hei tematp ositioni dx.
18 *@ parami dxt hei ndext os earchi n.
19 *@ throws Arrayl ndexQut Of BoundsExceptioni fi ndexi sb ad.
20 *
21 publicStringget(i nti dx)
22 {
23 if(i dx<O| |i dx>=size())
24 thrownew Arrayl ndexOut Of BoundsException() ;
25 returnt heltems[i dx] ;
3 26 } 5
27
28 [**
29 *A ddsani temtot hiscollection,a tt hee nd.
30 *@ paramxa nyo bject.
31 *@returnt rue(asperj ava.util.ArrayList).
32 *
33 publicb ool eana dd(S tringx)
34 {
35 if(t heltens.length==size())
36 {
37 String[]lo |d=t heltens;
38 theltems=n ewString[t heltems.length*2+1] ;
39 for(i nti=0 ;i<s ize() ;i ++)
40 theltens[i]=0 Idfi]
41 }
42
43 theltens[t heSize++]=x ;
44 returnt rue;
45 }
46
47 privatestaticf inali ntl N T_CAPACITY=1 0;
48
49 privatei nt theSize=0 ;
50 privateString[]t heltems=n ewString[l N T_CAPACI TY] ;
51 }
Figure 3.9 Simplified St ringArrayList .withadd, get ,andsi ze.

ﬁ%

é BOOK.mkr Page 120 Wednesday, March 14 2001 1:26 PM

Objects and Classes

A package is used
to organize a col-

lection of classes.

The i npor t direc-
tive is used to pro-
vide a shorthand for
a fully qualified

class name.

3.6 Packages

Packages are used to organize similar classes. Each package consists of a set of
classes. Two classesin the same padkage have slightly fewer visibility restrictions
among themselves than they would if they were in different packages.

Java provides sveral predefined padkages, including j ava. appl et,
java.awt, java.io, java.lang, and java.util. The java.l ang
package includes the dasss | nt eger, Mat h, St ri ng, and Syst em among
others. Some of the dasesinthej ava. uti | package aeDat e, Random and
StringTokeni zer.java.i o isusedfor I/O andincludes the various dream
classes sen in Section 2.6.

ClassCin padkage p is ecified as p. C. For instance we can have aDat e

object constructed with the aurrent time and date & an initial state using

java.util.Date today=n ewj ava.util.Date() ;
Note that by including a package name, we avoid conflicts with identicaly named
classesin other padages (such as our own Dat e clasg. Also, observe the typicd

naming convention: classnames are @pitalized and package names are naot.

3.6.1 Thei nport Directive
Using a full package and classname can be burdensome. To avoid this, use the

i mport directive. There aetwo forms of thei nport diredive:

i mport packageNane. Cl assNane;
i mport packageNane. *;

ﬁ%

é BOOK.mkr Page 121 Wednesday, March 14 2001 1:26 PM é

Packages

?

In the first form, Cl as sNane may be used as a shorthand for a fully qualified
classname. In the second, al classes in a package may be abbreviated with the
corresponding classname.

For example, with thesei mpor t diredives,
? nport J ava. _uti | . Dat e;
import java.io.*;

we may use

Datet oday=ne wDate() ;
File Readert heFile=n ew Fil eReader(nane) ;

Usingthei npor t diredive savestyping. And sincethemost typing is sved Careless use of the

by using the second form, you will seethat form used often. There aetwo disad- | POF t directive

)])]) can infroduce nam- N
vantagestoi nport directives. First, the shorthand makes it hard to tell, by read-
ing conflicts.
ing the ade, which class is being wed when there ae ahost of i nport
diredives. Also, the second form may allow shorthands for unintended classes
and introduce naming conflicts that will need to be resolved by fully qualified
classnames.
Suppose we use
i mport java.util.?* /1L ibraryp ackage
i mport weiss.util.*; //U ser- definedp ackage
with the intention of importing the java . util. Rando mclassand a package
that we have written ourselves. Then, if we have our own Randomclassin

wei ss.util, thei mport directive will generate a @nflict with

wei ss.util . Randomand will need to be fully qualified. Furthermore, if we

ﬁ%

é BOOK.mkr Page 122 Wednesday, March 14 2001 1:26 PM

Objects and Classes

java.l ang. *
is automatically

imported.

The package
statement indi-
cates that a class is
part of a package.
It must precede the

class definition.

are using a dassin one of these padkages, by realing the cde we will not know
whether it originated from the library package or our own package. We would

have avoided these problems if we had used the first form:

i mport java.util.Random
and for this reason, we use the first form only in the text, and avoid “wild card’
import diredives.

Thei nmport diredives must appear prior to the beginning of a dassdedara-
tion. We saw an example of this in Figure 2.16. Also, the entire padckage
j ava. | ang isautomaticdly imported. Thisiswhy we may use shorthands aich

asMat h.max, | nt eger. par sel nt, Syst em out, and so on.

3.6.2 The package Statement

To indicaethat a dassis part of apadkage, we must dotwo things. First, we must
include the package statement asthefirst line, prior to the dassdefinition. Sec
ond, we must place the amde in an appropriate subdiredory.

In this text, we use the two packages shown in Figure 3.10. Other programs,
including test programs and the gplication programsin Part Ill of the text, are
stand-alone dasses and not part of a padage.

An example of how the package statement isused is $rown in Figure 3.11.
Here, we have the static method | ongPause that simply slegps for a billion mil-
liseoonds (approximately two weeks). This method is useful because when some

integrated environments run console goplicaions from inside their environments,

ﬁ%

4

é BOOK.mkr Page 123 Wednesday, March 14, 2001 1:26 PM

é(%

they close the output console as on as the program terminates. This can make
it hard to see the output. | ongPause kees the @mnsole from closing in this

situation.

Package Use

weiss.util A reimplementation of a subset of the j ava. uti |
package containing various data structures.

wei ss.n onst andard | Various data structures, in a simplified form, using
nonstandard conventions that are different from
java.util.

Figure 3.10 Packages defined in this text

1 package wei ss. nonst andar d;

2

3 publicc lassEXxiting

4 {

5 /1S uspendc urrentp rogramforal ongt ine
6 publics taticv oidl ongPause()

7 {

8 try

9 {T hread. sl eep(1 000000000) ;}
10 catch(l nterruptedExceptione){}
11 }

12 }

Figure 3.11 A class Exiting with a single static method, which is part of
the package weiss.nonst andard

Packages

—

é BOOK.mkr Page 124 Wednesday, March 14 2001 1:26 PM

Objects and Classes

Q(%

The CLASSPATH
variable specifies
files and directories
that should be
searched to find

classes.

A class in package
p must be in a
directory p that
will be found by
searching through
the CLASSPATH

list.

3.6.3 The CLASSPATH Environment Variable

Packages are searched for in locations that are named in the CLASSPATH vari-
able. What does this mean? Here ae possble settings for CLASSPATH, first for a
Windows 95 system and second for a Unix system:

SET C LASSPATH=. ; C\ bookcode\

setenv CLASSPATH .. $HOMWE/ bookc ode/

In bath cases, the CLASSPATH variable lists diredories (or jar files?) that
contain the padkage's classfiles. For instance, if your CLASSPATH is corrupted,
you will not be able to run even the most trivial program because the current
diredory will not be found.

A classin package p must be in adirectory p that will be found by searching
through the CLASSPATH list; ead . in the package name represents a subdrec
tory. Starting with Java 1.2, the aurrent direcory (diredory .) is aways <anned
if CLASSPATH is not set at al, so if you are working from a single main drec
tory, you can simply create subdirectories in it and nd set CLASSPATH. Most
likely, however, you'll want to crede aseparate Java subdredory and then creae
package subdirectories in there. You would then augment the CLASSPATH vari-
able to include . and the Java subdirecory. This was done in the previous Unix
declaration when we added $HOME/ bookcode/ tothe CLASSPATH. Inside the

bookcode diredory, you creae asubdredory named wei ss, andin that subdi-

2 Ajarfileisbasically a mmpressed archive (like a p file) with extra fil es containing Java spedfic information.

Thejar tool, supplied with the JDK can be used to creae and expand jar fil es.

ﬁ%

é BOOK.mkr Page 125 Wednesday, March 14 2001 1:26 PM

redory, util and nonstandar d. In the nonst andar d subdirectory, you
place the mde for the Exi t i ng class
An application, written in any diredory at al, can then use thel ongPause

method either by issuing

wei ss. nonst andar d. Exit i ng. | ongPause() ;
or, simply using Exi ti ng. | ongPause, if an appropriatei nport directiveis

provided.

3.6.4 Package Visibility Rules

Padkages have several important visibility rules. First, if no visibility modifier is
specified for afield, then the field is package visible. This meansthat it is visible
only to other classs in the same package. Thisis more visible than private (which
isinvisible even to other classes in the same padkage) but lessvisible than public
(which isvisible to nonpadkage dasses, too).

Seoond, only public dasses of a package may be used outside the padkage.
That is why we have often used the publ i ¢ qualifier prior to cl ass. Classes
may not be dedared pri vat el Package visible acessextendsto classes, too. If
a dassis not dedared publ i c, then it may be accessed by other classes in the
same package only; this is a package visible class. In Part 1V, we will seethat

package visible dasses can be used withou violating information-hiding princi-

Packages 125

Fields with no visibil-
ity modifiers are
package visibile,
meaning that they
are visible only to
other classes in the

same package.

Non-public classes
are visible only to
other classes in the

same package.

3. Thisappliesto top-level classes shown so far; later we will seenested and inner classes, which may be declared

private.

ﬁ%

é BOOK.mkr Page 126 Wednesday, March 14 2001 1:26 PM

Objects and Classes

A design pattern
describes a prob-
lem that occurs
over and over in
software engineer-
ing. and then de-
scribes the solution
in a sufficiently ge-
neric manner as to

be applicable in a

wide variety of con-

texts.

ples. Thus there are some cases in which padage visible classes can be very use-
ful.

All classes that are not part of a package but are readable through the
CLASSPATH variable ae mnsidered part of the same default padage. As a
result, padage visible gplies between al of them. This is why visihility is not
affeded if the publ i ¢ modifier is omitted from nonpadage dasses. However,
thisis poor use of padkage visible member access We useit only to placeseveral
clasesin one file, because that tends to make examining and printing the exam-
ples easier. Since apublic dassmust be in afile of the same name, there ca be

only one pulic dassper file.

3.7 A Design Pattern: Composite (Pair)
Althoughsoftware design and programming are often difficult chall enges, many
experienced software engineeas will argue that software engineeingredly has
only arelatively small set of basic problems. Perhaps thisis an understatement,
but it istrue that many basic problems are seen over and over in software projeds.
Software engineers who are famili ar with these problems, and in particular, the
efforts of other programmers in solving these problems, have the advantage of not
needing to “reinvent the whed.”

Theideaof adesign pattern isto document a problem and its solution so that
others can take advantage of the mllective experience of the entire software engi-

neering community. Writing a pattern is much like writing a redpe for a @ok-

ﬁ%

é BOOK.mkr Page 127 Wednesday, March 14 2001 1:26 PM é

A Design Pattern: Composite (Pair)

1

book; many common patterns have been written and rather than expending energy
reinventing the wheel, these patterns can be used to write better programs. Thus a
design pattern describes a problem that occurs over and over in software engi-
neering, and then describes the solution in a sufficiently generic manner as to be
applicablein awide variety of contexts.
Throughou the text we will discuss sveral problems that often arise in a
design, and atypicd solution that is employed to solve the problem. We start with
the following simple problem.
In most languages, a function can return only asingle objed. What dowe do A common design

if we need to return two or more things? The eaiest way to do thisisto combine Poffern s forefurn

. two objects as a
the objects into asingle objed using either an array or aclass. The most common
pair. N

situation in which multiple objeds need to be returned is the case of two objeds.
So a ommmon design pattern is to return the two objects as a pair. This is the
Composite pattern.
In addition to the situation described above, pairs are useful for implementing Pairs are useful for

maps and dctionaries. In both these abstradions, we maintain key-value pairs, MPlementing key-

)) o value pairs in maps
the pairs are alded into the map or dictionary, and then we search for a key,
and dictionaries.
returning its value. One mwmmon way to implement amap asto use aset. In a set,
we have acolledion d items, and seach for a match. If the items are pairs, and
the match criterion is based exclusively onthe key comporent of the pair, then it

is easy to write an adapter classthat constructs a map onthe basis of a set. We

will seethisidea explored in more detail in Chapter 19.

ﬁ%

é BOOK.mkr Page 128 Wednesday, March 14 2001 1:26 PM

Objects and Classes

Summary
This chapter described the Java dassand padage wnstructs. The dassisthe Java
mechanism that is used to creae new reference types; the package is used to

group related classes. For ead class, we can

 definethe mnstruction of objeds,
» provide for information hiding and atomicity, and

« define methods to manipulate the objeds.

The dass consists of two parts: the specification and the implementation. The
specification tells the user of the classwhat the dassdoes; the implementation

does it. The implementation frequently contains proprietary code ad in some

>

cases is distributed only asa. cl ass file. The spedfication, however, is public
knowledge. In Java, a specification that lists the dassmethods can be generated
from the implementation by using javadoc.

Information hiding can be enforced by usingthe pri vat e diredive. Initial-
ization o objeds is controlled by the mnstructors, and the comporents of the
object can be examined and changed by accessor and mutator methods, respec
tively. Figure 3.9 illustrates many of these mncepts, as applied to simplified ver-
sionof ArraylLi st. Thisclass St ri ngArraylLi st, supportsadd, get , and
si ze. A more mmplete version that includes set , r enove, and cl ear, isin

the online ade.

é BOOK.mkr Page 129 Wednesday, March 14 2001 1:26 PM é

Objects of the Game

1

>

The features discussed in this chapter implement the fundamental aspeds of
object-based programming. The next chapter discusses inheritance, which is cen-

tral to objed-oriented programming.

Objects of the Game ﬁﬁ
accessor A method that examines an object but does not change its date. (107)
aliasing A spedal case that occurs when the same objed appeasin more than
onerole. (111)

atomic unit In referenceto an objed, its parts cannot be disseded by the gen-
eral users of the object. (96)

class Consists of fields and methods that are applied to instances of the
class (98)

class specification Describes the functionality, but not the implementation.
(101)

CLASSPATH variable Spedfies direcories and files that should be searched
tofind classs. (124

Composite The pattern in which we store two or more objectsin one antity.
(127)

constructor Tells how an objed is dedared and initiali zed. The default con-
structor is a member-by-member default initialization, with primitive

fieldsinitialized to zero and referencefields initialized to nul | . (104)

ﬁ%

é BOOK.mkr Page 130 Wednesday, March 14 2001 1:26 PM

Objects and Classes

design pattern Describes a problem that occurs over and over in software
engineeing, and then describes the solution in a sufficiently generic man-
ner asto be applicable in awide variety of contexts. (126)

encapsulation The grouping of data and the operations that apply to them to
form an aggregate while hiding the implementation d the aggregate. (97)

equal s method Can beimplemented to test if two objeds represent the same
value. The formal parameter is always of type Cbj ect . (109

field A class member that stores data. (100)

implementation Representsthe internals of how the specificaionsare met. As
far asthe dassuser is concerned, the implementation is not important.

(102)

>

import directive Used to provide ashorthand for afully qualified class
name. (120)

infor mation hiding Makes implementation details, including components of
an objed, inaacesshle. (96)

instance member s Members declared without the static modifier. (113)

i nst anceof operator Testsif an expresson is an instance of a dass (113)

javadoc Automaticaly generates documentation for classes. (102)

javadoc tag Includes @ut hor, @ar am @ et ur n, and @xcepti on.
Used inside of javadoc comments. (102

method A function supplied as a member that, if not static, operates onan
instance of the dass (98)

mutator A method that changes the state of the objed. (107)

ﬁ%

é BOOK.mkr Page 131 Wednesday, March 14 2001 1:26 PM é

Objects of the Game

1

>

object An entity that has gructure and state and defines operations that may
accessor manipulate that state. An instance of a class (96)

obj ect-based programming Uses the encgpsulation and information hiding
feaures of objeds but does nat use inheritance. (97)

object-oriented programming Distingu shed from objed-based program-
ming by the use of inheritanceto form hierarchies of classes. (97)

package Used to organize a wlledion of classes. (120)

package statement Indicates that a classis a member of a padkage. Must pre-
cede the dassdefinition. (122)

package visible access Members that have no visibility modifiers are only
accesshle to methods in classesin the same package. (125)

package visible class A classthat is not public andis accessble only to other
classsin the same package. (125

Pair The cmmposite pattern with two dbjects. (127)

private A member that is not visible to nonclassmethods. (100)

public A member that is visible to nonclassmethods. (100)

static field A field that is shared byall instances of aclass (117)

staticinitializer A block of codethat isused to initiaize static fields. (118)

static method A method that has no implicit t hi s reference and thus can be
invoked without a mntrolling objed reference (117)

t hi s constructor call Used to make a @ll to ancther constructor in the same

class (112

ﬁ%

é BOOK.mkr Page 132 Wednesday, March 14 2001 1:26 PM

Objects and Classes

t hi s reference A referenceto the current objed. It can be used to send the
current objed, as aunit, to some other method. (111)

t oSt ri ng method Returnsa St r i ng based onthe objed state. (107)

Common Errors

1. Private members cannot be accessed outside of the dass Remember that,
by default, classmembers are pacage visible: They are visible only
within the padage.

