## Algorithms III



## Agenda

Sorting

- Simple sorting algorithms
- Shellsort
- Mergesort
- Quicksort
- A lower bound for sorting
- Counting sort and Radix sort


## Randomization

- Random number generation
- Generation of random permutations
- Randomized algorithms


## Sorting

Informal definition:
Sorting is any process of arranging items in some sequence.

Why sort?
(1) Searching a sorted array is easier than searching an unsorted array. This is especially true for people. Example: Looking up a person in a telephone book.
(2) Many problems may be solved more efficiently when input is sorted. Example: If two files are sorted it is possible to find all duplicates in only one pass.

## Detecting duplicates in an array

```
// Return true if array a has duplicates; false otherwise
public static boolean duplicates( Object [ ] a )
{
    for( int i = 0; i < a.length; i++ )
        for( int j = i + 1; j < a.length; j++ )
            if( a[ i ].equals(a[ j ]) )
            return true; // Duplicate found
        return false; // No duplicates found
}
```

If the array is sorted, duplicates can be detected by a linear-time scan of the array:

```
for (int i = 1; i < a.length; i++)
    if (a[i - 1].equals(a[i])
        return true;
```


## Finding the intersection of two unsorted arrays



$$
\begin{aligned}
& \mathrm{k}=0 \text {; } \\
& \text { for (i }=0 ; i<M \text {; } i++ \text { ) } \\
& \text { for (j }=0 ; j<N ; j++ \text { ) } \\
& \text { if (a[i].equals(b[j])) } \\
& \text { c[k++] = a[i]; }
\end{aligned}
$$

Complexity: $O(M N)$

## Finding the intersection of two sorted arrays


i = j = k = 0;
i = j = k = 0;
while (i < M \&\& j < N)
while (i < M \&\& j < N)
if (a[i] < b[j]) i++;
if (a[i] < b[j]) i++;
else if (a[i] > b[j]) j++;
else if (a[i] > b[j]) j++;
else { c[k++] = a[i]; i++; j++; }
else { c[k++] = a[i]; i++; j++; }

Complexity: $O(M+N)$

## Insertion sort

Problem: Given an array $a$ of $n$ elements

$$
a[0], a[1], \ldots, a[n-1] .
$$

Sort the array in increasing order.

Solution (by induction):

Base case: We know how to sort 1 element.
Induction hypothesis: We know how to sort $n$ - 1 elements.

We can sort an array of $n$ elements by
(1) sorting its first $n-1$ elements,
(2) insert the $n$ 'th element into its proper place among the previously sorted elements

## Insertion sort

(recursive version)


Single right shift
figure 8.3
Basic action of insertion sort (the shaded part is sorted)

| Array Position | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Initial State | 8 | 5 | 9 | 2 | 6 | 3 |
| After a[0..1] is sorted | 5 | 8 | 9 | 2 | 6 | 3 |
| After a[0..2] is sorted | 5 | 8 | 9 | 2 | 6 | 3 |
| After a[0..3] is sorted | 2 | 5 | 8 | 9 | 6 | 3 |
| After a[0..4] is sorted | 2 | 5 | 6 | 8 | 9 | 3 |
| After a[0..5] is sorted | 2 | 3 | 5 | 6 | 8 | 9 |


| Array Position | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Initial State | $\mathbf{8}$ | $\mathbf{5}$ |  |  |  |  |
| After a[0..1] is sorted | 5 | 8 | $\mathbf{9}$ |  |  |  |
| After a[0..2] is sorted | 5 | 8 | 9 | $\mathbf{2}$ |  |  |
| After a[0..3] is sorted | 2 | 5 | 8 | 9 | $\mathbf{6}$ |  |
| After a[0..4] is sorted | 2 | 5 | 6 | 8 | 9 | $\mathbf{3}$ |
| After a[0..5] is sorted | 2 | 3 | 5 | 6 | 8 | 9 |

figure $\mathbf{8 . 4}$
A closer look at the action of insertion sort (the dark shading indicates the sorted area; the light shading is where the new element was placed)

ASORTINGEXAMPLE
ASORTINGEXAMPLE
AOSRTINGEXAMPLE
AORSTINGEXAMPLE
AORSTINGEXAMPLE
AIORSTNGEXAMPLE
AINORSTGEXAMPLE
AGINORSTEXAMPLE
AEGINORSTXAMPLE
AEGINORSTXAMPLE
AAEGINORSTXMPLE
AAEGIMNORSTXPLE
A AEGIMNOPRSTXEE
AAEGILMNOPRSTXE
A AEEGILMNOPRSTX

## Insertion sort

(non-recursive version)
figure 8.2
Insertion sort implementation

```
/**
    Simple insertion sort
    */
    public static <AnyType extends Comparable<? super AnyType>>
    void insertionSort( AnyType [ ] a )
    {
        for( int p = 1; p < a.length; p++ )
        {
            AnyType tmp = a[p];
            int j = p;
        for( ; j > 0 && tmp.compareTo( a[ j - 1 ] ) < 0; j-- )
            a[ j ] = a[ j-1];
            a[ j ] = tmp;
    }
}
```

Only the object references are right-shifted (not the objects themselves)

## Animation of Insertion sort




Sorting the integers from 1 to 100 .

