
1	

Implementations III	

2	

Agenda	

•  Hash tables	

 	

Implementation methods	

	

Applications	

	

Hashing vs. binary search trees	

	

 • The binary heap	

	

Properties	

	

Logarithmic-time operations	

	

Heap construction in linear time	

	

Java implementation of PriorityQueue!
!Heapsort	

	

External sorting!

3	

Hashing	

4	

Hashing���
Search by key transformation	

Search in a balanced search tree requires O(log N) comparisons
of keys.	

	

Is O(log N) the best achievable complexity?	

	

No.	

	

How can we decrease the complexity?	

	

With hashing - a technique that applies transformations 	

	

of keys in order to be able directly look them up in a table.
	

 	

 	

 	

 	

 	

 	

	

With hashing O(1) complexity can be achieved.	

5	

Basic idea	

Idealistically, two different keys should map to two different indices.
However, this is seldom possible to achieve. If two or more keys hash
out to the same index, we have a collision. 	

A collision strategy is an algorithm for handling collisions.	

Store each record in a table at an index computed from the key.	

	

A hash function is a function for computing a table index from a key. 	

	

 	

	

Mathematically: A hash function h is a map from the set of possible
keys K into an integer interval I:	

h: K I	

hashing, hashes	

1. To chop into pieces	

2. Informal To make a mess of	

6	

A hash function that maps names to integers from
0 to 15. There is a collision between keys "John
Smith" and "Sandra Dee".	

Hash function example	

7	

Space-time tradeoff	

No space limits: 	

 	

 	

 	

	

use the key as index (trivial hash function)	

	

No time limits: 	

 	

 	

 	

	

use sequential search	

	

If there are both space and time limits: 	

	

use hashing	

8	

The hashing technique	

Let h denote the hash function.	

	

Insertion: 	

 	

 	

 	

 	

 	

	

A record with key k is stored in the table at index h(k), unless
	

there already is a record at that index. In the latter case, the record
	

must be stored in another way (how, depends on the collision
	

strategy). 	

	

Search: 	

 	

 	

 	

 	

 	

 	

	

When searching for a record with key k we first examine the
	

table at index h(k). If it contains a record with key k, the search is
	

terminated successfully. Otherwise, the search continues (how,
	

depends on the collision strategy). 	

9	

Good hash functions	

•  Collision must be avoided as far as possible 	

	

The hash function should map the expected keys as 	

	

evenly as possible to the index interval. 	

	

•  The hash function should be computationally cheap.	

10	

Design of hash functions���
(short keys)	

Short keys (keys that fit a machine word):	

	

	

Treat key k as an integer and compute	

	

	

 	

h(k) = k mod M 	

 (in Java: k % M)	

	

	

where M is the size of the table	

	

	

 	

h(k) [0;M-1]	

11	

Example with short keys	

Four-character keys, table size 101.	

	

 !ASCII! a b c d !
!hex ! 6 1 6 2 6 3 6 4 !
!bin !01100001011000100110001101100100!

	

!	

0x61626364 = 1633831724 !!
16338831724 % 101 = 11! ! ! !

!Key "abcd" hashes to 11.	

	

0x64636261 = 1684234849 !

!1684234849 % 101 = 57 ! ! !
!Key "dcba" hashes to 57.	

!
0x61626263 = 1633837667 !

!1633837667 % 101 = 57 	

 	

 	

	

Key "abbc" also hashes to 57. Collision!	

12	

Long keys (keys that do not fit a machine word):	

	

	

Treat key k as integer and compute	

	

	

 	

h(k) = k mod M 	

	

	

	

where M is the size of the table	

	

That is, in principle, as for short keys.	

	

	

	

Design of hash functions���
(long keys)	

13	

	

Example with four-character keys. But the method works for any length. 	

	

	

Use Horner’s rule:	

	

	

 	

0x61626364 = ! !!

! !97*2563 + 98*2562 + 99*2561 + 100 =!

! !((97*256 + 98)*256 + 99)*256 + 100	

	

	

Take modulo after each addition to avoid arithmetic overflow:	

	

! !(97*256 + 98 = 24930) % 101 = 84!

 ! !(84*256 + 99 = 21603) % 101 = 90!
! !(90*256 + 100 = 23140) % 101 = 11 !