2. Usepublicc | ass instead of cl ass unlessyou are writing a throw-

away helper class

>

’ 3. Theformal parameter to equal s must be of type Obj ect . Otherwise,
although the program will compile, there are casesin which a default
equal s (that dwaysreturnsf al se) will be used instea.

4. Static methods cannot accessnonstatic members without a ntrolling
object.

5. Classsthat are part of apadage must be placed in an identicdly named
diredory that is readable from the CLASSPATH.

6. thi s isafina reference and may not be dtered.

On the Internet

Following are the files that are available:

ﬁ%

é BOOK.mkr Page 133 Wednesday, March 14 2001 1:26 PM é

Exercises

1

TestIntCell java Containsama n that tests| nt Cel | , shownin
Figure 3.3.
IntCell.java Containsthe | nt Cel | class shown in Figure 3.4.

The output of javadoc can also be foundas

IntCell.html.
Datejava Contains the Dat e class shown in Figure 3.6.
Exiting.,java Containsthel ongPause method shownin Figure

3.11. Foundin packagewei ss. uti | .

Ticket.java Containsthe Ti cket static member examplein
Figure 3.7.
Squaresjava Contains the static initializer sample codein Figure
i 38. i

StringArrayListjava Contains amore amplete version of
StringArraylLi st codeinFigure 3.9.
ReadStringswWithStringArrayList.java Contains a test program for

StringArrayli st.

Exercises @

In Short
3.1. What isinformation hiding? What is encapsulation? How does Jva sup-

port these concepts?
3.2. Explain the public and private sedions of the class

3.3. Describe the role of the aonstructor.

ﬁ%

?

é BOOK.mkr Page 134 Wednesday, March 14 2001 1:26 PM

Objects and Classes

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

If a dassprovides no constructor, what is the result?

Explain the uses of t hi s in Java.

What is padage visible acess?

For a dass Cl assNane, how is output performed?

Give the two types of import diredive formsthat allow | ongPause to be
used without providing thewei ss. uti | padage name.

What is a design pettern?

For the aode in Figure 3.12, which resides entirely in onefil g,

a. Linel7isillegal, eventhough line 18islegal. Explain why.

b. Which o lines 20 to 24are legal and which are not? Explain why.

é BOOK.mkr Page 135 Wednesday, March 14 2001 1:26 PM

Exercises

1 classP erson

2 {

3 publics taticf inali ntN O SSN=- 1;

4

5 privatei ntS SN=0 ;

6 Stringnane=n ull;

71}

8

9 classT estPerson

10 {

11 privatePersonp=n ewPerson() ;

12

13 publics taticvoidmain(String[]a rgs)

14 {

15 Persong=n ewPerson() ;

16

17 Systemout.println(p) ; I 1i 1legal
18 Systemout.printin(q) ; /1l egal
19

20 Systemout.printin(q .NOSSN) ; /1?
21 Systemout.printin(q .SSN) ; 1 1?
22 Systemout.println(q .nanme) ; 1 1?
23 Systemout.printIn(P erson.NOSSN) ;/ /?
24 Systemout.println(P erson.SSN) ; /1?
25 }

26 }

Figure 3.12 Code for Exercise 3.10

In Theory
3.11. Aclassprovidesasingle private constructor. Why would this be useful ?

3.12. Suppose that the mai n method in Figure 3.3 was part of the | nt Cel |
class
a. Would the program still work?
b. Couldthe commented-out linein mai n be uncommented without gen-

erating an error?

In Practice

3.13. A combination lock has the following basic properties. the combination (a

sequence of three numbers) is hidden; the lock can be opened by providing

ﬁ%

—

é BOOK.mkr Page 136 Wednesday, March 14 2001 1:26 PM

Objects and Classes

the combination; and the combination can be changed, but only by some-
one who knows the arrent combination. Design a dasswith public meth-
ods open and changeConbo and private data fields that store the
combination. The combination should be set in the constructor. Disable
copying of combination locks.

3.14. Wild card import directives are dangerous because ambiguities and ather
surprises can be introduced. Recdl that both j ava. awt . Li st and
java. util. Li st areclasss. Starting with the cdein Figure 3.13;

a. Compil e the code; you shoud get an ambiguity.

b. Addanimport dirediveto explicitly usej ava. awt . Li st. The mde
should now compile and run.

¢. Uncomment thelocal Li st class and remove the import directive you
just added. The ade should compile and run.

d. Recomment the local Li st , reverting back to the situation at the start.
Recompile to seethe surprising result. What happens if you add the

explicit import diredive from step (b)?

>

é BOOK.mkr Page 137 Wednesday, March 14 2001 1:26 PM é

Exercises

?

1 inportj ava.util.¥;

2 inportj ava.aw.?*,;

3

4 classList //C OMWENT OUTTH S CLASSTO START E XPERI MENT
5 {

6 publicStringt oString(){r eturn” MyList!!";}
71}

8

9 classWildCardl sBad

10 {

11 publics taticvoidmain(String[]Ja rgs)

12 {

13 Systemout.printin(n ewList()) ;

14 }

15 }

Figure 3.13 Code for Exercise 3.14 illustrates why wildcard imports are bad

Programming Projects

3.15. Write a tass that supports rational numbers. The fields dould be two
| ong variables, one eat that stores the numerator and denominator.
Store the rational number in reduced form, with the denominator always
nonnegative. Provide a reasonable set of constructors; the methods add,
subtract,mul ti ply,anddi vi de; aswell ast oSt ri ng, equal s,
and conpar eTo (that behaves like the one in the St ri ng clasg. Make
surethatt oSt ri ng corredly handles the case in which the denominator
iszero.

3.16. Implement asimple Dat e class You should be &le to represent any date
from January 1, 1800, to December 31, 2500; subtract two dates; incre-
ment a date by a number of days, and compare two dates using both
equal s and conpar eTo. A Dat e is represented internally as the num-
ber of days snce some starting time, which, here, is the start of 1800. This

makes all methods except for construction andt oSt r i ng trivial.

ﬁ%

é BOOK.mkr Page 138 Wednesday, March 14 2001 1:26 PM

3.17.

3.18.

\

Objects and Classes

Therulefor legp yeasisayea isaleap yea if itisdivisible by 4 and
not divisible by 100 uressit is also dvisible by 400. Thus 1800, 1900,
and 2100 are nat leg years, but 2000 is. The nstructor must chedk the
validity of the date, as must t oSt ri ng. The Dat e could be bad if an
increment or subtracion gperator caused it to go ou of range.

Once you have decided onthe specifications, you can doan imple-
mentation. The difficult part is converting between the internal and exter-
nal representations of adate. What followsis apassble dgorithm.

Set up two arrays that are static fields. The first array, daysTi | | -
Fi r st OF Mont h, will contain the number of days urtil the first of each
month in anoreg year. Thusit contains 0, 31, 59, 90, and so on. The sec
ond array, daysTi | | Janl, will contain the number of days until the
first of each yea, starting with f i r st Year. Thusit contains 0, 365, 730,
1095, 1460, 1826, and so on kecause 1800 is not aleg year, but 1804is.
You shoud have your program initialize this array once using a static ini-
tializer. You can then use the array to convert from the internal representa-
tion to the external representation.

Implement a Conpl ex number class Recdl that a omplex number con-

sists of areal part and an imaginary part. Support the same operations as
the Rat i onal class when meaningful (for instance, conpar eTo isnot
meaningful). Add accessor methods to extrad the real and imaginary
parts.

Implement a dmmpletel nt Ty pe classthat supportsareasonabl e set of con-
structors,add,subt ract ,nmul ti pl y,di vi de,equal s,conpar eTo,
andt oSt ri ng.Maintainan| nt Ty pe asasufficiently large aray. For this

class the difficult operation is division, followed closely by multipli cation.

>

é BOOK.mkr Page 139 Wednesday, March 14 2001 1:26 PM é

References

1

>

References
More information only classes can be foundin the references at the end of Chap-
ter 1. The dassc referenceon design patternsis|[1]. This book describes 23 stan-

dard patterns, some of which we will discusslater.

1. E. Gamma, R. Helm, R. Johnson, and J. Vlissdes, Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, Mass 1995.

é BOOK.mkr Page 140 Wednesday, March 14, 2001 1:26 PM

m Objects and Classes

- 4~

é BOOK.mkr Page 141 Wednesday, March 14 2001 1:26 PM

CHAPTER

4 Inheritance

S mentioned in Chapter 3, an important goal of objed-oriented program-
Ami Nng is code reuse. Just as engineers use comporents over and over in
their designs, programmers should be &le to reuse objects rather than repeaedly
reimplement them. In an ohjed-oriented programming language, the fundamental
mechanism for code reuse is inheritance. Inheritance dlows us to extend the
functionality of an object. In ather words, we @n creae new types with restricted
(or extended) properties of the original type, in effect forming a hierarchy of
classs.

Inheritance is more than simply code reuse, however. By using inheritance
correctly, it enables the programmer to more easily maintain and uplate @de,
both of which are esential in large commericd applications. Understanding o
the use of inheritanceis esential in order to write significant Java programs, and
it is aso used by Javato implement generic methods and classes.

In this chapter, we will see

» Genera principles of inheritance, including polymor phism
» How inheritanceisimplemented in Java

* How a mlledion of classes can be derived from asingle éstrad class

ﬁ%

?

é BOOK.mkr Page 142 Wednesday, March 14 2001 1:26 PM

Inheritance

In an IS-A relation-
ship, we say the de-
rived class is a (vari-
ation of the) base

class.

» Theinterface, which isaspedal kind of a dass

» How Javaimplements generic programming using inheritance

4.1 What Is Inheritance?

Inheritance is the fundamental objed-oriented principle that is used to reuse @mde
among related classes. Inheritance models the IS A relationship. In an IS-A rela
tionship, we say the derived classis a (variation o the) base dass For example, a
Circle1S-A Shape andaCar IS-A Vehicle. However, an Ellipse IS-NOT-A Circle.
Inheritance relationships form hierarchies. For instance, we can extend Car to
other classes, sincea ForeignCar IS-A Car (and pays tariffs) and a DomesticCar

IS-A Car (and does not pay tariffs), and so on.

é BOOK.mkr Page 143 Wednesday, March 14 2001 1:26 PM

What Is Inheritance?

1 classP erson

2 {

3 publicPerson(Stringn,i nta g,Stringad,S tringp)

4 {n amre=n ;a ge=a g;a ddress=a d;p hone=p ;}

5

6 publicStringt oString()

7 {r eturngetName()+""+g et Age()+""

8 + g et PhoneNunber () ;}

9

10 publicStringg etNanme()

11 {r eturnnane;}

12

13 publici ntg etAge()

14 {r eturnage;}

15

16 publicStringg et Address()

17 {r eturnaddress;}

18

19 publicStringg et PhoneNunber ()

20 {r eturnp hone;}

21

22 publicv oids et Address(S tringn ewAddress)

23 {a ddress=n ewAddress;}

24

25 publicv oids et PhoneNunber (S tringn ewPhone)
» 26 {p hone =n ewPhone;} -

27

28 privateStringn ang;

29 privatei nt a ge;

30 privateStringa ddress;

31 privateStringp hone;

32 }

Figure 4.1 Pers on class: stores name, age. address, and phone number

Another type of relationship is a HASA (or ISSCOMPOSED-OF) relation- In a HAS-A relation-

ship. Thistype of relationship daes not possessthe properties that would be natu- ship. we say the de-

rived class has a (in-
ral in an inheritance hierarchy. An example of aHAS-A relationship is that a car

stance of the) base

HAS-A steering whed. HAS-A relationships shoud not be modeled by inheri-

class. Composition

tance. Instead, they should use the technique of composition, in which the compo- is used fo model

' i i HAS-A relationships.
nents are simply made private data fields. relationships

ﬁ%

é BOOK.mkr Page 144 Wednesday, March 14 2001 1:26 PM

Inheritance

Aswe will seein forthcoming chapters, the Javalanguage itself makes exten-

sive use of inheritancein implementingits classlibraries.

4.1.1 Creating New Classes

Our inheritance discussion will center around an example. Figure 4.1 shows a
typical class The Person classis used to store information about a person; in
our case we have private data that includes the name, age, address, and phone
number, alongwith some pulblic methods that can access and perhaps change this
information. We can imagine that in reality, this classis sgnificantly more com-

plex, storing perhaps 30 data fields with 100 methods.

é BOOK.mkr Page 145 Wednesday, March 14, 2001 1:26 PM

What Is Inheritance? 145

1 class S tudent
2 {
3 publicStudent(Stringn,i nta g,Stringad,Stringp,
4 doubl eg)
5 {n ame=n ;a ge=a g;a ddress=a d;p hone=p ;g pa=g ;}
6
7 publicStringt oString()
8 {r eturngetName()+""+g et Age()+""
9 +g etPhoneNunber()+""+g et GPA() ;}
10
11 publicStringg etNanme()
12 {r eturnnane;}
13
14 publici ntg etAge()
15 {r eturnage;}
16
17 publicStringg etAddress()
18 {r eturnaddress;}
19
20 publicStringg et PhoneNunber ()
21 {r eturnp hone;}
22
23 publicv oids et Address(S tringn ewAddress)
24 {a ddress=n ewAddress;}
25
» 26 publicv oids et PhoneNunber (S tringn ewPhone) -
27 {p hone=n ewPhone;}
28
29 publicd oubl e g et GPA()
30 {r eturng pa;}
31
32 privateStringn ang;
33 privatei nt a ge;
34 privateStringa ddress;
35 privateStringp hone;
36 privated oubl e g pa
37 }

Figure 4.2 Stud ent class: stores name, age, address, phone number, gpa
via copy-and-paste

- 4~

é BOOK.mkr Page 146 Wednesday, March 14 2001 1:26 PM

Inheritance

1 classStudente xtendsP erson

2 {

3 publicStudent(S tringn,i nta g,Stringad,Stringp,
4 doubleg)

5 {

6 /*O OPSIN eeds ones yntax;s eeSection4.1.6*/
7 gpa=g ;}

8

9 publicStringt oString()

10 {r eturngetName()+""+g et Age()+""

11 +g etPhoneNunmber()+""+g et GPA() ;}
12

13 publicd oubl e g et GPA()

14 {r eturngpa;}

15

16 privated oubl e g pa;

17 }
Figure 4.3 Inheritance used to create Student class

Now suppose we want to have aSt udent class or an Enpl oyee class or
both. Imagine that a St udent is smilar to aPer son, with the adition o only
afew extra data members and methods. In our simple example, imagine that the
differenceis that a St udent adds a gpa field and a get GPA acessor. Simi-
larly, imagine that the Enpl oyee has al of the same components as a Per son,
but also hasasal ary field and methods to manipulate the salary.

One option in designing these dasses is the dassc copy-and-paste: we mpy
the Per son class change the name of the dassand constructors, and then add
the new stuff. This drategy isillustrated in Figure 4.2.

Copy-and-paste is a weak design ogion, wrought with significant liabilities.
First, there is the problem that if you copy garbage, you wind upwith more gar-
bage. This makes it very hard to fix programming errors that are deteded, espe-

cialy when they are deteded late.

ﬁ%

é BOOK.mkr Page 147 Wednesday, March 14, 2001 1:26 PM é

1

What Is Inheritance?

Seoond, is the related isaie of maintainence and versioning. Suppose we
decide in the second version that it is better to store namesin last name, first name
format, rather than asasinglefield. Or perhapsit is better to store aldresses using
aspedal Addr ess class In order to maintain consistency, these should be done
for al classes. Using copy-and-paste, these design changes have to be done in
numerous places.

Third, and more subtle, is the fact that using copy-and-paste, Per son,
St udent, and Enpl oyee are three separate entities with zero relationship
between ead other, in spite of their similarities. So, for instance, if we have arou-
tine that aceepted a Per son as a parameter, we @uld not send in a St udent .

We would thus have to copy and paste dl of thase routines to make them work for

these new types.
name age
Person Class address pho ne
Student Class
gpa

Figure 4.4 Memory layout with inheritance. Light shading indicates fields
that are private, and accessible only by methods of the class.
Dark shading in Stud ent class indicates fields that are not
accessible in the Student class, but are nonetheless present.

ﬁ%

é BOOK.mkr Page 148 Wednesday, March 14 2001 1:26 PM

Inheritance

Inheritance solves all three of these problems. Using inheritance, we would
say that a St udent IS A Per son. We would then spedfy the changes that a
St udent hasrelative to Per son. There are only three types of changes that are

alowed:

1. Student canaddnew fields (e.g. gpa).
2. St udent canaddnew methods (e.g. get GPA).
3. St udent canoverride existing methods (e.g. t oSt ri ng).

Two changes are spedfically not alowed, becaise they would violate the

notion of an IS-A relationship:

1. St udent cannot remove fields.
2. St udent cannot remove methods.

Finally, the new class must spedfy its own constructors; this is likely to
involve some syntax that we will discussin Sedion 4.1.6.

Figure 4.3 shows the St udent class The data layout for the Per son and
St udent classsis own in Figure 4.4. It illustrates that the memory footprint
of any St udent objed includes al fields that would be mntained in a Per son
object. However, because those fields are dedared private by Per son, they are
not accessble by St udent classmethods. That is why the constructor is prob-
lematic & this point: we canot touch the data fields in any St udent method,
and instead can only manipulate the inherited private fields by using public
Per son methods. Of course, we could make the inherited fields public, but that
would generally be aterrible design cecision. It would embolden the implemen-
tors of the St udent and Emgd oyee classs to acaess the inherited fields

diredly. If that was dore, and modificaions uch as a change in the Per son’s

ﬁ%

>

é BOOK.mkr Page 149 Wednesday, March 14 2001 1:26 PM

Q(%

What Is Inheritance?

data representation of the name or address were made to the Per son class we
would now have to tradk down all of the dependencies, which would bring s
back to the copy-and-paste liabilities.

