
1	

Algorithms III	

2	

Agenda	

Sorting	

•  Simple sorting algorithms	

•  Shellsort	

•  Mergesort	

•  Quicksort	

•  A lower bound for sorting	

•  Counting sort and Radix sort	

Randomization	

• Random number generation	

• Generation of random permutations	

• Randomized algorithms	

3	

Why sort?	

	

(1) Searching a sorted array is easier than searching an unsorted
array. This is especially true for people. Example: Looking up a
person in a telephone book.	

	

(2) Many problems may be solved more efficiently when input is
sorted. Example: If two files are sorted it is possible to find all
duplicates in only one pass. 	

	

Informal definition: 	

Sorting is any process of arranging items in some sequence.	

Sorting	

4	

Detecting duplicates in an array	

If the array is sorted, duplicates can be detected by a linear-time
scan of the array:	

for (int i = 1; i < a.length; i++)!
 if (a[i - 1].equals(a[i])!
 ! return true;	

5	

Finding the intersection of two���
unsorted arrays	

k = 0;!
for (i = 0; i < M; i++)!
 for (j = 0; j < N; j++)!
 if (a[i].equals(b[j]))!
 c[k++] = a[i];!

!

Complexity: O(MN)	

i	

a:	

M	

0	

k	

c:	

0	

j	

b:	

0	

 N	

6	

Finding the intersection of two���
sorted arrays	

i = j = k = 0;!
while (i < M && j < N)!
 if (a[i] < b[j]) i++;!
 else if (a[i] > b[j]) j++;!
 else { c[k++] = a[i]; i++; j++; }!

Complexity: O(M + N)	

i	

a:	

M	

0	

j	

b:	

0	

 N	

k	

c:	

0	

7	

	

Problem: Given an array a of n elements
	

a[0], a[1], ..., a[n-1]. 	

Sort the array in increasing order. 	

	

	

	

	

Insertion sort	

Solution (by induction):	

	

	

Base case: We know how to sort 1 element.	

	

Induction hypothesis: We know how to sort n-1 elements.	

	

We can sort an array of n elements by 	

 	

 	

 	

 	

 	

 	

	

	

(1) sorting its first n-1 elements, 	

 	

 	

 	

 	

 	

 	

	

(2) insert the n’th element into its proper place among the
	

previously sorted elements	

8	

Insertion sort	

(recursive version)	

void insertionSort(int[] a, int n) {!
 if (n > 1) {!
 insertionSort(a, n - 1);!
 int tmp = a[n];!
 int j = n;!
 for (; j > 0 && a[j - 1] > tmp; j--) !
 a[j] = a[j - 1];!
 a[j] = tmp;!
 } !
}!

Single right shift	

9	

10	

11	

A S O R T I N G E X A M P L E!
A S O R T I N G E X A M P L E!
A O S R T I N G E X A M P L E!
A O R S T I N G E X A M P L E!
A O R S T I N G E X A M P L E!
A I O R S T N G E X A M P L E!
A I N O R S T G E X A M P L E!
A G I N O R S T E X A M P L E!
A E G I N O R S T X A M P L E!
A E G I N O R S T X A M P L E!
A A E G I N O R S T X M P L E!
A A E G I M N O R S T X P L E!
A A E G I M N O P R S T X L E!
A A E G I L M N O P R S T X E!
A A E E G I L M N O P R S T X!

12	

Insertion sort	

(non-recursive version)	

Only the object references are right-shifted (not the objects themselves)	

13	

Animation of Insertion sort	

Sorting the integers from 1 to 100.	

i	

a[i]	

14	

Analysis of Insertion sort	

Number of comparisons:	

	

Best case: n-1	

	

Worst case: 1 + 2 + ... + (n-1) = n(n-1)/2, which is O(n2)	

	

Average case: n(n-1)/4, which is O(n2)	

	

Number of moves:	

	

Best case: 0 	

	

Worst case: 1 + 2 + ... + (n-1) = n(n-1)/2, which is O(n2)	

	

Average case: n(n-1)/4, which is O(n2)	

Running time is O(n) for “almost sorted” arrays	

	

15	

Shellsort ���
Donald Shell, 1959	

Idea: 	

 	

 	

 	

 	

 	

 	

Insertion sort is very efficient when the array is “almost sorted”.
However, it is slow for “very unsorted” arrays since it only allows
exchange of neighboring elements. 	