Example with long keys	

14	

Table size	

Choose table size to be a prime. 	

 	

 	

	

Why?	

	

In the previous example we had 	

 	

 	

	

"abcd" = 0x61626364 = ! ! !
!97*2563 + 98*2562 + 99*2561 + 100 !

!

If the table size is chosen to be 256, only the last character (d)
will contribute to the result.	

	

A simple method for assuring that all characters contribute is to
choose the table size to be a prime.!

15	

ASCII characters can typically be represented in 7 bits as a number
between 0 and 128. Unfortunately, the repeated multiplication will
shift early characters to the left - out of the answer. Furthermore,
the mod computation after each addition is expensive.	

16	

17	

18	

hashCode in java.lang.String!

final class String {!
 public int hashCode() {!
 if (hash != 0)!
 return hash;!
 for (int i = 0; i < length(); i++) !
 hash = hash * 31 + (int) charAt(i);!
 return hash;!
 }!
!
 private int hash = 0;!
}!

1.  The constant 37 has been replaced by 31.	

2.  A computed hash value is remembered (cached).	

19	

The birthday paradox: 	

 	

 	

 	

 	

 	

How many persons should be invited to a party so that there is
roughly 50% chance that at least two people have the same birthday?	

Answer: 23. 	

	

	

πM /2

Let M be the table size. How many insertions until the first collision?	

	

	

 M 	

	

	

 100 	

 12	

	

 365 	

 23	

	

 1000 	

 40	

	

 10000 	

 125	

 100000 396	

 1000000 2353	

Frequency of collisions	

20	

Collision strategies	

Number of keys: N 	

	

Table size: M	

	

Option 1 (open addressing):	

Keep N < M:	

 Put keys somewhere in the table.	

	

	

	

	

	

	

	

	

	

	

	

	

Option 2 (separate chaining): 	

Allow N > M: 	

	

Put keys that hash to the same index in a list	

 	

	

(about N/M keys per list).	

	

21	

Open addressing���
Linear probing	

	

Open addressing:	

 	

 	

 	

 	

No links. Everything is kept in the table. 	

	

	

Linear probing: 	

 	

 	

 	

 	

Start linear search at hash position (stop when an
empty position is hit).	

	

	

Constant time if table is sparse.	

22	

23	

interface HashTable<K,V> {!
 void put(K key, V value);!
 V get(K key);!
 void remove(K key);!
}!

A hash table interface	

24	

Implementation of open addressing	

abstract class ProbingHashTable<K,V> implements HashTable<K,V> {!
 ProbingHashTable() !
 { array = new HashEntry[DEFAULT_TABLE_SIZE]; }!
!
 void put(K key, V value) { ... }!
 V get(K key) { ... }!
 void remove(K key) { ... }!
!
 protected abstract int findPos(K key);!
 !
 protected HashEntry[] array;!
 private int currentSize; !
 private static final int DEFAULT_TABLE_SIZE = 101;!
}!

25	

V get(K key) {!
 int pos = findPos(key);!
 if (array[pos] == null || !array[pos].isActive)!
 return null;!
 return (V) array[pos].value; !
}!

class HashEntry {!
 HashEntry(Object k, Object v) !
 { key = k; value = v; }!
 Object key, value;!
 boolean isActive = true;!
}!

void remove(K key) {!
 int pos = findPos(key);!
 if (array[pos] != null)!
 array[pos].isActive = false;!
}!

26	

void put(K key, V value) {!
 int pos = findPos(key);!
 array[pos] = new HashEntry(key, value);!
 if (++currentSize < array.length / 2)!
 return;!
 // rehash!
 HashEntry[] oldArray = array;!!
 array = new HashEntry[nextPrime(2 * oldArray.length)];!
 currentSize = 0;!
 for (int i = 0; i < oldArray.length; i++)!
 if (oldArray[i] != null && oldArray[i].IsActive)!
 put((K) oldArray[i].key, (V) oldArray[i].value);!
}!
!

Simple copying when rehashing does not work.	

Running time for nextPrime is	

 O(n logn).
int nextPrime(int n) {!
 if (n % 2 == 0)!
 n++;!
 while (!isPrime(n))!
 n += 2;!
 return n;!
}!