## Analysis of Insertion sort

Number of comparisons:
Best case: $n-1$
Worst case: $1+2+\ldots+(n-1)=n(n-1) / 2$, which is $O\left(n^{2}\right)$
Average case: $n(n-1) / 4$, which is $\mathrm{O}\left(n^{2}\right)$

Number of moves:
Best case: 0
Worst case: $1+2+\ldots+(n-1)=n(n-1) / 2$, which is $O\left(n^{2}\right)$
Average case: $n(n-1) / 4$, which is $O\left(n^{2}\right)$

Running time is $O(n)$ for "almost sorted" arrays

## Shellsort

Donald Shell, 1959

## Idea:

Insertion sort is very efficient when the array is "almost sorted". However, it is slow for "very unsorted" arrays since it only allows exchange of neighboring elements.

## Question:

Can we start by exchanging elements that are far apart from each other in the array before we do an ordinary Insertion sort?

## Answer:

Yes. We can start by sorting all subfiles consisting of every $h$ 'th element of the array, where $h>1$.

## 4-sorting

1. Divide the array into 4 subfiles:
each 4'th element, starting in the first, each $4^{\prime}$ th element, starting in the second, each $4^{\prime}$ 'th element, starting in the third, and each 4'th element, starting in the fourth.
2. Sort each of these four subfiles.

The array is then said to be 4 -sorted.
Similarly, we can define $\boldsymbol{h}$-sorted.

Notice that an array that is $\mathbf{1}$-sorted is sorted.

## 4-sorting

Use Insertion sort with an increment of 4
ASORTINGEXAMPLE
ASORTINGEXAMPLE
AIORTSNGEXAMPLE
AINRTSOGEXAMPLE
AINGTSOREXAMPLE
AINGESORTXAMPLE
AINGESORTXAMPLE
AIAGESNRTXOMPLE
AIAGESNMTXORPLE
AIAGESNMPXORTLE
AIAGELNMPSORTXE
A I A GELEMPSNRTXO

## Implementation of $\boldsymbol{h}$-sort

```
public static <AnyType extends Comparable<? super AnyType>>
void h_sort(AnyType[] a, int h) {
    for (int p = h; p < a.length; p++) {
        AnyType tmp = a[p];
        int j = p;
        for ( ; j >= h && tmp.compareTo(a[j - h]) < 0; j -= h)
            a[j] = a[j - h];
        a[j] = tmp;
    }
}
```

The code is obtained by replacing 1 by h in insertionSort.

## Shellsort

Shellsort uses $h$-sorting for a decreasing sequence of $h$-values, ending with $h=1$.

```
void shellsort(AnyType[] a) {
    for (int h = a.length / 2; h > 0;
        h = h == 2 ? 1 : (int) (h / 2.2))
        h_sort(a, h);
}
```

```
1/**
    * Shellsort, using a sequence suggested by Connet.
    */
    public static <AnyType extends Comparable<? super AnyType>>
    void shellsort( AnyType [ ] a )
    {
        for( int gap = a.length / 2; gap > 0;
            gap = gap == 2 ? 1 : (int) ( gap / 2.2 ) )
        for( int i = gap; i < a.length; i++ )
        {
            AnyType tmp = a[ i ];
            int j = i;
            for( ; j >= gap && tmp.compareTo( a[j-gap] ) < 0; j -= gap )
                    a[ j ] = a[ j - gap ];
            a[ j ] = tmp;
        }
    }
```


## figure 8.7

Shellsort implementation
figure 8.5
Shellsort after each pass if the increment sequence is $\{1,3,5\}$

| Original | 81 | 94 | 11 | 96 | 12 | 35 | 17 | 95 | 28 | 58 | 41 | 75 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| After 5-sort | 35 | 17 | 11 | 28 | 12 | 41 | 75 | 15 | 96 | 58 | 81 | 94 | 95 |
| After 3-sort | 28 | 12 | 11 | 35 | 15 | 41 | 58 | 17 | 94 | 75 | 81 | 96 | 95 |
| After 1-sort | 11 | 12 | 15 | 17 | 28 | 35 | 41 | 58 | 75 | 81 | 94 | 95 | 96 |

In the figure, elements spaced five and three apart are identically shaded.

## Animation of Shellsort



|  |  | Shellsort |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{N}$ | Insertion Sort | Shell's Increments | Odd Gaps Only | Dividing by 2.2 |
| 10,000 | 575 | 10 | 11 | 9 |
| 20,000 | 2,489 | 23 | 23 | 20 |
| 40,000 | 10,635 | 51 | 49 | 41 |
| 80,000 | 42,818 | 114 | 105 | 86 |
| 160,000 | 174,333 | 270 | 233 | 194 |
| 320,000 | NA | 665 | 530 | 451 |
| 640,000 | NA | 1,593 | 1,161 | 939 |

figure 8.6 (milliseconds)
Running time of the insertion sort and Shellsort for various increment sequences

Shell's increments: Start gaps at $n / 2$ and halve until 1 is reached.
Odd Gaps Only: As Shell's increments, but add 1 whenever the gap becomes even.

