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Graphs

A graph is a useful abstract concept.

Intuitive definition: A graph is a set of objects and a set of
relations between these objects.

Mathematical definition: A graph G = (V, E) 1s a finite set of
vertices, V, (or nodes) and a finite set of edges, E, where each
edge connects two vertices (E cCV xV).
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V={A,B,C,D,E,F,G,H,I}
E={(AB),(A0),(AF),(AG),(D,E),(D)F),(EF),(EG),(HD}




Applications

Anything involving relationships among objects
can be modeled as a graph

Traffic networks:
Vertices: cities, crossroads
Edges: roads

Electric circuits:
Vertices: devices
Edges: wires

Organic molecules:
Vertices: atoms
Edges: bonds

Game graphs:
Vertices: board positions
Edges: moves




Applications

(continued)

Software systems:

Vertices: methods
Edges: method A calls method B

Object-oriented design (UML diagramming):
Vertices: classes/objects
Edges: inheritance, aggregation, association

Project planning:
Vertices: subtasks
Edges: dependencies (subtask A must finish be before
subtask B can start)




Historical foundation of
graph theory
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Map of Konigsberg in Euler's
time showing the actual
layout of the seven bridges,
highlighting the river Pregel
and the bridges

The problem was to find a walk through the city that would cross
each bridge once and only once. Euler proved in 1735 that this

problem has no solution.




Euler’s analysis

L. Euler, 1707-83

During any walk in the graph, the number of times one enters a non-terminal vertex
equals the number of times one leaves it.

Now if every bridge is traversed exactly once it follows that for each land mass
(except possibly for the ones chosen for the start and finish), the number of bridges
touching that land mass is even (half of them, in the particular traversal, will be
traversed "toward" the landmass, the other half "away" from it).

However, all the four land masses are touched by an odd number of bridges.




Terminology

The two vertices of an edge is called its end vertices.
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If an edge is a ordered pair of end vertices, then the edge is said to
be directed. This is indicated on the visual representation by
drawing the edge as an arrow.

@—O

A directed graph (or digraph) is a graph in which all edges are
directed.

A undirected graph is a graph in which no edges are directed.




Terminology

(continued)

A path is a sequence of vertices connected by edges.

A simple path is a path in which all vertices are distinct.

A cycle is a path that is simple, except that the first and last

vertex are the same.
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Cycles: FDEF, AFEGA, and AFDEGA




Terminology

(continued)

A graph G'= (V', E') is a subgraph of a graph G = (V, E) if
V'cVand E'CE.

A graph is said to be connected if, for every two vertices u and v,
there is a path from u to v or a path from v to u.

A graph, which is not strongly connected, consists of two or more
connected subgraphs, called components.
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Two components
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Terminology

(continued)

A tree is a connected graph without cycles.
A forest is a set of disjoint trees.

A spanning tree for a graph G is a tree composed of all vertices
of G and some (or perhaps all) of its edges.
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Graf G Spanning tree for G
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Terminology

(continued)

A graph in which every pair of vertices are connected by a unique
edge 1s said to be complete.

[ for an undirected complete graph: |El = IVI(IVI-1)/2) ]

A dense graph is a graph in which the number of edges is close to
the maximal number of edges.

A sparse graph is a graph with only a few edges.

A graph is a weighted graph if a number (weight) is assigned to
each edge.

[ weights usually represent costs |
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figure 14.1
A directed graph

A directed weighted graph
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Basic graph problems

Paths:
Is there a path from A to B?

Cycles:
Does the graph contain a cycle?

Connectivity (spanning tree):
Is there a way to connect all vertices?

Biconnectivity:
Will the graph become disconnected if one
vertex is removed?

Planarity:
Is there a way to draw the graph without
edges crossing?
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Basic graph problems

(continued)

Shortest path:
What is the shortest way from A to B?

Longest path:
What is the longest way from A to B?

Minimal spanning tree:
What is the cheapest way to connect all vertices?

Hamiltonian cycle:
Is there a way to visit all the vertices without
visiting the same vertex twice?

Traveling salesman problem:
What is the shortest Hamiltonian cycle?
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Representation of graphs

Graphs are abstract mathematical objects.
Algorithms have to work with concrete representations.