27	

class LinearProbingHashTable<K,V> extends ProbingHashTable<K,V> {!
 protected int findPos(K key) {!
 int pos = Math.abs(key.hashCode()) % array.length;!
 while (array[pos] != null &&!
 !array[pos].key.equals(key))!
 if (++pos >= array.length)!
 pos = 0; !
 return pos;!
 } !
}!

Class LinearProbingHashTable!

28	

Efficiency of linear probing	

Linear probing uses less than 5 probes for
searching a hash table that is less than 2/3 full.	

The precise expressions are	

	

	

	

	

probes on average for an unsuccessful search, and	

	

!!
	

probes on average for a successful search, where α = N/M
denotes the load factor. 	

1
2
+

1
2(1−α)

1
2
+

1
2(1−α)2

29	

Efficiency curves for linear probing	

Unsuccessful search	

 Successful search	

1
2
+

1
2(1 −α)

1
2
+

1
2(1 −α)2

α	

α	

probes	

 probes	

30	

Clustering	

Bad phenomenon: records clumps together.	

	

Long clusters tend to get longer.	

	

Average search cost grows to M as the table is filled.	

	

Linear probing is too slow when the table is 70-80% full.	

31	

Argument for clustering tendency	

Then the chance that a new record is stored at position j+1 is equal to the
chance that its key hashes to one of the values in [i:j+1]. 	

	

For the new record to be stored at position j+2 its key must hash to
exactly j+2.	

i-1	

 j+1	

 j+2	

Suppose all positions [i:j] store records, whereas i-1, j+1, and j+2 are empty. 	

32	

Quadratic probing���
(reduces the risk of clustering)	

Probing sequence:	

 Linear probing: 	

 pos, pos+1, pos+2, pos+3, ...	

 Quadratic probing: pos, pos+12, pos+22, pos+32, ...	

Let Hi-1 be the most recently computed probe (H0 is
the original hash position) and Hi be the probe we
are trying to compute. Then we have 	

 	

 	

	

 	

 	

 	

	

	

Hi-1 = pos + (i - 1)2 = 	

 	

 	

 	

 	

	

 	

 pos + i2 - 2i + 1 = Hi - 2i + 1	

	

and obtain Hi = Hi-1 + 2i - 1.	

Squaring of the step number can be avoided:	

33	

34	

It has been proven that	

	

If the table size is prime and the table is at least half empty, then a new
element can always be inserted, and no cell is probed twice.	

Implementation of quadratic probing	

class QuadraticProbingTable<K,V> extends ProbingHashTable<K,V> {!
 protected int findPos(K key) {!
 int pos = Math.abs(key.hashCode()) % array.length;!
 int i = 0;!
 while (array[pos] != null &&!
 !array[pos].element.equals(key)) {!
 if ((pos = pos + 2 * ++i - 1) >= array.length)!
 pos = 0; !
 return pos;!
 } !
}!

35	

Double hashing	

Reduces the risk of clustering by using a second hash
function.	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

	

	

The strategy is the same as for linear probing; the only
difference is that, in stead of examining each successive
table position following a collision, we use a second hash
function to get a fixed increment to use for the probe
sequence.	

	

By this means the chance of finding empty cells during
insertion is increased.	

36	

Implementation of double hashing	

class DoubleHashTable<K,V> extends ProbingHashTable<K,V> {!
 protected int findPos(K key) {!
 int pos = Math.abs(key.hashCode()) % array.length;!
 int k = Math.abs(key.h2());!
 while (array[pos] != null &&!
 !array[pos].element.equals(key))!
 pos = (pos + k) % array.length; !
 return pos;!
 } !
}!

37	

Requirements for the���
second hash function	

•  It must never return 0.	

•  It must always return values that are relatively prime to M.	

	

 	

This can be achieved by choosing M as prime and letting

	

h2(k) < M for every k.	

	

•  It must differ from the first hash function. 	

	

	

	

A simple and fast method is 	

 	

 	

 	

	

 	

 	

 	

h2(k) = 8 - k % 8 	

(k % 8 is equal to the last 3 bits of k)	

38	

Efficiency of double hashing	

Double hashing uses fewer probes on average than linear
probing. Less than 5 probes in a table that is 80% full, and less
than 5 probes for a successful search in a table that is 99% full.	

