
1	

Applications III	

2	

Agenda	

•  Graphs	

 	

Terminology	

	

Representation	

 	

Traversal	

	

Shortest path	

	

Topological sorting	

	

•  Problem complexity	

3	

Graphs	

A graph is a useful abstract concept. 	

	

Intuitive definition: A graph is a set of objects and a set of
relations between these objects. 	

	

Mathematical definition: A graph G = (V, E) is a finite set of
vertices, V, (or nodes) and a finite set of edges, E, where each
edge connects two vertices .	

(E ⊆ V ×V)

H	

A	

G	

B	

 C	

D	

 E	

I	

 F	

V = {A, B, C, D, E, F, G, H, I} 	

E = {(A,B), (A,C), (A,F), (A,G), (D,E), (D,F), (E,F), (E,G), (H,I)}	

4	

Applications	

Anything involving relationships among objects
can be modeled as a graph	

Traffic networks: 	

	

Vertices: cities, crossroads
	

Edges: roads	

Organic molecules:
	

Vertices: atoms
	

Edges: bonds	

Electric circuits:	

 	

 	

	

Vertices: devices 	

 	

	

Edges: wires	

 	

	

Game graphs: 	

 	

	

Vertices: board positions
	

Edges: moves	

5	

Object-oriented design (UML diagramming):
	

Vertices: classes/objects 	

 	

 	

 	

	

Edges: inheritance, aggregation, association	

Project planning: 	

 	

 	

 	

 	

 	

 	

	

Vertices: subtasks	

 	

 	

 	

 	

 	

 	

	

Edges: dependencies (subtask A must finish be before
	

 subtask B can start)	

Software systems: 	

 	

 	

	

Vertices: methods	

 	

 	

	

Edges: method A calls method B	

Applications ���
(continued)	

6	

Historical foundation of
graph theory	

Map of Königsberg in Euler's
time showing the actual
layout of the seven bridges,
highlighting the river Pregel
and the bridges	

The problem was to find a walk through the city that would cross
each bridge once and only once. Euler proved in 1735 that this
problem has no solution.	

7	

Euler’s analysis	

→	

During any walk in the graph, the number of times one enters a non-terminal vertex
equals the number of times one leaves it. 	

Now if every bridge is traversed exactly once it follows that for each land mass
(except possibly for the ones chosen for the start and finish), the number of bridges
touching that land mass is even (half of them, in the particular traversal, will be
traversed "toward" the landmass, the other half "away" from it). 	

However, all the four land masses are touched by an odd number of bridges.	

→	

L. Euler, 1707-83	

8	

Terminology	

A directed graph (or digraph) is a graph in which all edges are
directed.	

	

A undirected graph is a graph in which no edges are directed.	

The two vertices of an edge is called its end vertices.	

H	

 I	

If an edge is a ordered pair of end vertices, then the edge is said to
be directed. This is indicated on the visual representation by
drawing the edge as an arrow. 	

H	

 I	

9	

Terminology ���
(continued)	

	

A path is a sequence of vertices connected by edges.	

	

	

A simple path is a path in which all vertices are distinct.	

	

	

A cycle is a path that is simple, except that the first and last
vertex are the same.	

Cycles: FDEF, AFEGA, and AFDEGA	

A	

G	

B	

 C	

D	

 E	

H	

 I	

 F	

10	

A graph is said to be connected if, for every two vertices u and v,
there is a path from u to v or a path from v to u.	

	

A graph, which is not strongly connected, consists of two or more
connected subgraphs, called components. 	

Terminology ���
(continued)	

Two components	

A	

G	

B	

 C	

D	

 E	

H	

 I	

 F	

A graph G'= (V', E') is a subgraph of a graph G = (V, E) if 	

V '⊆V and E '⊆ E.

11	

	

A tree is a connected graph without cycles.	

	

	

A forest is a set of disjoint trees.	

	

	

A spanning tree for a graph G is a tree composed of all vertices
of G and some (or perhaps all) of its edges.	

Graf G	

 Spanning tree for G	

Terminology ���
(continued)	

12	

A graph in which every pair of vertices are connected by a unique
edge is said to be complete. 	

	

	

 	

[for an undirected complete graph: |E| = |V|(|V|-1)/2)] 	

	

A dense graph is a graph in which the number of edges is close to
the maximal number of edges.	

A sparse graph is a graph with only a few edges.	

	

A graph is a weighted graph if a number (weight) is assigned to
each edge.