Aswe can see, except for the anstructors, the cde is relatively simple. We
have alded one data field, added one new method, and overridden an existing
method. Internally, we have memory for al of the inherited fields, and we dso
have implementations of all original methods that have not been overridden. The
amount of new code we have to write for St udent would be roughly the same,
regardlessof how small or large the Per son classwas, and we have the benefit
of direct code reuse and easy maintainence Observe dso, that we have done so

without disturbing the implementation of the existing class

1 public class Derived extends Base

2 {

3 /1A nymenberst hata renotl istedarei nheritedu nchanged
4 /le xceptf orc onstructor

5

6 /Ip ublicmenbers

7 /1C onstructor(s)i fd efaulti sn ota cceptable

8 /1B asemethodswhosed efinitionsaret oc hangei nDerived
9 /1A dditionalp ublicmethods

10

11 /Ip rivate menber

12 /1A dditionald ataf ields(generallyprivate)

13 /1A dditionalp rivate methods

14 }

Figure 4.5 General layout of public inheritance

Inheritance allows
us to derive classes
from a base class
without disturbing
the implementa-
tion of the base

class.

é BOOK.mkr Page 150 Wednesday, March 14 2001 1:26 PM

Inheritance

The ext ends Let us simmarizethe synax so far. A derived classinherits all the properties

?

clause is used fo of a base dass It can then add data members, override methods, and add new

declare that a class
methods. Each derived classisa ammpletely new class A typical layout for inher-

is derived from an-

itanceis sown in Figure 4.5 and uses an ext ends clause. An ext ends clause

other closs.
declares that a classis derived from ancther class A derived classextends a base
class Hereisabrief description of a derived class

A derived class » Generdly al datais private, so we ald additional datafieldsin the derived

inherits all data classby spedfying them in the private sedion.

members from the

» Any base dassmethodsthat are not specified in the derived classare
base class and may

add more data inherited unchanged, with the exception of the cnstructor. The spedal

members. case of the mnstructor isdiscussed in Sedion 4.1.6.

* Any base dassmethodthat is defined in the derived class public sedion
is overridden. The new definition will be applied to dbjects of the derived
class

The derived class » Public base classmethods may nat be redefined in the private section of

inherits all mefhods the derived class because that would be tantamount to removing methods

from the base class.)))
and would violate the | S-A relationship.
It may accept or re-

define them. It also * Additional methods can be added in the derived class

can define new

methods.

é BOOK.mkr Page 151 Wednesday, March 14 2001 1:26 PM

What Is Inheritance?

4.1.2 Type Compatability
The direct code reuse described in the preceding paragraphis a significant gain.
However, the more significant gain is indirect code reuse. This gain comes from
the fact that a St udent IS-A Per son andan Enpl oyee IS-A Per son.
Becaise aSt udent IS-A Per son, aSt udent objed canbe acessedby a Each derived class

Per son reference. Thefollowing codeis thus legal: Is a completely new

class that nonethe-

Students =newStudent(" Joe", 26," 1MainSt", less has some com-

"202- 555-1212", 4. 0) ;

Personp= s; patibility with the

Systemout. printIn("A gei s"+ p.age()) ; class from which it
Thisislega becaise the static-type (i.e. compile-time type) of p isPer son. was derived.

Thus p may reference ay object that ISA Per son, and any method that we

invoke through the p referenceis guaranteed to make sense, since once amethod

is defined for Per son, it cannot be removed by a derived class
You might ask why thisis abig ded. The reason is that this applies not only

to assgnment, but also to parameter passng. A method whaose formal parameter

isa Per son can receive anything that IS-A Per son, including St udent and

Enpl oyee.

So consider the following code written in any class:

publics tatic booleani sOlder(P ersonp 1,P erson p2)

{
}

returnp 1.g et Age() > p2. get Age();

Consider the following dedarations, in which constructor arguments are

missng to save space

ﬁ%

é BOOK.mkr Page 152 Wednesday, March 14 2001 1:26 PM

Inheritance

Per son p =newPerson(. ..) ;
Student s =newStudent(. ..) ;
Enpl oyeee =newEnplo yee(. ..) ;

The single i sO der routine can be used for al of the following cdls:
isAder(p,p), isOder(s,s), isOder(e,e), isAder(p,e),
isAder(p,s), isOder(s, p), isOder(s,e), isAder(e,p),
isAder(e,s).

Allin all, we now have leveraged ore non-classroutine to work for nine dif-
ferent cases. In fact there is no limit to the amnount of reuse this gets us. As on
aswe use inheritanceto add afourth classinto the hierarchy, we now have 4 times
4, or 16 dfferent methods, without changingi sO der at al! The reuse is even
more significant if amethod were to take threePer son references as parameters.
And imagine the huge cde reuse if a method takes an array of Per son refer-
ences.

Thus, for many people, the type compatability of derived classes with their
base dasssisthe most important thing about inheritancebecause it leals to mas-
siveindirect codereuse. And asi s der illustrates, it also makesit very easy to

add in new types that automaticaly work with existing methods.

4.1.3 Dynamic Binding and Polymorphism

There isthe isaue of overriding methods: if the type of the reference and the dass
of the objed being referenced (in the example éove, these ae Per son and
Stude nt , respectively) disagree, and they have different implementations,

whose implementation is to be used?

ﬁ%

>

é BOOK.mkr Page 153 Wednesday, March 14 2001 1:26 PM

What Is Inheritance?

As an example, consider the following fragment:

Students =newStudent(" Joe", 26," 1MainSt",
"202-555-1212",4. 0) ;
Enpl oyeee =newEnplo yee(" Boss",4 2," 4MainS t.",
"203-555-1212",1 00000.0) ;
Personp= null;
i f(g etTodaysDay() .equal s(" Tuesday"))

p=s ;
el se
p=e ;
Systemout. printIn("P ersoni s" +p.toString()) ;
Here the static type of p is Per son. When we run the program, the dynamic
type (i.e. the type of the objea acually being referenced) will be @ther St udent
or Enpl oyee. It is impossible to deduce the dynamic type urtil the program
runs. Naturally, however, we would want the dynamic type to be used, and that is
what happens in Java. When this code fragment is run, the method that is used
will be the one appropriate for the dynamic type of the controlling dojed refer-
ence
Thisisan important objea-oriented principle known as polymorphism. A ref-
erence variable that is polymorphic can reference objects of several different
types. When operations are applied to the reference, the operation that is appropri-
ateto theadual referenced oljed isautomaticdly seleded. All referencetypesare
polymorphic in Java. Thisisaso known as dynamic binding or late binding.
A derived classis type compatible with its base dass meaning that a refer-
ence variable of the base dasstype may reference ax ohjed of the derived class

but not vice versa. Sibling classes (that is, classes derived from a common clasg

are not type compatible.

ﬁ%

A polymorphic vari-
able can reference
objects of several
different types.
When operations
are applied to the
polymorphic vari-
able, the operation
appropriate to the
referenced object
is automatically

selected.

é BOOK.mkr Page 154 Wednesday, March 14 2001 1:26 PM

Inheritance

Person
Student Employee
Undergrad Graduate Faculty Staff

Figure 4.6 The Perso n hierarchy

> 4.1.4 Inheritance Hierarchies >

IfXI1S-AYthen Xisa As mentioned ealier, the use of inheritance typically generates a hierarchy of
subclassof Yand ¥ ol asses. Figure 4.6 ill ustrates a possible Per son hierarchy. Notice that

is a superclass of X. L)
Facul tvy isindirectly, rather than dredly, derived from Pers on — so faalty
These relationships

. are people too! This fact is transparent to the user of the dasses because IS-A
are fransitive.

relationships are transitive. In other words, if X ISSA YandY ISA Z, then X
ISSA Z. The Person hierarchy illustrates the typicd design issues of fadoring
out commonalities into base classes and then spedalizing in the derived classs.
In this hierarchy, we say that the derived classis a subclass of the base dassand

the base dass is a superclass of the derived class. These relationships are transi-

tive, and furthermore, thei nst anceof operator works with subclasses. Thusif

ﬁ%

é BOOK.mkr Page 155 Wednesday, March 14 2001 1:26 PM é

What Is Inheritance? 155

obj isof type Under gr ad (and nd nul |), then obj i nstanceof

Per sonistrue.

4.1.5 Visibility Rules
We know that any member that is declared with private visibility is accessible
only to methods of the dass. Thus as we have seen, any private members in the
base dassare not accesshle to the derived class
Occasionally we want the derived classto have accessto the base dassmem-
bers. There ae two basic options. The first is to use dther pubic or friendy
access as appropriate. However, this allows accessto ather classes in addition to
derived classes.
’ If we want to restrict accessto only derived classes, we can make members A protected class

member is visible to

protected. A protected class member is visible to methods in a derived class and

)) 1) the derived class
also methods in classes in the same padkage, but not to anyone dse.” Dedaring
and also classes in

data members as proteded o public violates the spirit of encgpsulation and infor- the same package.
mation hding andis generally done only as a matter of programming expediency.
Typicdly, a better aternative is to write acessor and mutator methods or to use
friendy access However, if a proteded dedaration allows you to avoid convo-
luted code, then it is not unreasonable to use it. In this text, proteded data mem-
bers are used for precisely this reason. Proteded methods are dso used in this
text. This allows a derived classto inherit an internal method withou making it

accesshble outside the dasshierarchy. Noticethat in toy code, in which all classes

are in the default unnamed padkage, proteded members are visible.

ﬁ%

?

é BOOK.mkr Page 156 Wednesday, March 14 2001 1:26 PM

Inheritance

If no constructor is
written, then a sin-
gle zero-parameter
default constructor
is generated that
calls the base class
zero-parameter
constructor for the
inherited portion,
and then applies
the default initializo-
tion for any addi-

tional data fields.

4.1.6 The Constructor and super

Eadh derived class $ould defineits constructors. If no constructor iswritten, then
asingle zro-parameter default constructor is generated. This constructor will call
the base dasszero-parameter constructor for the inherited pation and then apply
the default initialization for any additional data fields (meaning O for primitive
types, and nul | for referencetypes).

Constructing a derived classobjed by first constructing the inherited portion
is gandard pradice In faq, it is done by default, even if an explicit derived class
constructor is given. This is natural becaise the encgpsulation viewpoint tells us
that the inherited pationis a single entity, and the base dassconstructor tells us

how to initializethis gngle antity.

L Therulefor protected visibility is quite cmplex. A proteced member of classB isvisibleto all methodsin

classthat are in the same package @ B. It isalso visible to methods in any classDthat isin a different package

than B if D extends B, but only if accessed through a referencethat is type-compatible with D (including an

implicit or explicit t hi s). Specificdly, it isNOT VISIBLE in classDif accessed through areference of type

B. The following example ill ustrates this.

classDenpe xte ndsj ava.io . FilterlnputStream

{ /TF il terlnputStr eamhasp rotecteddata fieldnaned in
publicv oidf o00()
{
java. o.FilterlnputStreamb =t his; // legal
System out. printl n(i n) ; /1 |egal
Systemout.printl n(t his.in); /1 |egal
Systemout.printl n(b .in) ; /1 illegal

ﬁ%

>

é BOOK.mkr Page 157 Wednesday, March 14 2001 1:26 PM é

What Is Inheritance?

1

Base dassconstructors can be explicitly caled by using the methodsuper.

Thus the default constructor for aderived classisin redity

1 classStudente xtendsP erson

2 {

3 publicStudent(S tringn,i nta g,Stringad,Stringp,
4 doubl eg)

5 {s uper(n ,a g,adp) ; gpa=g ;}

6

7 //t oStringandg etAgeomtted

8

9 privated oubl e g pa;

10 }

Figure 4.7 Constructor for new class Student ; uses super

publicDerived()
{

> super () ; >

}

The super method can be cdled with parameters that match a base class super is used to

constructor. As an example, Figure 4.7 illustrates the implementation of the CAllThe Pbase closs

constructor.
St udent constructor.

The super method can be used only as thefirst line of a constructor. If it is

not provided, then an automatic call to super with no parameters is generated.

4.1.7 fi nal Methods and Classes

As described ealier, the derived classeither overrides or accepts the base dass A final methodiis in-

methods. In many cases, it is clear that a particular base dass method shoud be Voriantoverthein-
. L heritance hierarchy
invariant over the hierarchy, meaning that a derived class $iould na overrideit. In

and may not be

this case, we can dedare that the method isf i nal and cannot be overridden.)
overridden.

ﬁ%

é BOOK.mkr Page 158 Wednesday, March 14 2001 1:26 PM

Inheritance

Static binding could
be used when the

method is invariant
overtheinheritance

hierarchy.

Static methods
have no controlling
object and thus are
resolved at com-
pile time using static

binding.

Dedaring invariant methods f i nal isnot only good programming pradice
It also can leal to more dficient code. It isgoad programming practicebecausein
addition to dedaring your intentions to the reader of the program and dacumen-
tation, you prevent the acédental overriding o amethod that should not be over-
ridden.

To see why using f i nal may make for more dficient code, suppose base
class Base dedares a final method f and suppose Der i ved extends Base.

Consider the routine

voidd olt(B aseo bj)
{

}
Sincef isafinal method it does nat matter whether obj adually references

obj . f() ;

aBase or Der i ved objed; the definition o f isinvariant, so we know what f
does. As aresult, a ammpile-time dedsion, rather than a run-time dedsion, could
be made to resolve the method cdl. This is known as static binding. Because
binding is dore during compilation rather than at run time, the program should
run faster. Whether this is noticeable would depend on how many times we avoid
making the run-time dedsion while exeauting the program.

A corollary to this observation isthat if f isatrivial method, such asasingle
field accessr, and is dedared f i nal , the compiler could replace the cdl to f
with itsinline definition. Thus the method cdl would be replacead byasingleline
that accesses a data field, thereby saving time. If f isnot dedared f i nal , then

this is imposshble, since obj could be referencing a derived class object, for

ﬁ%

é BOOK.mkr Page 159 Wednesday, March 14 2001 1:26 PM é

What Is Inheritance? m

which the definition of f could be different.? Static methods have no controlli ng
object and thus are resolved at compile time using static binding.
Similar to the final methodisthefinal class. A fina classcannot be extended. A final classmay not

Asaresult, al of its methods are astomaticaly final methods. As an example, the ~ © &xfended. Aleaf

classis a final closs.
St ri ng classisafina class Noticethat the fact that a dasshas only final meth-
ods does not imply that it is a final class Fina classes are dso known as |eaf
classes because in the inheritance hierarchy, which resembles atree, final classes
are & thefringes, like leaves.
In the Per son class the trivial accessors and mutators (those starting with

get and set) are good candidates for final methods, and they are declared as

such in the online code.

2 Inthe precaling two paragraphs, we says that static binding and inli ne optimizations “could be” done because

although compil e-time dedsions would appea to make sense, Sedion 8.4.3.3 of the language spedfication
makes clea that inline optimizations for trivial final methods can be done, but this optimization must be done
by the virtual machine & runtime, rather than the compil er at compil e time. This ensures that dependent classes

do not get out of sync & aresult of the optimization.

ﬁ%

é BOOK.mkr Page 160 Wednesday, March 14 2001 1:26 PM

m Inheritance

The derived class
method must have
the same return
type and signature
and may not add
exceptions to the

throws list.

Partial overriding
involves calling a
base class method

by using super.

4.1.8 Overriding a Method

Methods in the base dassare overridden in the derived classby simply providing
a derived classmethod with the same signature. The derived classmethod must
have the same return type and may not add exceptions to the throws list. The
derived classmay nat reduce visibility, as that would violate the spirit of an IS-A
relationship. Thus you may not override a public methodwith a padkage visible
method.

Sometimes the derived classmethod wants to invoke the base dassmethod.
Typicdly, this is known as partial overriding. That is, we want to dowhat the
base dassdoes, plus alittle more, rather than doing something entirely different.
Cdlls to a base dassmethod can be acomplished by using super. Here is an

example:

3.

If adifferent signatureis used, you smply have overloaded the method, and now there ae two methods with

different signatures avail able for the compil er to choose from.

ﬁ%

é BOOK.mkr Page 161 Wednesday, March 14 2001 1:26 PM

What Is Inheritance? m

1 classStudente xtendsP erson
2 {
3 publicStudent(Stringn,i nta g,Stringad,Stringp,
4 doubl eg)
5 {s uper(n ,a g,adp) ;g pa=g ;}
6
7 publicStringt oString()
8 {r eturnsuper.toString()+g etGPA() ;}
9
10 publicd oubl e g et GPA()
11 {r eturng pa;}
12
13 privated oubl e g pa;
14 }
15
16 cl assE npl oyee e xtends P erson
17 {
18 publicE npl oyee(S tringn,i nta g,S tringad,
19 Stringp,d oubles)
20 {s uper(n ,a g,a d,p) ;s alary=s ;}
21
22 publicStringt oString()
23 {r eturnsuper.toString()+""+g etSalary() ;}
24
25 publicd oublegetSalary()
» 26 {r eturns alary;} -
27
28 publicv oidr ai se(d oublep ercentRaise)
29 {s alary* =(1+p ercentRaise) ;}
30
31 privated oubles al ary;
32 }

Figure 4.8 The complete Student and Employee classes, using both
forms of super

public cl assWorkahol i ce xtends Wor ker

{
publicv oidd oWwork()
{
super. dowor k() /1 Workl ike aWorker
drinkCoffee() ; /| Takeab reak
super. doWr k() ; /1 Wrkl ike aWorkers ome nore
}
}

é BOOK.mkr Page 162 Wednesday, March 14 2001 1:26 PM

Inheritance

?

