Algorithms 111

Agenda

Sorting

e Simple sorting algorithms

e Shellsort

* Mergesort

e Quicksort

* A lower bound for sorting

e Counting sort and Radix sort

Randomization

e Random number generation

* Generation of random permutations
 Randomized algorithms

Sorting

Informal definition:
Sorting is any process of arranging items in some sequence.

Why sort?

(1) Searching a sorted array is easier than searching an unsorted
array. This is especially true for people. Example: Looking up a
person in a telephone book.

(2) Many problems may be solved more efficiently when input is
sorted. Example: If two files are sorted it is possible to find all
duplicates in only one pass.

—_

O WO NO OGS WN -

Detecting duplicates In an array

// Return true if array a has duplicates; false otherwise figure 8.1
public static boolean duplicates(Object [] a) A simple quadratic
{ algorithm for

for(int i = 0; i < a.length; i++) detecting duplicates

for(int j =1 + 1; j < a.length; j++)
if(a[1 J.equalsCal[3]))
return true; // Duplicate found

return false; // No duplicates found

If the array is sorted, duplicates can be detected by a linear-time
scan of the array:

for (int i = 1; i < a.length; i++)
if (a[i - 1l].equals(a[i])
return true;

Finding the intersection of two
unsorted arrays

0 [M
a:
0 J N
b:
0 %
C:
k = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
if (a[i]l.equals(b[]j]))
c[k++] = a[1];

Complexity: O(MN)

Finding the intersection of two
sorted arrays

0 i M
a <
0 Jj N
b: <
0 %
C.
i=3=%k=0;

while (1 < M && j < N)
if (a[i] < b[Jj]) i++;
else if (a[i] > b[]j]) J++;
else { c[k++] = a[i]; i++; J++; }

Complexity: O(M + N)

Insertion sort Wa

Problem: Given an array a of n elements
al0], a[l], ..., a|n-1].
Sort the array in increasing order.

Solution (by induction):

Base case: We know how to sort 1 element.
Induction hypothesis: We know how to sort n-1 elements.

We can sort an array of n elements by
(1) sorting its first n-1 elements,
(2) insert the n’th element into its proper place among the
previously sorted elements

Insertion sort

(recursive version)

void insertionSort(int[] a, int n) {

if (n > 1) {
insertionSort(a, n - 1);
int tmp = a[n];
int j = n;
for (; jJj > 0 && a[]j - 1] > tmp;
a[j] = a[J - 11;
a[J] = tmp;

j--)

\

Single right shift

figure 8.3

Basic action of Array Position

insertion sort (the
shaded part is sorted)

Initial State

After a[0..1] is sorted

After a[0..2] is sorted

After a[0..3] is sorted

After a[0..4] is sorted

After a[0..5] is sorted

Array Position 1] 2|3
Initial State 5
After a[0..1] is sorted 8| 9
After a[0..2] is sorted 8| 9| 2
After a[0..3] is sorted 5|1 8| 9
After a[0..4] is sorted 5| 6| 8
After a[0..5] is sorted 3 [SHIN6

figure 84

A closer look at the
action of insertion sort
(the dark shading
indicates the sorted
area; the light shading
is where the new
element was placed)

10

172}

© O

m A x

H A 13 #H4

= - H H

=2 2 2 2 2 Z

R Q@ Q@ Q@ @ Q@ @

{3 B c I s I o B c O s I c O

P4 D4 M M M M K X M

L A -

R 2R R R R R R R R

v W w v w v v 'v v v v O

| N R N N O A N N N o A

M H HEH B &8 BB B8 B3 B88H8HB8BH

A AEEGILMNMNOPRST

Insertion sort

(non-recursive version)

figure 8.2 1 [**
Insertion sort 2 * Simple insertion sort
implementation 3 */
4 public static <AnyType extends Comparable<? super AnyType>>
5 void insertionSort(AnyType [] a)
6 {
7 for(int p = 1; p < a.length; p++)
8 {
9 AnyType tmp = a[p];
10 int j = p;
11
12 for(; j > 0 & tmp.compareTo(a[j - 1]) <0; j--)
13 aljl=alj-11;
14 a[J] = tmp;
15 }
16 }

Only the object references are right-shifted (not the objects themselves)

12

ali] |-

Animation of Insertion sort

Sorting the integers from 1 to 100.