	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

	

 	

 	

[weights usually represent costs]	

Terminology ���
(continued)	

13	

A directed weighted graph	

14	

Basic graph problems	

Paths: 	

 	

 	

 	

 	

 	

 	

 	

	

Is there a path from A to B?	

	

Cycles: 	

 	

 	

 	

 	

 	

 	

 	

 	

	

Does the graph contain a cycle?	

	

Connectivity (spanning tree): 	

 	

 	

	

Is there a way to connect all vertices?	

	

Biconnectivity: 	

 	

 	

 	

 	

 	

	

Will the graph become disconnected if one
	

vertex is removed?	

	

Planarity: 	

 	

 	

 	

 	

 	

 	

	

Is there a way to draw the graph without
	

edges crossing?	

15	

Shortest path: 	

 	

 	

 	

 	

 	

 	

	

What is the shortest way from A to B?	

	

Longest path: 	

 	

 	

 	

 	

 	

 	

	

What is the longest way from A to B?	

	

Minimal spanning tree: 	

 	

 	

 	

 	

	

What is the cheapest way to connect all vertices?	

	

Hamiltonian cycle: 	

 	

 	

 	

 	

 	

 	

	

Is there a way to visit all the vertices without
	

visiting the same vertex twice?	

	

Traveling salesman problem:	

 	

 	

 	

	

What is the shortest Hamiltonian cycle?	

Basic graph problems	

(continued)	

16	

Representation of graphs	

Graphs are abstract mathematical objects. 	

 	

Algorithms have to work with concrete representations.	

	

Many different representations are possible. The choice is
decided by algorithms and graph types (sparse/dense,
weighted/unweighted, directed/undirected).	

	

Three data structures will be described:
	

	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

	

	

(1) edge set 	

 	

 	

 	

 	

 	

 	

	

	

(2) adjacency matrix	

 	

 	

 	

 	

	

	

(3) adjacency lists	

	

	

	

	

17	

(1) Edge set	

class Edge {!
 Vertex source, dest;!
 double cost;!
} 	

class Graph {!
 Set<Edge> edges;!
}!

class Vertex {!
 String name;!
}!

18	

(2) Adjacency matrix	

!A B C D E F G H I !
A !0 1 1 0 0 1 1 0 0!
B !1 0 0 0 0 0 0 0 0!
C !1 0 0 0 0 0 0 0 0 !
D !0 0 0 0 1 1 0 0 0!
E !0 0 0 1 0 1 1 0 0!
F !1 0 0 1 1 0 0 0 0!
G !1 0 0 0 1 0 0 0 0!
H !0 0 0 0 0 0 0 0 1!
I !0 0 0 0 0 0 0 1 0!

class Graph { // unweighted!
 boolean[][] adjMatrix;!
}	

class Graph { // weighted!
 double[][] adjMatrix;!
}	

A	

G	

B	

 C	

D	

 E	

H	

 I	

 F	

19	

(3) Adjacency lists	

!! A:	

!! B:	

!! C:	

!! D:	

!! E:	

!! F:	

!! G:	

!! H:	

!! I: 	

F	

 C	

 B	

 G	

A	

A	

F	

 E	

G	

 F	

 D	

A	

 E	

 D	

E	

 A	

I	

H	

A	

G	

B	

 C	

D	

 E	

H	

 I	

 F	

20	

class Edge {!
 Vertex dest; ! !// Second vertex of edge!
 double cost; ! !// Edge weight!
} 	

class Graph {!
 Map<String,Vertex> vertexMap;!
}!

class Vertex {!
 String name; ! !// Vertex name !
 List<Edge> adj; !// Adjacent vertices!
}!

(3) Adjacency lists	

21	

22	

Comparison of representations	

Space requirements: 	

 	

 	

 	

 	

	

 	

 	

 	

	

	

Edge set: 	

 	

 	

O(|E|)	

	

Adjacency matrix: 	

O(|V|2)	

	

Adjacency lists: 	

 O(|V| + |E|)	

23	

Time complexity (worst case):
	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

	

Is there an edge from A to B?	

	

 Edge set: 	

 	

 	

O(|E|)	

	

 Adjacency matrix: 	

O(1)	

	

 Adjacency lists: 	

O(|V|)	

	

 	

Is there an edge from A to anywhere?	

	

 Edge set: 	

 	

 	

O(|E|)	

	

 Adjacency matrix: O(|V|)	

	

 Adjacency lists: 	

O(1)	

Choice of representation affects
algorithm efficiency	

24	

Goal: “visit” every vertex of the graph.	