The precise expressions are	

	

	

	

	

probes on average for an unsuccessful search, and	

	

!!
	

probes on average for a successful search, where α = N/M
denotes the load factor. 	

1
1−α

− ln(1−α)
α

39	

Double hashing versus linear probing	

α	

α	

−
ln(1 −α)
α

1
1 −α

Unsuccessful search	

 Successful search	

Double hashing	

Mislykket søgning	

 Succesfuld søgning	

α	

α	

Linear
probing	

1
2
+

1
2(1 −α)2

1
2
+

1
2(1 −α)

40	

Simple, practical and widely used.	

Method: M linked lists, one for each table slot.	

	

	

 	

 0: 	

*	

	

 	

 1: 	

L A W *	

	

 	

 2: 	

M X *	

	

 	

 3: 	

N C *	

	

 	

 4: 	

*	

	

 	

 5: 	

E P * 	

 	

 	

(M = 11)	

	

 	

 6: 	

* 	

 	

 	

(N = 14)	

	

 	

 7: 	

G R *	

	

 	

 8: 	

H S *	

	

 	

 9: 	

I *	

 	

 	

10: 	

*	

!
!!Cuts search time by a factor of M over sequential search.	

Separate chaining hashing	

41	

Implementation of separate���
chaining hashing	

public class SeparateChainingHashTable<K,V> implements !
 HashTable<K,V> {!
 private HashEntry[] array;!
 ... !
}!

interface HashTable<K,V> {!
 void put(K key, V value);!
 V get(K key);!
 void remove(K key);!
}!

42	

class HashEntry {!
 HashEntry(Object k, Object v, HashEntry n) !
 { key = k; value = v; next = n; }!
!
 Object key, value;!
 HashEntry next;!
}!

43	

void put(K key, V value) {!
 int pos = Math.abs(key.hashCode()) % array.length;!
 for (HashEntry e = array[pos]; e != null; e = e.next)!
 if (key.equals(e.key)) {!
 e.value = value;!
 return;!
 }!
 array[pos] = new HashEntry(key, value, array[pos]); !
}!

V get(K key) {!
 int pos = Math.abs(key.hashCode()) % array.length;!
 for (HashEntry e = array[pos]; e != null; e = e.next)!
 if (key.equals(e.key))!
 return e.value;!
 return null;!
} !!

44	

void remove(K key) {!
 int pos = Math.abs(key.hashCode()) % array.length;!
 HashEntry prev = null;!
 for (HashEntry e = array[pos]; e != null; prev = e, e = e.next)!
 if (key.equals(e.key)) {!
 if (prev != null)!
 prev.next = e.next;!
 else!
 array[pos] = e.next;!
 return;!
 }!
 }!
}!

prev! e! e.next!

45	

Average search cost (successful): 	

 	

N/M/2 	

Average search cost (unsuccessful):	

 	

N/M	

Insertion cost: 	

 	

N/M	

Worst case ("probabilistically" unlikely): 	

N 	

	

If the lists are kept sorted: 	

 	

 	

	

 	

Cuts average unsuccessful search time to N/M/2.
	

Cuts average insertion time to N/M/2.	

Efficiency of separate
chaining hashing	

46	

Advantages of separate chaining hashing	

•  Idiot proof (doesn’t break down)	

	

•  Deletion is simple	

47	

Reasons not to use hashing	

Hashing allows search and insertion to run in constant time.	

	

Why use other methods?	

	

•  There is no performance guarantee	

	

•  Too much arithmetic if keys are long	

	

•  Takes extra space	

	

•  Does not support sorting	

48	

Insertion of 10,000,000 different integers into an initially empty set,
followed by deletion of each element, in random order.	

2.8 GHz MacBook Pro. !

Red-black tree (java.util.TreeSet) 	

57.9 seconds	

AA-tree (weiss.util.TreeSet) 	

 	

65.0 seconds	

Hash set (java.util.HashSet) 	

 	

45.2 seconds 	

	

Hash tables versus binary search trees
Experimental results	

java -Xmx1G	

49	

Priority queues	

50	

Priority queues	

A priority queue is an abstract data type that supports the following
two operations:	

	

!insert(x): 	

add the element x to the priority queue with an
	

 	

 	

associated priority	

 	

deleteMin: 	

remove the element with the lowest priority, 	

	

 	

 	

and return it. 	