13

Analysis of Insertion sort

Number of comparisons:
Best case: n-1
Worst case: 1 +2 + ... + (n-1) = n(n-1)/2, which is O(n?)
Average case: n(n-1)/4, which is O(n?)

Number of moves:

Best case: 0
Worst case: 1 +2 + ... + (n-1) = n(n-1)/2, which is O(n?)
Average case: n(n-1)/4, which is O(n?)

Running time 1s O(n) for “almost sorted” arrays

14

Shellsort

Donald Shell, 1959

Idea:
Insertion sort 1s very efficient when the array is “almost sorted”.
However, it is slow for “very unsorted” arrays since it only allows
exchange of neighboring elements.

Question:
Can we start by exchanging elements that are far apart from each other
in the array before we do an ordinary Insertion sort?

Answer:
Yes. We can start by sorting all subfiles consisting of every /#’th element
of the array, where h > 1.

15

4-sorting

1. Divide the array into 4 subfiles:

each 4’th element, starting in the first,
each 4’th element, starting in the second,
each 4’th element, starting in the third, and
each 4’th element, starting in the fourth.

2. Sort each of these four subfiles.

The array is then said to be 4-sorted.
Similarly, we can define h-sorted.

Notice that an array that is 1-sorted is sorted.

16

4-sorting

Use Insertion sort with an increment of 4

A IAGELEMPSNRTIXO

17

Implementation of /-sort

public static <AnyType extends Comparable<? super AnyType>>

void h sort(AnyType[] a, int h) {
for (int p = h; p < a.length; p++) {

AnyType tmp = a[p];

int j = p;

for (
a[j] = alJ - h];

a[j] = tmp;

; J >= h && tmp.compareTo(a[]j - h]) < 0;

The code 1s obtained by replacing 1 by h in insertionSort.

18

Shellsort

Shellsort uses h-sorting for a decreasing sequence of s-values, ending

with 2 =1.

for (int h
h = h

void shellsort (AnyType[] a) {
a.length / 2; h > 0;

2 ?2 1 : (int)

h sort(a, h);

(h / 2.2))

19

1 /**

2 * Shellsort, using a sequence suggested by Gonnet.

3 */

4 public static <AnyType extends Comparable<? super AnyType>>
5 void shellsort(AnyType [] a)

6 {

7 for(int gap = a.length / 2; gap > 0;

8 gap=gap ==27?1: (int) (gap / 2.2))
9 for(int i = gap; 1 < a.length; i++)

10 {

1 AnyType tmp = a[i];

12 int j =1;

13

14 for(; j >= gap && tmp.compareTo(a[j-gap]) < 0; j -= gap)
15 al j 1 =al3-gapl;

16 al[j] = tmp;

17 }

18 }

figure 8.7

Shellsort implementation

20

figure 8.5

Original 81 94
Shellsort after each

pass if the increment

sequence is {1, 3, 5} After 5-sort | 35 17

After 3-sort | 28 12

After 1-sort | 11 12 15 17 28 35 41 58 75 81 94

7% 15
94 95
9% 95
95 9%

In the figure, elements spaced five and three apart are identically shaded.

21

Animation of Shellsort

22

N

10,000
20,000
40,000
80,000
160,000
320,000
640,000

Insertion Sort

575
2,489
10,635
42,818
174,333
NA

NA

Shellsort

Shell’'s Increments

10
23

51
114
270
665
1,593

Odd Gaps Only

11
23
49
105
233
530
1,161

Dividing by 2.2

9
20
41
86

194
451
939

figure 8.6 (milliseconds)

Running time of the insertion sort and Shellsort for various increment sequences

Shell’s increments: Start gaps at n/2 and halve until 1 is reached.

Odd Gaps Only: As Shell’s increments, but add 1 whenever the gap becomes even.

23

Analysis of Shellsort

Number of comparisons (for the increment sequence 1, 4, 13, 40,...):
Best case: (n-1) + (n-4) + (n-13) + ... < n logyn
Worst case: less than n!-
Average case: not known

Two suggestions are O(n!2°) and O(n(log n)?)