Many different representations are possible. The choice is
decided by algorithms and graph types (sparse/dense,
weighted/unweighted, directed/undirected).

Three data structures will be described:

(1) edge set
(2) adjacency matrix
(3) adjacency lists
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(1) Edge set

class Graph {

Set<Edge> edges;

}

class Edge {
Vertex source,
double cost;

dest;

class Vertex {
String name;

}
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(2) Adjacency matrix

ABCDEVFGHTI
A 11001100
B 1 0000O00O0
cC 10 0000O00O0
D 00O 11000
E 0001 1100
F 10011 00O
G 100010 00
H 0000O0O0O 1
I 0000O0O0O01

class Graph { // unweighted
boolean[ ][] adjMatrix;

}

class Graph { // weighted
double[ ][] adjMatrix;

}
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(3) Adjacency lists
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(3) Adjacency lists

class Graph {
Map<String,Vertex> vertexMap;

}

class Vertex {
String name; // Vertex name
List<Edge> adj; // Adjacent vertices

class Edge {
Vertex dest; // Second vertex of edge
double cost; // Edge weight
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figure 14.1
A directed graph

figure 14.2

Adjacency list
representation of the
Eraph shown in

igure 14.1; the
nodes in list i
represent vertices
adjacent to i and the
cost of the connecting
edge.
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Comparison of representations

Space requirements:

Edge set: O(IET)
Adjacency matrix:  O(IVI?)
Adjacency lists:  O(IVI + |E)
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Choice of representation affects
algorithm efficiency

Time complexity (worst case):

Is there an edge from A to B?
Edge set: O(IE)
Adjacency matrix: O(1)
Adjacency lists:  O(IVI)

Is there an edge from A to anywhere?
Edge set: O(IET)
Adjacency matrix: O(IVI)
Adjacency lists:  O(1)
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Traversing graphs

Goal: “visit” every vertex of the graph.

Depth-first traversal (recursive):

* Mark all vertices as “unvisited”
* Visit vertex 1
* To visit a vertex v:

* mark 1t
* (recursively) visit all unmarked vertices
connected to v by an edge

Solves some simple graph problems:
connectivity, cycles

Basis for solving difficult graph problems:
biconnectivity, planarity
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Implementation of depth-first traversal
(adjacency lists)

class Vertex {
String name;
List<Edge> adj;
boolean visited;

void visit () {
visited = true;
for (Edge e : adj) {
Vertex w = e.dest;
if (!w.visited)
w.visit();

Time complexity: O(IEl)




Depth-first traversal of a component
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Depth-first traversal of a component
results in a depth-first tree

A depth-first traversal of a connected graph represented by
adjacency lists requires O(IEl) time
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Non-recursive
depth-first traversal

Use an explicit stack of vertices.

void traverse(Vertex startVertex) {
Stack<Vertex> stack = new Stack<Vertex>();
stack.push(startVertex);
startVertex.visited = true;
while (!stack.empty()) {
Vertex v = stack.pop();
for (Edge e : v.adj) {
Vertex w = e.dest;
if (!w.visited) {
stack.push(w);
w.visited = true;




Breadth-first traversal

If the stack is replaced by a queue, the graph will be traversed in
breadth-first order (level order).

void traverse(Vertex startVertex) {
Queue<Vertex> queue = new LinkedList<>();
queue.add(startVertex);
startVertex.visited = true;
while (!queue.isEmpty()) {
Vertex v = queue.remove();
for (Edge e : v.adj) {
Vertex w = e.dest;
if (!w.visited) {
queue.add(w) ;
w.visited = true;




Breadth-first traversal of a component
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Breadth-first traversal of a component
results in a breadth-first tree
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A breadth-first traversal of a connected graph represented by
adjacency lists requires O(IEl) time
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Depth-first traversal versus
breadth-first traversal
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Best-first traversal

If the queue is replaced by a priority queue, the graph will be
traversed in best-first order.

Queue<Vertex> queue = new PriorityQueue<>();

Class vertex should implement the Comparable interface, or

the priority queue should rely on a supplied Comparator object.

O(IEl) insertions and O(IVl) removals; each takes O(logIVl)
time for a heap-based priority queue.

