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Implementations III	
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Agenda	



•  Hash tables	


   	

Implementation methods	


	

Applications	


	

Hashing vs. binary search trees	



	


 • The binary heap	


	

Properties	


	

Logarithmic-time operations	


	

Heap construction in linear time	


	

Java implementation of PriorityQueue!
!Heapsort	


	

External sorting!
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Hashing	
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Hashing���
Search by key transformation	



Search in a balanced search tree requires O(log N) comparisons 
of keys.	


	


Is O(log N) the best achievable complexity?	



	

No.	


	


How can we decrease the complexity?	



	

With hashing - a technique that applies transformations 	


	

of keys in order to be able directly look them up in a table.
	

 	

 	

 	

 	

 	

 	

	



With hashing O(1) complexity can be achieved.	
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Basic idea	



Idealistically, two different keys should map to two different indices. 
However, this is seldom possible to achieve. If two or more keys hash 
out to the same index, we have a collision. 	


A collision strategy is an algorithm for handling collisions.	



Store each record in a table at an index computed from the key.	


	


A hash function is a function for computing a table index from a key. 	



	

 	

	


Mathematically: A hash function h is a map from the set of possible 
keys K into an integer interval I:	



h: K       I	



hashing, hashes	


1. To chop into pieces	


2. Informal To make a mess of	
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A hash function that maps names to integers from 
0 to 15. There is a collision between keys "John 
Smith" and "Sandra Dee".	



Hash function example	
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Space-time tradeoff	



No space limits: 	

 	

 	

 	


	

use the key as index (trivial hash function)	



	


No time limits: 	

 	

 	

      	

 

	

use sequential search	


	


If there are both space and time limits: 	



	

use hashing	
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The hashing technique	



Let h denote the hash function.	


	


Insertion: 	

 	

 	

 	

         	

 	

   
	

A record with key k is stored in the table at index h(k), unless 
	

there already is a record at that index. In the latter case, the record 
	

must be stored in another way (how, depends on the collision 
	

strategy). 	



	


Search: 	

 	

 	

 	

      	

 	

 	

                  
	

When searching for a record with key k we first examine the 
	

table at index h(k).  If it contains a record with key k, the search is 
	

terminated successfully. Otherwise, the search continues (how, 
	

depends on the  collision strategy). 	
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Good hash functions	



•  Collision must be avoided as far as possible 	


	

The hash function should map the expected keys as 	

   
	

evenly as possible to the index interval. 	



	


•  The hash function should be computationally cheap.	
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Design of hash functions���
(short keys)	



Short keys (keys that fit a machine word):	


	


	

Treat key k as an integer and compute	



	


	

 	

h(k) = k mod M 	

             (in Java: k % M)	



	


	

where M is the size of the table	



	


	

 	

h(k)          [0;M-1]	
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Example with short keys	


Four-character keys,  table size 101.	


	


 !ASCII!       a       b       c       d      !
!hex  !   6   1   6   2   6   3   6   4 !
!bin !01100001011000100110001101100100!

	


!	

0x61626364 = 1633831724 !!
16338831724 % 101 = 11! ! ! !

!Key "abcd" hashes to 11.	


	


0x64636261 = 1684234849 !

!1684234849 % 101 = 57 ! ! !
!Key "dcba" hashes to 57.	



!
0x61626263 = 1633837667 !

!1633837667 % 101 = 57 	

 	

 	


	

Key "abbc" also hashes to 57. Collision!	
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Long keys (keys that do not fit a machine word):	


	


	

Treat key k as integer and compute	



	


	

 	

h(k) = k mod M 	

	



	


	

where M is the size of the table	



	


That is, in principle, as for short keys.	


	


	


	



Design of hash functions���
(long keys)	
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Example with four-character keys. But the method works for any length.  	


	


	

Use Horner’s rule:	



	


	

 	

0x61626364 = ! !!

! !97*2563 + 98*2562 + 99*2561 + 100 =!

! !((97*256 + 98)*256 + 99)*256 + 100	


	


	

Take modulo after each addition to avoid arithmetic overflow:	



	


! !(97*256 + 98  = 24930) % 101 = 84!

 ! !(84*256 + 99  = 21603) % 101 = 90!
! !(90*256 + 100 = 23140) % 101 = 11 !