Number of moves:
Best case: O
Worst case: as for comparisons

Average case: as for comparisons

24

Mergesort

Mergesort is a divide-and-conquer based sorting algorithm.
The algorithm involves three steps:

1. If the number of items to sort is O or 1, then return.

2. Recursively sort the first and second halves separately.

3. Merge the two sorted halves into one sorted group.

25

Mergesort

void mergeSort(Comparable[] a, int low,

if (low < high) {
int mid = (low + high) / 2;
mergesort(a, low, mid);

mergesort(a, mid + 1, high);

merge(a, low, mid, high);

int high) {

IA

low mid

IA

high

26

Linear-time merging of two sorted arrays

0 i M
a < <
0 j N
b < <
0 k M+N
c <
for (1 = jJ =k =0; k <M+ N; kt+)
if (i == M) c[k] = b[]j++]; else
if (J == N) c[k] = a[i+t+]; else
c[k] = a[i].compareTo(b[]J]) < 0 ? a[i++] : b[]j++];

27

Merging a[low:mid] with a[mid+1:high] toa[low:high]:

a: = =
low mid mid+1 high
Merge into b:
b: <
low high
Copy b to a:
a: <
low high

void merge(Comparable[] a, int low, int mid, int high) {
int i = low, j = mid + 1;
for (int k = low; k <= high; k++)
if (i > mid) b[k] = a[]j+t+]; else
if (j > high) b[k] = a[i++]; else

b[k] = a[i].compareTo(a[]j]) < 0 ? a[it+] : a[]J++];

for (int k = low; k <= high; k++) a[k] = b[k];

28

1 /**

2 * Mergesort algorithm.

3 * @param a an array of Comparable items.

4 */

5 public static <AnyType extends Comparable<? super AnyType>>
6 void mergeSort(AnyType [] a)

7

8 AnyType [] tmpArray = (AnyType []) new Comparable[a.length];
9 mergeSort(a, tmpArray, 0, a.length - 1);

10 }

11

12 J¥*

13 * Internal method that makes recursive calls.

14 * @param a an array of Comparable items.

15 * @param tmpArray an array to place the merged result.

16 * @param left the left-most index of the subarray.

17 * @param right the right-most index of the subarray.

18 */

19 private static <AnyType extends Comparable<? super AnyType>>
20 void mergeSort(AnyType [] a, AnyType [] tmpArray,

21 int Teft, int right)

22 {

23 if(left < right)

24 {

25 int center = (left + right) / 2;

26 mergeSort(a, tmpArray, left, center);

27 mergeSort(a, tmpArray, center + 1, right);

28 merge(a, tmpArray, left, center + 1, right);

29 }

30 }

figure 8.8

Basic mergeSort routines

29

1 [** figure 8.9
2 * Internal method that merges two sorted halves of a subarray. The merge routine
3 * @param a an array of Comparable items.

4 * @param tmpArray an array to place the merged result.

5 * @param leftPos the left-most index of the subarray.

6 * @param rightPos the index of the start of the second half.
7 * @param rightEnd the right-most index of the subarray.

8 */

9 private static <AnyType extends Comparable<? super AnyType>>
10 void merge(AnyType [] a, AnyType [] tmpArray,

11 int leftPos, int rightPos, int rightEnd)

12 {

13 int leftEnd = rightPos - 1;

14 int tmpPos = leftPos;

15 int numElements = rightEnd - TeftPos + 1;

16

17 // Main Toop

18 while(TeftPos <= TeftEnd && rightPos <= rightEnd)

19 if(a[leftPos].compareTo(a[rightPos]) <=0)

20 tmpArray[tmpPos++] = a[leftPos++];

21 else

22 tmpArray[tmpPos++] = a[rightPos++];

23

24 while(TeftPos <= leftEnd) // Copy rest of first half
25 tmpArray[tmpPos++] = a[leftPos++];

26

27 while(rightPos <= rightEnd) // Copy rest of right half
28 tmpArray[tmpPos++] = a[rightPos++];

29

30 // Copy tmpArray back

31 for(int i = 0; i < numElements; i++, rightEnd--)

32 a[rightEnd] = tmpArray[rightEnd];

33 }

A SORTINGEIXAMPLE

ASORTINGEZXAMPLE
ASOR
AORSTINGEXAMPLE
AORSITNGEXAMPLE

ELP
AEELMPX
A AEEGILMNOPRSTX

31

Animation of Mergesort

z" ”
r
/J
i s
el
Ll -'
-
L
s
s
L4
P
P
L4

32

Call trees

®

33

Call tree

There are about log,N levels
Each level uses O(N) time

34

Evaluation of Mergesort

Advantages:

insensitive to the input order

requires about N log,N comparisons for any array of N elements
C(N)=2C(N/2) + N, C(1) =0

1s stable (preserves the input order of equal elements)
can be used for sorting linked lists

is suitable for external sorting

Disadvantage:

requires (in practice) extra memory proportional to N

35

Quicksort

C. A.R. Hoare, 1962

Quicksort is in practice the fastest comparison-based algorithm for
sorting arrays.

