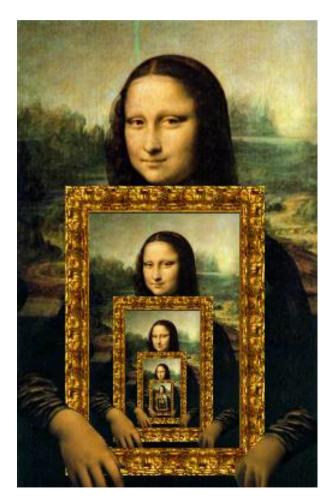
# **Algorithms II**



# Agenda

## Recursion

- Mathematical induction
- Rules of recursion
- Divide and conquer
- Dynamic programming
- Backtracking

## Verification of algorithms

## **Proof methods**

(useful for algorithm verification as well as for algorithm design)

### **Proof by contradiction:**

- 1. Assume the proposition is false
- 2. Show that this leads to a contradiction
- 3. Hence the proposition must be true

**Theorem**. There is an infinite number of primes.

**Proof** (Euclid):

Assume there is a *finite* number of primes: 2, 3, 5, ..., p.

Now define  $N = (2 \cdot 3 \cdot 5 - p) + 1$ .

N is greater than p. But N is not exactly divisible by any of the primes (the remainder is 1). So, N must be a prime.

We have found a contradiction, which proves the theorem.

## **Mathematical induction**

informal description



A long row of dominoes is standing on end:



If

- (1) the first domino will fall, and
- (2) whenever a domino will fall, its successor will fall then **all** of the dominoes will fall. Even if the row is infinitely long.

## **Mathematical induction**



formal description

Let T be a theorem involving an integer parameter N.

T is true for all integers  $N \ge c$ , where c is a constant, if the following two conditions are satisfied:

#### 1. The base case:

Tholds for N = c.

## 2. The induction step:

If *T* holds for *N*-1, then *T* holds for *N*.

The assumption in the induction step is called the **induction hypothesis**.

# **Example**



### **Theorem:**

The sum S(N) of the first N natural numbers is N(N+1)/2.

#### **Proof**:

(1) Base case:

For N = 1 we have S(1) = 1, which agrees with 1(1+1)/2 = 1.

(2) **Induction step**:

Assume the theorem holds for N-1, that is, S(N-1) = (N-1)N/2.

$$S(N) = S(N-1) + N = (N-1)N/2 + N = N(N+1)/2$$

Hence the theorem also holds for *N*.

# Money change



**Theorem**: Any amount of money  $\geq 4$  dollars may be changed using just 2 dollar and 5 dollar bills.

#### **Proof**:

### (1) Base case:

4 dollars may be exchanged into two 2 dollar bills.

## (2) **Induction step**:

Assume *N*-1 dollars may be changed. We can show that this change can be used for a change of *N* dollars.

Either the change contains a 5 dollar bill; or it does not.

In the first case, we replace the 5 dollar bill with three 2 dollar bills.

In the second case we replace two 2 dollar bills with a 5 dollar bill.



# **Strong induction**

Let T be a theorem involving an integer parameter N.

T is true for all integers  $N \ge c$ , where c is a constant, if the following two conditions are satisfied:

#### 1. The base case:

T holds for N = c.

## 2. The induction step:

If T holds for any k,  $c \le k < N$ , then T holds for N.



# Induction can be used in algorithm design

Induction can be used constructively. Solution of small problems are used for solving larger problems.

- (1) Start with an instance of the problem.
- (2) Try to solve this problem assuming that the same problem but of smaller size has been solved.

# Algorithm design example

Sorting *N* numbers in increasing order

Assume that we can sort *N*-1 numbers.

Then we can sort *N* numbers as follows:

Sort *N*-1 of the numbers and insert the *N*'th number at its right position (*Sorting by insertion*)

or

Find the smallest of the *N* numbers, sort the remaining *N*-1 numbers, and append the sorted sequence to the first number (*Sorting by selection*)

# The maximum contiguous subsequence sum problem

Given (possible negative) integers  $A_1, A_2, ..., A_N$ , find the maximum value of

$$\sum_{k=i}^{J} A_k$$

The maximum contiguous subsequence sum is zero if all the integers are negative.