Example with long keys	





14	



Table size	



Choose table size to be a prime. 	

 	

 	


	

Why?	



	


In the previous example we had 	

 	

 	

        

	

"abcd" = 0x61626364 = ! ! !
!97*2563 + 98*2562 + 99*2561 + 100 !

!

If the table size is chosen to be 256, only the last character (d) 
will contribute to the result.	


	


A simple method for assuring that all characters contribute is to 
choose the table size to be a prime.!
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ASCII characters can typically be represented in 7 bits as a number 
between 0 and 128. Unfortunately, the repeated multiplication will 
shift early characters to the left - out of the answer. Furthermore, 
the mod computation after each addition is expensive.	





16	





17	





18	



hashCode in java.lang.String!

final class String {!
    public int hashCode() {!
        if (hash != 0)!
            return hash;!
        for (int i = 0; i < length(); i++) !
            hash = hash * 31 + (int) charAt(i);!
        return hash;!
    }!
!
    private int hash = 0;!
}!

1.  The constant 37 has been replaced by 31.	


2.  A computed hash value is remembered (cached).	
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The birthday paradox: 	

 	

 	

 	

 	

 	

     
How many persons should be invited to a party so that there is 
roughly 50% chance that at least two people have the same birthday?	



Answer: 23. 	


	


	



πM /2

Let M be the table size. How many insertions until the first collision?	


	



	

        M 	

	


	

       100 	

      12	


	

       365 	

      23	


	

     1000 	

      40	


	

   10000 	

    125	



        100000      396	


      1000000    2353	



Frequency of collisions	
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Collision strategies	


Number of keys: N 	

	


Table size: M	


	


Option 1 (open addressing):	


Keep N < M:	


    Put keys somewhere in the table.	


	


	


	


	


	


	


	


	


	


	


	


	



Option 2 (separate chaining): 	


Allow N > M: 	



	

Put keys that hash to the same index in a list	

 	


	

(about N/M keys per list).	
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Open addressing���
Linear probing	



	

Open addressing:	

 	

 	

 	

 	

        
No links. Everything is kept in the table. 	



	


	

Linear probing: 	

 	

 	

 	

  	

     
Start linear search at hash position (stop when an 
empty position is hit).	



	


	

Constant time if table is sparse.	
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interface HashTable<K,V> {!
    void put(K key, V value);!
    V get(K key);!
    void remove(K key);!
}!

A hash table interface	
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Implementation of open addressing	



abstract class ProbingHashTable<K,V> implements HashTable<K,V> {!
    ProbingHashTable() !
      { array = new HashEntry[DEFAULT_TABLE_SIZE]; }!
!
    void put(K key, V value) { ... }!
    V get(K key) { ... }!
    void remove(K key) { ... }!
!
    protected abstract int findPos(K key);!
   !
    protected HashEntry[] array;!
    private int currentSize; !
    private static final int DEFAULT_TABLE_SIZE = 101;!
}!
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V get(K key) {!
    int pos = findPos(key);!
    if (array[pos] == null || !array[pos].isActive)!
        return null;!
    return (V) array[pos].value; !
}!

class HashEntry {!
    HashEntry(Object k, Object v) !
      { key = k; value = v; }!
    Object key, value;!
    boolean isActive = true;!
}!

void remove(K key) {!
    int pos = findPos(key);!
    if (array[pos] != null)!
        array[pos].isActive = false;!
}!
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void put(K key, V value) {!
    int pos = findPos(key);!
    array[pos] = new HashEntry(key, value);!
    if (++currentSize < array.length / 2)!
        return;!
    // rehash!
    HashEntry[] oldArray = array;!!
    array = new HashEntry[nextPrime(2 * oldArray.length)];!
    currentSize = 0;!
    for (int i = 0; i < oldArray.length; i++)!
        if (oldArray[i] != null && oldArray[i].IsActive)!
            put((K) oldArray[i].key, (V) oldArray[i].value);!
}!
!

Simple copying when rehashing does not work.	