	

Depth-first traversal (recursive):	

	

	

 	

* Mark all vertices as “unvisited”	

	

 	

* Visit vertex 1	

	

 	

* To visit a vertex v:	

	

 	

 	

* mark it 	

 	

 	

 	

 	

 	

	

 	

* (recursively) visit all unmarked vertices
	

 	

 connected to v by an edge 	

Traversing graphs	

Solves some simple graph problems:	

	

connectivity, cycles 	

Basis for solving difficult graph problems:
	

biconnectivity, planarity	

25	

class Vertex {!
 String name;!
 List<Edge> adj;!
 boolean visited;!
!
 void visit() {!
 visited = true;!
 for (Edge e : adj) {!
 Vertex w = e.dest;!
 if (!w.visited)!
 w.visit(); !
 }!
 }!
}!

Implementation of depth-first traversal	

(adjacency lists)	

Time complexity: O(|E|)	

26	

Depth-first traversal of a component	

A	

B	

 C	

 G	

F	

D	

 E	

A	

B	

 C	

 G	

F	

D	

 E	

A	

B	

 C	

 G	

D	

 E	

F	

A	

B	

 C	

D	

G	

E	

F	

A	

B	

D	

C	

 G	

E	

F	

A	

B	

 C	

 G	

D	

 E	

F	

A: F C B G	

B: A	

C: A	

D: F E	

E: G F D	

F: A E D	

G: E A	

!

A	

B	

 C	

 G	

F	

D	

 E	

27	

A depth-first traversal of a connected graph represented by
adjacency lists requires O(|E|) time	

A	

F	

 C	

 B	

E	

D	

G	

1	

2	

3	

4	

 5	

6	

 7	

Depth-first traversal of a component
results in a depth-first tree 	

28	

!
void traverse(Vertex startVertex) {!
 Stack<Vertex> stack = new Stack<Vertex>();!
 stack.push(startVertex);!
 startVertex.visited = true;!
 while (!stack.empty()) {!
 Vertex v = stack.pop();!

! for (Edge e : v.adj) {!
 Vertex w = e.dest;!
 if (!w.visited) {!
 stack.push(w);!
 w.visited = true;! !
 }!
 }!
 }!
}!

Non-recursive���
depth-first traversal	

Use an explicit stack of vertices.	

	

29	

If the stack is replaced by a queue, the graph will be traversed in
breadth-first order (level order).	

	

Breadth-first traversal 	

void traverse(Vertex startVertex) {!
 Queue<Vertex> queue = new LinkedList<>();!
 queue.add(startVertex);!
 startVertex.visited = true;!
 while (!queue.isEmpty()) {!
 Vertex v = queue.remove();!

! for (Edge e : v.adj) {!
 Vertex w = e.dest;!
 if (!w.visited) {!
 queue.add(w);!
 w.visited = true;! !
 }!
 }!
 }!
}!

30	

A	

B	

 C	

 G	

F	

D	

 E	

F C B G	

A	

B	

 C	

 G	

F	

D	

 E	

C B G E D	

A	

B	

 C	

 G	

D	

 E	

F	

 B G E D	

A	

B	

 C	

 G	

D	

 E	

F	

 G E D	

A	

B	

 C	

 G	

D	

 E	

F	

 E D	

A	

B	

 C	

 G	

D	

 E	

F	

 D	

A	

B	

 C	

 G	

D	

 E	

F	

Breadth-first traversal of a component	

A: F C B G	

B: A	

C: A	

D: F E	

E: G F D	

F: A E D	

G: E A	

!

31	

A	

F	

 C	

 B	

E	

 D	

G	

1	

2	

 3	

 4	

 5	

6	

 7	

Breadth-first traversal of a component
results in a breadth-first tree 	

A breadth-first traversal of a connected graph represented by
adjacency lists requires O(|E|) time	

32	

Depth-first	

start	

current	

Breadth-first	

start	

current	

Depth-first traversal versus 	

 	

 	

breadth-first traversal	

33	

Best-first traversal	

Queue<Vertex> queue = new PriorityQueue<>();!

If the queue is replaced by a priority queue, the graph will be
traversed in best-first order.	

	

Class Vertex should implement the Comparable interface, or
the priority queue should rely on a supplied Comparator object. 	

O(|E|) insertions and O(|V|) removals; each takes O(log|V|)
time for a heap-based priority queue.	