	

Question: 	

 	

 	

 	

 	

 	

 	

Can we start by exchanging elements that are far apart from each other
in the array before we do an ordinary Insertion sort?	

Answer:	

 	

 	

 	

 	

 	

 	

Yes. We can start by sorting all subfiles consisting of every h’th element
of the array, where h > 1.	

16	

4-sorting	

1.  Divide the array into 4 subfiles: 	

	

 	

 	

 	

	

each 4’th element, starting in the first, 	

 	

 	

each 4’th element, starting in the second, 	

 	

each 4’th element, starting in the third, and 	

each 4’th element, starting in the fourth. 	

	

2. Sort each of these four subfiles. 	

 	

	

 	

 	

 	

 	

	

The array is then said to be 4-sorted.	

Similarly, we can define h-sorted.	

	

Notice that an array that is 1-sorted is sorted.	

17	

4-sorting	

A S O R T I N G E X A M P L E!
A S O R T I N G E X A M P L E!
A I O R T S N G E X A M P L E!
A I N R T S O G E X A M P L E!
A I N G T S O R E X A M P L E!
A I N G E S O R T X A M P L E!
A I N G E S O R T X A M P L E!
A I A G E S N R T X O M P L E!
A I A G E S N M T X O R P L E!
A I A G E S N M P X O R T L E!
A I A G E L N M P S O R T X E!
A I A G E L E M P S N R T X O!

Use Insertion sort with an increment of 4	

18	

Implementation of h-sort	

!public static <AnyType extends Comparable<? super AnyType>>!
 void h_sort(AnyType[] a, int h) {!
! for (int p = h; p < a.length; p++) {!
! AnyType tmp = a[p];!
! int j = p;!
! for (; j >= h && tmp.compareTo(a[j - h]) < 0; j -= h)!

 a[j] = a[j - h];!
! a[j] = tmp;!
! }!
!}!

!

	

	

 The code is obtained by replacing 1 by h in insertionSort.!

!
!
!
 !

19	

	

!void shellsort(AnyType[] a) {!

 for (int h = a.length / 2; h > 0; !
 h = h == 2 ? 1 : (int) (h / 2.2)) !
 ! h_sort(a, h);!
!}!

!

	

!

Shellsort	

Shellsort uses h-sorting for a decreasing sequence of h-values, ending
with h = 1.	

20	

21	

In the figure, elements spaced five and three apart are identically shaded.	

22	

Animation of Shellsort	

23	

Shell’s increments: Start gaps at n/2 and halve until 1 is reached.	

Odd Gaps Only: As Shell’s increments, but add 1 whenever the gap becomes even.	

(milliseconds)

24	

Analysis of Shellsort	

Number of comparisons (for the increment sequence 1, 4, 13, 40,...):	

	

Best case: (n-1) + (n-4) + (n-13) + ... ≤ n log3n	

	

Worst case: less than n1.5	

	

Average case: not known	

	

 	

Two suggestions are O(n1.25) and O(n(log n)2)	

	

Number of moves:	

	

Best case: 0 	

	

Worst case: as for comparisons	

	

Average case: as for comparisons	

25	

Mergesort	

Mergesort is a divide-and-conquer based sorting algorithm.	