Time complexity: O((IVI+IEl)logIWVl)
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Shortest paths
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The shortest path problem

Find the shortest path from vertex A to vertex B

Unweighted shortest path (minimize the number of edges):
Use breadth-first traversal.
Traverse the graph starting at A, using a queue.

Weighted shortest path (find the “cheapest” path):
Use best-first traversal (Dijkstra’s algorithm):
Traverse the graph starting at A, using a priority queue.
The priority of each unvisited vertex is the cost of the
currently cheapest path from A to that vertex.
Works only for graphs with non-negative weights.
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figure 144

An abstract scenario
of the data structures
used in a shortest-
path calculation, with
an input graph taken
from a file. The
shortest weighted
path fromAto Cis A to
géo E to D to C (cost is

Starting vertex

Goal vertex

Result

dist prev name  adj

D C 10 0 D e 3 (23),1 (10) |
N 1 c | —» 2(19) |
A D 87 2 A e 0(87).3 (12) |
E D 43
3 E 1t 3 B ] 4(11) |
C A 19 4 L e 0(43) |
Input Graph table
D (0) E (4)
B (3)
A@) Cc()
Visual representation of graph Dictionary
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figure 14.5

D C 10

AB 12 Data structures used
D B 23 in a shortest-path

A D 8 calculation, with an
ED 43 input graph taken

B E 11 from a file; the

C A 19 shortest weighted

path from A to Cis
AtoBtoEtoDtoC
Input (cost is 76).
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Legend: Dark-bordered boxes are Vertex objects. The unshaded portion in each box
contains the name and adjacency list and does not change when shortest-path computation
is performed. Each adjacency list entgf contains an Edge that stores a reference to another
Vertex object and the edge cost. Shaded portion is dist and prey, filled in after shortest path
computation runs.

Dark arrows emanate from vertexMap. Light arrows are adjacency list entries. Dashed arrows
are the prev data member that results from a shortest-path computation.
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Class Edge

// Represents an edge in the graph. figure 14.6
class Edge The basic item stored
{ in an adjacency list
public Vertex dest; // Second vertex in Edge
public double cost; // Edge cost
public Edge( Vertex d, double c )
{
dest = d;
cost = C;
}
}
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Class Vertex

/ Represents a vertex in the graph.
lass Vertex

pubTic String name; // Vertex name

public List<Edge> adj; // Adjacent vertices

public double dist; // Cost

public Vertex prev; // Previous vertex on shortest path
public int scratch;// Extra variable used in algorithm

public Vertex( String nm )
{ name = nm; adj = new LinkedList<Edge>( ); reset( ); }

public void reset( )
{ dist = Graph.INFINITY; prev = null; scratch = 0; }

figure 14.7

The Vertex class
stores information for
each vertex
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1 // Graph class: evaluate shortest paths.

2 //

3 // CONSTRUCTION: with no parameters.

4

5 // ******************PUBLIC OPERATIONS**********************

6 // void addEdge( String v, String w, double cvw )

7// --> Add additional edge

8 // void printPath( String w ) --> Print path after alg is run
9 // void unweighted( String s ) --> Single-source unweighted

10 // void dijkstra( String s ) --> Single-source weighted

11 // void negative( String s ) --> Single-source negative weighted
12 // void acyclic( String s ) --> Single-source acyclic

13 // ******************ERRORS*********************************
14 // Some error checking is performed to make sure that graph is ok

15 // and that graph satisfies properties needed by each
16 // algorithm. Exceptions are thrown if errors are detected.

17

18 public class Graph

19 {

20 public static final double INFINITY = Double.MAX_VALUE;

21

22 public void addEdge( String sourceName, String destName, double cost )
23 { /* Figure 14.10 */ }

24 public void printPath( String destName )

25 { /* Figure 14.13 */ }

26 public void unweighted( String startName )

27 { /* Figure 14.22 */ }

28 ublic void dijkstra( String startName ) .
2o U0 )% Foure 140743 Shortest-path algorithms
30 public void negative( String startName )

31 { /* Figure 14.29 */ }

32 public void acyclic( String startName )

33 { /* Figure 14.32 */ }

34

35 private Vertex getVertex( String vertexName )

36 { /* Figure 14.9 */ }

37 private void printPath( Vertex dest )

38 { /* Figure 14.12 */ }

39 private void clearAl1( )

40 { /* Figure 14.11 */ }

4

42 private Map<String,Vertex> vertexMap = new HashMap<String,Vertex>( );
43 }

44

45 // Used to signal violations of preconditions for
46 // various shortest path algorithms.
47 class GraphException extends RuntimeException

48 {
49 public GraphException( String name )
50 { super( name ); }
51 }
figure 14.8

The Graph class skeleton
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/**

* If vertexName is not present, add it to vertexMap.