## Analysis of Shellsort

Number of comparisons (for the increment sequence $1,4,13,40, \ldots$ ):
Best case: $(n-1)+(n-4)+(n-13)+\ldots \leq n \log _{3} n$
Worst case: less than $n^{1.5}$
Average case: not known
Two suggestions are $O\left(n^{1.25}\right)$ and $O\left(n(\log n)^{2}\right)$

Number of moves:
Best case: 0
Worst case: as for comparisons
Average case: as for comparisons

## Mergesort

Mergesort is a divide-and-conquer based sorting algorithm.
The algorithm involves three steps:

1. If the number of items to sort is 0 or 1 , then return.
2. Recursively sort the first and second halves separately.
3. Merge the two sorted halves into one sorted group.

## Mergesort

```
void mergeSort(Comparable[] a, int low, int high) {
    if (low < high) {
        int mid = (low + high) / 2;
        mergesort(a, low, mid);
        mergesort(a, mid + 1, high);
        merge(a, low, mid, high);
    }
}
```



## Linear-time merging of two sorted arrays



$$
\begin{aligned}
\text { for } & (i=j=k=0 ; k<M+N ; k++) \\
& \text { if }(i==M) c[k]=b[j++] ; \text { else } \\
& \text { if }(j==N) c[k]=a[i++] ; \text { else } \\
& c[k]=a[i] . c o m p a r e T o(b[j])<0 ? a[i++]: b[j++] ;
\end{aligned}
$$

Merging a[low:mid] with a[mid+1:high] to a[low:high]:

```
    a:
                \\leq 
Merge into b :
b:
```



```
Copy b to a:
a:
```



```
void merge(Comparable[] a, int low, int mid, int high) {
```

void merge(Comparable[] a, int low, int mid, int high) {
int i = low, j = mid + 1;
int i = low, j = mid + 1;
for (int k = low; k <= high; k++)
for (int k = low; k <= high; k++)
if (i > mid) b[k] = a[j++]; else
if (i > mid) b[k] = a[j++]; else
if (j > high) b[k] = a[i++]; else
if (j > high) b[k] = a[i++]; else
b[k] = a[i].compareTo(a[j]) < 0 ? a[i++] : a[j++];
b[k] = a[i].compareTo(a[j]) < 0 ? a[i++] : a[j++];
for (int k = low; k <= high; k++) a[k] = b[k];
for (int k = low; k <= high; k++) a[k] = b[k];
}

```
}
```

```
/**
    Mergesort algorithm.
    * @param a an array of Comparable items.
    */
public static <AnyType extends Comparable<? super AnyType>>
void mergeSort( AnyType [ ] a )
{
            AnyType [ ] tmpArray = (AnyType []) new Comparable[ a.length ];
            mergeSort( a, tmpArray, 0, a.length - 1);
}
/**
    * Internal method that makes recursive calls.
    * @param a an array of Comparable items.
    * @param tmpArray an array to place the merged result.
    * @param left the left-most index of the subarray.
    * @param right the right-most index of the subarray.
    */
private static <AnyType extends Comparable<? super AnyType>>
void mergeSort( AnyType [ ] a, AnyType [ ] tmpArray,
                    int left, int right)
{
    if( left < right )
        {
            int center = ( left + right ) / 2;
            mergeSort( a, tmpArray, left, center );
            mergeSort( a, tmpArray, center + 1, right );
            merge( a, tmpArray, left, center + 1, right );
        }
}
```

figure 8.8
Basic mergeSort routines
{

```
```

/**

```
```

/**
* Internal method that merges two sorted halves of a subarray.
* Internal method that merges two sorted halves of a subarray.
* @param a an array of Comparable items.
* @param a an array of Comparable items.
* @param tmpArray an array to place the merged result.
* @param tmpArray an array to place the merged result.
* @param leftPos the left-most index of the subarray.
* @param leftPos the left-most index of the subarray.
* @param rightPos the index of the start of the second half.
* @param rightPos the index of the start of the second half.
* @param rightEnd the right-most index of the subarray.
* @param rightEnd the right-most index of the subarray.
*/
*/
private static <AnyType extends Comparable<? super AnyType>>
private static <AnyType extends Comparable<? super AnyType>>
void merge( AnyType [ ] a, AnyType [ ] tmpArray,
void merge( AnyType [ ] a, AnyType [ ] tmpArray,
int leftPos, int rightPos, int rightEnd)
int leftPos, int rightPos, int rightEnd)
int leftEnd = rightPos - 1;
int leftEnd = rightPos - 1;
int tmpPos = leftPos;
int tmpPos = leftPos;
int numElements = rightEnd - leftPos + 1;
int numElements = rightEnd - leftPos + 1;
// Main loop
// Main loop
while( leftPos <= leftEnd \&\& rightPos <= rightEnd )
while( leftPos <= leftEnd \&\& rightPos <= rightEnd )
if( a[ leftPos ].compareTo( a[ rightPos ] ) <= 0 )
if( a[ leftPos ].compareTo( a[ rightPos ] ) <= 0 )
tmpArray[ tmpPos++ ] = a[ leftPos++ ];
tmpArray[ tmpPos++ ] = a[ leftPos++ ];
else
else
tmpArray[ tmpPos++ ] = a[ rightPos++ ];
tmpArray[ tmpPos++ ] = a[ rightPos++ ];
while( leftPos <= leftEnd ) // Copy rest of first half
while( leftPos <= leftEnd ) // Copy rest of first half
tmpArray[ tmpPos++ ] = a[ leftPos++ ];
tmpArray[ tmpPos++ ] = a[ leftPos++ ];
while( rightPos <= rightEnd ) // Copy rest of right half
while( rightPos <= rightEnd ) // Copy rest of right half
tmpArray[ tmpPos++ ] = a[ rightPos++ ];
tmpArray[ tmpPos++ ] = a[ rightPos++ ];
// Copy tmpArray back
// Copy tmpArray back
for( int i = 0; i < numElements; i++, rightEnd-- )
for( int i = 0; i < numElements; i++, rightEnd-- )
a[ rightEnd ] = tmpArray[ rightEnd ];
a[ rightEnd ] = tmpArray[ rightEnd ];
}

```
```