Idea:
To sort an array, partition it into a left and a right part, such that
all elements in the left part are less than or equal to all elements in
the right part.

IA

left part right part

Then, recursively sort the left part and the right part.

36

Basic Quicksort

The basic algorithm Quicksort(S) consists of the following four steps:
1. If the number of elements in S 1s O or 1, then return.

2. Pick any element v in §. It 1s called the pivot.

3. Partition S - {v} (the remaining elements in S) into two
disjoint groups L={xeS—{v}lx<v}and R={xeS—-{v}lx=v}.

4.Return the result of Quicksort(L) followed by v followed
by Quicksort(R).

37

* Select pivot

* Partition
Quicksort Quicksort ‘
small items large items

/

¢

S

0 13 26 31 43 57 65 75 81 92

figure 8.10
The steps of quicksort

38

Partitioning
The partitioning of an array a may be performed as follows:

(1) Choose a pivot v among the elements in a.

(2) Traverse a from left to right until an element a[i] = v is met.
(3) Traverse a from right to left until an element a[j] < v is met.
(4) Swap ali] and al[J].

(5) Continue traversing and swapping until the two traversals “cross”.

<v ali] alj] >y

39

Implementation

Partitioning a[low:high] about the pivot v:

1 = low; j = high;
while (i <= j) {
while (a[i].compareTo(v) < 0) i++;
while (a[j].compareTo(v) > 0) j--;
if (1 <= j)
{ swap(a, i, J); i++; J--; }

Result: a[low:i] < a[j:high] and i > j.

May be proven by showing that
a[low:i-1] <v<=<a[]j+l:high]
is invariant for the outermost loop.

40

Swap

void swap(Object[] a, int i, int j) {
Object temp = a[i];
a[i] = a[Jls;
a[j] = temp;

Only the object references are swapped (not the objects themselves)

41

Quicksort

The pivot v may be any element in a[low:high], for instance
a[(low + high)/2].

void quicksort(Comparable[] a, int low, int high) {
if (low < high) {

Comparable v = a[(low + high)/2];

int i = low, Jj = high;

while (true) {
while (a[i].compareTo(v) < 0) i++;
while (a[j].compareTo(v) > 0) j--;
if (i >= j) break;
swap(a, i++, j--);

}

quicksort(a, low, j);

quicksort(a, i, high);

42

Alternative partitioning algorithm

Choose a[high] as pivot, partition a[low:high-1], and
swap a[high] with a[i].

int partition(Comparable[] a, int low, int high) {
Comparable v = a[high];
int i = low - 1, j = high;
while (true) {
while (a[+t+i].compareTo(v) < 0) ;
while (v.compareTo(a[--J]) < 0)
if (j == low) break;
if (i >= j) break;
swap(a, i, J);
}
swap(a, i, high);
return i;

43

Picking the pivot

figure 8.11
8 1 4 9 0 3 5 2 ’ - Partitioning algorithm:

Pivot element 6 is
placed at the end.

figure 8.12

Partitionin? algorithm:
i stops at large
element 8; j stops at
small element 2.

figure 8.13 \ /\

Partitioning algorithm: 2) 1 4 9 0 3 S (8) / -
The out-of-order 7 ‘ 7
elements 8 and 2 are v

swapped.

. N N
figure 8.14 / \ /

Partitionin? algorithm: 2 ! 4 (>)0 = (2) 8 ! -
A /

i stops at large ‘ g A
element 9; j stops at
small element 5.

figure 8.15

Partitioning algorithm:
The out-ot-order
elements 9 and 5 are
swapped.

figure 8.16

Partitioning algorithm:
i stops at large
element 9; j stops at
small element 3.

figure 8.17

Partitioning algorithm:

Swap pivot and
element in position 1.