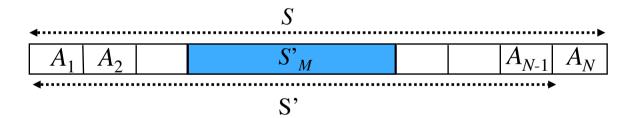
**Example**. If the input is (-2, 11, -4, -1, 13, -5, 2), then the answer is 19, which represents the sum of the contiguous subsequence (11, -4, -1, 13).

**Base case**: If N = 1, it is easy to find the maximum subsequence: If the number is not negative, it just consists of the number. Otherwise, it is empty.

**Induction hypothesis**: We know how to find the maximum contiguous subsequence sum for a sequence of length *N*-1.

Let 
$$S = (A_1, A_2, ..., A_N)$$
 and  $S' = (A_1, A_2, ..., A_{N-1})$ .

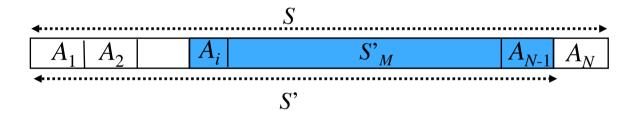
Let  $S'_{M}$  be the maximum subsequence for S'.

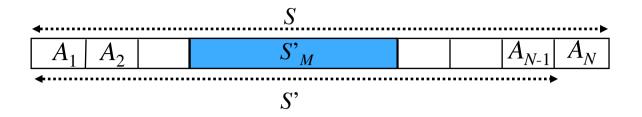


Suppose  $S'_M$  is empty. Then the maximum subsequence for S is also empty if  $A_N$  is negative; otherwise it is equal to  $(A_N)$ .

Suppose  $S'_M$  is not empty, that is,  $S'_M = (A_i, A_{i+1}, ..., A_j)$ , for  $1 \le i \le j \le N-1$ .

If j = N-1, then  $S'_{M}$  is extended with  $A_{N}$  if and only if  $A_{N}$  is positive.





If j < N-1, there are two cases:

- (1) Either  $S'_{M}$  is also maximal for S, or
- (2) there is another subsequence that is not maximal for S, but is maximal for S when  $A_N$  is added.

Which of the two cases we have cannot be determined from the available information:  $S'_{M}$ .

However, since  $A_N$  may only extend a sequence that ends in  $A_{N-1}$ , the decision may be made if know the maximum **suffix**  $(A_i, A_{i+1}, ..., A_{N-1})$  for S'.

## The induction hypothesis must be strengthened

**Stronger induction hypothesis**: We know how to find the maximum contiguous subsequence sum **and the maximum suffix sum** for a sequence of length *N*-1.

This leads to the linear algorithm

```
maxSum = maxSuffixSum = 0;
for (i = 1; i <= N; i++) {
    maxSuffixSum += A[i];
    if (maxSuffixSum > maxSum)
        maxSum = maxSuffixSum;
    else if (maxSuffixSum < 0)
        maxSuffixSum = 0;
}</pre>
```



## Recursion

- **Recursive definition** of X: X is defined in terms of itself.
- Recursion is useful when a **general** version of *X* can be defined in terms of **simpler** versions of *X*.
- A problem is **solved recursively** by
  - (1) **decomposing** it into smaller problems of the *same type* as the original problem,
  - (2) repeat this process until all sub-problems are so simple that they can be solved easily, and
  - (3) **combine** the solutions of the sub-problems to obtain a solution of the original problem.