	

Ordinary queues and stacks are special cases of priority queues.	

51	

Applications of priority queues	

• 	

operating systems	

	

•  graph search	

	

•  file compression	

	

•  discrete event simulation	

•  sorting	

52	

Specification in Java	

Sometimes it is appropriate to add futher operations, e.g.:	

	

 boolean isEmpty(): 	

 return true if the priority queue contains no elements !
 Comparable getMin(): 	

 return the element with the lowest priority 	

 void merge(PriorityQueue pq): 	

 merge this priority queue with another one (pq).	

interface PriorityQueue {!
 void insert(Comparable x);!
 Comparable deleteMin(); !
}!

53	

Implementation using an unordered array	

class ArrayPriorityQueue implements PriorityQueue {!
 private Comparable[] array;!
 private int currentSize;!
!
 ArrayPriorityQueue() !
 { array = new Comparable[DEFAULT_CAPACITY]; }!
 !!
 public void insert(Comparable x) !
 { checkSize(); array[currentSize++] = x; }!
!
 public Comparable deleteMin() {!
 if (currentSize == 0)!
 throw new UnderflowException(); !
! int min = 0; !
! for (int i = 1; i < currentSize; i++)!

 if (array[i].compareTo(array[min]) < 0) !
 min = i;!
 swapReferences(array, min, currentSize - 1);!
 return array[--currentSize];!
 }!
} !

O(1)	

O(N)	

54	

The array is kept sorted in decreasing order	

Other implementations: unordered lists, ordered lists.	

void insert(Comparable x) {!
 checkSize(); !
 int i = currentSize;!
 while (i > 0 && array[i - 1].compareTo(x) < 0) !
 { a[i] = a[i - 1]; i--; }!
 array[i] = x; currentSize++;!
}!
!
Comparable deleteMin() {!
 if (currentSize == 0)!
 throw new UnderflowException();!
 return array[--currentSize]; !
} !

Implementation using an ordered array	

O(1)	

O(N)	

55	

Sorting an array a in increasing order:
	

 	

 	

 	

	

	

Sorting using a priority queue	

If the priority queue is implemented using an unordered array,
the algorithm corresponds to selection sort.	

	

If the priority queue is implemented using an ordered array,
the algorithm corresponds to insertion sort.	

PriorityQueue pq = new TypePriorityQueue();!
for (int i = 0; i < a.length; i++) !!
 pq.insert(a[i]);!
for (int i = 0; i < a.length; i++)!
 a[i] = pq.deleteMin();!

56	

void insert(Comparable x) {!
 searchTree.insert(x);!
}!
!
Comparable deleteMin() {!
 return searchTree.removeMin();!
}!

If the search tree is kept balanced, running time for both
operations is O(log N).	

However, implementation is difficult (particularly removeMin). 	

Implementation using a search tree	

57	

Binary heap	

We can conclude that the smallest key is in the root.	

Complete tree: All levels are filled, with the possible exception
of the bottom level, which is filled from left to right. 	

	

A binary heap is a complete binary tree (structure property) in
which the key in every node is less than or equal to the keys of
its children (heap-order property).	

58	

59	

60	

Heap representation	

A heap can be represented in an array (no explicit links needed):	

	

root: 	

array[1]!
	

children of root: 	

array[2] and array[3]	

	

children of i: 	

array[2*i] and array[2*i+1]	

	

parent of i: 	

array[i/2]!

!
!i: 0 1 2 3 4 5 6 7 8 9 10 ! !
array: 13 21 16 24 31 19 68 65 26 32!

13	

21	

31	

 19	

 68	

16	

32	

26	

65	

24	

(level order, implicit representation)	

1	

2	

 3	

4	

8	

 10	

5	

 6	

 7	

9	

61	

62	

 Insertion	

Insert the element as the last one in the heap. This does not
violate the structure property.	

13	

21	

31	

 19	

 68	

16	

32	

26	

65	

24	

14	

Insertion of 14	

13	

14	

21	

 19	

 68	

16	

32	

26	

65	

24	

31	

Maintain the heap order property by exchanging the new node with
its parent as long as the property is violated.	