* In either case, return the Vertex.

*/

private Vertex getVertex( String vertexName )

{

Vertex v = vertexMap.get( vertexName );
if( v ==null)

{
v = new Vertex( vertexName );
vertexMap.put( vertexName, v );
}
return v;

figure 14.9

The getVertex routine
returns the Vertex
object that represents
vertexName, creatin
the object if it needs
to do so
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2 * Add a new edge to the graph.
3 */
4 public void addEdge( String sourceName, String destName, double cost )
5 {
6 Vertex v = getVertex( sourceName );
7 Vertex w = getVertex( destName );
8 v.adj.add( new Edge( w, cost ) );
9 }
figure 14.10
Add an edge to the graph
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figure 14.11

Private routine for
initializing the output
members for use by
the shortest-path
algorithms

1
2
3
4
5
6
7
8
9

/**

* Initializes the vertex output info prior to running

* any shortest path algorithm.

*/
private void clearAl1( )
{

for( Vertex v : vertexMap.values( ) )
v.reset( );
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figure 14.12

A recursive routine for
printing the shortest
path
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/**
* Recursive routine to print shortest path to dest
* after running shortest path algorithm. The path
* is known to exist.
*/
private void printPath( Vertex dest )
{
if( dest.prev != null )
{
printPath( dest.prev );
System.out.print( " to " );

}

System.out.print( dest.name );
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figure 14.13

A routine for printing
the shortest path by
consulting the graph
table (see Figure
14.5)

NS WON =

/**
* Driver routine to handle unreachables and print total cost.
* It calls recursive routine to print shortest path to
* destNode after a shortest path algorithm has run.
*/
public void printPath( String destName )
{
Vertex w = vertexMap.get( destName );
if(w==null)
throw new NoSuchETementException( );
else if( w.dist == INFINITY )
System.out.printin( destName +
else

{

is unreachable" );

System.out.print( "(Cost is: " + w.dist + ") " );
printPath( w );
System.out.printin( );
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Input format:
source_name dest_name cost

1 /**
2 * A main routine that
3 * 1. Reads a file (supplied as a command-Tine parameter)
4 * containing edges.
5 * 2. Forms the graph.
6 * 3. Repeatedly prompts for two vertices and
7 * runs the shortest path algorithm.
8 * The data file is a sequence of lines of the format
9 * source destination.
10 */
11 public static void main( String [ ] args )
12
13 Graph g = new Graph( );
14 try
15
16 FileReader fin = new FileReader( args[0] );
17 BufferedReader graphFile = new BufferedReader( fin );
18
19 // Read the edges and insert
20 String Tline;
21 while( ( Tline = graphFile.readLine( ) ) !'= null )
22 {
23 StringTokenizer st = new StringTokenizer( Tine );
24
25 try
26
27 if( st.countTokens( ) !=3)
28 {
29 System.err.printIn( "Skipping bad line " + Tine );
30 continue;
31 }
32 String source = st.nextToken( );
33 String dest = st.nextToken( );
34 int cost = Integer.parselnt( st.nextToken( ) );
35 g.addEdge( source, dest, cost );
36
37 catch( NumberFormatException e )
38 { System.err.printin( "Skipping bad Tine " + line ); }
39
40 }
4 catch( IOException e )
42 { System.err.printin( e ); }
43
44 System.out.printin( "File read..." );
45 System.out.printIn( g.vertexMap.size( ) + " vertices" );
46
47 BufferedReader in = new BufferedReader(
48 new InputStreamReader( System.in ) );
49 while( processRequest( in, g ) )
50 ;
51 }
figure 14.14

A simple main
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/**

* Process a request; return false if end of file.