45

The method quicksort

int quicksort(Comparable[] a, int low, int high)
if (low < high) {
int i = partition(a, low, high);
quicksort(a, low, 1 - 1);
quicksort(a, i + 1, high);

{

46

Animation of Quicksort

- - -
. - -
. -
. . - . - . '.:. .
. - .. “ -.'.
. - - " - - -
- . -" - . =
N - = - - - L
." - -. - '*' .
.. -
i B ." o .
. . oo rl
- .
":,f
/qf

47

Number of comparisons

Let C(N) denote the number of comparisons required for executing
Quicksort on an array of N elements.

Partitioning requires N comparisons. Next, the left part and the right
part are sorted separately.

On average each part consists of about N/2 elements. Then we obtain
the recurrence

C(N) = N + 2C(N/2) for N = 2,
C0)=C(1)=0,

which has the solution C(N) = N log,N.

48

Average number of comparisons

More precise computations give

Quicksort uses about 2N In/N comparisons on the average

where In denotes the natural logarithm.
2NIn N=1.39 N log,N

So the average number of comparisons 1s only about 39% higher
than in the best case.

49

Number of comparisons in the worst case

The worst case occurs when the partitioning for each N
results in a part of one element and a part of N-1 elements.

In this case we have the recurrence

C(N) =N + C(N-1) for N> 2,
C(0) = C(1) =0,

which has the solution C(N) = N(N+1)/2.

Picking the pivot at random or by the “median-of-three”
method makes the worst case unlikely to occur.

The median of N numbers is the fN / 2—|th smallest number.

50

Median-of-three partitioning

figure 8.18

Original array 8 1 4 9 6 3 5 2

figure 8.19 /—\

Result of sorting three 0) 1 & 9 (6) 3 5 2

elements (first, middle,

and last)

figure 8.20

Result of swapping
the pivot with the

next-to-last element

51

Quicksort with median-of-three
partitioning

void quicksort(Comparable[] a, int low, int high) {
if (low < high) {
if (a[high].compareTo(a[low]) < 0)

swap(a, low, high);

int mid = (low + high) / 2;

if (mid == low) return;

if (a[mid].compareTo(a[low]) < 0)
swap(a, low, mid);

if (a[high].compareTo(a[mid]) < 0)
swap(a, mid, high);

swap(a, mid, high - 1);

int i = partition(a, low + 1, high - 1);
quicksort(a, low, i - 1);
quicksort(a, i + 1, high);

52

Small array segments

Use a simple method for sorting small array segments.
The test in the beginning of quicksort:

if (low < high)
is replaced by

if (high - low < CUTOFF)
insertionSort(a, low, high);

else

where CUTOFF i1s in the range from 5 to 25.

53

figure 8.21

Quicksort with
median-of-three
?ar‘titioning and cutoff
or small arrays

O NOOGDE WN =

OO bDH DBDDEDEDEDEDEDEDEDWWOWOWOWWWWWWNNNNNNNNNDN= = @D QD CD D D w -
- 0O WO NOOHAWN=-=-0OVCONODUDEDWN-=-00CONIODLWN--0O0CONOIGNAWN-=-OOV

/**

* Quicksort algorithm (driver)

*/
pubTic static <AnyType extends Comparable<? super AnyType>>
void quicksort(AnyType [] a)

quicksort(a, 0, a.length - 1);

/**

* Internal quicksort method that makes recursive calls.

* Uses median-of-three partitioning and a cutoff.

*/

private static <AnyType extends Comparable<? super AnyType>>
void quicksort(AnyType [] a, int Tow, int high)

if(Tow + CUTOFF > high)
insertionSort(a, low, high);
else
{ // Sort low, middle, high
int middle = (low + high) / 2;
if(a[middle].compareTo(a[Tow]) <0)
swapReferences(a, Tow, middle);
if(a[high].compareTo(a[Tow]) < 0)
swapReferences(a, low, high);
if(a[high].compareTo(a[middle]) < 0)
swapReferences(a, middle, high);

// Place pivot at position high - 1
swapReferences(a, middle, high - 1);
AnyType pivot = a[high - 1 1;

// Begin partitioning
int i, j;
for(i =1low, j = high-1; ;)
while(a[++i].compareTo(pivot) < 0)
whi]é(pivot.compareTo(a[--j]) < 0)
PFC1>=5)
break;
swapReferences(a, 1, j);

}
// Restore pivot
swapReferences(a, i, high - 1);

quicksort(a, low, i - 1); // Sort small elements
quicksort(a, i + 1, high); // Sort large elements

54

Memory usage

The average extra space complexity of quicksort is O(log,N).
This extra space comes from the call stack. Each recursive call will
create a stack frame.