	

	

Time complexity: O((|V|+|E|)log|V|)	

34	

Shortest paths	

35	

The shortest path problem	

Find the shortest path from vertex A to vertex B	

Unweighted shortest path (minimize the number of edges): 	

	

Use breadth-first traversal. 	

 	

 	

 	

 	

	

Traverse the graph starting at A, using a queue.	

Weighted shortest path (find the “cheapest” path): 	

 	

 	

	

Use best-first traversal (Dijkstra’s algorithm): 	

 	

 	

	

Traverse the graph starting at A, using a priority queue. 	

	

The priority of each unvisited vertex is the cost of the
	

currently cheapest path from A to that vertex.	

Works only for graphs with non-negative weights.	

36	

Starting vertex!

Goal vertex!

Result!

37	

38	

Class Edge!

39	

Class Vertex!

40	

Shortest-path algorithms!

41	

42	

43	

44	

45	

46	

Input format:	

source_name dest_name cost	

47	

48	

Unweighted shortest path	

(breadth-first traversal)	

49	

50	

(of cost Dw= Dv+1)

51	

We maintain a roving
eyeball that hops from
vertex to vertex and is
initially at V2.	

Roving eyeball	

da. strejfende øjeæble	

52	

Time complexity: O(|E|)	

53	

Positive weighted shortest path 	

(Dijkstra’s algorithm, 1959)	

For a given source vertex in the graph, the algorithm finds the
path with lowest cost (i.e. the shortest path) between that vertex
and every other vertex. 	

	

It can also be used for finding costs of shortest paths from a
single vertex to a single destination vertex by stopping the
algorithm once the shortest path to the destination vertex has
been determined. 	

E. W. Dijkstra, 1930-2002	

54	

Let the node at which we are starting be called the initial node. Let the
distance of node Y be the distance from the initial node to Y. 	

	

1.  Assign to every node a distance value. Set it to zero for our initial

node and to infinity for all other nodes. 	

2.  Mark all nodes as unvisited. Set initial node as current.	

3.  For the current node, consider all its unvisited neighbors and

calculate their tentative distance (from the initial node). If this
distance is less than the previously recorded distance (infinity in
the beginning, zero for the initial node), overwrite the distance. 	

4.  When we are done considering all neighbors of the current node,
mark it as visited. A visited node will not be checked ever again;
its distance recorded now is final and minimal.	

5.  If all nodes have been visited, finish. Otherwise, set the unvisited
node with the smallest distance (from the initial node) as the next
“current node” and continue from step 3.	

Dijkstra’s algorithm	

55	

56	

Example	

C	

B	

A	

E	

D	

F	

0	

4	

2	

8	

4	

8	

7	

 1	

2	

 5	

2	

3	

 9	

C	

B	

A	

E	

D	

F	

0	

3	

2	

8	

5	

 11	

4	

8	

7	

 1	

2	

 5	

2	

3	

 9	

C	

B	

A	

E	

D	

F	

0	

3	

2	

8	

5	

 8	

4	

8	

7	

 1	

2	

 5	

2	

3	

 9	

C	

B	

A	

E	

D	

F	

0	

3	

2	

7	

5	

 8	

4	

8	

7	

 1	

2	

 5	

2	

3	

 9	

∞∞

57	

Example continued	

C	

B	

A	

E	

D	

F	

0	

3	

2	

7	

5	

 8	

4	

8	

7	

 1	

2	

 5	

2	

3	

 9	

C	

B	

A	

E	

D	

F	

0	

3	

2	

7	

5	

 8	

4	

8	

7	

 1	

2	

 5	

2	

3	

 9	

58	

59	

60	

Dijkstra’s algorithm used for solving a
robot planning problem	

61	

Proof of Dijkstra’s algorithm	

Suppose there is a path from S to v of length less than Dv.	

This path must go through a vertex u that has not yet been visited.	

But since the length of the path from S to u, Du, is less than Dv, we
would have chosen u instead of v. Hence we have a contradiction.	

62	

Implementation of Dijkstra’s algorithm	

void dijkstra(Vertex startVertex) {!
 clearAll();!
 PriorityQueue<Vertex> pq = new PriorityQueue<>();!
 pq.add(startVertex); startVertex.dist = 0;!
 while (!pq.isEmpty()) {!
 Vertex v = pq.remove();!

! for (Edge e : v.adj) {!
 Vertex w = e.dest;!
 if (v.dist + e.cost < w.dist) {!
 w.dist = v.dist + e.cost;!
 w.prev = v;!
 pq.update(w); // error: no such method!