# Recursive evaluation of the sum of the first N integers

$$S(1) = 1$$
  
 $S(N) = S(N-1) + N \text{ for } N > 1$ 

#### figure 7.1

Recursive evaluation of the sum of the first *N* integers

```
// Evaluate the sum of the first n integers
public static long s( int n )
{
    if( n == 1 )
        return 1;
    else
        return s( n - 1 ) + n;
}
```

# Printing a number in decimal form

#### figure 7.2

A recursive routine for printing N in decimal form

```
// Print n in base 10, recursively.
// Precondition: n >= 0.
public static void printDecimal( long n )
{
    if( n >= 10 )
        printDecimal( n / 10 );
    System.out.print( (char) ('0' + ( n % 10 ) ) );
}
```

n = 36372

print '3637' followed by '2'

# Printing a number in any base

#### figure 7.3

A recursive routine for printing *N* in any base

```
private static final String DIGIT_TABLE = "0123456789abcdef";

// Print n in any base, recursively.
// Precondition: n >= 0, base is valid.
public static void printInt( long n, int base )

final final String DIGIT_TABLE = "0123456789abcdef";

// Print n in any base, recursively.
// Precondition: n >= 0, base is valid.
public static void printInt( long n, int base )

final final String DIGIT_TABLE = "0123456789abcdef";

// Print n in any base, recursively.
// Precondition: n >= 0, base is valid.
public static void printInt( long n, int base )

System.out.print(n / base, base );
System.out.print( DIGIT_TABLE.charAt( (int) ( n % base ) ) );

System.out.print( DIGIT_TABLE.charAt( (int) ( n % base ) ) );
```

```
1 public final class PrintInt
 2
       private static final String DIGIT_TABLE = "0123456789abcdef";
       private static final int
                                   MAX BASE
                                               = DIGIT_TABLE.length();
       // Print n in any base, recursively
 6
       // Precondition: n >= 0, 2 <= base <= MAX BASE
 7
       private static void printIntRec( long n, int base )
 9
           if(n >= base)
10
               printIntRec( n / base, base );
11
           System.out.print( DIGIT TABLE.charAt( (int) ( n % base ) ) );
12
13
14
       // Driver routine
15
       public static void printInt( long n, int base )
16
17
           if( base <= 1 || base > MAX BASE )
18
               System.err.println( "Cannot print in base " + base );
19
           else
20
21
               if(n < 0)
22
23
24
                   n = -n:
                   System.out.print( "-" );
25
26
               printIntRec( n, base );
27
28
29
30 }
```

#### figure 7.4

A robust numberprinting program

# Implementation of recursion

A recursive method calls a **clone** of itself. That clone is simply another method with different parameters.

At any instant only one clone is active; the rest are pending.

Recursion may be handled using a **stack** (since methods return in reverse order of their invocation). Java, like other languages, implements methods by using an internal stack of *activation records*.

An *activation record* contains relevant information about the method including the values of the parameters and local variables.

# Stack of activation records

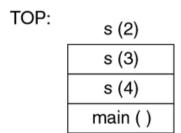
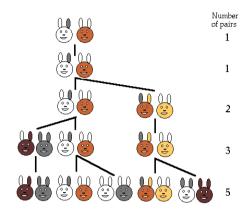


figure 7.5

A stack of activation records



## 2 Fibonacci numbers



Fibonacci,1202

Beginning with a single pair of rabbits, if every month each productive pair bears a new pair, which becomes productive when they are 1 month old, how many pairs of rabbits will there be after *N* months?

## F(0) = 0 F(1) = 1F(N) = F(N-1) + F(N-2) for N > 1

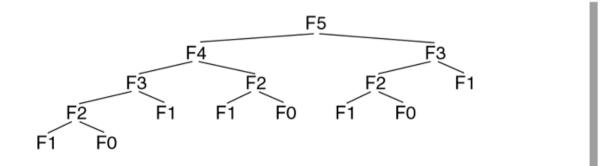
#### figure 7.6

A recursive routine for Fibonacci numbers: A bad idea

```
// Compute the Nth Fibonacci number.
// Bad algorithm.
public static long fib( int n )
{
    if( n <= 1 )
        return n;
    else
        return fib( n - 1 ) + fib( n - 2 );
}</pre>
```

## Fibonacci numbers

The recursive implementation is simple but very inefficient. By induction we can verify that the number of calls C(N) = C(N-1) + C(N-2) + 1 for  $N \ge 3$  is equal to F(N+2) + F(N-1) - 1. Thus, the number of calls is larger than the number we are trying to compute. The inefficiency is due to wasted calculations.