The worst case extra space complexity for a naive implementation is
O(N). The worst case occurs when the partitioning for each N results
in a part of one element and a part of N-1 elements, and we quicksort
the largest part first.

Extra space complexity of O(log,N) 1s guaranteed if we always sort
the array segment with the fewest elements first, and sort the other
array segment using iteration (that 1s, eliminates the tail recursion).

55

Elimination of tail recursion

A subroutine is said to be tail-recursive, if it calls itself as its
final action.

Tail recursion can always be replaced by iteration.

Recursion (call: p(a)) Iteration
void p(fype x) { fypex = aj
if (b(x)) while (!b(x)) {
S1; S2;
else { x = f£(x);
S2; }
p(£(x)); S1;
}
}

56

while (low < high) {
int 1 = partition(a, low, high);
quicksort(a, low, i - 1);

low = 1 + 1;

int quicksort(Comparable[] a, int low, int high) {
if (low < high) {
int i1 = partition(a, low, high);
quicksort(a, low, 1 - 1);
quicksort(a, i + 1, high);
}
}
int quicksort(Comparable[] a, int low, int high) {

Smart compilers (but not Java) can detect tail recursion and convert it to

iteration in order to optimize code

57

Selection 3

Problem: Find the £’th smallest element in an array of N elements

Example: The 3’rd smallest element in {3, 6,5, 2, 8,4} is 4.

Solution 1: Sort the array in increasing order.

The k’th element in the sorted array is the solution to the problem.

Complexity: Depends on the sorting algorithm -
using Mergesort: O(N log N).

Can we do it faster?

58

Selection by means of partition

void quickSelect(Comparable[] a, int low, int high, int k) {
if (low < high) {
int i = partition(a, low, high);
if (k <= i) quickSelect(a, low, 1 - 1, k);
else if (k > i + 1) quickSelect(a, i + 1, high, k);

Since only tail recursion is used, the recursion may be eliminated:

void quickSelect(Comparable a[], int low, int high, int k) {
while (low < high) {
int i = partition(a, low, high);
if (k <= i) high = i - 1;
else if (k. >=1i + 1) low = i + 1;

59

O NOOOHAE WN =

/**
* Internal selection method that makes recursive calls.
* Uses median-of-three partitioning and a cutoff.
* Places the kth smallest item in a[k-1].
* @param a an array of Comparable items.
* @param low the Teft-most index of the subarray.
* @param high the right-most index of the subarray.

* @param k the desired rank (1 is minimum) in the entire array.

*/

private static <AnyType extends Comparable<? super AnyType>>

void quickSelect(AnyType [] a, int low, int high, int k)

if(Tow + CUTOFF > high)
insertionSort(a, low, high);
else

// Sort Tow, middle, high

int middle = (Tow + high) / 2;

if(a[middle].compareTo(a[Tow]) < 0)
swapReferences(a, low, middle);

if(a[high].compareTo(a[Tow]) < 0)
swapReferences(a, Tow, high);

if(a[high].compareTo(a[middle]) < 0)
swapReferences(a, middle, high);

// Place pivot at position high - 1
swapReferences(a, middle, high - 1);
AnyType pivot = a[high - 1];

// Begin partitioning
int i, j;
for(i = Tow, j = high - 1; ;)
{

while(a[++i].compareTo(pivot) < 0)
whi]é(pivot.compareTo(a[--j]) < 0)

(1>)
break;
swapReferences(a, i, j);

}
// Restore pivot
swapReferences(a, i, high - 1);

// Recurse; only this part changes
if(k <=1)

quickSelect(a, Tow, i - 1, k);
else if(k>1i+1)

quickSelect(a, i + 1, high, k);

figure 8.22

Quickselect with
median-of-three
partitioning and cutoff
for small arrays

60

Complexity of quickSelect

O(N) on the average
since N+ N/2 + N/4+ N/8 + ... <2N.

