
1	

Applications II	

2	

Agenda	

Utilities	

•  File-compression (Huffman’s algorithm)	

•  Cross-referencing	

Simulation	

• Discrete event simulation	

• Carwash simulation	

• Call bank simulation	

3	

File compression	

Compression reduces the size of a file	

•  to save space when storing the file	

•  save time when transmitting it	

Many files have low information content. Compression
reduces redundancy (unnecessary information).	

Compression is used for	

	

text: 	

 	

some letters are more frequent than others	

	

graphics: 	

large, uniformly colored areas	

	

sound: 	

 	

repeating patters 	

 	

 	

 	

4	

Redundancy in text	

removal of vowels	

Yxx cxn xndxrstxnd whxt x xm wrxtxng xvxn xf x rxplxcx
xll thx vxwxls wxth xn 'x' (t gts lttl hrdr f y dn't kn whr th
vwls r).	

5	

Compression by counting repetitions.	

Compression of text:	

The string 	

 	

 	

 	

 	

 	

	

AAAABBBAABBBBBCCCCCCCDABCBAAABBBBCCCD	

may be encoded as 	

 	

 	

 	

 	

 	

	

4A3BAA5B8CDABCB3A4B3CD	

Using an escape character (’\’): 	

 	

 	

 	

 	

 	

	

\4A\3BAA\5B\8CDABCB\3A\4B\3CD	

Run-length encoding is normally not very efficient for text files.	

Run-length encoding	

6	

Run-length encoding	

Compression of (black and white raster) graphics:	

000000000000011111111111111000000000 	

13 14 9	

000000000001111111111111111110000000 	

11 18 7	

000000001111111111111111111111110000 	

 8 24 4	

000000011111111111111111111111111000 	

 7 26 3	

000001111111111111111111111111111110 	

 5 30 1	

000011111110000000000000000001111111 	

 4 7 18 7	

000011111000000000000000000000011111 	

 4 5 22 5	

000011100000000000000000000000000111 	

 4 3 26 3	

000011100000000000000000000000000111 	

 4 3 26 3	

000011100000000000000000000000000111 	

 4 3 26 3	

000011100000000000000000000000000111 	

 4 3 26 3	

000001111000000000000000000000001110 	

 5 4 23 3 1	

000000011100000000000000000000111000 	

 7 3 20 3 3	

011111111111111111111111111111111111 	

 1 35	

011111111111111111111111111111111111 	

 1 35	

011111111111111111111111111111111111 	

 1 35	

011111111111111111111111111111111111 	

 1 35	

011111111111111111111111111111111111 	

 1 35	

011000000000000000000000000000000011 	

 1 2 31 2	

Saving:	

 (19*36 - 63*6) bits = 306 bits	

corresponding to 45%	

7	

Fixed-length encoding	

The string 	

 	

 	

 	

 	

 	

 	

 	

 	

	

ABRACADABRA ! !(11 characters)	

occupies 	

	

11 * 8 bits = 88 bits 	

 	

in byte code	

	

11 * 5 bits = 55 bits 	

 	

in 5-bit code	

	

11 * 3 bits = 33 bits 	

 	

in 3-bit code (only 5 different letters) 	

	

 	

 	

 	

 	

 	

	

D occurs only once, whereas A occurs 5 times.	

We can use short codes for letters that occur frequently.	

8	

Variable-length encoding	

If A = 0, B = 1, R = 01, C = 10, and D = 11, then	

	

	

ABRACADABRA ! !	

may be encoded as	

	

 0 1 01 0 10 0 11 0 1 01 0 !(only 15 bits)	

The cause of the problem is that some codes are prefix (start) of
others. For instance, the code for A is a prefix of the code for R.

	

 	

	

However, this code can only be decoded (decompressed) if we
use delimiters (for instance, spaces)	

9	

Prefix codes	

A prefix code for the letters A, B, C, D, and R:	

 	

 	

	

A = 11, B = 00, C = 010, D = 10, R = 011.	

The string ABRACADABRA is encoded as 	

 	

	

1100011110101110110001111 !(25 bits) 	

	

A code is called a prefix code if there is no valid code word
that is a prefix of any other valid code word. 	

The string can be decoded unambiguously.	

However, this prefix code is not optimal.	

An optimal prefix code can be determined by Huffman’s algorithm. 	

10	

Binary tries	

The code is represented by a tree, a so-called trie (pronounced try).	