}

```
```


## figure $\mathbf{8 . 9}$

The merge routine

$$
\begin{aligned}
& \text { ASORTINGEXAMPLE } \\
& \text { ASORTINGEXAMPLE } \\
& \text { ASORTTINGEXAMPLE } \\
& \text { AORSTINGEXAMPLE } \\
& \text { AORSSITNGEXAMPLE } \\
& \text { AORSITGNEXAMPLE } \\
& \text { AORSGGINTEXAMPLE } \\
& \text { AGINNORSTEXAMPLE } \\
& \text { AGINNORSSTEXAMPSLE } \\
& \text { AGINORSSTEXAMPLE } \\
& \text { AGINOORSTAEMXXPLE } \\
& \text { AGINORSSTAEMLIPE } \\
& \text { AGINORSTAEMLEELP } \\
& \text { AGINORSSTAEELMPXX }
\end{aligned}
$$

## Animation of Mergesort



## Call trees



## Call tree



There are about $\log _{2} N$ levels
Each level uses $O(N)$ time

## Evaluation of Mergesort

## Advantages:

- insensitive to the input order
- requires about $N \log _{2} N$ comparisons for any array of $N$ elements

$$
C(N)=2 C(N / 2)+N, C(1)=0
$$

- is stable (preserves the input order of equal elements)
- can be used for sorting linked lists
- is suitable for external sorting

Disadvantage:

- requires (in practice) extra memory proportional to $N$


## Quicksort

C. A. R. Hoare, 1962

Quicksort is in practice the fastest comparison-based algorithm for sorting arrays.

## Idea:

To sort an array, partition it into a left and a right part, such that all elements in the left part are less than or equal to all elements in the right part.


Then, recursively sort the left part and the right part.

## Basic Quicksort

The basic algorithm Quicksort $(S)$ consists of the following four steps:

1. If the number of elements in $S$ is 0 or 1 , then return.
2. Pick any element $v$ in $S$. It is called the pivot.
3. Partition $S-\{v\}$ (the remaining elements in $S$ ) into two disjoint groups $L=\{x \in S-\{v\} \mid x \leq v\}$ and $R=\{x \in S-\{v\} \mid x \geq v\}$.
4. Return the result of Quicksort $(L)$ followed by $v$ followed by Quicksort( $R$ ).

The steps of quicksort

## Partitioning

The partitioning of an array $a$ may be performed as follows:
(1) Choose a pivot $v$ among the elements in $a$.
(2) Traverse $a$ from left to right until an element $a[i] \geq v$ is met.
(3) Traverse $a$ from right to left until an element $a[j] \leq v$ is met.
(4) Swap $a[i]$ and $a[j]$.
(5) Continue traversing and swapping until the two traversals "cross".


## Implementation

Partitioning a[low:high] about the pivot v:

```
i = low; j = high;
while (i <= j) {
    while (a[i].compareTo(v) < 0) i++;
    while (a[j].compareTo(v) > 0) j--;
    if (i <= j)
        { swap(a, i, j); i++; j--; }
}
```

Result: a[low:i] $\leq a[j: h i g h]$ and $i>j$.
May be proven by showing that
a[low:i-1] $\leq v \leq a[j+1: h i g h]$ is invariant for the outermost loop.