*/

public static boolean processRequest( BufferedReader in, Graph g )

{

String startName = null;
String destName = null;
String alg = null;

try
{
System.out.print( "Enter start node:" );
if( ( startName = in.readLine( ) ) == null )
return false;
System.out.print( "Enter destination node:" );
if( ( destName = in.readLine( ) ) == null )
return false;
System.out.print( " Enter algorithm (u, d, n, a ): " );
if( ( alg = in.readLine( ) ) == null )
return false;

if( alg.equals( "u" ) )
g.unweighted( startName );
else if( alg.equals( "d" ) )
g.dijkstra( startName );
else if( alg.equals( "n" ) )
g.negative( startName );
else if( alg.equals( "a" ) )
g.acyclic( startName );

g.printPath( destName );

catch( IOException e )

{ System.err.printin( e ); }
catch( NoSuchElementException e )
{ System.err.printin( e ); }

catch( GraphException e )
{ System.err.printin( e ); }
return true;

figure 14.15

For testing purposes,
processRequest calls

one of the shortest-

path algorithms
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figure 14.17

The graph after all the
vertices whose path
length from the
starting vertex is 1
have been found

Unweighted shortest path

(breadth-first traversal)

figure 14.16

The graph after the
starting vertex has
been marked as
reachable in zero
edges
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figure 14.18

The graph after all the
vertices whose
shortest path from the
starting vertex is 2
have been found

figure 14.19

The final shortest
paths
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figure 14.20

If wis adjacent to v
and there is a path to
v, there also is a path
tow.

(of cost D= D +1)
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figure 14.21

Searching the graph
in the unweiﬁhted
shortest-pat
computation. The
darkest-shaded
vertices have already
been completely

rocessed, the
ightest vertices have
not yet been used as
v, and the medium-
shaded vertex is the
current vertex, v. The
stages proceed left to
right, top to bottom, as
numbered.

We maintain a roving
eyeball that hops from
vertex to vertex and is
initially at V.

Roving eyeball

da. strejfende gjexble

51




{

O~NOOOOAE, WN -

/**

* Single-source unweighted shortest-path algorithm.

*/

public void unweighted( String startName )

clearAl11( );
Vertex start = vertexMap.get( startName );
if( start == null )
throw new NoSuchElementException( "Start vertex not found" );

Queue<Vertex> q = new LinkedList<Vertex>( );
q.add( start ); start.dist = 0;

while( !q.isEmpty( ) )

{
Vertex v = q.remove( );
for( Edge e : v.adj )
{

Vertex w = e.dest;

if( w.dist == INFINITY )

{
w.dist = v.dist + 1;
w.prev = v;
g.add( w );

figure 14.22
The unweighted shortest-path algorithm, using breadth-first search Time complexity: O(IEl)
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Positive weighted shortest path

(Dijkstra’s algorithm, 1959) -

E. W. Dijkstra, 1930-2002

For a given source vertex in the graph, the algorithm finds the
path with lowest cost (i.e. the shortest path) between that vertex
and every other vertex.

It can also be used for finding costs of shortest paths from a
single vertex to a single destination vertex by stopping the
algorithm once the shortest path to the destination vertex has
been determined.
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Dijkstra’s algorithm

Let the node at which we are starting be called the initial node. Let the
distance of node Y be the distance from the initial node to Y.

1. Assign to every node a distance value. Set it to zero for our initial
node and to infinity for all other nodes.

2. Mark all nodes as unvisited. Set initial node as current.

3. For the current node, consider all its unvisited neighbors and
calculate their tentative distance (from the initial node). If this
distance is less than the previously recorded distance (infinity in
the beginning, zero for the initial node), overwrite the distance.

4.  When we are done considering all neighbors of the current node,
mark it as visited. A visited node will not be checked ever again;
its distance recorded now is final and minimal.

5. If all nodes have been visited, finish. Otherwise, set the unvisited
node with the smallest distance (from the initial node) as the next
“current node” and continue from step 3.
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figure 14.23

The eyeball is at v and
w is adjacent, so D,
%hould be lowered to
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Example continued
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figure 14.25

Stages of Dijkstra's
algorithm. The
conventions are the
same as those in

Figure 14.21.
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Dijkstra’s algorithm used for solving a
robot planning problem
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Proof of Dijkstra’s algorithm

figure 14.24

If D, is minimal
among all unseen
vertices and if all edge
costs are nonnegative,
D, represents the
shortest path.