A	

B	

 R	

 C	

 D	

0	

 1	

0	

 1	

1	

 1	

0	

 0	

The characters are stored in the leaves.	

A left branch corresponds to 0. 	

A right branch corresponds to 1.	

Code: A = 0, B = 100, C = 110, D = 111, R = 101.	

The string ABRACADABRA is encoded as 	

	

01001010110011101001010! !(23 bits) 	

	

11	

Huffman’s algorithm 	

(D. A. Huffman, 1952)	

Count frequency of occurrence for the characters in the string.	

(or use a pre-defined frequency table).	

Character Frequency	

 A 5	

 B 2	

 C 1	

 D 1	

 R 2	

Build a trie by successively combining the two smallest frequencies.	

12	

Huffman’s algorithm (1952)	

A	

5	

B	

2	

R	

2	

C	

1	

D	

1	

2	

4	

11	

Start with a single node tree for each character.	

As long as there is more than one tree in the forest:	

 combine the two “cheapest” trees into one tree	

 by adding a new node as root.	

The tree is optimal (i.e., it minimizes ∑depthi*frequencyi) – but
it need not be unique.	

6	

David Huffman	

Greedy algorithm	

13	

14	

15	

16	

class HuffmanTree {!
 HuffmanTree(Node root) {!
 this.root = root;!
 }!

!!
 Node root;!
}!

!
class Node {...}!
!
class Character extends Node {...}!

Implementation of Huffman’s algorithm	

Representation of the tree:	

17	

class Node implements Comparable<Node> {!
 Node(int w) { weight = w; }!
!
 Node(int w, Node l, Node r) { !
 weight = w; left = l; right = r; !
 }!

!!
 public int compareTo(Node n) {!
 return weight - n.weight;!

!}!
!!

 int weight;!
 Node left, right;!
}!

weight contains the sum of the frequencies of the
leaves in the tree that has this node as root.	

18	

class Character extends Node {!
 Character(char c, int w) {!
 super(w); !
 character = c;!
 }!

!!
 char character;!
}!

Character objects are leaves of the tree	

19	

n1!

left! right!

n2!

HuffmanTree buildHuffmanTree(List<Character> list) {!
 PriorityQueue<Node> pq = new PriorityQueue<>();!
 for (Character c : list)!

! !pq.add(c);!
 while (pq.size() > 1) {!
 Node n1 = pq.remove();!
 Node n2 = pq.remove();!
 pq.add(new Node(n1.weight + n2.weight, n1, n2));!
 }!
 return new HuffmanTree(pq.remove());!
}!

20	

21	

22	

23	

24	

left! right!

parent!

25	

26	

27	

28	

29	

30	

31	

32	

33	

Problems for Huffman’s algorithm	

•  The encoding table must be transmitted	

	

•  Two parses of the file (frequency counting + encoding)	

•  Typically 25% space reduction, but not optimal	

34	

LZW compression	

(Lempel, Ziv and Welch, 1977)	

Successively builds a dictionary in form of a trie.	

Example: ABRACADABRA!

0

A!
1	

B!
2	

R!
3	

C!
4	

D!
5	

B!
6	

A!
7	

Encoding: ABR1C1D1B3A!

35	

A cross-reference generator	

Development of a program that scans a Java source file,
sorts the identifiers, and outputs the identifiers, along with
the line numbers on which they occur.	

	

Identifiers that occur inside comments and string constants
should not be included. 	

36	

Example	

/* Trivial application that displays a string */!
public class TrivialApplication {!
 public static void main(String[] args) {!
 System.out.println("Hello World!");!
 }!
}!

input:	

output:	

 String: 3!
System: 4!
TrivialApplication: 2!
args: 3!
class: 2!
main: 3!
out: 4!
println: 4!
public: 2, 3!
static: 3!
void: 3!

1	

2	

3	

4	

5	

6	

37	

Data structures and algorithm	

Build a binary search tree of all found identifiers.	

Each node contains an identifier and a list of the lines
on which it occurs.	

Finally, print the nodes of the tree in sorted order. 	

Map<String,List<Integer>> theIdentifiers =
!new TreeMap<>();!