## Swap

```
void swap(Object[] a, int i, int j) {
    Object temp = a[i];
    a[i] = a[j];
    a[j] = temp;
}
```

Only the object references are swapped (not the objects themselves)

## Quicksort

The pivot v may be any element in a [low: high ], for instance a[(low + high)/2].

```
void quicksort(Comparable[] a, int low, int high) {
    if (low < high) {
        Comparable v = a[(low + high)/2];
        int i = low, j = high;
        while (true) {
                while (a[i].compareTo(v) < 0) i++;
                while (a[j].compareTo(v) > 0) j--;
                if (i >= j) break;
                swap(a, i++, j--);
        }
        quicksort(a, low, j);
        quicksort(a, i, high);
    }
}
```


## Alternative partitioning algorithm

Choose a[high] as pivot, partition a[low:high-1], and swap a[high] with a[i].

```
int partition(Comparable[] a, int low, int high) {
    Comparable v = a[high];
    int i = low - 1, j = high;
    while (true) {
        while (a[++i].compareTo(v) < 0) ;
        while (v.compareTo(a[--j]) < 0)
            if (j == low) break;
        if (i >= j) break;
        swap(a, i, j);
    }
    swap(a, i, high);
    return i;
}
```


## Picking the pivot

| 8 | 1 | 4 | 9 | 0 | 3 | 5 | 2 | 7 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## figure $\mathbf{8 . 1 1}$

Partitioning algorithm: Pivot element 6 is placed at the end.


## figure $\mathbf{8 . 1 2}$

Partitioning algorithm: i stops at large element 8 ; $j$ stops at small element 2.
figure $\mathbf{8 . 1 3}$
Partitioning algorithm: The out-of-order elements 8 and 2 are swapped.
figure $\mathbf{8 . 1 4}$
Partitioning algorithm: i stops at large element $9 ; j$ stops at small element 5 .

figure $\mathbf{8 . 1 5}$
Partitioning algorithm: The out-of-order elements 9 and 5 are swapped.
figure $\mathbf{8 . 1 6}$
Partitioning algorithm: i stops at large element 9; $j$ stops at small element 3 .
figure $\mathbf{8 . 1 7}$
Partitioning algorithm: Swap pivot and element in position $i$.



## The method quicksort

```
int quicksort(Comparable[] a, int low, int high) {
    if (low < high) {
            int i = partition(a, low, high);
            quicksort(a, low, i - 1);
            quicksort(a, i + 1, high);
    }
}
```


## Animation of Quicksort



## Number of comparisons

Let $C(N)$ denote the number of comparisons required for executing Quicksort on an array of $N$ elements.

Partitioning requires $N$ comparisons. Next, the left part and the right part are sorted separately.

On average each part consists of about $N / 2$ elements. Then we obtain the recurrence

$$
\begin{aligned}
& C(N)=N+2 C(N / 2) \text { for } N \geq 2, \\
& C(0)=C(1)=0,
\end{aligned}
$$

which has the solution $C(N)=N \log _{2} N$.

## Average number of comparisons

More precise computations give

## Quicksort uses about $2 N \ln N$ comparisons on the average

where $\ln$ denotes the natural logarithm.

$$
2 N \ln N \approx 1.39 N \log _{2} N
$$

So the average number of comparisons is only about $39 \%$ higher than in the best case.

## Number of comparisons in the worst case

The worst case occurs when the partitioning for each $N$ results in a part of one element and a part of $N-1$ elements.

In this case we have the recurrence

$$
\begin{aligned}
& C(N)=N+C(N-1) \text { for } N \geq 2, \\
& C(0)=C(1)=0,
\end{aligned}
$$

which has the solution $C(N)=N(N+1) / 2$.

Picking the pivot at random or by the "median-of-three" method makes the worst case unlikely to occur.

The median of $N$ numbers is the $\lceil N / 2\rceil$ th smallest number.

## Median-of-three partitioning

figure $\mathbf{8 . 1 8}$
Original array

| 8 | 1 | 4 | 9 | 6 | 3 | 5 | 2 | 7 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

figure $\mathbf{8 . 1 9}$
Result of sorting three elements (first, middle, and last)
figure $\mathbf{8 . 2 0}$
Result of swapping the pivot with the next-to-last element


## Quicksort with median-of-three partitioning

```
void quicksort(Comparable[] a, int low, int high) {
    if (low < high) {
        if (a[high].compareTo(a[low]) < 0)
            swap(a, low, high);
        int mid = (low + high) / 2;
        if (mid == low) return;
        if (a[mid].compareTo(a[low]) < 0)
            swap(a, low, mid);
        if (a[high].compareTo(a[mid]) < 0)
            swap(a, mid, high);
        swap(a, mid, high - 1);
        int i = partition(a, low + 1, high - 1);
        quicksort(a, low, i - 1);
        quicksort(a, i + 1, high);
    }
}
```


## Small array segments

Use a simple method for sorting small array segments.
The test in the beginning of quicksort:

```
if (low < high)
```

is replaced by

```
if (high - low < CUTOFF)
    insertionSort(a, low, high);
else
```