Suppose there is a path from S to v of length less than D,.

This path must go through a vertex u that has not yet been visited.
But since the length of the path from S to u, D, 1s less than D, we
would have chosen u instead of v. Hence we have a contradiction.
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Implementation of Dijkstra’s algorithm

void dijkstra(Vertex startVertex) {
clearAll();
PriorityQueue<Vertex> pg = new PriorityQueue<>();
pg.add(startVertex); startVertex.dist = 0;
while (!pg.isEmpty()) {
Vertex v = pqg.remove();
for (Edge e : v.adj) {
Vertex w = e.dest;
if (v.dist + e.cost < w.dist) {
w.dist = v.dist + e.cost;
w.prev = v;
pg.update(w); // error: no such method!

pg.update(w): If wis not in pqg, then add w to pqg; otherwise, update pg by
reestablishing its ordering property. Unfortunately, the update method is
not available in Java’s PriorityQueue.
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Class Path

1 // Represents an entry in the priority queue for Dijkstra's algorithm.
2 class Path implements Comparable<Path>

3 {

4 public Vertex dest; // w

5 public double cost; // d(w)
6

7 public Path( Vertex d, double c )
8 {

9 dest = d;

10 cost = ¢;

11 }

12

13 public int compareTo( Path rhs )
14 {

15 double otherCost = rhs.cost;
16

17 return cost < otherCost ? -1 : cost > otherCost ? 1 : 0;

figure 14.26

Basic item stored in the priority queue
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1 /**
2 * Single-source weighted shortest-path algorithm.
3 ¥/
4 pubTic void dijkstra( String startName )
5 {
6 PriorityQueue<Path> pq = new PriorityQueue<Path>( );
7
8 Vertex start = vertexMap.get( startName );
9 if( start == null )
10 throw new NoSuchElementException( "Start vertex not found" );
11
12 clearAl11( );
13 pq.add( new Path( start, 0 ) ); start.dist = 0;
14
15 int nodesSeen = 0;
16 while( !pq.isEmpty( ) && nodesSeen < vertexMap.size( ) )
17 {
18 Path vrec = pq.remove( );
19 Vertex v = vrec.dest;
20 if( v.scratch !'= 0 ) // already processed v
21 continue;
22
23 v.scratch = 1;
24 nodesSeen++;
25
26 for( Edge e : v.adj )
27 {
28 Vertex w = e.dest;
29 double cvw = e.cost;
30
31 if(cw < 0)
32 throw new GraphException( "Graph has negative edges" );
33
34 if( w.dist > v.dist + cvww )
35 {
36 w.dist = v.dist + cvw;
37 w.prev = v;
38 pg.add( new Path( w, w.dist ) );
39 }
40 }
41 }
42 }
figure 14.27

A positive-weighted, shortest-path algorithm: Dijkstra’s algorithm

Time complexity:
O(IEl1ogIV1)
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Negative-weighted shortest path

(The Bellman-Ford algorithm, 1958)

clearAll();

for (int i =

void bellmanFord(Vertex startVertex) {

startVertex.dist = 0;
Collection<Vertex> vertices = vertexMap.values();

1l; i < vertices.size(); i++) {

for (Vertex v : vertices) {

for (Edge e : v.adj) {
Vertex w = e

if (v.dist + e.cost < w.dist) {

.dest;

v.dist + e.cost;
vy

w.dist
W.prev

Iteration i finds all shortest paths from startvVertex that uses i or fewer edges.

Time complexity: O(IEIIV1)
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Bellman-Ford example
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figure 14.28

A graph with a
negative-cost cycle

Check for negative-cost cycles (add this code after the loop):

for (Vertex v : vertices) {
for (Edge e : v.adj) {
Vertex w = e.dest;
if (v.dist + e.cost < w.dist)
error ("Negative-cost cycle detected");
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1 /**

2 * Single-source negative-weighted shortest-path algorithm.