#### figure 7.7

A trace of the recursive calculation of the Fibonacci numbers

For N = 40, F(40) = 102,334,115, and the total number of recursive calls are more than 300,000,000.



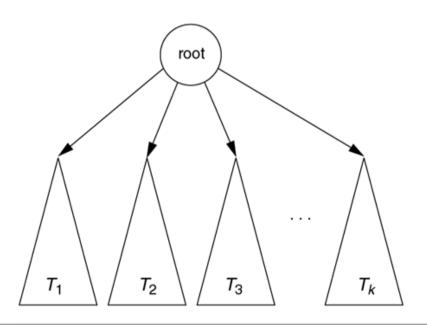
## Four basic rules of recursion

- **1. Base case**: Always have at least one case that can be solved without recursion.
- **2. Make progress**: Any recursive call must progress towards a base case.
- **3. "You gotta believe"**: Always assume that the recursive call works.
- **4.** Compound interest rule: Never duplicate work by solving the same instance of a problem in separate recursive calls.

# Recursive definition of a tree

Either a tree T is empty or it consists of a root and zero or more nonempty subtrees  $T_1, T_2, ..., T_k$ , each of whose roots are connect by an edge from the root of T.

**figure 7.8**A tree viewed recursively



# A tree

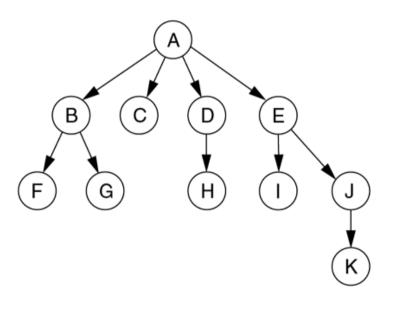
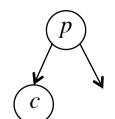


figure 7.9

A tree



# Non-recursive definition of a tree

A tree consists of a set of nodes and a set of directed edges that connect pairs of nodes. A **rooted tree** has the following properties:

- One node is distinguished as the root.
- Every node c, except the root, is connected by an edge from exactly one other node p.
  Node p is c's parent, and c is one of p's children.
- A unique path traverses from the root to each node.

  The number of edges that must be followed is the *path length*.

## **Factorial**

The product of the first N positive integers

```
1! = 1
N! = N \cdot (N-1)!
```

```
// Evaluate n!
public static long factorial(int n)

{
    if( n <= 1 ) // base case
        return 1;
    else
        return n * factorial( n - 1 );
}</pre>
```

#### figure 7.10

Recursive implementation of the factorial method

factorial = n; while (--n > 1) factorial \*= n; Iterative implementation

# Binary search

#### figure 7.11

A binary search routine, using recursion

```
* Performs the standard binary search using two comparisons
        * per level. This is a driver that calls the recursive method.
        * @return index where item is found or NOT_FOUND if not found.
5
       public static <AnyType extends Comparable<? super AnyType>>
       int binarySearch( AnyType [ ] a, AnyType x )
8
           return binarySearch(a, x, 0, a.length -1);
9
10
11
12
13
        * Hidden recursive routine.
14
       private static <AnyType extends Comparable<? super AnyType>>
15
       int binarySearch( AnyType [ ] a, AnyType x, int low, int high )
16
17
           if( low > high )
18
               return NOT FOUND;
19
20
           int mid = (low + high) / 2;
21
22
           if( a[mid].compareTo(x) < 0)
23
               return binarySearch( a, x, mid + 1, high );
24
           else if( a[ mid ].compareTo( x ) > 0 )
25
               return binarySearch( a, x, low, mid - 1);
26
           else
27
               return mid;
28
29
```