63	

64	

Implementation of insert	

void insert(Comparable x) {!
 checkSize();!
 array[++currentSize] = x;!
 percolateUp(currentSize);!
}	

void percolateUp(int hole) {!
 Comparable x = array[hole];!
 array[0] = x;!
 for (; x.compareTo(array[hole / 2]) < 0; hole /= 2)!
 array[hole] = array[hole / 2];!
 array[hole] = x; !
}!

Time complexity: O(log N)	

65	

Deletion of the root element	

Replace the root by the last element of the heap. 	

13	

14	

21	

 19	

 68	

16	

32	

26	

65	

24	

31	

Deletion of 13	

14	

21	

31	

 19	

 68	

16	

32	

26	

65	

24	

Maintain the heap order property by exchanging this
node by the smallest of its children as long as the
property is violated.	

66	

67	

Comparable deleteMin() {!
 if (isEmpty())!
 throw new UnderflowException();!
 Comparable minItem = array[1];!
 array[1] = array[currentSize--]; !
 percolateDown(1);!
 return minItem;!
} !!

Implementation of deleteMin	

68	

void percolateDown(int hole) {!
 int child;!
 Comparable tmp = array[hole];!
 for (; hole * 2 <= currentSize; hole = child) {!
 child = 2 * hole;!
 if (child != currentSize && !
 array[child + 1].compareTo(array[child]) < 0)!
 child++;!
 if (array[child].compareTo(tmp) < 0)!
 array[hole] = array[child];!
 else!
 break;!
 }!
 array[hole] = tmp;!
} !!

child?!

hole!

2 * hole + 1!2 * hole!

Time complexity: O(log N)	

69	

Heap construction	

	

Problem: Given an array array[1:N] of elements in arbitrary
order, rearrange the elements so that the array is a heap.	

	

	

Induction hypothesis (top-down): array[1:i] is a heap.	

70	

for (int i = 2; i <= N; i++)!
 percolateUp(i);	

Top-down heap construction	

O(log i)
i=2..N
∑ = O(N logN)

Time complexity:	

71	

72	

Induction hypothesis (bottom-up): All the trees represented by
array[i:N] are heaps.	

	

	

	

	

	

	

	

for (int i = N / 2; i >= 1; i--)!
!percolateDown(i);!

	

array[N/2+1:N] represent heaps (they are leaves in the final heap).	

O(log(N / i))
i=1..N /2
∑ = O(N)

Time complexity:	

73	

74	

75	

76	

77	

Heapsort ���
(using a max-heap)	

•  Time complexity of heapsort is O(N logN).	

•  No extra space needed.

void heapsort(Comparable[] a) {!
 for (int i = a.length / 2 - 1; i >= 0; i--)!
 percDown(a, i, a.length);!
 for (int i = a.length - 1; i > 0; i--) {!
 swapReferences(a, 0, i);!
 percDown(a, 0, i);!
 } !
}	

O(N)	

O(NlogN)	

root: 	

 	

a[0]!
current heap size: 	

i!
children of i: 	

array[2*i+1] and array[2*i+2]	

parent of i: 	

array[(i-1)/2]!

heap 	

construction	

78	

Heapsort example	

59 26 58 21 41 97 21 16 26 53	

Construct max-heap:!

97 53 59 26 41 58 31 16 21 36	

59 53 58 26 41 36 31 16 21 97	

58 53 36 26 41 21 31 16 59 97	

53 41 36 26 16 21 31 58 59 97	

41 31 36 26 16 21 53 58 59 97	

to be continued	

97	

53	

26	

 41	

 58	

59	

31	

16	

 21	

 36	

79	

41 31 36 26 16 21 53 58 59 97	

36 31 21 26 16 41 53 58 59 97	

31 26 21 16 36 41 53 58 59 97	

26 16 21 31 36 41 53 58 59 97	

21 16 26 31 36 41 53 58 59 97	

16 21 26 31 36 41 53 58 59 97	

end	

41	

31	

26	

 16	

36	

21	

80	

Animation of heapsort���
(heap construction phase)	

81	

Animation of heapsort���
(sorting phase)	

82	

External sorting	

(sorting of data on external memory)	

Special considerations:	

	

	

(1) 	

It is very time consuming to access a data element	

	

	

(2) 	

There can be restrictions on how data can be accessed,
	

 	

e.g., data on a magnetic tape can only be read 	

 	

	

 	

sequentially. 	