3 */

4 pubTic void negative( String startName )

5

6 clearA11( );

7

8 Vertex start = vertexMap.get( startName );

9 if( start == null )

10 throw new NoSuchElementException( "Start vertex not found" );
11

12 Queue<Vertex> q = new LinkedList<Vertex>( );

13 g.add( start ); start.dist = 0; start.scratch++;

14

15 while( !q.isEmpty( ) )

16

17 Vertex v = q.removeFirst( );

18 if( v.scratch++ > 2 * vertexMap.size( ) )

19 throw new GraphException( "Negative cycle detected" );
20
21 for( Edge e : v.adj )
22 {
23 Vertex w = e.dest;
24 double cvw = e.cost;
25
26 if( w.dist > v.dist + cvw )
27 {
28 w.dist = v.dist + cvw;
29 w.prev = v;

30 // Enqueue only if not already on the queue
31 if( w.scratch++ % 2 == 0 )

32 q.add( w);

33 else

34 w.scratch--; // undo the enqueue increment
35 }

36 }

37 }

38 }

v.scratch is odd when
vertex v is on the queue.
v.scratch/2 tells us
how many times v has
left the queue.

An edge can dequeue at
most O(IV1) times.
Time complexity: O(IEIIVI)

figure 14.29

A negative-weighted, shortest-path algorithm: Negative edges are allowed.
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DAGS

An oriented graph without cycles is called a DAG

(Directed Acyclic Graph).

A DAG may, for instance, be used for modeling an activity
network. Directed edges are used to specify that some
activities must be finished before an activity can start.
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Topological sorting

The vertices of a DAG can be ordered so that if there is a path from u
to v, then v appears after u in the ordering. This is called a topological
sort of the graph.

a DAG a topological ordering

Topological ordering: All directed edges point from left to right
[ not necessarily unique |
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A topological sorting algorithm

(1) Create an empty queue
(2) Choose a vertex without any ingoing edges

(3) Insert the vertex in the queue. Remove the vertex and all
outgoing edges from the graph.

(4) Repeat (2) and (3) while the graph is not empty

Now the queue contains the vertices in topological order
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figure 14.30

Atopological sort. The
conventions are the
same as those in
Figure 14.21.

V,Vy V, VsV, V, Vs
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Java implementation

List<Vertex> tologicalOrder() {
Collection<Vertex> vertices = vertexMap.values();
for (Vertex v : vertices)
v.scratch = 0; // v's indegree = 0
for (Vertex v : vertices)
for (Edge e : v.adj)
e.dest.scratch++;
Queue<Vertex> q = new LinkedList<>();
for (Vertex v : vertices)
if (v.scratch == 0)
g.add(v);
List<Vertex> result = new ArrayList<>();
int iterations = 0;
while (!q.isEmpty() && +t+iterations <= vertices.size())
Vertex v = g.remove();
result.add(v);
for (Edge e : v.adj)
if (--e.dest.scratch == 0)
g.add(e.dest);
}

return iterations == vertices.size() ? result : null;

{

73




figure 14.31

same as those in
Figure 14.21.
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51 }

* Single-source negative-weighted acyclic-graph shortest-path algorithm.
*

pubTic void acyclic( String startName )

Vertex start = vertexMap.get( startName );
if( start == null )

throw new NoSuchElementException( "Start vertex not found" );

clearAl1( );
Queue<Vertex> q = new LinkedList<Vertex>( );
start.dist = 0;

// Compute the indegrees
Collection<Vertex> vertexSet = vertexMap.values( );
for( Vertex v : vertexSet )
for( Edge e : v.adj )
e.dest.scratch++;

// Enqueue vertices of indegree zero
for( Vertex v : vertexSet )
if( v.scratch == 0 )
q.add( v );

int iterations;
for( iterations = 0; !q.isEmpty( ); iterations++ )

Vertex v = g.remove( );
for( Edge e : v.adj )
{

Vertex w = e.dest;
double cvw = e.cost;

if( --w.scratch == 0 )
g.add( w );

if( v.dist == INFINITY )
continue;

v.dist + cww )

v

if( w.dist
{

w.dist
w.prev

v.dist + cww;
Vi

}

if( iterations != vertexMap.size( ) )

throw new GraphException( "Graph has a cycle!" );

figure 14.32

A shortest-path algorithm for acyclic graphs

Uses topological sort

Time complexity: O(IE)
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Complexity of shortest path algorithms