38	

public void generateCrossReference() {!
 Map<String,List<Integer>> theIdentifiers = ! !!
 new TreeMap<>();!
 String id;!
 while ((id = tok.getNextID()) != null) {!
 List<Integer> lines = theIdentifiers.get(id);!
 if (lines == null) {!
 lines = new ArrayList<Integer>();!
 theIdentifiers.put(id, lines); !
 }!
 lines.add(tok.getLineNumber())); !
 }!
 // ... print the cross-references ...!
}!

Building the map	

39	

Example of a binary search tree	

key: "TrivialApplication"!

value: [2]!

key: "main"!

value: [2] !

key: "public"!

value: [2 3] !

key: "static"!

value: [3] !

key: "void"!

value: [3] !

key: "println"!

value: [4] !

key: "out"!

value: [4] !

key: "class"!

value: [2] !

key: "System"!

value: [4]!

key: "args"!

value: [3] !

key: "String"!

value: [3] !

40	

41	

42	

43	

44	

45	

Simulation	

46	

���
���
���
���
���
	

Experiments with���
models ���

on a computer	

What is simulation?	

47	

Model���
Representation of a system	

Models and systems	

System	

A chosen extract of reality	

48	

Classification of models	

•  Mental 	

 	

(e.g., a person’s perception of an object, a “world view”)	

• Physical 	

 	

 	

	

(e.g., a model railway, a wax figure, a globe)	

•  Symbolic 	

	

(e.g., H2 + 0 water, F = ma)	

⇒

49	

Language models
Oral and written descriptions

Graphic models
Pictures, drawings

Schematic models
Diagrams

Non-mathematical models

Mathematical models

Symbolic models

50	

Mathematical models (1)	

•  Static	

	

Representation of a system in a given fixed state	

•  Dynamic 	

 Representation of a system’s behavior over time	

51	

•  	

Analytical 	

 	

 	

 	

 	

 	

 	

 	

Relevant questions about the model can be 	

 	

	

answered by mathematical reasoning 	

 	

 	

 	

 	

	

(they have a closed form solution)	

Mathematical models (2)	

•  	

Non-analytical 	

	

Relevant questions about the model are
	

mathematically unmanageable 	

 	

 	

	

(holds for most real-world models) 	

52	

Simulation 	

a possible narrowing	

 Simulation is experimentation with dynamic,
non-analytical models on a computer	

 	

	

	

	

 	

53	

Application examples	

•  Biology 	

 	

 	

 	

an ecosystem (e.g., the life in a lake), cell growth, the
human circulatory system, vegetation)	

	

•  Physics 	

 	

 	

nuclear processes, mechanical movement
(e.g., solar systems, launching of rockets)	

	

•  Chemistry 	

 	

 	

chemical reactions, chemical process plants	

	

•  Geography 	

 	

 	

 	

urban development, growth of a population 	

	

•  Computer science 	

 	

 	

computers, networks, video games, robotics	

	

•  Management science 	

 	

organizational decision making 	

54	

Modeling is ���
purposive	

Models can neither be false or true. 	

 	

 	

 	

They can be more or less appropriate in relation to their purpose.	

	

 	

 	

 	

 	

 	

 	

A good model is a model that serves its purpose. 	

 	

The first step of a modeling process is a clarification of what the
model is to be used for.	

	

Abstraction and aggregation are used for obtaining manageable
models.	

	

 	

Abstraction: Ignorance from irrelevant properties	

 	

 	

	

 	

Aggregation: Grouping several things together and 	

 	

	

 	

 	

 considering them as a whole	

55	

•  Continuous 	

 	

 	

 	

 	

The state of the model is described by variables that vary
continuously (without jumps).	

	

Dynamic model types	

t	

x = f(t)	

The model is usually expressed as ordinary differential equations
and/or difference equations.	

	

dx
dt

= g(x,t) xnext = xnow + g(xnow ,t)Δt

56	

•  Discrete	

The state of the model is described by variables that vary in
jumps (caused by events). 	

f(t)	

t	

Example: 	

A queue system (customers in a bank, patients in a health centre).	

57	

f(t)	

t	

Examples: 	

 	

 	

 	

 	

	

Refrigerator (the heat exchange with the surroundings is continuous,
whereas the thermostat causes discrete events)	

Elevator (the movement between floors is continuous, whereas start
and stop of the elevator are discrete events). 	

•  Combined continuous and discrete	

	

The state may be described by variables that vary continuously and
are changed in jumps. 	