83	

Distribute and merge	

Distribute:	

	

Divide the file to be sorted into blocks, each of size
	

equal to the internal memory. 	

	

Sort each block and distribute them to two or more
	

temporary files. 	

Merge:	

	

Merge the sorted blocks (runs) into longer sorted blocks.	

	

Continue in this way until the original file is one sorted block.	

84	

Balanced multiway merge	

Example: 3-way sorting of 81 records	

Sorted blocks (number of records)	

	

	

1 	

 9 (3) 	

0 	

 	

1 (27) 	

 	

0	

	

2 	

 9 (3) 	

0 	

 	

1 (27) 	

 	

0 	

	

	

3 	

 9 (3) 	

0 	

 	

1 (27) 	

 	

0 	

	

	

4 	

 0 	

 	

3 (9)	

 	

0 	

 	

 	

1 (81)	

	

5 	

 0 	

 	

3 (9)	

 	

0 	

	

	

6 	

 0 	

 	

3 (9)	

 	

0	

	

It takes 3 passes to sort 81 records 	

	

The merging may be performed by a priority queue.	

85	

N: number of records	

M: size of internal memory (measured in number of records) 	

Use half of the 2k files as input files, the rest as output files. 	

Pass 0: 	

divide the file into blocks of size M, sort each block
	

and distribute the sorted blocks to files 1, 2, ..., k.	

Pass 1: 	

k-merge the blocks from files 1, 2, ..., k into blocks of
	

size kM and write them to files k+1, k+2, ..., 2k. 	

Pass 2: 	

k-merge the blocks from files k+1, k+2, ..., 2k into
	

blocks of 	

size k2M and write them to files 1, 2, ..., k .	

... 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

Pass p: 	

k-merge the blocks from the input files to one block of

	

size kpM and write it to one of the output files.	

Balanced k-way merge	

86	

The file is sorted when	

	

 kpM ≥ N	

i.e, after	

	

p = logk(N/M) passes. 	

Examples: 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

	

file size (N) 	

 	

 	

109 records 	

	

 	

 	

	

	

memory size (M)	

 	

106 records	

	

	

number of temporary files (2k) 	

 	

4 	

 	

	

number of passes (p) log2103 ≈ 10	

	

	

number of temporary files (2k)	

 20 	

 	

 	

	

number of passes (p) log10103 = 	

 3	

The file is sorted in a time that is 4-11 times longer than
the time is takes to read or write it.	

87	

Polyphase merge	

Reduces the number of temporary files to about the half the
number of temporary files needed for balanced multiway merge. 	

Principle: 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

	

Always use k-1 input files and 1 output file.	

	

Algorithm: 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

	

Merge from the k-1 input files to the output file, until the end
	

of one of the input files is reached. 	

	

	

Use the latter file as new output file for merging from the
	

other k-1 files. 	

 	

 	

 	

 	

 	

 	

 	

 	

	

	

Continue in this way until the file is sorted. 	

 	

88	

Run distribution for polyphase merge	

Distribute the runs on k-1 files such that the last merge causes
the end to be reached on all input files simultaneously.	

	

The initial run distribution can be determined using generalized
Fibonacci numbers.	

1 	

21 	

8 	

0 	

5 	

3 	

1 	

0 	

1	

2 	

13 	

0 	

8 	

3 	

0 	

2 	

1 	

0	

3 	

 0 13 	

5 	

0 	

2 	

0 	

1 	

0	

3 files, 34 runs, 7 passes	

Fk(N) = Fk(N-1) + Fk(N-2) + ... + Fk(N-k)	

Fk(0 ≤ N ≤ k-2) = 0, Fk(k-1) = 1	

89	

Replacement selection	

A technique that produces initial runs of average length 2M if the input is
randomly distributed.	

Read M records into a priority queue.	

	

Delete the smallest record from the priority queue and write it out. 	

	

Read a record from the input file. If the new element is smaller than the
last one output, it cannot become part of the current run. Mark it as
belonging to the next run and treat it as greater than all the unmarked
elements in the queue.	

	

Terminate the run when a marked element reaches the top of the queue.	

	

Organize the marked records as priority queue.	

90	

M = 3!

91	