Running time for nextPrime is	

 O( n logn).
int nextPrime(int n) {!
    if (n % 2 == 0)!
        n++;!
    while (!isPrime(n))!
        n += 2;!
    return n;!
}!
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class LinearProbingHashTable<K,V> extends ProbingHashTable<K,V> {!
    protected int findPos(K key) {!
        int pos = Math.abs(key.hashCode()) % array.length;!
        while (array[pos] != null &&!
               !array[pos].key.equals(key))!
            if (++pos >= array.length)!
                pos = 0; !
        return pos;!
    }    !
}!

Class LinearProbingHashTable!
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Efficiency of linear probing	



Linear probing uses less than 5 probes for 
searching a hash table that is less than 2/3 full.	



The precise expressions are	


	



	

	


	


probes on average for an unsuccessful search, and	


	



!!
	


probes on average for a successful search, where α = N/M 
denotes the load factor. 	



1
2
+

1
2(1−α )

1
2
+

1
2(1−α )2
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Efficiency curves for linear probing	



Unsuccessful search	

 Successful search	



1
2
+

1
2(1 −α )

1
2
+

1
2(1 −α )2

α	

α	



probes	

 probes	
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Clustering	



Bad phenomenon: records clumps together.	


	


Long clusters tend to get longer.	


	


Average search cost grows to M as the table is filled.	


	


Linear probing is too slow when the table is 70-80% full.	
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Argument for clustering tendency	



Then the chance that a new record is stored at position j+1 is equal to the 
chance that its key hashes to one of the values in [i:j+1]. 	


	


For the new record to be stored at position j+2 its key must hash to 
exactly j+2.	



i-1	

 j+1	

 j+2	



Suppose all positions [i:j] store records, whereas i-1, j+1, and j+2 are empty. 	
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Quadratic probing���
(reduces the risk of clustering)	



Probing sequence:	


    Linear probing: 	

  pos, pos+1,  pos+2, pos+3, ...	


    Quadratic probing: pos, pos+12, pos+22, pos+32, ...	



Let Hi-1 be the most recently computed probe (H0 is 
the original hash position) and Hi be the probe we 
are trying to compute. Then we have 	

 	

 	



	

 	

 	

 	

	


	

Hi-1 = pos + (i - 1)2 = 	

 	

 	

 	

         	


	

  	

   pos + i2 - 2i + 1 = Hi - 2i + 1	



	


and obtain Hi = Hi-1 + 2i - 1.	



Squaring of the step number can be avoided:	
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It has been proven that	


	


If the table size is prime and the table is at least half empty, then a  new 
element can always be inserted, and no cell is probed twice.	



Implementation of quadratic probing	



class QuadraticProbingTable<K,V> extends ProbingHashTable<K,V> {!
    protected int findPos(K key) {!
        int pos = Math.abs(key.hashCode()) % array.length;!
        int i = 0;!
        while (array[pos] != null &&!
               !array[pos].element.equals(key)) {!
            if ((pos = pos + 2 * ++i - 1) >= array.length)!
                pos = 0; !
        return pos;!
    }    !
}!
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Double hashing	



Reduces the risk of clustering by using a second hash 
function.	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

	


	


The strategy is the same as for linear probing; the only 
difference is that, in stead of examining each successive 
table position following a collision, we use a second hash 
function to get a fixed increment to use for the probe 
sequence.	


	


By this means the chance of finding empty cells during 
insertion is increased.	





36	



Implementation of double hashing	



class DoubleHashTable<K,V> extends ProbingHashTable<K,V> {!
    protected int findPos(K key) {!
        int pos = Math.abs(key.hashCode()) % array.length;!
        int k = Math.abs(key.h2());!
        while (array[pos] != null &&!
               !array[pos].element.equals(key))!
            pos = (pos + k) % array.length; !
        return pos;!
    }    !
}!
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Requirements for the���
second hash function	



•  It must never return 0.	



•  It must always return values that are relatively prime to M.	


	

 	

This can be achieved by choosing M as prime and letting

	

h2(k) < M for every k.	


	


•  It must differ from the first hash function. 	

	


	

	



A simple and fast method is 	

 	

 	

 	


	

 	

 	

 	

                                              

h2(k) = 8 - k % 8 	

(k % 8 is equal to the last 3 bits of k)	
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Efficiency of double hashing	



Double hashing uses fewer probes on average than linear 
probing. Less than 5 probes in a table that is 80% full, and less 
than 5 probes for a successful search in a table that is 99% full.	