A more typical example is the overriding of standard methods, such as

toString. Figure 4.8 illustrates this use in the St udent and Enpl oyee

classs.
1 classP ersonDenp
2 {
3 publics taticvoidprintAll (P erson[]Ja rr)
4 {
5 for(i nti=0 ;i<a rr.length;i ++)
6 {
7 if(arr[i]! =null)
8
9 Systemout.print(" ["+i+" 1"y
10 Systemout.printin(a rr[i] .toString())
11 }
12 }
13 }
14
15 publics taticvoidmain(String[]a rgs)
16 {
r 17 Person[]p=n ew Person[4] 2
18
19 p[0]=n ewPerson(" joe",2 5," NewYork",
20 " 212-555-1212") ;
21 p[1]=n ew Student(" becky",2 7," Chicago",
22 "312-555-1212",4 .0) ;
23 p[3]=n ewEnpl oyee(" bob",2 9," Boston",
24 " 617-555-1212",1 00000.0) ;
25
26 printAll(p)
27 }
28 }
Figure 4.9 lllustration of polymorphism with arrays

4.1.9 Type Compatability Revisited
Figure 4.9 il lustrates the typicd use of polymorphism with arrays. At line 17, we
crede an array of four Per son references, which will be initialized to nul | .

The values of these references can be set at lines 19 to 24, and we know that all

ﬁ%

é BOOK.mkr Page 163 Wednesday, March 14 2001 1:26 PM é

What Is Inheritance?

1

>

the asdgnments arelegal because of the aility of a base type reference to refer to
objects of aderived type.

The printAll routine simply steps through the aray and calls the
t oSt ri ng method, using dynamic binding. The test at line 7 is important
because, as we have seen, some of the aray references could benul | .

In the example, suppose that prior to completing the printing, we want to give
p[3] —which we know is an employee—araise?Sincep[3] isan Enpl oyee,

it might seem that

p[3].raise(0 .04) ;
would be legal. But it is not. The problem is that the static type of p[3] isa
Per son, andr ai se isnot defined for Per son. At compiletime, only (visible)
members of the static type of the reference can appear to the right of the dot oper-
ator.

We can change the static type by usinga cast:

((Empl oyee)p [3]).rais e(0 .04) ;
makes the static type of the reference to the left of the dot operator an A downcastis a

Employee. If thisisimpassible (for instancep[3] isin a completely different Cost down fhein-

. heritance hierar-
hierarchy), the compiler will complain. If it is passhble for the cast to make sense,
chy. Casts are al-

. : : : o poi
the program will compile, and so the above acde will successully give ad4% raise ways verified at
top[3] . Thisconstruct, in which we thange the static type of an expressonfrom runtime by the vir-

abase dass to a class farther down in the inheritance hierarchy is known asa uemachine.

downcast.

ﬁ%

é BOOK.mkr Page 164 Wednesday, March 14 2001 1:26 PM

\

Inheritance

What if p[3] was not an Enpl oyee? For instance, what if we used the fol-

lowing?

((Enmpl oyee)p [1]). raise(0 .04) ;/ [/ p[1l]i s aStudent

In that case the program would compil e, but the virtual machine would throw
a Cla ssCast Except i on, which is a runtime exception that signals a pro-
gramming error. Cast are always double-checked at runtime to ensure that the
programmer (or a malicious hadker) is not trying to subvert Java's grong typing

system. The safe way of doing these types of callsisto usei nst anceof first:

if(p [3]in stanceof Em pl oyee)
((Enplo yee)p [3]). raise(0 .04);

4.2 Designing Hierarchies

Suppose we have aCi r ¢l e class andfor any non-null Circl e c, c. area()
returns the area of Circle c. Additionally, suppose we have aRectangl e
class, and for any non-null Rect angl e r, r. area() returnsthe aeaof
Rectan gle r. Possibly we have other classes such asEllip se, Trian gle ,
and Squar e, al with ar ea methods. Suppcse we have an array that contains
references to these objeds and we want to compute the total areaof all the
objeds. Since they al have an ar ea methodfor all classes, polymorphism isan

attracive option, yielding code such as:

>

é BOOK.mkr Page 165 Wednesday, March 14 2001 1:26 PM é

Designing Hierarchies 165

publics tatic total Area(What Type []a rr)

{
doublet otal=0 .O;
for(i nti =0;i<ar r.length; i++)
if(ar[i]! =null)
total+ =arr[i] .area();
returnt otal;
}

For this code to work, we need to dedde the type dedaration for What Type.
None of Ci rcl e, Rect angl e, etc. will work, sincethereis no IS-A relation-
ship. Thus we need to define atype, say Shape, suchthat Ci r cl e IS-A Shape,
Rect angl e IS-A Shape, etc. A posshle hierarchy isillustrated in Figure 4.10.
Additionally, in order for arr[i].area() to make sense, area must be a
method available for Shape.
b This suggests a classfor Shape, as diown in Figure 4.11. Once we have the
Shape class we ca provide others, as siown in Figure 4.12. These dasss also
include aperi meter method. Observe that Squar e reuses code inherited

from Rect angl e.

é BOOK.mkr Page 166 Wednesday, March 14, 2001 1:26 PM

m Inheritance

Redangle

I

Square

Figure 4.10 The hierarchy of shapes used in an inheritance example

1 publicc | ass S hape

2 {

3 publicd oublearea()
14 4 {

5 return- 1,

6 }

7}

Figure 4.11 Possible Shape class

- 4~

>

é BOOK.mkr Page 167 Wednesday, March 14 2001 1:26 PM é

Designing Hierarchies

1 publicclassCirclee xtendsS hape
2 {
3 publicCircle(d oubler ad)
4 {r adius=r ad;}
5
6 publicd oublearea()
7 {r eturnMath.Pl*r adius*r adius;}
8
9 publicd oubleperineter()
10 {r eturn2*M ath.Pl*r adius;}
11
12 publicStringt oString()
13 {r eturn" Circle:"+r adi us; }
14
15 privated oubl er adi us;
16 }
17
18 publicc | assRectangl ee xtends S hape
19 {
20 publicRectangl e(d oublel en,d oublewid)
21 {I ength=1 en;width=w id;}
22
23 publicd oublearea()
24 {r eturnl ength*w idth;}
25
» 26 publicd oublep erinmeter() -
27 {r eturn2*(I ength+w idth) ;}
28
29 publicStringt oString()
30 {r eturn" Rectangle:"+I ength+""+w idth;}
31
32 publicd oubleg etLength()
33 {r eturnl ength;}
34
35 publicd oubleg etWdth()
36 {r eturnwidth;}
37
38 privated oubl el ength;
39 privated oubl ewi dth;
40 }
41
42 publicc lassS quaree xtends R ectangl e
43 {
44 publicSquare(d oubles ide)
45 {s uper(s ide,s ide) ;}
46
47 publicStringt oString()
48 {r eturn" Square:"+g etlLength() ;}
49 }

Figure 412 Circ | e, Recta ngle , and Square classes

ﬁ%

é BOOK.mkr Page 168 Wednesday, March 14 2001 1:26 PM

m Inheritance

1 class S hapeDenp
2 {
3 publics taticd oublet otal Area(S hape[la rr)
4 {
5 doubl et otal=0 ;
6
7 for(i nti=0 ;i<a rr.length;i ++)
8 if(arr[i]! =null)
9 total+ =arr[i] .area() ;
10
11 returnt otal;
12 }
13
14 publics taticvoidprintAl (S hape[]a)
15 {
16 for(i nti=0 ;i<a .length;i ++)
17 Systemout.printlin(a [i]) ;
18 }
19
20 publics taticvoidmain(String[]Ja rgs)
21 {
22 Shape[]a=n ew Shape[]{ newCircle(2 .0) ,
23 newRectangle(l1 .0,3 .0) ,
24 null,n ewSquare(2 .0)}
25
» 26 Systemout.println(" Totala rea="+t otal Area(a)) ; -
27 printAll(a)
28 }
29 }

Figure 4.13 Sample program that uses the shape hierarchy

The mde in Figure 4.12, with classes that extend the simple Shape classin
Figure 4.11 that returns -1 for ar ea, can now be used polymorphicdly, as shown
in Figure 4.13.

Too many A huge benefit of this design is that we can add a new classto the hierarchy

I nstanceof oo~ \ithout disturbing implementations. For instance, suppose we want to add trian-

erators is a sympton))) .)
glesinto the mix. All we need to do ishave Tr i angl e extend Shape, override
of poor object-ori-

ented design. ar ea appropriately, and row Tri angl e objeds can be included in any

Shape[] objed. Observe that thisinvolves:

ﬁ%

é BOOK.mkr Page 169 Wednesday, March 14 2001 1:26 PM é

Designing Hierarchies m

1

* NO CHANGES o the Shape class
« NOCHANGEStotheGi rcl e, Rect angl e, or Squar e classs

« NO CHANGEStothet ot al Ar ea method

making it difficult to break existing code in the process of adding new code.
Notice also the lack of any i nst anceof tests, which istypica of good poly-

morphic code.

4.2.1 Abstract Methods and Classes
Althoughthe ade in the previous example works, improvements are passible in
the Shape class written in Figure 4.11. Notice that the Shape class itself, and
b the are a method in particular are placeholders: the Shape’s ar ea method is b

never intended to be called diredly. It is there so that the compiler and runtime
system can conspire to use dynamic binding and call an appropriate ar ea
method. In fact, examining mai n, we see that Shape objeds themselves are not
suppaosed to be created either. The dassexists smply as a common superclassfor
the others.*

The programmer has attempted to signdl that cdling Shape’sareaisan error
by returning -1, which is an obvously impossble aea But this is a value that
might be ignored. Furthermore, this is a value that will be returned if when

extending Shape, ar ea is not overridden. This failure to override muld occur

4 Dedaring aprivate Shape constructor DOES NOT solve the second problem: the nstructor is needed by the

subclasses.

- 4~

é BOOK.mkr Page 170 Wednesday, March 14 2001 1:26 PM

Abstract methods
and classes repre-

sent placeholders.

An abstract
method has no
meaningful defini-
tion and is thus al-
ways defined in the

derived class.

because of atyping error: an Are a function iswritten instead of ar ea, makingit
difficult to track down the eror at runtime.

A better solution for area is to throw a runtime exception
(Unsupport edOper ati onExcepti on isagood ore) in the Shape class
Thisis preferable to returning -1 because the exception will not be ignored.

However, even that solution resolves the problem at runtime. It would be bet-
ter to have syntax that explicitly states that ar ea is a placehoder and daes not
need any implementation at all, and that further, Shape isaplacéolder class and
canna be wnstructed, even though it may declare @nstructors, and will have a
default constructor if none are dedared. If this g/ntax were avail able, then the
compiler could, at compile-time, declare as illegal any attempts to construct a
Shape instance It could also dedare asillegal any classes, such as Tri angl e,
for which there ae atempts to construct instances, even though ar ea has not
been overridden. This exadly describes abstract methods and abstrad classs.

An abstract method is a method that dedares functionality that al derived
class objeds must eventually implement. In ather words, it says what these
objects can da However, it does not provide adefault implementation. Instead,
each object must provide its own implementation.

A classthat has at least one dstrad methodis an abstract class. Javarequires
that all abstrad classes be dedared as sich. When a derived classfail sto override
an abstrad method with an implementation, the method remains abstrad in the

derived class Asaresult, if a dassthat is not intended to be astrad failsto over-

ﬁ%

é BOOK.mkr Page 171 Wednesday, March 14 2001 1:26 PM é

Designing Hierarchies

?

ride an abstract method, the compiler will deted the inconsistency and report an
error.

An example of how we can make Shape abstrad is $own in Figure 4.14.
No changes are required to any of the other code in Figures 4.12 and 4.13.
Observe that an abstract class can have methods that are not abstrad, as is the

casewith seni peri neter.

publica bstractc | assS hape
{

publica bstractd oublearea() ;
publica bstractd oubleperinmeter() ;

publicd oubl es em perineter()
{r eturnperimeter()/2 i}

ONOOEAR WN—

—

Figure 4.14 An abstract Shape class, Figures 4.12 and 4.13 are unchanged

An abstrad classcan also dedare both static and instancefields. Like nonab-
strad classs, these fields would typicdly be private, and the instance fields
would be initialized by constructors. Although abstrad classes cannot be aeaed,
these @nstructors will be cdled when the derived classs use super. In amore
extensive example, the Shape classcould include the coordinates of the objed’s
extremities, which would be set by constructors, and it could provide implementa-
tion d methods, such asposi t i onCOf , that areindependent of the actual type of

object; posi ti onOf would be afinal method.

é BOOK.mkr Page 172 Wednesday, March 14 2001 1:26 PM é

Inheritance

A class with at least As mentioned ealier, the existence of at least one abstrad method makes the

one absfract base dassabstract and disallows creaion of it. Thus a Shape objed cannot itself

method must be an)))
be created; only the derived oljeds can. However, as usual, aShape variable can
abstract class.

reference any concrete derived objed, suchasaCir cl e or Rect angl e. Thus

Shape a , b;
a=n ewCir cle(3 .0); /L egal
b=n ewShape(" circle") ; [/l llegal

Before continuing, let us simmarizethe four types of classmethodks:

1. Final methods. The virtual machine may choose & runtime to per-
form inline optimization, thus avoiding dyramic binding. We use a
final method orly when the method isinvariant over the inheri-
tance hierarchy (that is, when the method is never redefined).

2. Abstract methods. Overriding is resolved at runtime. The base
classprovides no implementation and is abstract. The absence of a
default requires either that the derived classes provide an imple-
mentation or that the classes themselves be astract.

3. Satic methods. Overridding is resolved at compil e time becaise
thereis no controlling objed.

4. Other methods. Overridingisresolved at run time. The base dass
provides a default implementation that may be either overridden
by the derived classes or accepted unchanged by the derived
classs.

é BOOK.mkr Page 173 Wednesday, March 14 2001 1:26 PM é

Multiple Inheritance 173

1

4.3 Multiple Inheritance
All the inheritance examples sen so far derived one dassfrom asingle base Muitiple inherit-

class In multiple inheritance, a dassmay be derived from more than one base ~ @"c@ s usedfo de-

) rive a class from
class. For instance, we may have aStudent classand an Enployee class A
several base

St udent Enpl oyee could then be derived from both classes.
classes. Java does

Although multiple inheritance sounds attractive, and some languages (includ- not allow multiple
ing C++) support it, it is wrought with subtleties that make design difficult. For nherfance.
instance, the two base dasses may contain two methods that have the same signa-
ture but different implementations. Alternately, they may have two identically
named fields. Which one shoud be used?

For example, suppose that in the previous St udent Enpl oyee example
Per son is a dasswith data field nane and method t oSt r i ng. Suppose, too,
that St udent extends Per son andoverridest oSt r i ng to include the yea of

graduation. Further, suppose that Enpl oy ee extends Per son but does not over-

ridet oSt ri ng; instead, it declaresthat itisf i nal .

1. SinceSt udent Enpl oyee inherits the data members from both
St udent and Enpl oyee, do we get two copies of nane?

2. If St udent Enpl oyee doesnat overrideto Stri ng, which
t oSt ri ng method should be used?

When many classes are involved, the problems are even larger. It appeas
however, that the typicd multiple inheritance problems can be traced to conflict-
ing implementations or conflicting cbta fields. As a result, Java does not all ow

multiple inheritance Instead, it provides an aternative known as the interface.

- 4~

é BOOK.mkr Page 174 Wednesday, March 14 2001 1:26 PM

Inheritance

The inferface is an
abstract class that
contains no imple-

mentation details.

4.4 The Interface
The interface in Java is the ultimate abstract class. It consists of public abstract
methods and public static final fields, only.

A classis sid to implement the interface if it provides definitions for all of
the astrad methods in the interface A class that implements the interface

behaves as if it had extended an abstract class pedfied by the interface

packagej ava.l ang;

1
2
3 publici nterface Conparable

4 {

5 intc onpareTo(O bjecto ther) ;
6}

Figure 415 Compmrable interface

In principle, the main difference between an interface and an abstrad classis
that athough both provide aspecificaion o what the subclasses must do, the
interfaceis not allowed to provide aty implementation details either in the form
of datafields or implemented methods. The practicd effed of thisisthat multiple
interfaces do na suffer the same potential problems as multiple inheritance
because we cainot have @nflicting implementations. Thus, while a ¢ass may

extend only one other class it may implement more than one interface

4.4.1 Specifying an Interface
Syntactically, virtually nothing is easier than specifying an interface. The inter-

facelooks like a ¢assdeclaration, except that it uses the keyword i nte r fa ce.

ﬁ%

é BOOK.mkr Page 175 Wednesday, March 14 2001 1:26 PM é

The Interface 175

It consists of alisting of the methods that must be implemented. An exampleis
the Conpar abl e interface, shown in Figure 4.15, which is part of the standard
j ava. | ang padage, starting with Java 1.2.

The Conpar abl e interface spedfies one method that every subclass must
implement: conpar eTo, which behaves like the String conpareTo
method. Infad, St ri ng implements precisely thisinterface Note that we do nd
have to spedfy that these methods are publ i ¢ and abstract . Since these

modifiers are required for interface methods, they can and should be omitted.