where CUTOFF is in the range from 5 to 25 .

```
/**
    * Quicksort algorithm (driver)
    */
    public static <AnyType extends Comparable<? super AnyType>>
    void quicksort( AnyType [ ] a )
    {
        quicksort( a, 0, a.length - 1 );
    }
    * Internal quicksort method that makes recursive calls.
    * Uses median-of-three partitioning and a cutoff.
    */
    private static <AnyType extends Comparable<? super AnyType>>
    void quicksort(AnyType [ ] a, int low, int high )
{
if( low + CUTOFF > high )
            insertionSort( a, low, high );
    else
    { // Sort low, middle, high
        int middle = ( low + high ) / 2
        if( a[ middle ].compareTo( a[ low ] ) < 0
        swapReferences( a, low, middle);
        if( a[ high ].compareTo( a[ low ] ) < 0
        swapReferences( a, low, high);
        if( a[ high ].compareTo( a[ middle ] ) < 0 )
            swapReferences( a, middle, high );
            // Place pivot at position high - 1
        swapReferences( a, middle, high - 1 );
        AnyType pivot = a[ high - 1 ];
            // Begin partitioning
        int i, j;
        for( i = low, j = high - 1; ; )
        {
            while( a[ ++i ].compareTo( pivot ) < 0 )
            while( pivot.compareTo( a[ --j ] ) < 0 )
            if( i >= j )
            break;
            swapReferences( a, i, j );
        }
        // Restore pivot
        swapReferences( a, i, high - 1);
        quicksort( a, low, i - 1); // Sort small elements
        quicksort( a, i + 1, high ); // Sort large elements
        }
}
```


## Memory usage

The average extra space complexity of quicksort is $O\left(\log _{2} N\right)$. This extra space comes from the call stack. Each recursive call will create a stack frame.

The worst case extra space complexity for a naive implementation is $O(N)$. The worst case occurs when the partitioning for each $N$ results in a part of one element and a part of $N-1$ elements, and we quicksort the largest part first.

Extra space complexity of $O\left(\log _{2} N\right)$ is guaranteed if we always sort the array segment with the fewest elements first, and sort the other array segment using iteration (that is, eliminates the tail recursion).

## Elimination of tail recursion

A subroutine is said to be tail-recursive, if it calls itself as its final action.

Tail recursion can always be replaced by iteration

Recursion (call: $p(a)$ )

```
void p(type x) {
```

void p(type x) {
if (b(x))
if (b(x))
S1;
S1;
else {
else {
S2;
S2;
p(f(x));
p(f(x));
}
}
}

```
}
```

Iteration

```
type x = a;
while (!b(x)) {
        S2;
        x = f(x);
}
S1;
```

```
int quicksort(Comparable[] a, int low, int high) {
    if (low < high) {
        int i = partition(a, low, high);
        quicksort(a, low, i - 1);
        quicksort(a, i + 1, high);
    }
}
```

```
int quicksort(Comparable[] a, int low, int high) {
    while (low < high) {
        int i = partition(a, low, high);
        quicksort(a, low, i - 1);
        low = i + 1;
    }
}
```

Smart compilers (but not Java) can detect tail recursion and convert it to iteration in order to optimize code

## Selection

Problem: Find the $k$ 'th smallest element in an array of $N$ elements

Example: The 3'rd smallest element in $\{3,6,5,2,8,4\}$ is 4 .

Solution 1: Sort the array in increasing order.
The $k$ 'th element in the sorted array is the solution to the problem.

Complexity: Depends on the sorting algorithm using Mergesort: $O(N \log N)$.

Can we do it faster?

## Selection by means of partition

```
void quickSelect(Comparable[] a, int low, int high, int k) {
    if (low < high) {
        int i = partition(a, low, high);
        if (k <= i) quickSelect(a, low, i - 1, k);
        else if (k > i + 1) quickSelect(a, i + 1, high, k);
    }
}
```

Since only tail recursion is used, the recursion may be eliminated:

```
void quickSelect(Comparable a[], int low, int high, int k) {
    while (low < high) {
        int i = partition(a, low, high);
        if (k <= i) high = i - 1;
        else if (k >= i + 1) low = i + 1;
    }
}
```

```
/**
    * Internal selection method that makes recursive calls.
    * Uses median-of-three partitioning and a cutoff.
    * Places the kth smallest item in a[k-1].
    @param a an array of Comparable items.
    * @param low the left-most index of the subarray.
    * @param high the right-most index of the subarray.
    * @param k the desired rank (1 is minimum) in the entire array.
    */
    private static <AnyType extends Comparable<? super AnyType>>
    void quickSelect( AnyType [ ] a, int low, int high, int k )
    v01
        if( low + CUTOFF > high )
            insertionSort( a, low, high );
        else
        {
            // Sort low, middle, high
            int middle = ( low + high ) / 2;
            if( a[ middle ].compareTo( a[ low ] ) < 0)
            swapReferences( a, low, middle);
            if( a[ high ].compareTo( a[ low ] ) < 0 )
            swapReferences( a, low, high);
            if( a[ high ].compareTo( a[ middle] ) < 0)
                swapReferences( a, middle, high );
            // Place pivot at position high - 1
        swapReferences( a, middle, high - 1);
        AnyType pivot = a[ high - 1 ];
            // Begin partitioning
            int i, j;
            for( i = low, j = high - 1; ; )
            for(
            while( a[ ++i ].compareTo( pivot) < 0)
            while( pivot.compareTo( a[ --j ] ) < 0)
                if(';
                    break;
            swapReferences( a, i, j );
    }
            // Restore pivot
            swapReferences( a, i, high - 1 );
                // Recurse; only this part changes
            if( k <= i )
                quickSelect( a, low, i - 1, k );
            else if( (k>i l 1)
                quickSelect( a, i + 1, high, k );
    }
}
```

param high the right-most index of the subarray.