The precise expressions are	


	



	

	


	


probes on average for an unsuccessful search, and	


	



!!
	


probes on average for a successful search, where α = N/M 
denotes the load factor. 	



1
1−α

− ln(1−α )
α
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Double hashing versus linear probing	



α	

α	



−
ln(1 −α )
α

1
1 −α

Unsuccessful search	

 Successful search	



Double hashing	



Mislykket søgning	

 Succesfuld søgning	



α	

α	



Linear 
probing	



1
2
+

1
2(1 −α )2

1
2
+

1
2(1 −α )
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Simple, practical and widely used.	


Method: M linked lists, one for each table slot.	


	


	

  	

 0: 	

*	


	

 	

 1: 	

L A W *	


	

 	

 2: 	

M X *	


	

 	

 3: 	

N C *	


	

 	

 4: 	

*	


	

 	

 5: 	

E P * 	

 	

 	

(M = 11)	


	

 	

 6: 	

* 	

 	

 	

(N = 14)	


	

 	

 7: 	

G R *	


	

 	

 8: 	

H S *	


	

 	

 9: 	

I *	



 	

 	

10: 	

*	


!
!!Cuts search time by a factor of M over sequential search.	



Separate chaining hashing	
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Implementation of separate���
chaining hashing	



public class SeparateChainingHashTable<K,V> implements !
             HashTable<K,V> {!
    private HashEntry[] array;!
    ...   !
}!

interface HashTable<K,V> {!
    void put(K key, V value);!
    V get(K key);!
    void remove(K key);!
}!
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class HashEntry {!
    HashEntry(Object k, Object v, HashEntry n) !
      { key = k; value = v; next = n; }!
!
    Object key, value;!
    HashEntry next;!
}!
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void put(K key, V value) {!
    int pos = Math.abs(key.hashCode()) % array.length;!
    for (HashEntry e = array[pos]; e != null; e = e.next)!
        if (key.equals(e.key)) {!
            e.value = value;!
            return;!
        }!
    array[pos] = new HashEntry(key, value, array[pos]);    !
}!

V get(K key) {!
    int pos = Math.abs(key.hashCode()) % array.length;!
    for (HashEntry e = array[pos]; e != null; e = e.next)!
        if (key.equals(e.key))!
            return e.value;!
    return null;!
} !!



44	



void remove(K key) {!
    int pos = Math.abs(key.hashCode()) % array.length;!
    HashEntry prev = null;!
    for (HashEntry e = array[pos]; e != null; prev = e, e = e.next)!
        if (key.equals(e.key)) {!
            if (prev != null)!
                prev.next = e.next;!
            else!
                array[pos] = e.next;!
            return;!
        }!
    }!
}!

prev! e! e.next!
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Average search cost (successful): 	

 	

N/M/2 	


Average search cost (unsuccessful):	

 	

N/M	


Insertion cost: 	

                                          	

N/M	


Worst case ("probabilistically" unlikely):     	

N 	


	


If the lists are kept sorted: 	

 	

 	

	


   	

Cuts average unsuccessful search time to N/M/2.
	

Cuts average insertion time to N/M/2.	



Efficiency of separate 
chaining hashing	
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Advantages of separate chaining hashing	



•  Idiot proof (doesn’t break down)	


	


•  Deletion is simple	
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Reasons not to use hashing	



Hashing allows search and insertion to run in constant time.	


	


Why use other methods?	


	



•  There is no performance guarantee	


	


•  Too much arithmetic if keys are long	


	


•  Takes extra space	


	


•  Does not support sorting	
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Insertion of 10,000,000 different integers into an initially empty set, 
followed by deletion of each element, in random order.	


2.8 GHz MacBook Pro. !

Red-black tree (java.util.TreeSet) 	

57.9 seconds	


AA-tree (weiss.util.TreeSet) 	

 	

65.0 seconds	


Hash set (java.util.HashSet) 	

 	

45.2 seconds 	

	



Hash tables versus binary search trees 
Experimental results	



java -Xmx1G	
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Priority queues	
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Priority queues	



A priority queue is an abstract data type that supports the following 
two operations:	


	


!insert(x): 	

add the element x to the priority queue with an 
	

 	

 	

associated priority	



     	

deleteMin:   	

remove the element with the lowest priority, 	


	

 	

 	

and return it. 	