	

The algorithm involves three steps:	

	

	

1. If the number of items to sort is 0 or 1, then return.	

	

	

2. Recursively sort the first and second halves separately.	

	

	

3. Merge the two sorted halves into one sorted group.	

26	

Mergesort	

void mergeSort(Comparable[] a, int low, int high) {!
 if (low < high) {!
 int mid = (low + high) / 2;!
 mergesort(a, low, mid);!
 mergesort(a, mid + 1, high);!
 merge(a, low, mid, high); !
 }!
} !!

low	

 high	

mid	

≤	

 ≤	

27	

Linear-time merging of two sorted arrays	

k	

c:	

0	

 M+N	

≤	

i	

a:	

M	

0	

≤	

 ≤	

j	

b:	

0	

 N	

≤	

 ≤	

for (i = j = k = 0; k < M + N; k++)!
 if (i == M) c[k] = b[j++]; else!
 if (j == N) c[k] = a[i++]; else!
 c[k] = a[i].compareTo(b[j]) < 0 ? a[i++] : b[j++];!

28	

void merge(Comparable[] a, int low, int mid, int high) {!
 int i = low, j = mid + 1;!
 for (int k = low; k <= high; k++) !
 if (i > mid) b[k] = a[j++]; else !
 if (j > high) b[k] = a[i++]; else!
 b[k] = a[i].compareTo(a[j]) < 0 ? a[i++] : a[j++];!
 for (int k = low; k <= high; k++) a[k] = b[k];!
}!

Merging a[low:mid] with a[mid+1:high] to a[low:high]:!

low! mid!mid+1	

 high!

≤	

 ≤	

a:	

≤	

b:	

low! high!

Merge into b:	

≤	

a:	

low! high!

Copy b to a:	

29	

30	

31	

A S O R T I N G E X A M P L E!
A S O R T I N G E X A M P L E!
A S O R T I N G E X A M P L E!
A O R S T I N G E X A M P L E!
A O R S I T N G E X A M P L E!
A O R S I T G N E X A M P L E!
A O R S G I N T E X A M P L E!
A G I N O R S T E X A M P L E!
A G I N O R S T E X A M P L E!
A G I N O R S T E X A M P L E!
A G I N O R S T A E M X P L E!
A G I N O R S T A E M L L P E !
A G I N O R S T A E M L E L P!
A G I N O R S T A E E L M P X!
A A E E G I L M N O P R S T X!

32	

Animation of Mergesort	

33	

Call trees	

8	

 1	

 1	

 1	

 1	

 1	

 1	

 1	

 1	

 1	

 1	

 1	

 1	

 1	

 1	

 1	

 1	

2	

 2	

 2	

 2	

 2	

 2	

 2	

 2	

4	

 4	

 4	

 4	

8	

8	

16	

1	

 1	

 1	

 2	

 1	

 1	

 1	

 2	

 1	

 1	

 1	

 2	

 1	

 2	

 1	

 2	

2	

 3	

 2	

 3	

 2	

 3	

 3	

 3	

5	

 5	

 5	

 6	

11	

10	

21	

1	

 1	

 1	

 1	

 1	

 1	

 1	

 1	

1	

 1	

34	

There are about log2N levels	

Each level uses O(N) time	

Call tree	

35	

Evaluation of Mergesort	

Advantages:	

•  insensitive to the input order	

•  requires about N log2N comparisons for any array of N elements

	

C(N) = 2C(N/2) + N, C(1) = 0	

•  is stable (preserves the input order of equal elements)	

•  can be used for sorting linked lists	

•  is suitable for external sorting	

	

Disadvantage:	

•  requires (in practice) extra memory proportional to N	

36	

Quicksort ���
C. A. R. Hoare, 1962	

Quicksort is in practice the fastest comparison-based algorithm for
sorting arrays.	

	

Idea: 	

 	

 	

 	

 	

 	

 	

To sort an array, partition it into a left and a right part, such that
all elements in the left part are less than or equal to all elements in
the right part. 	