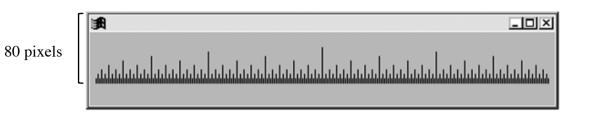


figure 7.12

A recursively drawn ruler

```
// Java code to draw Figure 7.12.
void drawRuler( Graphics g, int left, int right, int level )
{
    if( level < 1 )
        return;

    int mid = ( left + right ) / 2;

    g.drawLine( mid, 80, mid, 80 - level * 5 );

    drawRuler( g, left, mid - 1, level - 1 );
    drawRuler( g, mid + 1, right, level - 1 );
}</pre>
```

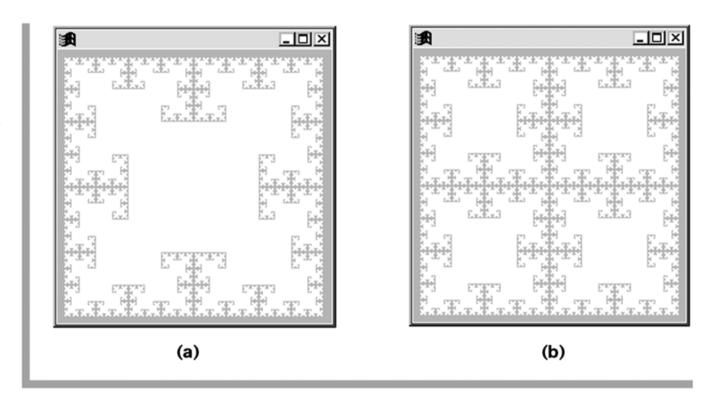
#### figure 7.13

A recursive method for drawing a ruler

Call: drawRuler(g, 10, 520, 8) using frame width = 531 and frame height = 110

#### figure 7.14

(a) A fractal star outline drawn by the code shown in Figure 7.15; (b) The same star immediately before the last square is added



Gray background

#### figure 7.15

Code for drawing the fractal star outline shown in Figure 7.14

```
// Draw picture in Figure 7.14.
       void drawFractal( Graphics q, int xCenter,
                         int yCenter, int boundingDim )
 3
           int side = boundingDim / 2;
5
6
           if(side < 1)
7
8
               return;
             // Compute corners.
10
           int left = xCenter - side / 2;
11
           int top =
                        vCenter - side / 2:
12
           int right = xCenter + side / 2:
13
           int bottom = yCenter + side / 2;
14
15
             // Recursively draw four quadrants.
16
           drawFractal( g, left, top, boundingDim / 2 );
17
           drawFractal( g, left, bottom, boundingDim / 2 );
18
           drawFractal( g, right, top, boundingDim / 2 );
19
           drawFractal( g, right, bottom, boundingDim / 2 );
20
21
             // Draw central square, overlapping quadrants.
22
           g.fillRect( left, top, right - left, bottom - top );
23
24
```

```
import java.awt.Frame;
import java.awt.Graphics;
import java.awt.Color;
public class FractalStar extends Frame {
    private static final int theSize = 256;
    public void paint(Graphics g) {
        setBackground(Color.gray);
        q.setColor(Color.white);
        drawSFractal(q, theSize / 2 + 10, theSize / 2 + 30, theSize);
    private void drawFractal(Graphics q, int xCenter, int yCenter,
                             int boundingDim) { ... }
    public static void main(String[ ] args ) {
        Frame f = new FractalStar( );
        f.setSize(theSize + 20, theSize + 40);
        f.setVisible(true);
}
```

# The RSA cryptosystem

(Rivest, Shamir og Adleman, 1977)



**Problem**: Alice wants to send a secret message to Bob in such a way that only Bob can read it.

**Solution**: Bob publishes two numbers, *e* and *N*, that people should use when sending him messages.

**Encryption**: Alice sends a message M as the number  $R = M^e \pmod{N}$ .

**Decryption**: Bob obtains the original message by computing  $R^d \pmod{N}$ , where d is a number that only Bob knows.

# **Computing the RSA constants**

Determination of e, d and N:

- 1) Choose two large primes *p* and *q*.

  Typically, these would be 100 digits or so each.
- 2) Compute N = pq.
- 3) Compute N' = (p-1)(q-1).
- 4) Choose e > 1 such that gcd(e, N') = 1.
- 5) Choose d such that ed (mod N') = 1. [i.e., such that d is *multiplicative inverse* to e mod N'].