	



Ordinary queues and stacks are special cases of priority queues.	
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Applications of priority queues	



• 	

operating systems	


	


•  graph search	


	


•  file compression	


	


•  discrete event simulation	



•  sorting	
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Specification in Java	



Sometimes it is appropriate to add futher operations, e.g.:	


	


  boolean isEmpty(): 	


          return true if the priority queue contains no elements !
  Comparable getMin(): 	


          return the element with the lowest priority  	


  void merge(PriorityQueue pq): 	


          merge this priority queue with another one (pq).	



interface PriorityQueue {!
    void insert(Comparable x);!
    Comparable deleteMin(); !
}!
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Implementation using an unordered array	


class ArrayPriorityQueue implements PriorityQueue {!
    private Comparable[] array;!
    private int currentSize;!
!
    ArrayPriorityQueue() !
        { array = new Comparable[DEFAULT_CAPACITY]; }!
        !!
    public void insert(Comparable x) !
      { checkSize(); array[currentSize++] = x; }!
!
    public Comparable deleteMin() {!
        if (currentSize == 0)!
            throw new UnderflowException(); !
!     int min = 0; !
!     for (int i = 1; i < currentSize; i++)!

            if (array[i].compareTo(array[min]) < 0) !
                min = i;!
        swapReferences(array, min, currentSize - 1);!
        return array[--currentSize];!
    }!
} !

O(1)	



O(N)	





54	



The array is kept sorted in decreasing order	



Other implementations: unordered lists, ordered lists.	



void insert(Comparable x) {!
    checkSize(); !
    int i = currentSize;!
    while (i > 0 && array[i - 1].compareTo(x) < 0) !
        { a[i] = a[i - 1]; i--; }!
    array[i] = x; currentSize++;!
}!
!
Comparable deleteMin() {!
    if (currentSize == 0)!
        throw new UnderflowException();!
    return array[--currentSize]; !
}   !

Implementation using an ordered array	



O(1)	



O(N)	
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Sorting an array a in increasing order:
	

 	

 	

 	


	

	



Sorting using a priority queue	



If the priority queue is implemented using an unordered array, 
the algorithm corresponds to selection sort.	


	


If the priority queue is implemented using an ordered array, 
the algorithm corresponds to insertion sort.	



PriorityQueue pq = new TypePriorityQueue();!
for (int i = 0; i < a.length; i++) !!
    pq.insert(a[i]);!
for (int i = 0; i < a.length; i++)!
    a[i] = pq.deleteMin();!
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void insert(Comparable x) {!
    searchTree.insert(x);!
}!
!
Comparable deleteMin() {!
    return searchTree.removeMin();!
}!

If the search tree is kept balanced, running time for both 
operations is O(log N).	



However, implementation is difficult (particularly removeMin). 	



Implementation using a search tree	
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Binary heap	



We can conclude that the smallest key is in the root.	



Complete tree: All levels are filled, with the possible exception 
of the bottom level, which is filled from left to right. 	


	



A binary heap is a complete binary tree (structure property) in 
which the key in every node is less than or equal to the keys of 
its children (heap-order property).	
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Heap representation	



A heap can be represented in an array (no explicit links needed):	


	

root: 	

array[1]!
	

children of root: 	

array[2] and array[3]	


	

children of i: 	

array[2*i] and array[2*i+1]	


	

parent of i: 	

array[i/2]!

!
!i:     0  1  2  3  4  5  6  7  8  9 10 ! !        
array:   13 21 16 24 31 19 68 65 26 32!

13	



21	



31	

 19	

 68	



16	



32	

26	

65	



24	



(level order, implicit representation)	



1	



2	

 3	



4	



8	

 10	



5	

 6	

 7	



9	
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 Insertion	



Insert the element as the last one in the heap. This does not 
violate the structure property.	



13	



21	



31	

 19	

 68	



16	



32	

26	

65	



24	



14	



Insertion of 14	



13	



14	



21	

 19	

 68	



16	



32	

26	

65	



24	



31	



Maintain the heap order property by exchanging the new node with 
its parent as long as the property is violated.	
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Implementation of insert	



void insert(Comparable x) {!
   checkSize();!
   array[++currentSize] = x;!
   percolateUp(currentSize);!
}	



void percolateUp(int hole) {!
    Comparable x = array[hole];!
    array[0] = x;!
    for ( ; x.compareTo(array[hole / 2]) < 0; hole /= 2)!
       array[hole] = array[hole / 2];!
    array[hole] = x; !
}!