Then, recursively sort the left part and the right part.

left part	

 right part	

≤	

37	

Basic Quicksort	

The basic algorithm Quicksort(S) consists of the following four steps:	

	

	

1. If the number of elements in S is 0 or 1, then return. 	

	

	

2. Pick any element v in S. It is called the pivot.	

	

	

3. Partition S - {v} (the remaining elements in S) into two 	

	

 disjoint groups 	

L = {x ∈S − {v} | x ≤ v} and R = {x ∈S − {v} | x ≥ v}.

	

4. Return the result of Quicksort(L) followed by v followed
	

 by Quicksort(R).	

38	

39	

Partitioning	

The partitioning of an array a may be performed as follows:	

	

(1)	

Choose a pivot v among the elements in a.	

(2)	

Traverse a from left to right until an element a[i] ≥ v is met.	

(3)	

Traverse a from right to left until an element a[j] ≤ v is met.	

(4) Swap a[i] and a[j].	

(5)	

Continue traversing and swapping until the two traversals “cross”.	

≤ v	

 ≥ v	

a[i]	

 a[j]	

≥ v	

 ≤ v	

40	

	

Partitioning a[low:high] about the pivot v:	

!
! !i = low; j = high;!
! !while (i <= j) {!
! ! while (a[i].compareTo(v) < 0) i++;!
! ! while (a[j].compareTo(v) > 0) j--;!
! ! if (i <= j)!
! ! { swap(a, i, j); i++; j--; }!
! !}!

	

	

	

	

	

!!

Implementation	

Result: a[low:i] ≤ a[j:high] and i > j.	

	

May be proven by showing that 	

	

a[low:i-1] ≤ v ≤ a[j+1:high]!
is invariant for the outermost loop. 	

 	

	

41	

Swap	

void swap(Object[] a, int i, int j) {!
 Object temp = a[i];!
 a[i] = a[j];!
 a[j] = temp;!
}!

Only the object references are swapped (not the objects themselves)	

42	

 void quicksort(Comparable[] a, int low, int high) {!
! if (low < high) {!
! Comparable v = a[(low + high)/2];!
! int i = low, j = high;!

 ! while (true) {!
! while (a[i].compareTo(v) < 0) i++;!
! while (a[j].compareTo(v) > 0) j--;!
! if (i >= j) break;!
! swap(a, i++, j--); !
! }!
! quicksort(a, low, j);!
! quicksort(a, i, high); !
! } !
!}!

Quicksort	

The pivot v may be any element in a[low:high], for instance
a[(low + high)/2]. 	

43	

	

int partition(Comparable[] a, int low, int high) { !
 ! Comparable v = a[high];!
! int i = low - 1, j = high;!

 ! while (true) {!
! while (a[++i].compareTo(v) < 0) ;!
! while (v.compareTo(a[--j]) < 0) !
! if (j == low) break;!
! if (i >= j) break;!
! swap(a, i, j); !
! }!
! swap(a, i, high); !

 ! return i;!
!}!

Alternative partitioning algorithm	

Choose a[high] as pivot, partition a[low:high-1], and
swap a[high] with a[i].

44	

Picking the pivot	

45	

i!j!

46	

	

	

int quicksort(Comparable[] a, int low, int high) {!

 ! if (low < high) {!
! int i = partition(a, low, high);!
! quicksort(a, low, i - 1);!
! quicksort(a, i + 1, high);!
! }!
!}!

	

	

	

The method quicksort!

47	

Animation of Quicksort!

48	

Number of comparisons	

Let C(N) denote the number of comparisons required for executing
Quicksort on an array of N elements.	

	

Partitioning requires N comparisons. Next, the left part and the right
part are sorted separately. 	

	

On average each part consists of about N/2 elements. Then we obtain
the recurrence

	

	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

	

C(N) = N + 2C(N/2) for N ≥ 2, 	

 	

 	

 	

 	

 	

 	

	

C(0) = C(1) = 0,	

	

which has the solution C(N) = N log2N. 	

	

49	

More precise computations give	

	

Quicksort uses about 2N lnN comparisons on the average	

	

where ln denotes the natural logarithm. 	