4.4.2 Implementing an Interface

A classimplements an interface by The i npl ement s

clause is used to de-
1. declaring that it implements the interface and

L . : lare that a cl
2. defining implementations for all the interfacemethods. clare inataeloss

. . . . implements an in-
An example is down in Figure 4.16. Here, we finalize the Shape class

terface. The class
which we used in Sedion 42.

must implement
Line 1 shows that when implementing an interface we use i npl ements gl interface meth-
instead of ext ends. Shape is abstrad becaise it has abstradt methods; if it did ~©ds or it remains
. . abstract.
not, it would not need to be declared abstrad. We can provide any methods that
we want, but we must provide at least those listed in the interface Theinterfaceis
implemented at lines 6 to 17. Notice that we must implement the exact method

specified in the interface Thus these methods take Cbj ect as a parameter,

instead of Shape or Conpar abl e.

?

é BOOK.mkr Page 176 Wednesday, March 14 2001 1:26 PM

Inheritance

A classthat implements an interface @n be extended if it is not final. The
extended classautomaticdly implements the interface Thus, G r cl e automati-
cally implements Conrpar abl e, and it has inherited the conpar eTo method
from Shape.

A classthat implements an interface may still extend one other class The

ext ends clause must precede thei npl enent s clause.

1 publica bstractc |assS hapei npl enments C onparabl e
2 {

3 publica bstractd oublearea() ;

4 publica bstractd oublep erinmeter()
5

6 publici ntc onpareTo(O bjectr hs)
7 {

8 Shapeo ther=(Shape)r hs;

9 doublediff=a rea()-o ther.area() ;
10

11 if(diff==0)

12 returnoO;

13 elsei f(d iff<0)

14 return- 1;

15 el se

16 returnl;

17 }

18

19 publicd oubl es em perineter()

20 {r eturnperinmeter()/2 i}

21 }

Figure 4.16 The Shape class (final version), which implements the
Comprable interface

4.4.3 Multiple Interfaces
Aswe mentioned ealier, a class may implement multiple interfaces. The syntax

for doingsois smple. A classimplements multiple interfaces by

ﬁ%

>

é BOOK.mkr Page 177 Wednesday, March 14 2001 1:26 PM

The Interface

1. listingtheinterfaces (comma separated) that it implements, and
2. defining implementationsfor all of the interface methock.

The interface is the ultimate in abstrad classes and represents an elegant

solution to the multiple inheritance problem.

4.4.4 Interfaces are Abstract Classes
Because an interfaceis an abstract class all the rules of inheritance gply. Specif-

icdly:

1. ThelS-A relationship holds. If classC implementsinterfacel,
then C IS-A | andistype-compatable with |. If a dassC imple-
mentsinterfaces |4, 15, and 13, then CIS-A I, CISA |, andCIS
A |3, and istype compatable with 14, |, and 1 3.

2. Thei nst anceof operator can be used to determine if arefer-
enceistype-compatable with an interface

3. When aclassimplements an interfacemethod, it may nat reduce
visibility. Sinceal interfacemethods are public, al implementa-
tions must be pullic.

4. When aclassimplements an interfacemethod, it may nat add
chedked exceptions to the throws list. If a dassimplements multi-
ple interfaces in which the same method occurs with different
throws list, the throws list of the implementation may list only
chedked exceptions that are in the intersection o the throws lists
of the interface methods.

5. When aclassimplements an interfacemethod, it must implement
the exact signature (not including throws list); otherwise, it inher-
its an abstrad version of the interface method, and has provided a
non-abstrad overloaded, but different method.

6. A classmay not implement two interfaces that contain a method
with the same signature and dfferent return types, sinceit would
be impossble to provide both methods in one dass

7. If a dassfailstoimplement any methodsin an interface it must be
declared abstrad.

8. Interfaces can extend aher interfaces (including multiple inter-
faces).

ﬁ%

177

4

é BOOK.mkr Page 178 Wednesday, March 14 2001 1:26 PM

\

Inheritance

4.5 Fundamental Inheritance in Java
Two important places where inheritanceis used in Java aethe Obj ect classand

the hierarchy of exceptions.

45.1 The (bj ect Class

Java spedfies that if a class does not extend another class then it implicitly
extends the dass Obj ect (defined injav a.lan Q). Asaresult, every classis
either adirect or indirect subclassof Obj ect .

The Cbj ect classcontains ®veral methods, and sinceit is not abstrad, all
have implementations. The most commonly-used method ist oSt ri ng, which
we have dready seen. If t 0St r i ng isnat written for a dass an implementation
is provided that concatenates the name of the class an @, and the class “hash-
Code".

Other important methods are equal s and the hash Code, which we will
discuss in more detail in Chapter 6, and a set of somewhat tricky methods that

advanced Java programmers need to know abott.

>

é BOOK.mkr Page 179 Wednesday, March 14 2001 1:26 PM

Error

Qut O Maror yEr r or
I nternal Error
UnknownEr r or

Fundamental Inheritance in Java

Throwable

Exception

java.io. | CException
RuntimeExce ption

java.io. Fi | eNot FoundException

Nul | Poi nt er Excepti on

Arrayln dexQut O BoundsExcepti on

Arithme i cExceptio n

Unsuppor t edOper ati onExcepti on

NoSuchMet hodExcept i on

I nval id Argurment Excepti on

java. util.NoSuchEl ement Exceptio n

java. util.Concurrentnodificatio nException
java. util . EnmptySta ckExcepti on

Cl assCast Excepti on

Figure 4.17 The hierarchy of exceptions (partial list)

4.5.2 The Hierarchy of Exceptions

Asdescribed in Sedion 2.5, there are several types of exceptions. The root of the

hierarchy, a portion of which is shown in Figure 4.17, is Throwable , which

defines defines a set of pri ntSt ackTr ace methods, providesat oStrin g

implementation, a pair of constructors, and little else. The hierarchy is 9lit off

into Er r or, Runt i neExcept i on, and chedked exceptions. A cheded excep-

ﬁ%

—

1

é BOOK.mkr Page 180 Wednesday, March 14 2001 1:26 PM

Inheritance

tionisany Exceptio n that isnat aRunt imeExcept io n. For the most part,
each new classextends ancther exception class providing only a pair of construc-
tors. It is possible to provide more, but nore of the standard exceptions bother to
doso. Inweis s.u til,weimplement threeof the standard j ava. uti |

exceptions. One such implementation, which shows that new exception classes

typicdly provide little more than constructors, is $own in Figure 4.18.

packagewei ss. util;

1

2

3 publicc | ass NoSuchEl enent Excepti one xtends R unti neExcepti on
4 {

5 /**

6 *C onstructsaN oSuchEl emrent Exceptionwith

7 *n od etailm essage.

8

*/
9 publ i ¢ N oSuchEl ement Excepti on()
10 {
1 }
12
13 /*
14 *C onstructsaN oSuchEl emrent Exceptionwith
15 *ad etailm essage.
16 *@ parammsgt hed etailm esage.
17 */
18 publi c N oSuchEl ement Exception(S tringmsg)
19 {
20 super(msg) ;
21 }
22 }

Figure 418 NoSuchElementExcept i on,implemented in
weis s.util
4.5.3 1/0: The Decorator Pattern
I/0in Javalooks fairly complex to use but works nicely for doing 1/0 with dffer-
ent sources, such as the terminal, files, and Internet sockets. Because it is

designed to be extensible, there are lots of classes — over 50 in al. It is cumber-

ﬁ%

>

é BOOK.mkr Page 181 Wednesday, March 14 2001 1:26 PM

Fundamental Inheritance in Java

some to use for trivial tasks; for instance reading a number from the terminal
requires substantial work.

Input is done through the use of stream classes. Because Java was designed
for Internet programming, most of the 1/O centers around byte-oriented reading
and writing.

Byte-oriented /O is done with stream classes that extend | nput St r eamor
Qut put Stream | nput St ream and Qut put St ream are dstrad classes
and na interfaces, so there is no such thing as a stream open for both input and
output. These classes declare an abstract r ead and wr i t e method for single-
byte /O, respedively and also a small set of concrete methods auch as cl ose
and block 1/0 (which can be implemented in terms of cdls to single-byte 1/O).
Examples of these classes include FilelnputStream and
Fi | eCut put St ream as well as the hidden Socket | nput St r eam and
Socket Qut put St r eam (The socket streams are produced by methods that
return an oljed statically typed as| nput St r eamor CQut put Str ean).

Charader-oriented 1/0 is done with classes that extend the éstrad classes InputStreamReade

Reader and Wit er. Thesealso containr ead andwr i t e methods. There ae " 9@

] OutputStreamWrit
not as many Reader and Witer clases as | nputStream and
er classes are

Qut put St ream bridges that allows

However, thisis not a problem, because of the | nput St r eanReader and the programmer to

cross over from the

Qut put StreanWW it er clases. These ae cdled bridges because they cross

. . . Stream to Reader
over from the St r eamto Reader hierarchies. An | nput St r eanReader is
hierarchies.

ﬁ%

é BOOK.mkr Page 182 Wednesday, March 14 2001 1:26 PM

Inheritance

constructed with any | nput St r eam and credes an objed that IS A Reader.

For instance, we can creae aReader for files using:

InputStreamfis=n ew FilelnputStreanm(" foo.txt") ;
Readerf in =newl nput StreanReader(f is) ;

It happens that there is a Fi | eReader convenience class that does this
areay; Figure 4.19 provides a plausible implementation.

From a Reader , we an dolimited I/O; the r ead method returns one char-
acter. If we want to read ore line instead, we need a dass cdled
Buf f er edReader . Like other Reader objects, aBuf f er edReader iscon
structed from any other Reader , but it provides both buffering and ar eadLi ne

method. Thus, continuing the previous example,

Buf f eredReaderb in= newBufferedReader(f in);

Wrapping an | nput St reaminside an | nput St r eanReader inside a
Buf f er edReader works for any | nput St r eam including System i n or
sockets. Figure 4.20, which duplicates Figure 2.15, illustrates the use of this pat-
tern to read two numbers from the standard inpLt.

The wrapping idea is an example of a ommonly-used Java design pettern,

that we will see gain in Section 46.2.

é BOOK.mkr Page 183 Wednesday, March 14, 2001 1:26 PM é

Fundamental Inheritance in Java

1 classF il eReadere xtends!| nput StreanReader

2 {

3 publicFileReader(S tringn anme)

4 throws F i | eNot FoundExcepti on
5 {s uper(n ewFilelnputStream(n ame)) ;}

6

}

Figure 4.19 File Reader convenience class

- 4~ 4

é BOOK.mkr Page 184 Wednesday, March 14 2001 1:26 PM

m Inheritance

1 inportj ava.io.lnputStreanReader;
2 inportj ava.io.BufferedReader;
3 inportj ava.io.|OException;

4
5 inportj ava.util.StringTokenizer;
6
7 publicc | ass MaxTest
8 {
9 publics taticvoidmain(Stringargs[])
10 {
11 Buf f eredReaderi n=n ewBufferedReader(n ew
12 | nput StreanReader (S ystemin)) ;
13
14 Stringo neli ne;
15 StringTokeni zers tr;
16 intx ;
17 inty ;
18
19 Systemout.println(" Enter2i ntsononel ine:") ;
20 try
21 {
22 oneLine=i n.readLine() ;
23 if(o neLine==null)
24 return;
25
» 26 str=n ewStringTokeni zer(o neLine) ; -
27 if(s tr.countTokens()! =2)
28 {
29 Systemout.println(" Error:n eedt woi nts") ;
30 return;
31 }
32 x=1 nteger.parselnt(s tr.nextToken()) ;
33 y=1 nteger.parselnt(s tr.nextToken()) ;
34 Systemout.printin(" Max:"+M ath.max(x ,y)) ;
35 }
36 catch(l OExceptione)
37 {S ystemerr.println(" Unexpectedl Oerror") ;}
38 cat ch(N unmber For mat Exceptione)
39 {S ystemerr.printIn(" Error:n eedt woi nts") ;}
40
41 }
42 }

Figure 4.20 Program that demonstrates the wrapping of streams and readers

Similar to the Buf f er Reader isthe Pri nt Wit er, which allows us to

doprint! n operations.

ﬁ%

é BOOK.mkr Page 185 Wednesday, March 14 2001 1:26 PM é

Fundamental Inheritance in Java 185

The CQut put Stream hierarchy includes severa wrappers, such as
Dat aCut put St ream Obj ect Qut put Stream and GZI PQut put -
Stream

Dat aCut put St r eamallows us to write primitives in binary form (rather
than human-readable text form); for instance a @l towr i t el nt writes the four
bytes that represent a 32-bit integer. Writing data the way avoids conversions to
text form, resulting in time ad (sometimes) space savings.
Ohj ect Qut put St reamallows us to write an entire objed including all its
componrents, its component’s components, €tc., to astream. The objed and al its
comporents must implement the Ser i al i zabl e interface. There ae no meth-
ods in the interface one must simply dedare that a dassis riaizeble.® The
&ZI PQut put St r eamwraps an Cut put St r eam and compresss the writes
prior to sending it to the Qutput Stream In addition, there is a
Buf f er edQut put St r eamclass Similar wrappers are found onthe | nput -
St r eamside. As an example, suppose we have an array of serializable Per son

objects. We can write the objeds, as a unit, compressd as follows:

5 Thereason for thisis that seriali zation, by default, isinseaure. When an oljed iswritten out in an
oj ect Ou put St r eam the format is well-known, so its private members can be read by a mali cious user.
Simil arly, when an objed is read bad in, the data on the input stream is not chedked for correctness soit is
possibleto read a arrupt objed. There are advanced techniques that can be used to ensure seaurity and integriy
when seridli zation is used, but that is beyond the scope of thistext. The designers of the serialization library felt
that serialization should not be the default becaise crred use requires knowledge of these isaues, and so they

placed a small roadblock in the way.

ﬁ%

é BOOK.mkr Page 186 Wednesday, March 14 2001 1:26 PM

m Inheritance

The idea of nesting
wrappersin order to
add functionality is
known as the deco-

rator pattern.

Generic program-
ming allows us to
implement type-

independent logic.

Person []p=g etPersons() ; /Ip opulate thearray

Fil eQutp ut Streamfo ut=n ewFi | eQut put Strean{"peopl e.g zi p");
Buf f er edCut put St ream bout=ne w BufferedQut put Stream fout);
&I PQutp ut Streamgout=n ew GZI PQut put Stream b out) ;

hj ect Out put Stream oout=n ew Obj ect Qut putStrean(g out) ;
oout.wi teCbject(p) ;

oout.clo se() ;

Later on, we muld read everything badk:

FilelnputStreamfin=n ewkFilelnputStreanm "people.gzip") ;
Buf f eredl nput Streambin=n ew Bufferedl nput Strean(f in) ;
&ZI Pl nput Streamgin=n ew GZIP I nput Streanm(bin) ;
QojectInputStreamoin=n ewObjectlnputStream(g in) ;
Person []p=(Person[])o in.r eadObject();

oin.close() ;

The online code expands this example by having each Per son store a name, a
birthdate, and the two Per son objeds that represent the parents.

The idea of nesting wrappers in order to add functionality is known as the
decorator pattern. By doing this, we have numerous small classes that are om-
bined to provide a powerful interface Without this pattern, each dfferent 1/0
source would have to have functionality for compresson, serializaion, charader,
and byte /O, etc. With the pattern ead source is only responsible for minimal

basic I/0, and then the extrafeatures are alded on by the decorators.

4.6 Implementing Generic Components

Recdl that an important goal of objed-oriented programming is the support of
code reuse. An important mechanism that supports this goal isthe generic mecha-
nism: If the implementation isidentica except for the basic type of the objed, a

generic implementation can be used to describe the basic functionality. For

ﬁ%

é BOOK.mkr Page 187 Wednesday, March 14 2001 1:26 PM é

Implementing Generic Components

instance, a method can be written to sort an array of items; the logic is indepen-
dent of the types of objeds being sorted, so a generic method could be used.
Unlike many of the newer languages (such as C++, which uses templates to In Java, genericity is

implement generic programming), Java does not suppart generic implementations ©P@ined by using

inheritance.
diredly. This is because generic programming can be implemented using the
basic concepts of inheritance. This ®dion describes how generic methods and
classes can be implemented in Java using the basic principles of inheritance.®
1 //MenoryCellc |ass
2 // Objectr ead() --> Returnst hes toredv al ue
3 // voidwrite(O bjectx)- -> Xxi sstored
4
5 publicc lassMenoryCell
6 {
, 7 //P ublicmethods -
8 publicObjectr ead() {r eturns toredVal ue;}
9 publicv oidwrite(O bjectx){s toredvVal ue=x ;}
10
11 /P rivatei nternald atar epresentation
12 private Objects toredVal ue;
13 }

Figure 4.21 Generic MaroryCell class

6 Dired support for generic methods and classesis under strong consideration as a possible language aldition.

Currently, the goproach described in this dion isthe one most widely used.

ﬁ%

é BOOK.mkr Page 188 Wednesday, March 14, 2001 1:26 PM

Inheritance

1 publicc lassT estMenoryCell

2 {

3 publics taticvoidmain(String[]a rgs)
4 {

5 MermoryCel Im=n ew MenoryCel | () ;

6

7 mwite(n ewString(" 37"))

8 Stringval=(String)m.read() ;

9 Systemout.println(" Contentsare:"+v al) ;
10 }

1}

Figure 4.22 Using the generic MemoryCell class

- 4~

é BOOK.mkr Page 189 Wednesday, March 14 2001 1:26 PM é

Implementing Generic Components m

'I /**
2 *T heSinpleArrayListi nplementsag rowablearrayo fO bject.
3 *| nsertionsarealwaysdoneatt hee nd.