* @param k the desired rank (1 is minimum) in the entire array.
private static <AnyType extends Comparable<? super AnyType>> void quickSelect( AnyType [ ] a, int low, int high, int k )
insertionSort ( a, low, high ); \{
// Sort low, middle, high
int middle = (low + high) $/ 2$,
( a[ middle ].compareTo( a[ low ] ) < 0 )
swapReferences( a, low, middle );
if( a[ high ].compareTo( a[ low ] ) < 0 ) swapReferences( a, low, high );
swapReferences( a, middle, high );
// Place pivot at position high - 1
References( a, middle, high - 1 );
AnyType pivot $=a[$ high - 1 ];
// Begin partitioning
int 1, j;
for ( 1 = low, $j=$ high -1 ; ; )

while( pivot.compareTo( a[ --j ] ) < 0 )
if( $\left.{ }^{\text {i }}>=\mathrm{j}\right)$
wapReferences( a, i, j )
\}
// Restore pivot
swapReferences( a, i, high - 1 );
// Recurse; only this part changes
if( $k<=i)$
if( $k>i+1)$
quickSelect $(a, i+1$, high, $k)$;
\}
\}

## figure $\mathbf{8 . 2 2}$

Quickselect with median-of-three partitioning and cutoff for small arrays

## Complexity of quickSelect

$O(N)$ on the average
since $N+N / 2+N / 4+N / 8+\ldots \leq 2 N$.

It is possible (but not quite easy) to achieve guaranteed linear running time.

## A lower bound for sorting

Any sorting algorithm that sorts using comparisons must use at least $\lceil\log (N!)\rceil$ comparisons for some input sequence.

Informal proof:
Sorting is equivalent to finding a permutation of the input sequence.
Thus, sorting may be modeled by a decision tree, where each internal node corresponds to a comparison, and each external node corresponds to one of the $N$ ! possible permutations. The height of the tree must at least be $\log _{2}(N!)$.

How large is $\left\lceil\log _{2}(N!)\right\rceil$ ?
From Stirling's formula $N!\approx \sqrt{2 \pi N}\left(\frac{N}{e}\right)^{N}$ we get


$$
\log _{2}(N!) \approx N \log _{2} N-1.44 N
$$

## Counting sort



A linear sorting algorithm

Sort an array a of non-negative integers less than m.

```
void sort(int[] a, int m) {
    int[] count = new int[m];
    for (int i = 0; i < a.length; i++)
        count[a[i]]++;
    for (int i = 0, j = 0; j < m; j++)
        for (int k = count[j]; k > 0; k--)
        a[i++] = j;
}
```


## Radix sort

A linear sorting algorithm

| 123 | 123 | 123 | 123 |
| :--- | :--- | :--- | :---: |
| 583 | 583 | 625 | 154 |
| 154 | 154 | 154 | 456 |
| 567 | 625 | 456 | 567 |
| 689 | 456 | 567 | 583 |
| 625 | 567 | 583 | 625 |
| 456 | 689 <br> Unsorted <br> Uy 1s | 689 <br> Sorted <br> by 10s | Sorted <br> by 100s |

Sort an array a of non-negative d-digit integers in radix (base) $r$.

```
void sort(int[] a, int d, int r) {
    int[] count = new int[r];
    int[] b = new int[a.length];
    for (int pass = 0, pow = 1; pass < d; pass++, pow *= r) {
        for (int i = 0; i < r; i++) count[i] = 0;
        for (int i = 0; i < a.length; i++)
            count[a[i] / pow % r]++;
        for (int i = 1; i < r; i++)
            count[i] += count[i - 1];
        for (int i = a.length - 1; i >= 0; i--)
            b[--count[a[i] / pow % r]] = a[i];
        for (int i = 0; i < a.length; i++) a[i] = b[i];
    }
}
```


## Radix-10 sort

| 31 | 41 | 59 | 26 | 53 | 58 | 97 | 23 | 93 | 84 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 0 |  |  |  |  |  |  |  |  |  | a unsorted

## Randomization



## Why do we need random numbers?

Many applications:

- Program testing (generation of random input data)
- Sorting (e.g., determination of the pivot in Quicksort)
- Simulation (e.g., generation of arrival times for bank customers)
- Games (e.g., choice of opening moves in chess)
- Randomized algorithms (e.g., primality testing)


## Generation of random numbers

True randomness in a computer is impossible to achieve.
Generally, it is sufficient to produce pseudorandom numbers, or numbers that appear to be random because they satisfy many of the properties of random numbers.

A pseudorandom number generator must pass a number of statistical tests. One such generator is the linear congruential generator (Lehmer, 1951) in which numbers $X_{1}, X_{2}, \ldots$ are generated that satisfy

$$
X_{i+1}=A X_{i}+C(\bmod M)
$$

The initial value $X_{0}$ is called the seed.
$A, C$, and $M$ must be chosen in such a way that the length of the sequence until a number is repeated (the period) becomes as large as possible. This happens when $M$ is a large prime number.