 	

	

	

	

	

	

	

	

	

2N ln N ≈ 1.39 N log2N	

	

So the average number of comparisons is only about 39% higher
than in the best case.

Average number of comparisons	

50	

The worst case occurs when the partitioning for each N
results in a part of one element and a part of N-1 elements. 	

	

In this case we have the recurrence 	

 	

 	

	

 	

 	

 	

 	

 	

	

C(N) = N + C(N-1) for N ≥ 2, 	

 	

	

C(0) = C(1) = 0,	

	

which has the solution C(N) = N(N+1)/2.	

	

Picking the pivot at random or by the “median-of-three”
method makes the worst case unlikely to occur.	

Number of comparisons in the worst case	

The median of N numbers is the th smallest number.	

N / 2⎡⎢ ⎤⎥

51	

Median-of-three partitioning	

52	

void quicksort(Comparable[] a, int low, int high) {!
 if (low < high) {!
 if (a[high].compareTo(a[low]) < 0) !
 swap(a, low, high);!
 int mid = (low + high) / 2;!
 if (mid == low) return;!
 if (a[mid].compareTo(a[low]) < 0) !
 swap(a, low, mid);!
 if (a[high].compareTo(a[mid]) < 0) !
 swap(a, mid, high);!
 swap(a, mid, high - 1);!
 int i = partition(a, low + 1, high - 1);!
 quicksort(a, low, i - 1);!
 quicksort(a, i + 1, high);!
 }!
}!

Quicksort with median-of-three
partitioning	

53	

Small array segments	

The test in the beginning of quicksort:	

	

	

if (low < high)!
!

is replaced by!
!

!if (high - low < CUTOFF) ! ! ! !
! insertionSort(a, low, high); !!

!else ! ! ! 	

 	

 	

 	

 	

 	

	

	

where CUTOFF is in the range from 5 to 25.	

Use a simple method for sorting small array segments.	

54	

55	

Memory usage	

The average extra space complexity of quicksort is O(log2N).	

This extra space comes from the call stack. Each recursive call will
create a stack frame. 	

	

The worst case extra space complexity for a naive implementation is
O(N). The worst case occurs when the partitioning for each N results
in a part of one element and a part of N-1 elements, and we quicksort
the largest part first. 	

	

Extra space complexity of O(log2N) is guaranteed if we always sort
the array segment with the fewest elements first, and sort the other
array segment using iteration (that is, eliminates the tail recursion).	

56	

Elimination of tail recursion 	

A subroutine is said to be tail-recursive, if it calls itself as its
final action. 	

Tail recursion can always be replaced by iteration.	

void p(type x) {!
 if (b(x))!
 S1;!
 else {! ! !
 S2;!
 p(f(x));!
 }!
}!

Recursion (call: p(a)) 	

type x = a;!
while (!b(x)) { !
 S2;!!
 x = f(x); !
}!
S1;!

Iteration 	

57	

int quicksort(Comparable[] a, int low, int high) {!
 if (low < high) {!
! int i = partition(a, low, high);!
! quicksort(a, low, i - 1);!
! quicksort(a, i + 1, high);!
! }!

}!

int quicksort(Comparable[] a, int low, int high) {!
 while (low < high) {!
! int i = partition(a, low, high);!
! quicksort(a, low, i - 1);!
! low = i + 1;!
!}!

}!

Smart compilers (but not Java) can detect tail recursion and convert it to
iteration in order to optimize code	

58	

Selection	

Problem: Find the k’th smallest element in an array of N elements	

Example: The 3’rd smallest element in {3, 6, 5, 2, 8, 4} is 4.	

Solution 1: Sort the array in increasing order. 	

 	

 	

 	

The k’th element in the sorted array is the solution to the problem. 	

Complexity: Depends on the sorting algorithm - 	

 	

using Mergesort: O(N log N).

Can we do it faster?	