4 */
5 publicc lassSinpleArraylLi st
6 {
7 /**
8 *R eturnst henunbero fi temsi nt hisc ollection.
9 *@ returnt henunbero fi temsi nt hisc ollection.
10 *
11 publici nts ize()
12 {
13 returnt heSize;
14 }
15
16 [**
17 *R eturnst hei tematp ositioni dx.
18 *@ parami dxt hei ndext os earchi n.
19 *@ throws Arrayl ndexQut Of BoundsExceptioni fi ndexi sb ad.
20 *
21 publicObjectg et(i nti dx)
22 {
23 if(i dx<O| |i dx>=size())
24 thrownew Arrayl ndexOut Of BoundsException() ;
25 returnt heltems[i dx] ;
3 26 } 5
27
28 [**
29 *A ddsani temtot hiscollection,a tt hee nd.
30 *@ paramxa nyo bject.
31 *@returnt rue(asperj ava.util.ArrayList).
32 *
33 publicb ool eana dd(O bjectx)
34 {
35 if(t heltems.length==size())
36
37 bj ect[]o Id=t heltens;
38 theltems=n ewObject[t heltems.length*2+1] ;
39 for(i nti=0 ;i<s ize() ;i ++)
40 theltens[i]=0 Idfi]
41 }
42
43 theltens[t heSize++]=x ;
44 returnt rue;
45 }
46
47 privatestaticf inali ntl N T_CAPACITY=1 0;
48
49 privatei nt theSize=0 ;
50 privateObject[]t heltems=n ewObject[l] N T_CAPACI TY] ;
51 }

Figure 4.23 Simplified Ar rayList , with add, get , and size

ﬁ%

é BOOK.mkr Page 190 Wednesday, March 14 2001 1:26 PM

\

Inheritance

4.6.1 Using Qbj ect for Genericity
Thebasic ideain Javaisthat we can implement ageneric classby usingan appro-
priate superclass such as Obj ect .

Consider thel nt Cel | class $iown in Figure 3.2. Recdl that the | nt Cel |
supportsther ead andwr i t e methods. We can, in principle, make thisageneric
MenoryCel | classthat stores any type of Obj ect by repladng instances of
i nt with Obj ect . Theresulting Menor yCel | classis siownin Figure 4.21.

There ae two details that must be considered when we use this grategy. The
first isillustrated in Figure 4.22, which depicts a mai n that writesa" 37" to a
MenoryCel | objed and then reads from the Menor yCel | objed. To aaccessa
specific method o the objed we must downceast to the corred type. (Of coursein
this example, we do nd neeal the downcast, since we ae simply invoking the
t oSt ri ng method at line 9, and this can be done for any objed.

A second important detail is that primitive types cannot be used. Only refer-
encetypes are mmpatable with Obj ect . A standard workaroundto this problem
is discussed momentarily.

MenoryCel | isafairly small example. To see alarger example that is typi-
cal of generic code reuse, Figure 4.23 shows a simplified generic Ar r ayLi st

class the online ade fillsin some alditiona methods.

>

é BOOK.mkr Page 191 Wednesday, March 14 2001 1:26 PM

Implementing Generic Components m

4.6.2 Wrappers for Primitive Types

When we implement algorithms, often we runinto alanguage typing problem: we
have an dbjed of one type, but the language syntax requires an object of a differ-
ent type.

This technique il lustrates the basic theme of awrapper class. Onetypical use
is to store aprimitive type, and add oferations that the primitive type ather does
not support or does not support corredly. A second example was en in the 1/0
system, in which a wrapper stores a reference to an object and forwards requests
to the objed, embelleshing the result somehow (for instance with buffering or
compresson). A similar concept is an adapter class (in fad wrapper and adapter
are often used interchangeably). An adapter classistypicdly used when the inter-
face of a dassisnot exadly what is needed, and provides awrapping effed, while
changing the interface.

In Java, we have already seen that although every referencetype is compati-
ble with Obj ect , the eight primitive types are not. As a result, Java provides a
wrapper classfor ead of the eéght primitive types. For instance, the wrapper for
thei nt typeis| nt eger. Each wrapper objed isimmutable (meaning its date
can never change), stores one primitive value that is %t when the object is con-
structed, and provides a method to retrieve the value. The wrapper classes aso
contain a host of static utility methods.

As an example, Figure 4.24 shows how we can usethe Ar r ayLi st to store

integers.

ﬁ%

A wrapper class
stores an entity (the
wrapee) and adds
operations that the
original type does
not support cor-
rectly. An adapter
class is used when
the interface of a
class is not exactly

what is needed.

4

?

?

é BOOK.mkr Page 192 Wednesday, March 14 2001 1:26 PM

Inheritance

The adapter pat-
ternis used to
change the inter-
face of an existing
class to conform to

another.

1 inportj ava.util.ArraylList;

2

3 cl ass Wrapper Deno

4 {

5 publics taticvoidmain(String[]a rgs)

6 {

7 ArrayLista rr=n ewArrayList() ;

8

9 arr.add(n ewl nteger(4 6)) ;

10 Integerw rapperVal=(Integer)a rr.get(0) ;
11 intv al=w rapperVal.intValue() ;

12 Systemout.println(" PositionO:"+v al)
13 }

14 }

Figure 4.24 lllustration of the Integer wrapper class.

4.6.3 Adapters: Changing an Interface

The adapter patternis used to change the interfaceof an existing classto conform
to another. Sometimesiit is used to provide asimpler interface either with fewer
methods, or easier-to-use methods. Other timesiit is used simply to change some
method names. In either case, the implementation techniqueis smilar.

We have adready seen one example of an adapter: the bridge dasses
I nput St r eanReader and Qut put St r eanmReader that convert byte-ori-
ented streams into charader-oriented streams.

As another example, our Merror yCel | classin Sedion 4.6.1 usesr ead and
wr i t e. But what if we wanted the interface to use get and put instead? There
are two reasonable dternatives. One is to cut and paste acompletely new class
The other is to use mmposition, in which we design a new class that wraps the

behavior of an existing class

ﬁ%

>

é BOOK.mkr Page 193 Wednesday, March 14 2001 1:26 PM é

Implementing Generic Components 193

1 //Ac lassf ors inulatingam enoryc ell.
2 publicc lassStorageCell

3 {

4 publicObjectg et()

5 {r eturnm.read() ;}

6

7 publicv oidp ut (O bjectx)

8 {m.wite(x) ;}

9

10 MermoryCel Im=n ew MenoryCel | () ;
1}

Figure 425 An adapter class that changes the MenoryCell interface to
use get and put .

We use this technique to implement the new class St or ageCel | , in Figure
4.25. Its methods are implemented by calls to the wrapped MenoryCell . It is
tempting to use inheritance instead of compasition, but inheritance suppgements
the interface(i.e. it adds additional methods, but leavesthe originals.) If that isthe

appropriate behavior, then indeed inheritance may be preferable to compasition.

4.6.4 Using Interface Types for Genericity

Using Obj ect as ageneric type works only if the operations that are being per-

formed can be expressed using only methods avail able in the Cbj ect class

é BOOK.mkr Page 194 Wednesday, March 14 2001 1:26 PM

m Inheritance

1 classF i ndMaxDeno

2 {

3 /**

4 *R eturnmaxi temina.

5 *P recondition:a .length>0

6 *

7 publics taticConparablef i ndMax(C onparable[Ja)

8 {

9 intm axl ndex=0 ;

10

11 for(i nti=1 ;i<a .length;i ++)

12 if(a[i] .conpareTo(a [m axlndex])>0)

13 max| ndex=i ;

14

15 returna[m axl ndex] ;

16 }

17

18 [**

19 *T estf indMaxo nShapeandStringo bjects.

20 *

21 publics taticvoidmain(String[]a rgs)

22 {

23 Shape[]s hl={n ewCircle(2.0),

24 newSquare(3.0) ,

25 newRectangle(3 .0,4 .0)} ;
3 26 5

27 String[]s t1={" Joe"," Bob"," Bill"," Zeke"} ;

28

29 Systemout. println(f indMax(s hl)) ;

30 Systemout.printin(f indvMax(s t1)) ;

31 }

32 }

Figure 4.26 Generic fin dMaxroutine, with demo using shapes and strings

Consider, for example, the problem of finding the maximum item in an array
of items. The basic code is type-independent, but it does require the aility to
compare aty two oljeds and dedde which is larger and which is sndler. Thus
we anna simply find the maximum of an array of Obj ect — we need more
information. The simplest idea would be to find the maximum of an array of

Conpar abl e. To determine order, we can use the conpar eTo method that we

ﬁ%

é BOOK.mkr Page 195 Wednesday, March 14 2001 1:26 PM é

Implementing Generic Components 195

know must be available for all Conpar abl es. The cde to do thisis gown in
Figure 4.26.

It is important to mention a few caveas. First, only objects that implement
the Conpar abl e interface can be passd as elements of the Conpar abl e
array. Objeds that have aconpar eTo method but do nd dedare that they
implement Conpar abl e are not Conpar abl e, and do nd have the requisite
IS-A relationship.

Seoond, if the Conpar abl e array were to have two oljeds that are incom-
patible (e.g. aSt ri ng and a Shape), the conrpar eTo method would throw a

Ol assCast Excepti on. Thisisthe expected (indeed, required) behavior.

é BOOK.mkr Page 196 Wednesday, March 14 2001 1:26 PM

m Inheritance

'I /**
2 *S inplifiedversionoft hel ntegerc lassi nj ava.l ang.
3 */
4 publicf inalc lassl ntegeri nplenents C onparable
5 {
6 publicl nteger()
7 {t his(0) ;}
8
9 publicl nteger(i ntx)
10 {v alue=x ;}
11
12 publici nti ntVal ue()
13 {r eturnv alue;}
14
15 publicStringt oString()
16 {r eturn" "+v alue;}
17
18 publici ntc onpareTo(O bjectr hs)
19 {r eturnvalue<((Integer)rhs).value?- 1:
20 value==((Integer)rhs).value?0:1 i}
21
22 publicb ool eane qual s(O bjectr hs)
23 {r eturnr hsi nstanceofl nteger& &
24 value==((Integer)rhs).value;}
25
» 26 privatei ntv al ue; -
27 }

Figure 4.27 Simplified version of the Int eger classin java. | ang. Omits
static methods and a hashCod e method.

Third, as before, primitives cannot be passed as Conpar abl es, but the
wrappers work because they implement the Conpar abl e interface Figure 4.27
illustrates how the | nt eger class could be implemented by the Java library.
This version is misdng the static utility methods and also does not include a
hashCode method that is described in Chapter 6.

Fourth, it is not required that the interface be astandard library interface

Finally, this lution does not always work, beauase it might be imposshble to
declare that a dassimplements a neaded interface For instance, the dass might

bealibrary class while theinterfaceis a user-defined interface And if theclassis

ﬁ%

é BOOK.mkr Page 197 Wednesday, March 14 2001 1:26 PM é

The Functor (Function Objects)

1

>

final, we can't even creade anew class The next sedions offers ancther solution
for this problem, which is the function object. The function objed uses interfaces

also, and is perhaps one of the central themes encountered in the Javalibrary.

4.7 The Functor (Function Objects)
In Sedion 4.6, we saw how interfaces can be used to write generic dgorithms. As
an example, the methodin Figure 4.26 can be used to find the maximum item in
an array.
However, thef i ndMax method has an important limitation. That is, it works
only for objects that implement the Conpar abl e interface and are &le to pro-
b vide conpar eTo asthe basisfor all comparison decisions. There ae many situ-
ations in which this is not feaiblee As an example, consider the

Si mpl eRect angl e classin Figure 4.28.

é BOOK.mkr Page 198 Wednesday, March 14 2001 1:26 PM

m Inheritance

1 //As inmpler ectanglec | ass.
2 publicc lassSinpleRectangle

3 {

4 publicSinpleRectangl e(i ntl ,i ntw)
5 {I ength=I1 ;width=w ;}

6

7 publici ntg etlLength()

8 {r eturnl ength;}

9

10 publici ntg etWdth()

11 {r eturnwidth;}

12

13 publicStringt oString()

14 {r eturn" Rectangle"+g etlLength()+"b y"
15 +getWdth() ;}
16

17 privatei ntl ength;

18 privatei ntw idth;

19 }

Figure 428 Simpl eRectangle class that does not implement the
Compmrable interface

>

3 The Si npl eRect angl e classdoes nat have aconpar eTo function, and
consequently cannot implement the Conpar abl e interface. The main reasonfor
thisisthat because there are many plausible aternatives, it is difficult to deddeon
agoad meaning for compar eTo. We culd base the mmparison onareg perim-
eter, length, width, and so on. Once we write conpar eTo, we ae stuck with it.
What if we want to have f i ndMax work with several different comparison alter-
natives?

The solution to the problem is to passthe comparison function as a second
parameter tof i ndMax, and havef i ndMax use the comparison function instead
of assuming the existence of conpar eTo. Thus f i ndMax will now have two
parameters. an array of Obj ect (which need not have conpar eTo defined),

and a comparison function.

ﬁ%

é BOOK.mkr Page 199 Wednesday, March 14 2001 1:26 PM é

The Functor (Function Objects) |4

The main isae left is how to passthe comparison function. Some languages
allow parameters to be functions (acdually they are pointers to functions). How-
ever, this olution dten has efficiency problems and is not available in all object-
oriented langueges. Java does nat allow functions to be passed as parameters; we
can only passprimitive value and references. So we gpea nat to have away of

passng afunction.

1 packageweiss.util;

2

3 /**

4 *C onparatorf unctiono bjecti nterface.

5 */

6 publici nterface Conparator

7 {

8 /**

9 *R eturnt her esulto fc onparingl hsandr hs. >
10 *@ param| hsf irsto bject. r
11 *@ paramr hss econd o bj ect.

12 *@return<O0i fl hsi sl esst hanr hs,

13 * 0i fl hsi sequalt or hs,

14 * >0i fl hsi sgreatert hanr hs.

15 *@ throws Cl assCast Exceptioni fo bjects

16 * c annotb ec onpared.

17 *

18 intc onpare(O bjectl hs,O bjectr hs) ;

19 }

Figure 429 The Comparator interface, originally defined in java . util
rewritten for the weiss. util package.

However, recdl that an dojed consists of data and functions. So we can Functoris another

embed the function in an objed, and passareferenceto it. Indeed, thisideaworks ~"eme for a func-

tion object.
in al object-oriented languages. The object is caled a function object, and is

sometimes also called afunctor.

é BOOK.mkr Page 200 Wednesday, March 14 2001 1:26 PM é

200 Inheritance

The function object The function object often contains no data. The dass $mply containsasingle
class contains a method, with a given name, that is gedfied by the generic algorithm (in this case

method specified)))) o
f i ndMax). Aninstanceof the classisthen passd to the dgorithm, whichin turn
by the generic al-

gorithm. An in- calls the single method of the function oljed. We can design dfferent compari-

stance of the class ~ son functions by simply declaring rew classes. Each new classcontains a differ-

Ispassedfothe al- ant jmplementation of the agreed-upon single method

gerthm. In Java, to implement this idiom we use inheritance, and spedficdly we
make use of interfaces. The interface is used to declare the signature of the
agreed-upon function. As an example, Figure 4.29 shows the Conpar at or
interface which is part of the standard j ava. uti | padkage. Recall that to illus-
trate how the Java library is implemented, we will reimplement a portion o
java.util asweiss.util.
The interface says that any (non-abstrad) class that claims to be a
Conpar at or must provide an implementation of the conpar e method; thus

any objed that is an instance of such a dasshas a conpar e method that it can

cal.

é BOOK.mkr Page 201 Wednesday, March 14 2001 1:26 PM é

The Functor (Function Objects)

publicc lassUtils
{

1

2

3 /1G enericf indMax,w ithaf unctiono bject.
4 /1P recondition:a .length>0 .

5 publics taticObjectf indMax(O bject[]a ,
6 Conparatorc np)
7

8

9

{

intm axlndex=0 ;

for(i nti=1 ;i<a .length;i ++)
10 if(c nmp.compare(a [i] ,a [maxindex])>0)
11 max| ndex =i ;
12
13 returna[m axlndex] ;
14 }
15 }

Figure 430 Generic fi ndMax algorithm, using a function object

1 classOrderRect ByWdt hi npl enent s C onpar at or

2 {

3 publici ntc onpare(O bjecto bj1,0 bjecto bj2)

4 {

5 Si mpl eRectangler 1=(Sinpl eRectangle)o bj1;
6 Si npl eRectangl er 2=(Sinpl eRectangl e)o bj2; N
7

8 return(r 1.getWdth()-r 2.getWdth()) ;

9 }

10 }

11

12 publicc | ass ConpareTest

13 {

14 publics taticvoidmain(String[]a rgs)

15 {

16 bj ect[]r ects=n ewObject[4] ;

17 rects[0]=n ew Si npl eRectangle(1 ,1 0) ;
18 rects[1l]=n ew Si npl eRectangle(2 0,1) ;
19 rects[2]=n ew Si npl eRectangle(4 ,6) ;
20 rects[3]=n ew Si npl eRect angl e(5 ,5) ;
21

22 Systemout.println(" MAXW DTH: " +

23 Utils.findMax(r ects,n ew OrderRectByWdth())) ;
24 }

25 }

Figure 4.31 Example of a function object

Using thisinterface, we can now passa Conpar at or asthe second pram-

eter to fi ndMax. If this Conpar at or is cnp, we can safely make the call

ﬁ%

é BOOK.mkr Page 202 Wednesday, March 14 2001 1:26 PM

202 Inheritance

cnp. conpar e(01, 02) to compare ay two objects as nealed. It is up to the
caler of findMax to pass an appropriately implemented instance of
Conpar at or asthe adua argument.