Time complexity: O(log N)	
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Deletion of the root element	


Replace the root by the last element of the heap. 	



13	



14	



21	

 19	

 68	



16	



32	

26	

65	



24	



31	



Deletion of 13	



14	



21	



31	

 19	

 68	



16	



32	

26	

65	



24	



Maintain the heap order property by exchanging this 
node by the smallest of its children as long as the 
property is violated.	
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Comparable deleteMin() {!
    if (isEmpty())!
        throw new UnderflowException();!
    Comparable minItem = array[1];!
    array[1] = array[currentSize--]; !
    percolateDown(1);!
    return minItem;!
} !!

Implementation of deleteMin	
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void percolateDown(int hole) {!
    int child;!
    Comparable tmp = array[hole];!
    for ( ; hole * 2 <= currentSize; hole = child) {!
        child = 2 * hole;!
        if (child != currentSize && !
            array[child + 1].compareTo(array[child]) < 0)!
            child++;!
        if (array[child].compareTo(tmp) < 0)!
            array[hole] = array[child];!
        else!
            break;!
    }!
    array[hole] = tmp;!
} !!

child?!

hole!

2 * hole + 1!2 * hole!

Time complexity: O(log N)	
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Heap construction	



	

Problem: Given an array array[1:N] of elements in arbitrary 
order, rearrange the elements so that the array is a heap.	



	


	

Induction hypothesis (top-down): array[1:i] is a heap.	





70	



for (int i = 2; i <= N; i++)!
    percolateUp(i);	



Top-down heap construction	



O( log i)
i=2..N
∑ = O(N logN )

Time complexity:	
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Induction hypothesis (bottom-up): All the trees represented by 
array[i:N] are heaps.	


	


	


	


	


	


	


	



for (int i = N / 2; i >= 1; i--)!
!percolateDown(i);!

	



array[N/2+1:N] represent heaps (they are leaves in the final heap).	



O( log(N / i))
i=1..N /2
∑ = O(N )

Time complexity:	
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Heapsort ���
(using a max-heap)	



•   Time complexity of heapsort is O(N logN).	


•   No extra space needed. 

void heapsort(Comparable[] a) {!
    for (int i = a.length / 2 - 1; i >= 0; i--)!
        percDown(a, i, a.length);!
    for (int i = a.length - 1; i > 0; i--) {!
        swapReferences(a, 0, i);!
        percDown(a, 0, i);!
    }  !
}	



O(N)	



O(NlogN)	



root: 	

 	

a[0]!
current heap size: 	

i!
children of i: 	

array[2*i+1] and array[2*i+2]	


parent of i: 	

array[(i-1)/2]!

heap 	


construction	
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Heapsort example	



59   26   58   21   41   97   21   16   26   53	



Construct max-heap:!

97   53   59   26   41   58   31   16   21   36	



59   53   58   26   41   36   31   16   21   97	



58   53   36   26   41   21   31   16   59   97	



53   41   36   26   16   21   31   58   59   97	



41   31   36   26   16   21   53   58   59   97	



to be continued	



97	



53	



26	

 41	

 58	



59	



31	



16	

 21	

 36	
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41   31   36   26   16   21   53   58   59   97	



36   31   21   26   16   41   53   58   59   97	



31   26   21   16   36   41   53   58   59   97	



26   16   21   31   36   41   53   58   59   97	



21   16   26   31   36   41   53   58   59   97	



16   21   26   31   36   41   53   58   59   97	



end	



41	



31	



26	

 16	



36	



21	
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Animation of heapsort���
(heap construction phase)	
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Animation of heapsort���
(sorting phase)	
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External sorting	


(sorting of data on external memory)	



Special considerations:	


	



	

(1) 	

It is very time consuming to access a data element	


	



	

(2) 	

There can be restrictions on how data can be accessed, 
	

 	

e.g.,  data on a magnetic tape can only be read 	

 	


	

 	

sequentially.  	
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Distribute and merge	



Distribute:	


	

Divide the file to be sorted into blocks, each of size 
	

equal to the internal memory. 	