59	

Selection by means of partition!
void quickSelect(Comparable[] a, int low, int high, int k) {!
 if (low < high) {!
 int i = partition(a, low, high);!
 if (k <= i) quickSelect(a, low, i - 1, k);!
 else if (k > i + 1) quickSelect(a, i + 1, high, k);!
 } !
}!

Since only tail recursion is used, the recursion may be eliminated:	

void quickSelect(Comparable a[], int low, int high, int k) {!
 while (low < high) {!
 int i = partition(a, low, high);!
 if (k <= i) high = i - 1;!
 else if (k >= i + 1) low = i + 1;!
 } !
}!

60	

61	

O(N) on the average	

since N + N/2 + N/4 + N/8 + … ≤ 2N.

It is possible (but not quite easy) to achieve guaranteed linear
running time.	

Complexity of quickSelect!

62	

A lower bound for sorting	

	

Any sorting algorithm that sorts using comparisons must use at least	

	

 comparisons for some input sequence. 	

	

log(N !)⎡⎢ ⎤⎥

Informal proof:	

Sorting is equivalent to finding a permutation of the input sequence.
Thus, sorting may be modeled by a decision tree, where each internal
node corresponds to a comparison, and each external node corresponds
to one of the N! possible permutations. The height of the tree must at
least be log2(N!).	

	

	

How large is ? 	

	

From Stirling's formula 	

we get 	

	

 	

log2(N!) ≈ Nlog2N - 1.44N.

log2 (N !)⎡⎢ ⎤⎥

N! ≈ 2πN(Ne)N

63	

void sort(int[] a, int m) {!
 int[] count = new int[m];!
 for (int i = 0; i < a.length; i++)!
 count[a[i]]++;!
 for (int i = 0, j = 0; j < m; j++)!
 for (int k = count[j]; k > 0; k--)!
 a[i++] = j;!
}!

Counting sort	

A linear sorting algorithm	

Sort an array a of non-negative integers less than m. 	

64	

Radix sort	

A linear sorting algorithm	

Sort an array a of non-negative d-digit integers in radix (base) r. 	

void sort(int[] a, int d, int r) {!
!int[] count = new int[r];!

 int[] b = new int[a.length];!
 for (int pass = 0, pow = 1; pass < d; pass++, pow *= r) {!
 for (int i = 0; i < r; i++) count[i] = 0;!
 for (int i = 0; i < a.length; i++)!
 count[a[i] / pow % r]++;!
 for (int i = 1; i < r; i++)!
 count[i] += count[i - 1];! !!
 for (int i = a.length - 1; i >= 0; i--)!
 b[--count[a[i] / pow % r]] = a[i];!
 for (int i = 0; i < a.length; i++) a[i] = b[i];!
 }!
}!

65	

Radix-10 sort	

31	

 41	

 59	

 26	

 53	

 58	

 97	

 23	

 93	

 84	

 unsorted	

a!

0	

 2	

 0	

 3	

 1	

 0	

 1	

 1	

 1	

 1	

0	

 2	

 2	

 5	

 6	

 6	

 7	

 8	

 9	

 10	

count!

count
!!

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

31	

 41	

 23	

 53	

 93	

 84	

 26	

 97	

 58	

 59	

 sorted by 1s	

a	

0	

 0	

 2	

 1	

 1	

 3	

 0	

 0	

 1	

 2	

0	

 0	

 2	

 3	

 4	

 7	

 7	

 7	

 8	

 10	

count!

count!

23	

 26	

 31	

 41	

 53	

 58	

 59	

 84	

 93	

 97	

 sorted by 10s	

(and 1s)	

a!

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

66	

Randomization	

67	

Why do we need random numbers?	

Many applications:
	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

	

• Program testing (generation of random input data)	

•  Sorting (e.g., determination of the pivot in Quicksort) 	

•  Simulation (e.g., generation of arrival times for bank customers)	

•  Games (e.g., choice of opening moves in chess)	

•  Randomized algorithms (e.g., primality testing)	

68	

Generation of random numbers	

True randomness in a computer is impossible to achieve. 	