58	

Reasons for using
simulation	

•  The system does not exist	

	

•  Experiments with the real system are too

expensive, too time-consuming, or too
dangerous	

•  Experiments with the real system are
practically impossible (e.g., the sun system)	

59	

Purpose of simulation	

(1) Decision making	

(2) Insight 	

60	

Difficulties of
simulation	

• May be very expensive, in machine as well as
man resources	

	

• Validation is difficult	

• Collection of data, and analysis and interpretation
of results usually implies good knowledge of
statistics 	

61	

Carwash simulation	

62	

Waiting line	

Car washer	

Served car	

Tearoom	

Car washer	

Simulation of a carwash	

63	

System description	

(1)  The average time between car arrivals has been estimated at 11 minutes. 	

(2) When a car arrives, it goes straight into the car wash if this is idle;
	

otherwise, it must wait in a queue.	

	

(3) As long as cars are waiting, the car wash is in continuous operation serving 	

	

on a first-come basis. 	

	

(4) Each service takes exactly 10 minutes. 	

	

(5) The car washer starts his day in a tearoom and returns there each time he
	

has no work to do. 	

	

(6) The carwash is open 8 hours per day.	

	

(7) All cars that have arrived before the carwash closes down are washed. 	

64	

Purpose of the simulation	

(determines the model)	

The purpose is to evaluate how much waiting time is
reduced by engaging one more car washer. 	

Model type	

	

 A discrete event model	

65	

Simulation paradigms	

(1) Event-based	

 (E.g., “A car arrives”, “A wash is finished”)	

	

(2) Activity-based	

 (E.g., “A car is being washed”)	

	

(3) Process-based	

 (E.g., “A car”, “A car washer”)	

66	

Identification of events	

(1) A car arrives 	

 	

(CarArrival)	

	

(2) A wash is started 	

(StartCarWashing)	

	

(3) A wash is finished 	

(StopCarWashing)	

67	

The package simulation.event	

!public abstract class Event {!
 protected abstract void actions(); !
 public final void schedule(double evTime); !
 public final void cancel();!
 public final static double time();!
 public final static void runSimulation(double period);!
 public final static void stopSimulation();
!}!
!

Events and their associated actions are defined in subclasses of
class Event.	

68	

import simulation.event.*;!
import simset.*;!
import random.*;!
!
public class CarWashSimulation extends Simulation {!
 int noOfCarWashers, noOfCustomers;!
 double openPeriod = 8 * 60, throughTime; !
 Head tearoom = new Head(), waitingLine = new Head();!
 Random random = new Random(7913);!
!
 CarWashSimulation(int n) { noOfCarWashers = n; ... } !

!!
 class CarWasher extends Link {}!
 class Car extends Link { double entryTime = time(); }!
!
 class CarArrival extends Event {...}!
 class StartCarWashing extends Event {...} !
 class StopCarWashing extends Event {...}!
!
 public static void main(String args[]) {!
 new CarWashSimulation(2);!
 } !
}!

69	

The constructor in
CarWashSimulation 	

CarWashSimulation(int n) { !
 noOfCarWashers = n; !
 for (int i = 1; i <= noOfCarWashers; i++)!
 new CarWasher().into(tearoom);!
 new CarArrival().schedule(0);!
 runSimulation(openPeriod + 1000000);!
 report();!
}!

70	

CarArrival	

class CarArrival extends Event { ! !!
 public void actions() {!
 if (time() <= openPeriod) {!
 new Car().into(waitingLine); !
 if (!tearoom.empty()) !
 new StartCarWashing().schedule(time());!
 new CarArrival().schedule(time() + !
 random.negexp(1 / 11.0));!
 }!
 } !!
}!

71	

StartCarWashing	

class StartCarWashing extends Event {!
 public void actions() {!
 CarWasher theCarWasher = (CarWasher) tearoom.first();!
 theCarWasher.out();!
 Car theCar = (Car) waitingLine.first();!
 theCar.out();!
 new StopCarWashing(theCarWasher, theCar).!
 schedule(time() + 10);!
 }!
}!

72	

StopCarWashing	

class StopCarWashing extends Event {!
 CarWasher theCarWasher;!
 Car theCar;!

! !!
 StopCarWashing(CarWasher cw, Car c) { !
 theCarWasher = cw; theCar = c; !
 }!