It 1s possible (but not quite easy) to achieve guaranteed linear
running time.

61

A lower bound for sorting

Any sorting algorithm that sorts using comparisons must use at least
| log(N!)] comparisons for some input sequence.

Informal proof:

Sorting is equivalent to finding a permutation of the input sequence.
Thus, sorting may be modeled by a decision tree, where each internal
node corresponds to a comparison, and each external node corresponds

to one of the N! possible permutations. The height of the tree must at
least be log,(N!).

-
How large is |_10g2 (N !)_l ? iy (ava
< > < >
(12.3) aay (@213 (@)
From Stirling's formula N! = 2aN(Y)N < > < >
€ ((132) (B12) (@31n) (G2))

we get
log,(N!) = Nlog,N - 1.44N.

62

Counting sort

A linear sorting algorithm

Sort an array a of non-negative integers less than m.

void sort(int[] a, int m) {
int[] count = new int[m];
for (int 1 = 0; 1 < a.length; i++)
count[a[i]]++;
for (int i =0, J = 0; J < m; J++)
for (int k = count[j]; k > 0; k--)
a[i++] = J;

63

123 123 123 123
583 583 625 154
154 154 154 456
: A A
68¢ 456 26 253
Radix sort ZHE A
A linear sorting algorithm Unsorted TS BO6R by loos
Sort an array a of non-negative d-digit integers in radix (base) r.
void sort(int[] a, int d, int r) {
int[] count = new int[r];
int[] b = new int[a.length];
for (int pass = 0, pow = 1; pass < d; pass+t+, pow *= r) {
for (int 1 = 0; i < r; i++) count[i] = 0;

for (int i = 0; i < a.length; i++)

count[a[i] / pow % r]++;
for (int i = 1; i < r; i++)
count[i] += count[i - 1];

for (int i = a.length - 1; i >= 0;

b[--count[a[i] / pow & r]] =

afil;

i--)

for (int i = 0; 1 < a.length; i++) a[i] =

b[i]

4

64

Radix-10 sort

31 | 41 | 59 | 26 | 53 | 58 | 97 | 23 | 93 | &4
0 1 2 3 4 5 6 7 8 9
0 2 0 3 1 0 | 1 1 |
0 2 2 5 6 6 7 8 9 10
31 | 41 | 23 | 53 | 93 | 84 | 26 | 97 | 58 | 59
0 1 2 3 4 5 6 7 8 9
0 0 2 1 1 3 0 0 1 2
0 0 2 3 4 7 7 7 8 10
23 | 26 | 31 | 41 | 53 | 58 | 59 | 84 | 93 | 97

count

count

count

count

unsorted

sorted by 1s

sorted by 10s
(and 1s)

65

Randomization

66

Why do we need random numbers?

Many applications:

Program testing (generation of random input data)

Sorting (e.g., determination of the pivot in Quicksort)
Simulation (e.g., generation of arrival times for bank customers)
Games (e.g., choice of opening moves in chess)

Randomized algorithms (e.g., primality testing)

67

Generation of random numbers

True randomness in a computer is impossible to achieve.

Generally, it 1s sufficient to produce pseudorandom numbers, or
numbers that appear to be random because they satisfy many of the
properties of random numbers.

A pseudorandom number generator must pass a number of statistical
tests. One such generator is the linear congruential generator
(Lehmer, 1951) in which numbers X, X,, ... are generated that satisfy

X, =AX; + C (mod M)
The initial value X, 1s called the seed.

A, C, and M must be chosen in such a way that the length of the
sequence until a number is repeated (the period) becomes as large as
possible. This happens when M is a large prime number.