	

Sort each block and distribute them to two or more 
	

temporary files. 	



Merge:	


	

Merge the sorted blocks (runs) into longer sorted blocks.	


	

Continue in this way until the original file is one sorted block.	
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Balanced multiway merge	


Example: 3-way sorting of 81 records	



Sorted blocks (number of records)	


	



	

1 	

 9 (3) 	

0 	

 	

1 (27) 	

 	

0	


	

2 	

 9 (3) 	

0 	

 	

1 (27) 	

 	

0 	

	


	

3 	

 9 (3) 	

0 	

 	

1 (27) 	

 	

0 	

	


	

4 	

 0 	

 	

3 (9)	

 	

0 	

 	

 	

1 (81)	


	

5 	

 0 	

 	

3 (9)	

 	

0 	

	


	

6 	

 0 	

 	

3 (9)	

 	

0	



	


It takes 3 passes to sort 81 records 	



	


The merging may be performed by a priority queue.	
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N:  number of records	


M: size of internal memory (measured in number of records) 	



Use half of the 2k files as input files, the rest as output files. 	



Pass 0: 	

divide the file into blocks of size M, sort each block 
	

and distribute the sorted blocks to files 1, 2, ..., k.	



Pass 1: 	

k-merge the blocks from files 1, 2, ..., k into blocks of 
	

size kM and write them to files k+1, k+2, ..., 2k. 	



Pass 2: 	

k-merge the blocks from files k+1, k+2, ..., 2k into 
	

blocks of 	

size k2M and write them to files 1, 2, ..., k .	



... 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

    
Pass p: 	

k-merge the blocks from the input files to one block of 

	

size kpM and write it to one of the output files.	



Balanced k-way merge	
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The file is sorted when	


	

 kpM ≥ N	



i.e, after	


	

p = logk(N/M) passes. 	



Examples: 	

 	

 	

 	

 	

 	

 	

 	

 	

 	


	

file size (N) 	

 	

 	

109 records 	

	

 	

 	

	



	

memory size (M)	

 	

106 records	


	



	

number of temporary files (2k) 	

 	

4 	

 	


	

number of passes (p)  log2103 ≈      10	



	


	

number of temporary files (2k)	

      20 	

 	

 	


	

number of passes (p)  log10103 = 	

 3	



The file is sorted in a time that is 4-11 times longer than 
the time is takes to read or write it.	
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Polyphase merge	



Reduces the number of temporary files to about the half the 
number of temporary files needed for balanced multiway merge. 	



Principle: 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	


	

Always use k-1 input files and 1 output file.	



	


Algorithm: 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	



	

Merge from the k-1 input files to the output file, until the end 
	

of one of the input files is reached. 	

	


	

Use the latter file as new output file for merging from the 
	

other k-1 files. 	

 	

 	

 	

 	

 	

 	

 	

 	

	


	

Continue in this way until the file is sorted. 	
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Run distribution for polyphase merge	



Distribute the runs on k-1 files such that the last merge causes 
the end to be reached on all input files simultaneously.	


	


The initial run distribution can be determined using generalized 
Fibonacci numbers.	



1 	

21 	

8 	

0 	

5 	

3 	

1 	

0 	

1	


2 	

13 	

0 	

8 	

3 	

0 	

2 	

1 	

0	


3 	

  0   13 	

5 	

0 	

2 	

0 	

1 	

0	



3 files, 34 runs, 7 passes	



Fk(N) = Fk(N-1) + Fk(N-2) + ... + Fk(N-k)	


Fk(0 ≤ N ≤ k-2) = 0, Fk(k-1) = 1	
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Replacement selection	


A technique that produces initial runs of average length 2M if the input is 
randomly distributed.	



Read M records into a priority queue.	


	


Delete the smallest record from the priority queue and write it out. 	


	


Read a record from the input file. If the new element is smaller than the 
last one output, it cannot become part of the current run. Mark it as 
belonging to the next run and treat it as greater than all the unmarked 
elements in the queue.	


	


Terminate the run when a marked element reaches the top of the queue.	


	


Organize the marked records as priority queue.	
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M = 3!
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