## Generation of random numbers in Java

Java provides the class java.util.Random.

```
public class Random {
    public Random();
    public Random(long seed);
    public int nextInt();
    public int nextInt(int n);
    public long nextLong();
    public float nextFloat();
    public double nextDouble();
    public double nextBytes(byte[] bytes);
    public double nextGaussian();
    public void setSeed(long seed);
    protected int next(int bits);
}
```


## Implementation of Lehmer's method

```
public class Random {
    private long seed;
    private final static long multiplier = 0x5DEECE66DL; // = 25214903917
    private final static long addend = 0xBL; // = 11
    private final static long mask = (1L << 48) - 1;
    public Random() { this(System.currentTimeMillis()); }
    public Random(long seed) {
        this.seed = (seed ^ multiplier) & mask;
    }
    public int nextInt() { return next(32); }
    protected int next(int bits) {
    long nextseed = (seed * multiplier + addend) & mask;
    seed = nextseed;
    return (int) (nextseed >>> (48 - bits));
    }
}
```


## Generation of random permutations



```
void permute(Object[] a) {
    Random r = new Random();
    for (int i = 1; i < a.length; i++)
        swap(a, i, r.nextInt(i + 1));
}
```

The algorithm runs in linear time.
The number of different possible outcomes $2 \cdot 3 \cdot \ldots \cdot N-1 \cdot N$ is equal to the number of possible permutations, $N!$.

## Primality testing by trial division

figure 9.7
Primality testing by

```
/**
    * Returns true if odd integer n is prime.
    */
public static boolean isPrime( long n )
{
        for( int i = 3; i * i <= n; i += 2 )
            if( n % i == 0 )
                return false; // not prime
    return true; // prime
}
```


## Randomized primality testing

## Fermat's little theorem:



If $P$ is prime and $0<A<P$, then $A^{P-1}=1(\bmod P)$

If for a number $N$ we can find a value $0<A<N$ such that $A^{N-1}(\bmod N)$ is not 1 , then $N$ is not a prime. $A$ is said to be a witness to $N$ 's compositeness.

Every composite number has a witness. But for some numbers it can be hard to find. The following theorem can be used to improve our chances of finding a witness.

## Theorem:

If $P$ is prime and $X^{2}=1(\bmod P)$, then $X= \pm 1(\bmod P)$

## Exponentiation

## Efficient algorithm

If $n$ is even, then

$$
x^{n}=(x \cdot x)^{\frac{n}{2}}
$$

If $n$ is odd, then

$$
x^{n}=x \cdot x^{n-1}=x \cdot(x \cdot x)^{\left\lfloor\frac{n}{2}\right\rfloor}
$$

```
public static long power(long x, int n) {
    if (n == 0)
        return 1;
    long tmp = power(x * x, n / 2);
    if (n % 2 != 0)
        tmp *= x;
    return tmp;
}
```

Number of multiplications $<2 \log _{2} n$.

## Modular exponentiation

```
/**
    * Return x^n (mod p)
    * Assumes x, n >= 0, p>0, x < p, 0^0 = 1
    * Overflow may occur if p > 31 bits.
    */
public static long power( long x, long n, long p )
{
    if( n == 0 )
        return 1;
    long tmp = power( ( x*x ) % p, n / 2, p );
    if( n % 2 != 0 )
        tmp = ( tmp * x ) % p;
    return tmp;
}
```

figure 7.16
Modular
exponentiation routine

```
/**
    * Private method that implements the basic primality test.
    * If witness does not return 1, n is definitely composite.
    * Do this by computing a^i (mod n) and looking for
    nontrivial square roots of 1 along the way.
    */
    private static long witness( long a, long i, long n )
    {
        if( i == 0 )
            return 1;
    long x = witness( a, i / 2, n );
    if( x == 0) / // If n is recursively composite, stop
        return 0;
    // n}\mathrm{ is not prime if we find a nontrivial square root of 1
    long y = ( }x**)%n
    if( y == 1 && x != 1 && x != n - 1)
        return 0;
    if( i % 2 != 0 )
        y = ( a * y ) % n
    return y;
}
/**
    * The number of witnesses queried in randomized primality test.
    */
    public static final int TRIALS = 5;
    /**
    * Randomized primality test.
    * Adjust TRIALS to increase confidence level.
    * @param n the number to test.
    * @return if false, n is definitely not prime
    * If true, n is probably prime.
    public static boolean isPrime( long n
{
    Random r = new Random( );
    for( int counter = 0; counter < TRIALS; counter++ )
        if( witness( r.nextInt( (int) n - 3 ) + 2, n - 1, n ) != 1)
            return false;
    return true;
}
```

figure 9.8
A randomized test for primality

## Confidence of randomized primality testing

Some values of $A$ will trick the algorithm into declaring that $N$ is prime.

In fact, if we choose $A$ randomly, we have at most $1 / 4$ chance of failing to detect a composite number.

However, if we independently use 20 values of $A$ (TRIALS $=20$ ), the chances that none of them will witness a composite number is $1 / 4^{20}$, which is about 1 in a million million.