 	

Generally, it is sufficient to produce pseudorandom numbers, or
numbers that appear to be random because they satisfy many of the
properties of random numbers.	

A pseudorandom number generator must pass a number of statistical
tests. One such generator is the linear congruential generator
(Lehmer, 1951) in which numbers X1, X2, ... are generated that satisfy	

	

 	

 	

Xi+1 = AXi + C (mod M) 	

 	

 	

 	

 	

 	

 	

	

The initial value X0 is called the seed. 	

A, C, and M must be chosen in such a way that the length of the
sequence until a number is repeated (the period) becomes as large as
possible. This happens when M is a large prime number. 	

69	

Java provides the class java.util.Random. 	

public class Random { !
 public Random();!
 public Random(long seed);!
 public int nextInt();!
 public int nextInt(int n);!
 public long nextLong();!
 public float nextFloat();!
 public double nextDouble();!
 public double nextBytes(byte[] bytes);!
 public double nextGaussian();!
 public void setSeed(long seed);!
 protected int next(int bits);!
}!

Generation of random numbers in Java	

70	

public class Random {!
 private long seed;!
 private final static long multiplier = 0x5DEECE66DL; !// = 25214903917!
 private final static long addend = 0xBL; !// = 11!
 private final static long mask = (1L << 48) - 1;!
 !
 public Random() { this(System.currentTimeMillis()); }!
 !
 public Random(long seed) {!
 this.seed = (seed ^ multiplier) & mask;!
 }!
 !
 public int nextInt() { return next(32); }!
 !
 protected int next(int bits) {!
 long nextseed = (seed * multiplier + addend) & mask;!
 seed = nextseed;!
 return (int) (nextseed >>> (48 - bits));!
 }!
}!

Implementation of Lehmer's method	

71	

Generation of random permutations	

void permute(Object[] a) {!
 Random r = new Random();!
 for (int i = 1; i < a.length; i++)!
 swap(a, i, r.nextInt(i + 1));!
}!

The algorithm runs in linear time. 	

The number of different possible outcomes 2 . 3 N-1 . N
is equal to the number of possible permutations, N!.	

a:!

i!0≤j≤i!

swap! j = r.nextInt(i + 1)!

72	

Primality testing by trial division	

73	

Randomized primality testing	

Fermat’s little theorem: 	

If P is prime and 0 < A < P, then AP-1 = 1(mod P)	

If for a number N we can find a value 0 < A < N 	

such that AN-1(mod N) is not 1, then N is not a prime. 	

A is said to be a witness to N’s compositeness.	

Theorem: 	

If P is prime and X2 = 1(mod P), then X = ±1(mod P)	

Every composite number has a witness. But for some
numbers it can be hard to find. The following theorem
can be used to improve our chances of finding a witness.	

P. de Fermat, 1601-65	

74	

Exponentiation	

Efficient algorithm	

If n is even, then	

	

	

If n is odd, then 	

xn = (x ⋅ x)
n
2

xn = x ⋅ xn−1 = x ⋅ (x ⋅ x)
n
2

⎢
⎣⎢

⎥
⎦⎥

public static long power(long x, int n) {!
 if (n == 0)!
 return 1;!
 long tmp = power(x * x, n / 2);!
 if (n % 2 != 0)!
 tmp *= x;!
 return tmp;!
}!

Number of multiplications < 2 log2n.	

75	

Modular exponentiation	

76	

77	

Confidence of randomized	

 	

 	

	

primality testing	

Some values of A will trick the algorithm into declaring that N is
prime. 	

	

In fact, if we choose A randomly, we have at most ¼ chance of
failing to detect a composite number.	

	

However, if we independently use 20 values of A (TRIALS = 20),
the chances that none of them will witness a composite number is
¼20, which is about 1 in a million million. 	