68

Generation of random numbers in Java

Java provides the class java.util.Random.

public
public
public
public
public
public
public
public
public
public

public class Random {

Random() ;

Random(long seed);

int nextInt();

int nextInt(int n);

long nextLong();

float nextFloat();

double nextDouble();

double nextBytes(byte[] bytes);
double nextGaussian();

void setSeed(long seed);

protected int next(int bits);

69

Implementation of Lehmer's method

public class Random {
private long seed;
private final static long multiplier = OxX5DEECE66DL; // = 25214903917
private final static long addend = 0xBL; // 11
private final static long mask = (1L << 48) - 1;

public Random() { this(System.currentTimeMillis()); }

public Random(long seed) {
this.seed = (seed " multiplier) & mask;

}

public int nextInt() { return next(32); }

protected int next(int bits) {
long nextseed = (seed * multiplier + addend) & mask;
seed = nextseed;
return (int) (nextseed >>> (48 - bits));

Generation of random permutations

O=7=i 1F------1 >
a]
N—
swap | 7 = r.nextInt(i + 1)

void permute(Object[] a) {
Random r = new Random();
for (int 1 = 1; i < a.length; i++)
swap(a, i, r.nextInt(i + 1));

The algorithm runs in linear time.
The number of different possible outcomes 2 -3 - ... N-1 - N
is equal to the number of possible permutations, N!.

71

Primality testing by trial division

figure 9.7 [x%
Primality testing by * Returns true if odd integer n is prime.
trial division */

public static boolean isPrime(long n)

{

for(inti=3;1 %1 <=n; 1 +=2)
if(n%i==0)
return false; // not prime

return true; // prime

- O WO NGB WN -

— —

72

Randomized primality testing

. P. de Fermat, 1601-65
Fermat’s little theorem:

If P is prime and 0 < A < P, then A”! = 1(mod P)

If for a number N we can find avalue 0 <A< N
such that A¥-!(mod N) is not 1, then N is not a prime.
A 1s said to be a witness to N’s compositeness.

Every composite number has a witness. But for some
numbers it can be hard to find. The following theorem
can be used to improve our chances of finding a witness.

Theorem:
If P is prime and X? = 1(mod P), then X = +1(mod P)

73

Exponentiation

Efficient algorithm
If n 1s even, then
x"=(x- x)%
If n 1s odd, then
x"=x-x"" =x-(x-x)EJ

public static long power(long x, int n)
if (n == 0)
return 1;
long tmp = power(x * x, n / 2);
if (n 8 2 !=0)
tmp *= Xx;
return tmp;

Number of multiplications < 2 log,n.

{

74

O NS WON -

b eb e eh eh e e -
N OOk, WON - O

/

*

oo
"

*

*

*

*/

Modular exponentiation

figure 7.16
Return xAn (mod p) Modular
Assumes x, n>= 0, p> 0, x <p, 0A0 =1 exponentiation routine
Overflow may occur if p > 31 bits.

public static long power(long x, Tong n, long p)

{

if(n==0)
return 1;

long tmp = power((X * x) %p, n/ 2, p);

if(n%21=0) /

tmp = (tmp * x) % p;

return tmp;

75

1 Vi

2 * Private method that implements the basic primality test.
3 * If witness does not return 1, n is definitely composite.
4 * Do this by computing aAi (mod n) and looking for

5 * nontrivial square roots of 1 along the way.

6 */

7 private static long witness(long a, long i, long n)

8

9 if(i==0)

10 return 1;

1

12 long x = witness(a, i /2, n);

13 if(x==0) // If nis recursively composite, stop
14 return 0;

15

16 // n is not prime if we find a nontrivial square root of 1
17 Tongy =(x*x)%n;

18 if(y==1&x!=1&x!=n-1)

19 return 0;

20

21 ifCi%21!'=0)

22 y=(Ca*y)%n;

23

24 return y;

25 }

26

27 Vidd

28 * The number of witnesses queried in randomized primality test.
29 */

30 pubTlic static final int TRIALS = §;

31

32 /**

33 * Randomized primality test.

34 * Adjust TRIALS to increase confidence level.

35 * @param n the number to test.

36 * @return if false, n is definitely not prime.
%*

37 If true, n is probably prime.

38 */

39 public static boolean isPrime(long n)

40

41 Random r = new Random();

42

43 for(int counter = 0; counter < TRIALS; counter++)
44 if(witness(r.nextInt((int) n-3)+2,n-1,n) !=1)
45 return false;

46

47 return true;

48 }

figure 9.8

A randomized test for primality

76

Confidence of randomized
primality testing

Some values of A will trick the algorithm into declaring that N is
prime.

In fact, if we choose A randomly, we have at most 4 chance of
failing to detect a composite number.

However, if we independently use 20 values of A (TRIALS = 20),
the chances that none of them will witness a composite number is
1420 which is about 1 in a million million.

77