It can be shown that  $(M^e)^d = M \pmod{N}$  for any message M.

Bob must destroy p, q, and N. He tells anybody who wants to send him a message the values of e and N, but he keeps d secret.

#### An example

(1) 
$$p = 47$$
 and  $q = 79$  (two primes)

(2) 
$$N = pq = 3713$$

(3) 
$$N' = (p-1)(q-1) = 3588$$

(4) 
$$e = 37$$
 (gcd( $e, N'$ ) = 1)

(5) 
$$d = 97$$
 (ed (mod N') = 1, since ed = 3589)

#### **Example continued**

$$(e = 37, d = 97, N = 3713)$$

Message: ATTACK AT DAWN

Coding: A = 01, B = 02, C = 03, D = 04, ...

ATTACK AT DAWN 0120200103110001200004012314

(blocks of two characters)

**Encryption** using the public key 37:

$$0120^{37} = 1404 \pmod{3713} \ 2001^{37} = 2392 \pmod{3713} \dots$$

$$1404239235360001328422802235$$

**Decryption** using the secret key 97:

```
1404^{97} = 0120 \pmod{3713} 2392^{97} = 2001 \pmod{3713} ... 0120200103110001200004012314
```

## Security of the RSA cryptosystem

If d can be determined using the knowledge of e og N, the security of the system is compromised.

If N can be factorized, N = pq, then d can be reconstructed.

The caveat is that factorization is very hard to do for large numbers. Using today's technology it will take millions of years for a computer to factorize a number of 200 digits.

# **Algorithms**

- (1) Modular exponentiation ( $M^e$  and  $R^d$ )
- (2) Primality testing (p and q must be primes)
- (3) Multiplication of long integers ((p-1)(q-1))
- (4) Greatest common divisor  $(\gcd(e, N'))$
- (5) Multiplicative inverse (ed (mod N') = 1)

## **Exponentiation**

Compute  $x^n$  where x is an integer, and n is a non-negative integer.

Simple algorithm:

```
power = 1;
for (int i = 1; i <= n; i++)
    power *= x;
```

Number of multiplications: *n*.

## Exponentiation

Efficient algorithm

If n is even, then

$$x^n = (x \cdot x)^{\frac{n}{2}}$$

If n is odd, then

$$x^{n} = x \cdot x^{n-1} = x \cdot (x \cdot x)^{\left\lfloor \frac{n}{2} \right\rfloor}$$

```
public static long power(long x, int n) {
   if (n == 0)
      return 1;
   long tmp = power(x * x, n / 2);
   if (n % 2 != 0)
      tmp *= x;
   return tmp;
}
```

Number of multiplications  $< 2 \log_2 n$ .

## Modular exponentiation

```
* Return x^n (mod p)
        * Assumes x, n >= 0, p > 0, x < p, 0^0 = 1
        * Overflow may occur if p > 31 bits.
       public static long power( long x, long n, long p )
           if(n == 0)
               return 1;
10
           long tmp = power( ( x * x ) % p, n / 2, p );
11
12
           if( n % 2 != 0 )
13
               tmp = (tmp * x) % p;
14
15
16
           return tmp;
       }
17
```

#### figure 7.16

Modular exponentiation routine

#### **Greatest common divisor**

Recursive version of Euclid's algorithm

#### figure 7.17

Computation of greatest common divisor

```
1  /**
2     * Return the greatest common divisor.
3     */
4     public static long gcd( long a, long b )
5     {
6         if( b == 0 )
7             return a;
8             else
9             return gcd( b, a % b );
10     }
```

```
return b == 0? a : gcd(b, a \% b);
```

### **Extended Euclid's algorithm**

Given two integers a and b, the extended Euclid's algorithm, fullGcd, computes their greatest common divisor, d, as well as integers x and y such that d = ax + by.