! ! ! } ! ! ! ! ! ! ! ! ! ! ! !
! !} ! ! ! ! ! ! ! ! ! ! ! ! !
!} ! ! ! ! ! ! ! ! ! ! ! ! ! !

}!

pq.update(w): If w is not in pq, then add w to pq; otherwise, update pq by
reestablishing its ordering property. Unfortunately, the update method is
not available in Java’s PriorityQueue.	

63	

Class Path!

64	

Time complexity:	

O(|E|.log|V|)	

65	

Negative-weighted shortest path	

(The Bellman-Ford algorithm, 1958)	

void bellmanFord(Vertex startVertex) {!
 clearAll();!
 startVertex.dist = 0;!
 Collection<Vertex> vertices = vertexMap.values();!
 for (int i = 1; i < vertices.size(); i++) {!
 for (Vertex v : vertices) {!
 for (Edge e : v.adj) {!
 Vertex w = e.dest;!
 if (v.dist + e.cost < w.dist) {!
 w.dist = v.dist + e.cost;!
 w.prev = v;!
 }!
 }!
 }!
 }!
}!

Iteration i finds all shortest paths from startVertex that uses i or fewer edges.	

Time complexity: O(|E|.|V|)	

66	

Bellman-Ford example	

∞	

∞	

0	

∞	

∞	

∞	

4	

8	

7	

 1	

-2	

 5	

-2	

3	

 9	

∞	

-2	

∞	

0	

∞	

∞	

∞	

4	

8	

7	

 1	

-2	

 5	

3	

 9	

8	

 -2	

 4	

-2	

-2	

8	

0	

4	

∞	

4	

8	

7	

 1	

-2	

 5	

3	

 9	

∞	

-1	

5	

6	

1	

9	

-2	

5	

0	

1	

-1	

9	

4	

8	

7	

 1	

-2	

 5	

-2	

3	

 9	

 4	

67	

Check for negative-cost cycles (add this code after the loop):	

	

for (Vertex v : vertices) {!
 for (Edge e : v.adj) {!
 Vertex w = e.dest;!
 if (v.dist + e.cost < w.dist)!
 error("Negative-cost cycle detected");!
 }!
}!

68	

An edge can dequeue at
most O(|V|) times. 	

Time complexity: O(|E|.|V|)	

v.scratch is odd when
vertex v is on the queue. 	

v.scratch/2 tells us
how many times v has
left the queue.	

69	

DAGs	

A DAG may, for instance, be used for modeling an activity
network. Directed edges are used to specify that some
activities must be finished before an activity can start.	

An oriented graph without cycles is called a DAG
(Directed Acyclic Graph).	

70	

	

The vertices of a DAG can be ordered so that if there is a path from u
to v, then v appears after u in the ordering. This is called a topological
sort of the graph.	

Topological sorting	

Topological ordering: All directed edges point from left to right	

[not necessarily unique]	

71	

A topological sorting algorithm	

(1) Create an empty queue	

	

(2) 	

Choose a vertex without any ingoing edges	

	

(3) 	

Insert the vertex in the queue. Remove the vertex and all

outgoing edges from the graph. 	

	

(4) Repeat (2) and (3) while the graph is not empty	

	

Now the queue contains the vertices in topological order	

72	

V2 V0 V1 V3 V4 V6 V5	

73	

Java implementation	

List<Vertex> tologicalOrder() {!
 !Collection<Vertex> vertices = vertexMap.values();!
 for (Vertex v : vertices) !
 v.scratch = 0;! ! !// v's indegree = 0!
 for (Vertex v : vertices)!
 for (Edge e : v.adj)!
 e.dest.scratch++;!
 Queue<Vertex> q = new LinkedList<>();!
 !for (Vertex v : vertices)!
 if (v.scratch == 0)!
 q.add(v);!
 List<Vertex> result = new ArrayList<>();!
 int iterations = 0;!
 while (!q.isEmpty() && ++iterations <= vertices.size()) {!
 Vertex v = q.remove();!
 result.add(v);!
 for (Edge e : v.adj)!
 if (--e.dest.scratch == 0)!
 q.add(e.dest);!
 }!
 return iterations == vertices.size() ? result : null;!
}!