An example is $rown in Figure 4.30. f in dMax now takes two parameters.
The second parameter is the function objed. As shown on line 10, f i ndMax
expects that the function objed implements a method named conpar e, and it
must do so, since it implements the Conpar at or interface

Once f i ndMax is written, it can be cdled in mai n. To do so, we need to
passtof i ndMax an array of Si npl eRect angl e objedsandafunction ohed
that implements the Conpar at or interfface We implement a new class
O der Rect ByW dt h, which contains the required conpare method.
compar e returns ainteger indicating if the first redangle is lessthan, equal to,
or greaer than the second rectangle on the basis of widths. mai n simply passes
an instance of Order RectByWdth to findMax.” Both main and
OrderRect ByW dth are shown in Figure 4.31 Observe that the
O der Rect ByW dt h object has no data members. Thisis usually true of func-
tion djects.

The function object technique is an illustration of a pattern that we seeover

and over again, not just in Java, but in any language that has objeds. In Java, this

7 Thetrick of implementing conpar e by subtracting works for i nt saslong as both are the same sign. Other-

wisethereis apossibility of overflow.

- 4~

é BOOK.mkr Page 203 Wednesday, March 14 2001 1:26 PM é

The Functor (Function Objects)

1

>

pattern is used over and over and over again, and represents perhaps the single

dominant idiomatic use of interfaces.

4.7.1 Nested Classes

Generdly spe&king, when we write a dass, we exped, or at least hope, for it to be
useful in many contexts, not just the particular application that is being worked
on.

An annoying feature of the function oljed pattern, espedaly in Java, is the
fad that because it is used so often, it results in the aedion d numerous snall
classes, that ead contain ane method, that are used perhaps only once in a pro-
gram, and that have limited applicability outside of the current application.

This is annoying for at least two reasons. First, we might have dozens of
function dbject classes. If they are pubic, by rule they are scattered in separate
files. If they are package visible, they might al be in the same file, but we still
have to scroll up and down to find their definitions, which is likely to be far
removed from the one or perhaps two placesin the entire program where they are
instantiated as function objeds. It would be preferable if ead function ohjed
classcould be dedared as close & posdble to its instantiation. Second, once a
nameis used, it cannat be reused in the package without possibilities of name l-
lisions. Although padkages lve some namespace problems, they do naot solve

them all, espedally when the same dassname is used twicein the default pad-

age.

ﬁ%

é BOOK.mkr Page 204 Wednesday, March 14 2001 1:26 PM

204 Inheritance

A nested classis a With a nested class we can solve some of these problems. A nested classisa

class declaration classdeclaration that is placel inside another classdeclaration — the outer class—

that is placed in-))])
using the keyword st at i c. A nested classis considered a member of the outer
side another class

declaration — the class As a result, it can be public, private, padkage visible, or proteded, and

outer class - using depending on the visibility, may or may not be acessble by methods that are not

fhe keyword part of the outer class. Typically, it is private, and thus inaccessble from outside

statte the outer class Also, becaise anested classis a member of the outer class its
methods can accessprivate static members of the outer class and can accesspri-
vate instance members when given areferenceto an outer object.

A nested class is a Figure 4.32 illustrates the use of a nested classin conjunction with the func-

part of the outer- tion objed pattern. The sta ti c in front of the nested class dedaration of

> class and can be]])] . . >
O der Rect ByW dt h is esential; withou it, we have a inner class which
declared with a visi-

biity specifier. Al behaves differently and is discussed later.

outer class mem- Occasionally, a nested class is public. In Figue 432, if

bers are visible fo O der Rect ByW dt h was dedared public, the dass

the nested class’) .
Compar eTest | nner 1. Or der Rect ByW dt h could be used from outside of
methods.

the Conpar eTest | nner 1 class

- 4~

é BOOK.mkr Page 205 Wednesday, March 14, 2001 1:26 PM é

The Functor (Function Objects) 205

1 classConpareTestlnnerl

2 {

3 privates taticc |l assOrderRectByWdthi npl ements C onpar at or
4 {

5 publici ntc onpare(O bjecto bj1,0 bjecto bj2)

6 {

7 Si npl eRectangl er 1=(Sinpl eRectangle)o bj1;
8 Si npl eRectangl er 2=(Sinpl eRectangl e)o bj2;
9

10 return(r 1.getWdth()-r 2.getWdth()) ;

11 }

12 }

13

14 publics taticvoidmain(String[]Ja rgs)

15 {

16 bj ect[]r ects=n ewObject[4] ;

17 rects[0]=n ew Si npl eRectangle(1 ,1 0) ;

18 rects[1]=n ew Si npl eRectangle(2 0,1) ;

19 rects[2]=n ew Si npl eRectangle(4 ,6) ;

20 rects[3]=n ew Si npl eRect angl e(5 ,5) ;

21

22 Systemout. println(" MAXWI DTH " +

23 Utils.findMax(r ects,n ew OrderRectByWdth())) ;
24 }

25 }

Figure 4.32 Using a nested class to hide OrderRectBy Wdth class
declaration

- 4~ 4

é BOOK.mkr Page 206 Wednesday, March 14 2001 1:26 PM

206 Inheritance
1 class ConpareTest | nner?2
2 {
3 publics taticvoidmain(String[]a rgs)
4 {
5 bj ect[]r ects=n ewObject[4] ;
6 rects[0]=n ew Si npl eRectangle(1 ,1 0) ;
7 rects[1l]=n ew Si npl eRectangle(2 0,1) ;
8 rects[2]=n ew Si npl eRectangle(4 ,6) ;
9 rects[3]=n ew Si npl eRect angl e(5 ,5) ;
10
11 classOrderRect ByW dt hi npl ement s C onpar at or
12 {
13 publici ntc onpare(O bjecto bj1,0 bjecto bj2)
14 {
15 Si npl eRectangl er 1=(Sinpl eRectangle)o bj1;
16 Si npl eRectangl er 2=(Sinpl eRectangl e)o bj2;
17
18 return(r 1.getWdth()-r 2.getWdth()) ;
19 }
20 }
21
22 Systemout. println(" MAXWI DTH " +
23 Utils.findMax(r ects,n ew OrderRectByWdth())) ;
24 }
25 }

Figure 4.33 Using a method class to hide Order RectByWidth class dec-
laration further

4.7.2 Local Classes

Java also allows In addition to allowing classdedarations inside of classes, Java dso allows class

class declarations declarations inside of methods. These dasses are called local classes. Thisis

inside of methods.
illustrated in Figure 4.33.

Such classes are

Note that when a dassis declared inside amethod, it cannot be dedared
known as local

classes and may private orstatic. However, the dassisvisible only inside of the method in

not be declared which it was declared. This makes it easier to write the dassright before its first

with a visiblity modi-]]
(perhaps only) use and avoid pollution o namespaces.
fier, and may not be

d . An advantage of declaring a classinside of a method is that the dass meth-
eclared using the

static modifier. ods (in this case conpar e) has accessto locd variables of the function that are

ﬁ%

é BOOK.mkr Page 207 Wednesday, March 14 2001 1:26 PM

Q(%

The Functor (Function Objects)

declared prior to the class This can be important in some gplications. Thereisa
technical rule: in order to accesslocal variables, the variables must be dedared

fi nal . Wewill not be using these types of classsin the text.

4.7.3 Anonymous Classes

One might suspect that by pladng a dassimmediately before the line of code in
which it is used, we have dedared the class as close & paossible to its use. How-
ever, in Java, we can do even better.

Figure 4.34 ill ustrates the anonymous inner class An anonymous class is a
classthat has no name. The syntax isthat instead of writing new | nner (), and
providing the implementation d | nner as a named class we write new
I nterface(), and then provide the implementation d the interface (every-
thing from the opening to closing krace immediately after the new expresson.
Instead of implementing an interface anonymously, it is also pcsshble to extend a
classanonymously, providing only the overridden methods.

The syntax looks very daunting, but after awhile, one gets used to it. It com-
pli cates the language significantly, because the anonymous classis a dass Asan
example of the complications that are introduced, since the name of a wnstructor
isthe name of a dass how does one define aconstructor for an anonymous class?

The answer isthat you canna do so.

An anonymous
classis a class that

has no name.

Anonymous classes
infroduce significant
language compli-

cations.

—

1

é BOOK.mkr Page 208 Wednesday, March 14 2001 1:26 PM

208 Inheritance

1 class ConpareTest|nner3
2 {
3 publics taticvoidmain(String[]a rgs)
4 {
5 bj ect[]r ects=n ewObject[4] ;
6 rects[0]=n ew Si npl eRectangle(1 ,1 0) ;
7 rects[1l]=n ew Si npl eRectangle(2 0,1) ;
8 rects[2]=n ew Si npl eRectangle(4 ,6) ;
9 rects[3]=n ew Si npl eRect angl e(5 ,5) ;
10
11 Systemout.println(" MAXW DTH: " +
12 Utils.findMax(r ects,n ew Conparator()
13 {
14 public int compare(Object obj1l, Object obj2)
15 {
16 Si npl eRectangl e r1 = (Sinpl eRectangl e) obj1;
17 Si mpl eRect angl e r2 = (Si npl eRect angl e) obj 2;
18
19 return(rl.getWdth() - r2.getWdth());
20 }
21 }
22))
23 }
24 }
4 Figure 4.34 Using an anonymous class o implement the function object >
Anonymous classes The anonymous classis in pradice very useful, and its use is often seen as

are offen used fo part of the function object pattern in conjunction with event-handing in user

implement function))])]])
interfaces. In event handling, the programmer is required to spedfy, in afunction,
objects.

what happens when certain events occur.

4.8 Dynamic Binding Details

Dynamic bindingis A common myth isthat all methods and all parameters are boundat runtime. This

not important for is not true. First, there ae some cases in which dynamic binding is never used or

static, final, or pri-))
IS Not an ISssue:
vate methods.

- 4~

é BOOK.mkr Page 209 Wednesday, March 14 2001 1:26 PM é

1

Dynamic Binding Details

* static methods, regardiessof how the method is invoked
« final methods

 private methods (sincethey are only invoked from inside the dass and are

thusimpliclty final)

In ather scenarios, dynamic binding is meaningfully used. But what exactly
does dynamic binding mean?
Dynamic binding means that the method that is appropriate for the objed In Java, the param-
being operated onisthe one that is used. However, it does not mean that the éoso- 'es fo @ method
are always de-

lute best match is performed for al parameters. Spedficdly, in Java, the parame-
duced statically, at

ters to a method are dways deduced statically, at compile time. _
compile time.
N For a mncrete example, consider the amde in Figure 4.35. In the whi chFoo >
method, a cdl ismadeto f 0o. But which f oo is cdled? We expect the answer to
depend onthe runtimetypes of ar g1 andar g2.

Because parameters are dways matched at compile time, it does not matter

what type ar g2 isadually referencing. Thef oo that is matched will be

publicv oidf oo(B asex) {/ ** [}
The only issue is whether the Base or Der i ved versionis used That is the

decision that is made & runtime, when the objed that ar g1 references is known.

é BOOK.mkr Page 210 Wednesday, March 14 2001 1:26 PM

210 Inheritance

Static overloading The predse methodology used is that the compiler deduces, at compile time,

means thatthe pa- tha hagt sgnature, based on the static types of the parameters and the methods

rameters to a)]))
that are available for the static type of the @ntrolling reference. At that point, the

method are always

deduced statically, signature of the method is %t. This gep is called static overloading. The only

at compile time. remaining isse is which class version of that method is used. This is done by
having the virtual madine deduce the runtime type of this objed. Once the
runtime type is known, the virtual machine walks up the inheritance hierarchy,
looking for the last overridden version o the method; this is the first method of
the gopropriate signature that the virtual machine finds as it walks up toward
Obj ect .8 This ®oond step is called dynamic binding.

Dynamic binding Static overloading can lead to subtle erorswhen amethodthat is supposed to
means fhat once be overridden is instead overloaded. Figure 4.36 ill ustrates a common program-

the signature of an)))
ming error that occurs when implementing the equal s method.
instance method is
asceratined, the
class of the method
can be deter-
mined at runtime
based on the dy-

namic type of the

invoking object.

8. If no such method isfound, perhaps because only part of the program was recompil ed, then the virtual machine

throws aNoSuchMet hodExcept i on.

- 4~

é BOOK.mkr Page 211 Wednesday, March 14 2001 1:26 PM é

Dynamic Binding Details

1 classB ase

2 {

3 publicv oidf oo(B asex)

4 {S ystemout.println(" Base.Base") ;}

5

6 publicv oidf oo(D erivedx)

7 {S ystemout.println(" Base.Derived") ;}
8}

9

10 classDerivede xtendsB ase
11 {

12 publicv oidf oo(B asex)
13 {S ystemout.println(" Derived. Base") ;}
14
15 publicv oidf oo(D erivedx)
16 {S ystemout.println(" Derived. Derived") ;}
17 }
18
19 classStaticParanmsDenp
20 {
21 publics taticv oi dwhi chFoo(B aseargl,B asearg2)
22 {
23 /11 ti sguaranteedt hatw ewillc allf oo(B ase)
24 /1O nlyi ssuei swhichclass'sversionoff o0o(B ase)
25 /li scalled;t hedynamict ypeofa rgli su sed
» 26 /1t od ecide. -
27 argl.foo(a rg2) ;
28 }
29
30 publics taticvoidmain(String[]a rgs)
31 {
32 Baseb=n ewBase() ;
33 Derivedd=n ewDerived() ;
34
35 whi chFoo(b ,b) ;
36 whi chFoo(b ,d) ;
37 whi chFoo(d ,b) ;
38 whi chFoo(d ,d) ;
39 }
40 }

Figure 4.35 lllustration of static binding for parameters

The equal s method is defined in classObj ect and is intended to return
true if two oljeds have identical states. It takes an Obj ect as parameter, and

hj ect provides a default implementation that returns true only if the two

ﬁ%

é BOOK.mkr Page 212 Wednesday, March 14 2001 1:26 PM

212

Inheritance

objects are the same. In other words, in class Obj ect , the implementation of

equal s isroughly

publ i cb ool ean equal s(O bj ecto ther)
{ returnt his= =other; }

When overridding equal s, the parameter must be of type Obj ect ; other-
wise overloading is being dawe. In Figure 4.36, equal s is not overridden;
instea it is (unintentionally) overloaded. As a result, the cdl to saneVal will
return false, which appeas arprising, sincethe cdl to equal s returns true and

sanmeVal cdlsequal s.

é BOOK.mkr Page 213 Wednesday, March 14 2001 1:26 PM é

Dynamic Binding Details

1 finalc |assS oneC ass

2 {

3 publicS omed ass(i nti)

4 {i d=i ;}

5

6 publicb ool eans aneVal (O bjecto ther)

7 {r eturnotheri nstanceofS oneCl ass& &equals(o ther) ;}
S,

10 *T hisi sab adi nplementation!

11 *0o therh ast hewrongt ype,s ot hisd oes
12 *n oto verrideObject'se quals.

13 *

14 publicb ool eane qual s(S oned asso ther)
15 {r eturnother! =null& &i d==other.id;}
16

17 privatei nti d;

18 }

19

20 cl ass B adEqual sDenp

21 {

22 publics taticvoidmain(String[]a rgs)
23 {

24 SoneCl asso bj1=n ewSoned ass(4) ;
25 SoneCl asso bj2=n ewSonmed ass(4) ;

3 26 5
27 Systemout.printin(o bjl.equals(o bj2))
28 Systemout.printin(o bjl. sameVal (o bj2)) ;
29 }

30 }

Figure 4.36 lllustration of overloading equals instead of overriding
equal s. Here, the call the sameVal returns false!

The problem isthat thecdl insaneVal is,t hi s. equal s(ot her) . The
static type of t hi s is Sonmed ass. In Somed ass there ae two versions of
equal s: the listed equal s that takes a SomeCl ass as a parameter, and the
inherited equal s that takesan Obj ect . The static type of the parameter (other)
is Cbj ect, so the best match isthe equal s that takes an Qbj ect . At runtime

the virtual madchine searches for that equal s, and finds the one in class

ﬁ%

é BOOK.mkr Page 214 Wednesday, March 14 2001 1:26 PM

214

Inheritance

hj ect . Andsincet hi s andot her aredifferent objeds, theequal s method
in classCbj ect returnsfalse.

Thus, equal s must be written to take an Obj ect as a parameter, and typi-
cally adowncast will be required after a verification that the type is appropriate.
One way of doing that isto use an i nst anceof test, but that is safe only for
final classes. Overriding equal s isadudly fairly tricky in the presence of inher-

itance and is discussed in Section 6.7.

Summary
Inheritance is a powerful feature that is an essential part of object-oriented pro-
gramming and Java. It allows us to abstrad functionality into abstrad base dasses
and have derived classes implement and expand on that functionality. Several
types of methods can be spedfied in the base dass asillustrated in Figure 4.37.
The most abstract class in which noimplementationis alowed, is the inter-
face. The interface lists methods that must be implemented by a derived class
The derived classmust bath implement all of these methods (or itself be abstract)
and spedfy, viathe i npl enent s clause, that it is implementing the interface
Multiple interfaces may be implemented by a dass, thus providing a simpler

aternative to multiple inheritance.