! !!
 public void actions() {!
 theCarWasher.into(tearoom);!
 if (!waitingLine.empty()) !
 new StartCarWashing().schedule(time());!
 noOfCustomers++;!
 throughTime += time() - theCar.entryTime;!
 }!
}	

73	

The method report	

void report() {!
 System.out.println(noOfCarWashers + !
 " car washer simulation");!
 System.out.println("No.of cars through the system = " + !
 noOfCustomers);!
 System.out.printf("Av.elapsed time = %1.2f\n",!
 throughTime / noOfCustomers);!
}!

74	

1 car washer simulation!
No.of cars through the system = 43!
Av.elapsed time = 29.50!
!
2 car washer simulation!
No.of cars through the system = 43!
Av.elapsed time = 12.46!
!
3 car washer simulation!
No.of cars through the system = 43!
Av.elapsed time = 10.51!

Experimental results	

75	

Scheduled events are kept in a circular two-way list, SQS, sorted in
increasing order of their associated event times. 	

Implementation of the package
simulation.event	

2.33	

 5.3	

 7.24	

 9.8	

0	

SQS	

suc	

pred	

76	

public abstract class Event {!
 protected abstract void actions();!
 ...!
 private final static Event SQS = new Event() {!
 { pred = suc = this; }!
 protected void actions() {}!
 };!
!
 private static double time = 0;!
 !
 private double eventTime;!
 private Event pred, suc;!
}!
!

77	

public void schedule(final double evTime) {!
 if (evTime < time)!
 throw new RuntimeException!
 ("attempt to schedule event in the past");!
 cancel();!
 eventTime = evTime;!
 Event ev = SQS.pred; !
 while (ev.eventTime > eventTime)!
 ev = ev.pred;!
 pred = ev; !
 suc = ev.suc;!
 ev.suc = suc.pred = this;!
}!

5.3	

2.33	

 7.24	

suc	

pred	

ev	

78	

public void cancel() {!
 if (suc != null) {!
 suc.pred = pred;!
 pred.suc = suc;!
 suc = pred = null;!
 }!
}!

suc	

pred	

5.3	

2.33	

 7.24	

79	

public static void runSimulation(double period) {!
 time = 0;!
 while (SQS.suc != SQS) {!
 Event ev = SQS.suc;!
 time = ev.eventTime;!
 if (time > period)!
 break;!
 ev.cancel();!
 ev.actions();!
 }!
 stopSimulation(); !!
}!

public static void stopSimulation() {!
 while (SQS.suc != SQS)!
 SQS.suc.cancel();!
}	

80	

event	

process	

time

wait	
 in	
 queue	
 get	
 washed	

activity	

event	

 event	

activity	

Process-based simulation	

A process is a system component that executes a sequence of
activities in simulated time.	

81	

(1) Car	

	

(2) CarWasher	

	

(3) CarGenerator	

Identification of processes	

82	

Processes and their associated actions are defined in subclasses of
class Process.	

	

!public abstract class Process extends Link {!
 protected abstract void actions();!
!
 public static double time();!
 public static void activate(Process p); !
 public static void hold(double t); !
 public static void passivate();!
 public static void wait(Head q); ! !
!}	

The package javaSimulation	

83	

import javaSimulation.*;!
import javaSimulation.Process;!
!
public class CarWashSimulation extends Process {!
 int noOfCarWashers, noOfCustomers;!
 double openPeriod = 8 * 60, throughTime; !
 Head tearoom = new Head(), waitingLine = new Head();!
 Random random = new Random(7913);!
!
 CarWashSimulation(int n) { noOfCarWashers = n; }!
!
 public void actions() {...} !
!
 class Car extends Process {...} !
 class CarWasher extends Process {...}!
 class CarGenerator extends Process {...}!
!
 public static void main(String args[]) {!
 activate(new CarWashSimulation(2));!
 } !
}!

84	

The actions of the main process	

public void actions() { !
 for (int i = 1; i <= noOfCarWashers; i++)!
 new CarWasher().into(tearoom);!
 activate(new CarGenerator());!
 hold(openPeriod + 1000000); !!
 report();!
}	

85	

class CarGenerator extends Process {!
 public void actions() {!
 while (time() <= openPeriod) {!
 activate(new Car());!
 hold(random.negexp(1 / 11.0));!
 }!
 }!
}!

Class CarGenerator	

86	

class Car extends Process {!
 public void actions() {!
 double entryTime = time();!
 into(waitingLine);!
 if (!tearoom.empty()) !
 activate((CarWasher) tearoom.first());!
 passivate();!
 noOfCustomers++;!
 throughTime += time() - entryTime;!
 } ! !!
}!