74	

Shortest path for a
DAG	

Visit order:	

V2 V0 V1 V3 V4 V6 V5	

75	

Time complexity: O(|E|)	

Uses topological sort	

76	

Complexity of shortest path algorithms	

77	

78	

79	

Some activities have zero slack. These are critical activities that must be
finished on schedule. A path consisting entirely of zero-slack edges is a
critical path.	

slack	

80	

Problem complexity	

81	

Problem complexity	

For a large class of important problems no fast solution algorithms are
known.	

	

	

 	

An inefficient algorithm: running time grows at least exponentially
	

	

[Ω(cn)]	

	

A problem is said to be hard or intractable if there does not exist a
polynomial-time algorithm for solving the problem.	

An efficient algorithm: running time is limited by some polynomial 	

	

[O(nc)] 	

	

A problem that can be solved by a efficient algorithm is said to be easy. 	

82	

Examples of hard problems	

•  The traveling salesman problem 	

 	

A salesman must visit N cities. Find a travel route
that minimizes his costs.	

	

•  Job scheduling 	

 	

 	

 	

 	

A number of jobs of varying duration are to be
executed on two identical machines before a given
deadline. Is it possible to meet the deadline?	

	

•  Satisfiability 	

 	

 	

 	

 	

 	

Is it possible to determine if the variables in a
Boolean expression can be assigned in such a way
as to make the expression evaluate to true? 	

 	

	

 	

	

 (a ∨ b)∧ (¬a ∨ b)

83	

•  Longest path	

 	

 	

 	

 	

 	

 	

 	

 	

Find the longest simple path between two vertices of a graph.	

	

•  Partitioning 	

 	

 	

 	

 	

 	

 	

 	

Given at set of integers. Is it possible to partition the set into
two subsets so that the sum of the elements in each of the two
subsets is the same?	

	

•  3-coloring 	

 	

 	

 	

 	

Is it possible to color the vertices of a graph by only three colors
such that no two adjacent vertices have the same color?	

More examples of hard problems	

84	

NP-complete problems	

For none of these problems do we know an algorithm that solves the
problem in polynomial time.	

	

All experts are convinced that such algorithms do not exist. However,
this has not yet been proved.	

The problems belong to the class of problems called NP-complete
problems. 	

85	

An NP-complete problem is a problem that can be solved in polynomial
time on a nondeterministic machine.	

	

A nondeterministic machine has the wonderful ability to make the correct
choice in any situation where a choice is to be made.	

	

A usual deterministic machine may be used to simulate correct choices in
exponential time by trying each possible choice.	

	

If only one NP-complete problem can be solved in polynomial time, every
NP-complete problem can be solved in polynomial time.	

NP-completeness	

86	

Decidability	

Undecidable problems are decision problems which no algorithm
can decide. 	

	

 Examples:	

	

•  Prove that an algorithm always terminates (the stop problem)	

•  Decide if a formula in the predicate logic is valid	

	

•  Decide if two syntax descriptions define the same language	

87	

(a)!
while (x != 1) !
 x = x - 2;!

!

Termination?	

while (x != 1)!
 if (x % 2 == 0)!
 x = x / 2;!
 else!
 x = 3 * x + 1;!

!
Collatz sequences:	

 12, 6, 3, 10, 5, 16, 8, 4, 2, 1	

 9,28,14,7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1	

(b)	

Collatz conjecture (1937): No matter what number you start
with, you will always eventually reach 1.	

The conjecture has still not been proven! 	

88	

The program terminates, if and only if Fermat's last theorem is false.	

	

For n ≥ 3, no three positive integers a, b, and c can satisfy an + bn = cn. 	

	

	

	

 	

 	

 	

 	

P. de Fermat (1601-65)	

(c) 	

!for (int x = 3; ; x++) !

 !for (int a = 1; a <= x; a++)!
 !for (int b = 1; b <= x; b++)!
 !for (int c = 1; c <= x; c++)!
 !for (int n = 3; n <= x; n++)!
 ! if (Math.pow(a,n) + Math.pow(b,n) == Math.pow(c,n))!
 ! System.exit(0);!

 	

	

Termination? ���
(continued)	

The theorem was proven in 1995	

89	

	

It is impossible to design an algorithm that for any algorithm
can decide if it terminates. 	

	

 	

 	

 	

 	

 	

 	

 	

 	

	

The halting problem	

Now define:	

	

 	

void p() {!

! while (terminates(p)) /* do nothing */;!
!}	

What is the result of the call terminates(p)? 	

Proof (by contradiction): 	

Assume there exists a method terminates(p), which for
any method p returns true if p terminates; otherwise, false.	