Method Overloading Comments
final Potentially Invariant over the inheritance hierarchy (method
inlined is never redefined).

Figure 4.37 Four types of class methods

ﬁ%

é BOOK.mkr Page 215 Wednesday, March 14 2001 1:26 PM

Objects of the Game

Method Overloading Comments

abstract Run fime Base class provides no implementation and is
abstract. Derived class must provide an imple-
mentation.

static Compile time | No controlling object.

Other Run fime Base class provides a default implementation that
may be either overridden by the derived classes
or accepted unchanged by the derived classes.

Figure 4.37 Four types of class methods

Finally, inheritance dlows us to easily write generic methods and classes that

work for awide range of generic types. Thiswill typicdly involve using type con-

version operators. Interfaces are dso widely used for generic components, and to

implement the function objed pattern.

This chapter concludes a discusson that provided an overview of Java and

object-oriented programming. This chapter concludes the first part of the text,

which provided an overview of Java and oljed-oriented programming. We will

now go onto look at algorithms and the buil ding blocks of problem-solving.

Objects of the Game

abstract class A classthat canna be constructed but serves to spedfy func-
tionality of derived classs. (172)
abstract method A method that has no meaningful definitionandisthus

always defined in the derived class (170)

Adapter A classthat istypicdly used when the interfaceof ancther classis

not exactly what is needed. The alapter provides a wrapping effed, while

changing the interface. (191)

ﬁ%

—

é BOOK.mkr Page 216 Wednesday, March 14 2001 1:26 PM

216

Inheritance

anonymousclass A classthat has no name andisuseful for implemented short
function objeds. (207)

base class The dasson which the inheritanceis based. (149

composition Preferred mecdhanism to inheritance when an IS-A relationship
does nat hold. Instead, we say that an objed of classB is composed of an
object of classA (and aher objeds). (143

decorator pattern The pattern that involves the cmbining of several wrap-
persin order to add functionality. (186)

derived class A completely new classthat nonethelesshas some wmpatibil ity
with the dassfrom which it was derived. (149

dynamic binding A run-time dedsion to apply the method corresponding to
the actual referenced objed. (153)

ext ends clause A clause used to dedare that anew classis a subclassof
another class (150)

final class A classthat may not be extended. (159)

final method A methodthat may nat be overridden and isinvariant over the
inheritance hierarchy. Static binding is used for final methods. (157)

function object An dbject passed to ageneric function with the intention of
having its sngle method used by the generic function. (200)

Functor A function ohed. (199)

generic programming Used to implement type-independent logic. (186)

HAS-A rélationship A relationship in which the derived classhas a (instance

of the) base dass (143)

ﬁ%

4

>

é BOOK.mkr Page 217 Wednesday, March 14 2001 1:26 PM

Objects of the Game

i mpl ement s clause A clause used to dedare that a dassimplements the
methaods of an interface. (175

inheritance The processwhereby we may derive a ¢assfrom abase dass
without disturbing the implementation of the base class Also allows the
design of classhierarchies, such asExcepti on andl nput St r eam
(149)

interface A spedal kind of abstrad classthat contains no implementation
detail s. (174)

I S-A relationship A relationship in which the derived classis a (variation of
the) base dass (142)

leaf class A final class (159)

>

local class A classinside amethod dedared with no visibility modifier. (206)

multipleinheritance The processof derivinga dassfrom severa base
classes. Multiple inheritance is not allowed in Java. However, the aterna-
tive, multiple interfaces, is allowed. (173)

nested class A classinside aclass declared with the static modifier. (204)

partial overriding The act of augmenting a base dass method to perform
additiondl, but not entirely different, tasks. (160

polymor phism The aility of areference variable to reference objeds of sev-
eral different types. When operations are gplied to the variable, the oper-
ationthat is appropriate to the adual referenced object is automaticdly

sledted. (153

ﬁ%

é BOOK.mkr Page 218 Wednesday, March 14 2001 1:26 PM

\

218

Inheritance

protected class member Accessble by the derived classand classesin the
same padkage. (155)

static binding The dedsion onwhich class version of amethod to useis
made & compiletime. Isonly used for static, final, or private methods.
(158)

static overloading The first step for deducing the method that will be used. In
this gep, the static types of the parameters are used to deduce the signature
of the method that will be invoked. Static overloading is always used.
(210)

subclass/superclassrelationshipsIf X IS-A Y, then Xisasubclassof YandY
isasuperclassof X. These relationships are transitive. (142)

super constructor call A call to the base dassconstructor. (157)

super object Anobjed used in partial overloading to apply abase dass
method. (160)

Wrapper A classthat is used to store another type, and add operations that the

primitive type ather does not support or does nat support corredly. (191)

Common Errors

1. Private members of abase dassare not visible in the derived class

2. Objedsof an abstrad classcannat be constructed.

>

é BOOK.mkr Page 219 Wednesday, March 14 2001 1:26 PM é

Common Errors

1

>

3. If the derived classfails to implement any inherited abstrad method, then
the derived classbecomes abstrad. If this was naot intended, a compiler
error will result.

4. Fina methods may nat be overridden. Final classes may nat be extended.

5. Static methods use static binding, even if they are overridden in a derived
class

6. Javauses datic overloading and always sleds the signature of an over-
loaded method at compil e time.

7. Inaderived class theinherited base dassmembers sould only be initial-
ized as an aggregate by using the super method. If these members are
public or proteded, they may later be read or assgned to individually.

8. When you send afunction ohjed as a parameter, you must send a @mn-
structed objed, and nd simply the name of the dass

9. Overusing anonymous classesisa mmmon error.

10. Thethrowslist for amethod in a derived classcannot be redefined to
throw an exception not thrown in the base class Return types must also
match.

11. When amethodisoverriddenit isillegal to reduceitsvisibility. Thisis
also true when implementing interfacemethods, which by definition are
awayspubl i c.

12. If ageneric method returns a generic reference, then typicdly atype con-

version must be used to oltain the actual returned dbject.

ﬁ%

é BOOK.mkr Page 220 Wednesday, March 14 2001 1:26 PM

220 Inheritance

On the Internet
All of the dhapter code is available online. Some of the ade was presented in

stages; for those classes, only one finalized versionis provided.

PersonDemo.java The Per son hierarchy and test program.
Shapejava The astrad Shape class

Circlejava TheGi rcl e class

Squarejava The Squar e class

Rectangle,java The Rect angl e class
ShapeDemo.java A test program for the Shape example.

NoSuchElementException.javaThe exception classin Figure 4.18. Thisis
part of wei ss. util.Alsoonlineis N
ConcurrentM odificationException.java and
EmptyStack Exception.java.

DecoratorDemo.java Anillustration of the decorator pattern, including

buffering, compresgon, and serialization.

MemoryCel.java The Menor yCel | classin Figure4.21.

TestMemoryCell.java Thetest program for the memory cdl class siownin
Figure 4.22.

SimpleArrayList.java Thegeneric simplified Arr ayLi st classin Figure
4.23, with some alditional methods. A test pro-
gramis provided in

ReadStringswithSimpleArrayList.java.

ﬁ%

é BOOK.mkr Page 221 Wednesday, March 14 2001 1:26 PM é

On the Internet

1

PrimitiveWrapper Demo.java Demonstrates the use of the In t eger class
as sown in Figure 4.24.

StorageCellDemo.java The St or ageCel | adapter as hown in Figure
4.25, and a test program.

FindM axDemo.java Thef i ndMax generic dgorithm in Figure 4.26.

SimpleRectanglejava Containsthe Si npl eRect angl e classFigure

4.28.
Comparator.java The Conpar at or interfacein Figure 4.29.
CompareTest.java [llustrates the function dbject, with no nested

classes, as own in Figure 4.31.
CompareTestl nner 1.java Illustrates the function objed, with a nested class,

as sown in Figure 4.32. N
CompareTestl nner 2.java lllustrates the function objed, with a nested class

inside amethod, as shown in Figure 4.33.
CompareTestl nner 3.java lllustrates the function objed, with an anonymous

class as sownin Figure 4.34.
StaticParamsDemo.java The demonstration of static overloading and

dynamic binding shown in Figure 4.35.

BadEqualsDemo.java Illustrates the consequences of overloading instead

of overriding equal s, as shown Figure 4.36.

é BOOK.mkr Page 222 Wednesday, March 14 2001 1:26 PM

222 Inheritance

@ Exercises

In Short
What members of an inherited classcan be used in the derived class? What

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

members become pubic for users of the derived class?

What is composition?

Explain polymorphism.

Explain dynamic binding. When is dynamic binding not used?

What is afinal method?

Consider the program to test visibility in Figure 4.38.

a

b.

Which aaccesses areillegal ?

Make mai n amethodin Base. Which accesses areillegal ?

Make mai n amethodin Der i ved. Which accesses areillegal ?

How dothese answers change if pr ot ect ed isremoved from line 4?
Write a three-parameter constructor for Base. Then write a five-

parameter constructor for Der i ved.

é BOOK.mkr Page 223 Wednesday, March 14 2001 1:26 PM

Q(%

NO O A WND =

8

publicc | ass B ase

{

}

public intb Public;
protectedi ntb Protect;
private intb Private;

//P ublicmethodso nmitted

9 publicc lassDerivede xtendsB ase

10
11
12
13
14
15

{

}

public intd Public;
private intd Private;
//P ublicmethodso nmtted

16 publicc lassTester

17
18
19
20
21
22
23
24
25
26
27

{

}

publics taticvoidmain(String[]a rgs)

{

Base b =n ewBase() ;

Derivedd=n ewDerived() ;

Systemout.printin(b .bPublic+""+b .bProtect+""
+b.bPrivate+""+d .dPublic+""
+d.dPrivate) ;

}

Figure 4.38 Program to test visibility

4.7.

4.8.

4.9.

f. The dassDer i ved consists of five integers. Which are acessble to
theclassDeri ved?

g. A method in the classDer i ved is passed a Base object. Which of
the Base objed members can the Der i ved classacaess?

What is the difference between a final classand dher classes? Why are

final classes used?

Wheat is an abstrad method?

What is an abstrad class?

Exercises

—

é BOOK.mkr Page 224 Wednesday, March 14 2001 1:26 PM

224

Inheritance

4.10.

411

4.12.

4.13.

4.14.

4.15.

4.16.

4.17.

4.18.

Wheat is an interface? How does the interfacediffer from an abstrad class?
What members may be in an interface?

Explain the design of the Javal/O library. Include a ¢asshierarchy picture
for al the dasses described in Sedion 4.5.3.

How are generic algorithms implemented in Java?

Explain the Adapter and Wrapper patterns. How do they differ?

What are two common ways to implement adapters? What are the trade-
offs between these implementation methods?Describe how function
objects are implemented in Java.

What isalocd class?

What is an anonymous class?

In Theory

A locd classcan accesslocd variables that are dedared in that method
(prior to the dasg. Show that if this is alowed, it is possible for an
instance of the local classto accessthe value of the local variable, even
after the method has terminated. (For this reason, the compiler will alo-
cate these locd variables from a different source than usual, and as a @wn-
sequence of that, the compiler will insist that these variables are
immutable.)

This exercise explores how Java performs dynamic binding, and also why
trivial final methods may not be inlined at compil e time. Place eah of the

classsin Figure 4.39in itsown file:

ﬁ%

>

é BOOK.mkr Page 225 Wednesday, March 14 2001 1:26 PM é

Exercises 225

1 publicclassClassl

2 {

3 publics tatici ntx=5

4

5 publicf inalS tringg etX()

6 {r eturn" "+x+1 2;}

71}

8

9 publicc lassClass2

10 {

11 publics taticv oidmain(String[]a rgs)
12 {

13 Classlobj=n ewClassli() ;

14 Systemout.printin(o bj.getX()) ;
15 }

16 }

Figure 4.39 Classes for Exercise 4.18

a. Compiled ass?2 and runthe program. What is the output?

b. What is the exad signature (including return type) of the get X
method that is deduced at compile time & line 14?

c. Change the get X routine & line 5 to return an i nt ; remove the " "
from the body at line 6, and recompile Cl ass2. What is the output?

d. What is the exad signature (including return type) of the get X
method that is now deduced at compile time & line 14?

e. Change Cl ass1 back to its original, but recompile Cl ass1 only.
What is the result of running the program?

f. What would the result have been had the compiler been allowed to per-

form inline optimization?

é BOOK.mkr Page 226 Wednesday, March 14 2001 1:26 PM

226

Inheritance

4.19.

4.20.

4.21.

4.22.

4.23.

4.24.

4.25.

4.26.

In Practice

Write ageneric fi nd routine that searches an array of Obj ect for an
hj ect X, returning the first item that matches (as dedared by equal s
returning true).

Write generic method nmi n and max, eah of which accepts two
Compar abl e parameters and returns the smaller and larger, respedively.
Then use thase methods on the Str i ng type.

Write generic methods m n, which accepts an array of Conpar abl e,
and returns the small est item. Then use the method anthe St r i ng type.
Write generic method max2, which accepts an array of Conpar abl e
and returns an array of two Conpar abl es representing the two largest
items in the aray. The inpu array should be unchanged. Then use those
methodsonthe St r i ng type.

Write generic method sor t , which accepts an array of Conpar abl e
and rearanges the aray in nondeaeasing sorted order. Test your method
onbath St ri ng and Shape.

For the Shape example, modify the mnstructorsin the hierarchy to throw
an | nval i dAr gunrent Except i on when the parameters are negative.
Modify the Per son class @ that it can usef i ndMax to obtain the alpha-
beticdly last person.

A Si ngl eBuf f er suppatsget andput : The Si ngl eBuf f er stores
a single item and a data member that indicates whether the

Si ngl eBuf f er islogicaly empty. A put may be gplied orly to an

ﬁ%

>

é BOOK.mkr Page 227 Wednesday, March 14 2001 1:26 PM

4.27.

4.28.

empty buffer, andit inserts an item into the buffer. A get may be gplied

only to a norempty buffer, and it deletes and returns the contents of the

buffer. Write ageneric dassto implement Si ngl eBuf f er. Define an

exception to signal errors.

A SortedArraylLi st stores a collection d Conpar abl e. It is like

ArraylLi st, except that add will placethe item in the corred sorted

order instead of at the end; however, at thispaoint it will be difficult for you

to use inheritance Instead, implement a separate Sor t edArr aylLi st

that supportsadd, get , renove, andsi ze.

This exercise aks you to write ageneric count Mat ches function. Your

function will take two parameters. The first parameter is an array of i nt .

The second parameter is afunction objed that returns a Boolean.

a. Giveadedarationfor an interfacethat expresses the requisite function
object.

b. count Mat ches returns the number of array items for which the
function objed returns true. Implement count Mat ches.

c. Test count Mat ches by writing a function object, Equal sZer o,
that implements your interfaceto accest one parameter and returns true
if the parameter is equal to zero. Use an Equal sZer o function objed

to test count Vat ches.

Exercises

4

?

é BOOK.mkr Page 228 Wednesday, March 14 2001 1:26 PM

228

Inheritance

4.29.

4.30.

431

4.32.

4.33.

4.34.

Although the function objects we have looked at store no data, thisisnot a

requirement.

a. Giveadedarationfor an interfacethat expresses the requisite function
object.

b. Write afunction objed Equal sK. Equal sK contains one data mem-
ber (k). Equal sK is constructed with a single parameter (default is
zero) that isused toinitiali zek. Its methodreturnstrue if the parameter
isequal tok.

c. UseEqual sKtotest count Mat ches in Exercise 4.28(c).

Programming Projects

Rewrite the Shape hierarchy to store the aea & a data member and have
it computed by the Shape constructor. The @nstructors in the derived
classs shoud compute an area and passthe result to the super method.
Make ar ea afina methodthat returns only the value of this data member.
Add the concept of aposition to the Shape hierarchy by including coordi-
nates as data members. Then add adi st ance method.

Write an abstrad classfor Dat e and its derived classGr egor i anDat e.
Implement a taxpayer hierarchy that consists of a TaxPayer interface
and the classs Si ngl ePayer andMar ri edPayer that implement the
interface

Implement a gzip and gunzip program that performs compresson and

uncompresson d files.

ﬁ%

é BOOK.mkr Page 229 Wednesday, March 14 2001 1:26 PM é

References

1

>

References
The foll owing books describe the general principles of object-oriented software

development:

1. G. Booch, Object-Oriented Design and Analysis with Applications (Sec-

ond Edition), Benjamin/Cummings, Redwood City, Calif., 1994

2. T.Budd Understanding Object-Oriented Programming With Java, Add-

ison-Wesley, Reading, Mass, 2001.

3. D. de Champeaux, D. Leg and P. Faure, Object-Oriented System Devel-

opment, Addison-Wesley, Reading, Mass, 1993.

4. 1. Jacobson, M. Christerson, P. Jonsson, and G. Overgaad, Object-Ori-
ented Software Engineering: A Use Case Driven Approach (revised

fourth printing), Addison-Wesley, Reading, Mass., 1992.

5. B. Meyer, Object-Oriented Software Construction, Prentice-Hall, Engle-

wood Cliffs, N.J., 1988.

é BOOK.mkr Page 230 Wednesday, March 14, 2001 1:26 PM

230 Inheritance

- 4~