Type of Graph Problem
Unweighted

Weighted, no negative edges
Weighted, negative edges

Weighted, acyclic

Running Time
O(|El)
O(|E|log|V])
O(|El - V)
O(|El)

Comments
Breadth-first search
Dijkstra’s algorithm
Bellman—Ford algorithm

Uses topological sort

figure 14.38

Worst-case running
times of various graph
algorithms
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figure 14.33

An activity-node
graph

figure 14.34

An event-node graph
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figure 14.35

Earliest completion
times

figure 14.36

Latest completion
times
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slack
figure 14.37

Earliest completion
time, latest
completion time, and
slack (additional edge
item)

Some activities have zero slack. These are critical activities that must be

finished on schedule. A path consisting entirely of zero-slack edges is a
critical path.
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Problem complexity
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Problem complexity

For a large class of important problems no fast solution algorithms are
known.

An efficient algorithm: running time is limited by some polynomial

[ O(n°) |

A problem that can be solved by a efficient algorithm is said to be easy.

An inefficient algorithm: running time grows at least exponentially

[ (c") ]

A problem is said to be hard or intractable if there does not exist a
polynomial-time algorithm for solving the problem.
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Examples of hard problems

The traveling salesman problem
A salesman must visit N cities. Find a travel route
that minimizes his costs.

Job scheduling

A number of jobs of varying duration are to be
executed on two identical machines before a given
deadline. Is it possible to meet the deadline?

Satisfiability

Is it possible to determine if the variables in a
Boolean expression can be assigned in such a way
as to make the expression evaluate to true?

(avb)A(—avb)
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More examples of hard problems

Longest path
Find the longest simple path between two vertices of a graph.

Partitioning

Given at set of integers. Is it possible to partition the set into
two subsets so that the sum of the elements in each of the two
subsets is the same?

3-coloring
Is it possible to color the vertices of a graph by only three colors
such that no two adjacent vertices have the same color?
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NP-complete problems

For none of these problems do we know an algorithm that solves the
problem in polynomial time.

All experts are convinced that such algorithms do not exist. However,
this has not yet been proved.

The problems belong to the class of problems called NP-complete
problems.
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NP-completeness

An NP-complete problem is a problem that can be solved in polynomial
time on a nondeterministic machine.

A nondeterministic machine has the wonderful ability to make the correct
choice in any situation where a choice is to be made.

A usual deterministic machine may be used to simulate correct choices in
exponential time by trying each possible choice.

If only one NP-complete problem can be solved in polynomial time, every
NP-complete problem can be solved in polynomial time.
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Decidability

Undecidable problems are decision problems which no algorithm
can decide.

Examples:
® Prove that an algorithm always terminates (the stop problem)
¢ Decide if a formula in the predicate logic is valid

® Decide if two syntax descriptions define the same language
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(a)

(b)

Termination?

while (x != 1)
X = X - 2;

while (x != 1)
if (x % 2 == 0)
x / 2;

X
else
X =3 *x + 1;

Collatz sequences:
12,6,3,10,5,16,8,4,2,1
9,28,14,7,22,11,34,17,52,26,13,40,20,10,5,16,8 42,1

Collatz conjecture (1937): No matter what number you start

with, you will always eventually reach 1.
The conjecture has still not been proven!
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Termination?

(continued)
(c)
for (int x = 3; ; xt++)
for (int a = 1; a <= x; at+)
for (int b = 1; b <= x; b++)
for (int ¢ = 1; c <= x; c++)
for (int n = 3; n <= x; nt++)
if (Math.pow(a,n) + Math.pow(b,n) == Math.pow(c,n))
System.exit(0);

The program terminates, if and only if Fermat's last theorem 1s false.

For n = 3, no three positive integers a, b, and c¢ can satisfy a"+ b" = c".

P. de Fermat (1601-65)

The theorem was proven in 1995
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The halting problem

It is impossible to design an algorithm that for any algorithm
can decide if it terminates.

Proof (by contradiction):
Assume there exists a method terminates (p), which for

any method p returns true if p terminates; otherwise, false.

Now define:

void p() {
while (terminates(p)) /* do nothing */;

}

What is the result of the call terminates(p)?
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