Class Car	

87	

class CarWasher extends Process {!
 public void actions() { !
 while (true) { !
 out();!
 while (!waitingLine.empty()) {!
 Car served = (Car) waitingLine.first();!
 served.out();!
 hold(10);!
 activate(served);!
 }!
 wait(tearoom);!
 }!
 }!
}!

Class CarWasher	

88	

The Josephus problem	

N people are sitting in a circle waiting to be eliminated. Starting
at person 1, a hot potato is passed; after M passes, the person
holding the potato is eliminated. The game continues with the
person who was sitting after the eliminated person picking up the
potato. This continues until only the last person remains.	

N = 5, M = 1	

89	

An O(NM) solution	

people: N	

passes: M	

90	

An O(N logN)
solution	

91	

A call bank simulation	

A call bank consists of a large number of operators who handle phone
calls. An operator is reached by dialing one phone number. 	

	

If any of the operators are available, the user is connected to one of them.	

	

If all operators are already taking a phone, the phone will give a busy
signal, and the user will hang up.	

Simulate the service provided by the pool of operators. The variables are	

•  The number of operators in the bank	

•  The probability distribution that governs dial-in attempts	

•  The probability distribution that governs connect time	

•  The length of time the simulation is to be run	

92	

Sample output	

93	

94	

95	

96	

97	

98	

The time at which each event occurs is
shown in boldface.

The number of free operators (if any) are
shown to the right of the priority queue.

99	

100	

public class CallSim extends Simulation { !
 public CallSim(int operators, double avgLen, !
 int callIntrvl) { !
 availableOperators = operators; !
 avgCallLen = avgLen; !
 freqOfCalls = callIntrvl; !
 } !
!
 class DialIn extends Event { ... }!
 class HangUp extends Event { ... }!
!
 public static void main(String[] args) { !
 new CallSim(3, 5.0, 1); !
 new DialIn(0).schedule(0.0); !
 runSimulation(20); !
 } !
 !
 int availableOperators, freqOfCalls; !
 double avgCallLen; !
 Random r = new Random();!
}!

Using simulation.event	

101	

class DialIn extends Event { !
 DialIn(int who) { this.who = who; } !
!
 @Override public void actions() { !
 System.out.print("User " + who + !
 " dials in at time " + time() + " "); !
 if (availableOperators > 0) { !
 availableOperators--; !
 int howLong = r.poisson(avgCallLen); !
 System.out.println("and connects for " + !
 howLong + " minutes"); !
 new HangUp(who).schedule(time() + howLong); !
 } else !
 System.out.println("but gets busy signal"); !
 new DialIn(who + 1).schedule(time() + freqOfCalls); !
 } !
!
 int who; !
}!

102	

class HangUp extends Event { !
 HangUp(int who) { this.who = who; } !
 !
 @Override public void actions() { !
 availableOperators++; !
 System.out.println("User " + who + !
 " hangs up at time " + time()); !
 } !
 !
 int who; !
} 	

103	

Using javaSimulation	

public class CallSim extends Process { !
 public CallSim(int operators, double avgLen, !
 int callIntrvl, int stopTime) { !
 availableOperators = operators; avgCallLen = avgLen; !
 freqOfCalls = callIntrvl; simTime = stopTime; !
 } !
!
 @Override public void actions() { !
 activate(new User(0)); !
 hold(simTime); !
 }!
!
 class User extends Process { ... }!
 !
 public static void main(String[] args) { !
 activate(new CallSim(3, 5.0, 1, 20)); !
 } !
!
 int availableOperators, freqOfCalls, simTime; !
 double avgCallLen; !
 Random r = new Random();!
}!

104	

class User extends Process { !
 User(int who) { this.who = who; } !
!
 @Override public void actions() { !
 activate(new User(who + 1), delay, freqOfCalls); !
 System.out.print("User " + who + !
 " dials in at time " + time() + " ");!
 if (availableOperators > 0) { !
 availableOperators--; !
 int howLong = r.poisson(avgCallLen); !
 System.out.println("and connects for " + !
 howLong + " minutes"); !
 hold(howLong); !
 availableOperators++; !
 System.out.println("User " + who + !
 " hangs up at time " + time()); !
 } else !
 System.out.println("but gets busy signal"); !
 } !
!
 int who; !
}!