Example: a = 13, b = 17, d = 1, x = 4, y = -3

**Base case**: If b = 0, then d = a, x = 1, and y = 0.

**Induction hypothesis**: We know how to compute d, x and y for  $fullGcd(b, a \mod b)$ .

Let  $d_1$ ,  $x_1$  and  $y_1$  denote the values computed by  $fullGcd(b, a \mod b)$ .

$$d_1 = bx_1 + (a \bmod b)y_1 = bx_1 + (a - \left\lfloor \frac{a}{b} \right\rfloor b)y_1 = ay_1 + b(x_1 - \left\lfloor \frac{a}{b} \right\rfloor y_1)$$

Thus, for fullGcd(a, b) we have

$$d = d_1, x = y_1, y = x_1 - \left\lfloor \frac{a}{b} \right\rfloor y_1$$

# Implementation of Extended Euclid's algorithm

```
long[] fullGcd(long a, long b) { // returns {d, x, y}
    if (b == 0)
       return new long[] {a, 1, 0};
    long[] t = fullGcd(b, a % b);
    return new long[] {t[0], t[2], t[1] - (a / b) * t[2]};
}
```

### Multiplicative inverse

The solution  $1 \le x \le n$  to the equation

$$ax \equiv 1 \pmod{n}$$

is called the *multiplicative inverse* of a, mod n.

A call of fullGcd(a, n) returns d, x, and y, such that d = ax + ny, and d is the greatest common divisor of a and n.

If d = 1, then x must be the multiplicative inverse of a, mod n.

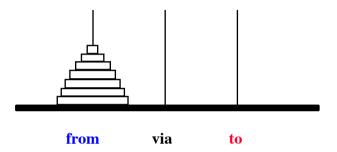
If  $d \ne 1$ , then a has no multiplicative inverse, mod n.

#### figure 7.18

A routine for determining multiplicative inverse

```
// Internal variables for fullGcd
       private static long x;
2
       private static long y;
3
5
        * Works back through Euclid's algorithm to find
6
        * x and y such that if gcd(a,b) = 1,
7
        * ax + by = 1.
8
9
       private static void fullGcd( long a, long b )
10
11
           long x1, y1;
12
13
           if(b == 0)
14
15
16
               x = 1;
               y = 0;
17
18
           else
19
20
               fullGcd( b, a % b );
21
               x1 = x; y1 = y;
22
               x = y1;
23
               y = x1 - (a / b) * y1;
24
25
26
27
28
        * Solve ax == 1 \pmod{n}, assuming gcd(a, n) = 1.
29
        * @return x.
30
31
       public static long inverse( long a, long n )
32
33
           fullGcd( a, n );
34
           return x > 0 ? x : x + n;
35
       }
36
```

#### **Towers of Hanoi**



**Problem**. Move the disks on peg **from** to peg **to**. Only one disk may be moved at a time, and no disk may be placed on top of a smaller disk.

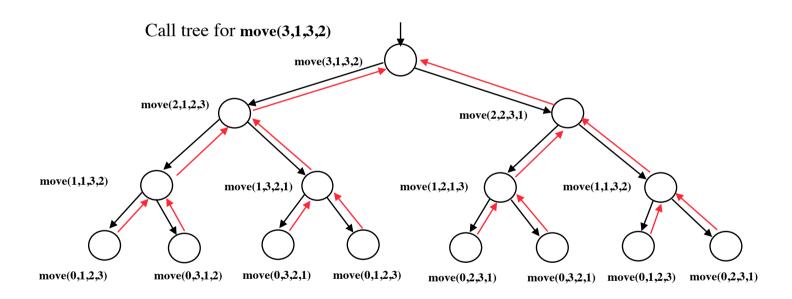
To move the n disks from peg **from** to peg **to**:

- 1. move the uppermost n-1 disks from peg **from** to peg **via**
- 2. move the bottom disk from peg **from** to peg **to**
- 3. move the n-1 disks from peg **via** to peg **to**.

#### **Implementation**

```
void move(int n, int from, int to, int via) {
   if (n == 0)
      return;
   move(n - 1, from, via, to);
   System.out.println("Move " + from + " to " + to);
   move(n - 1, via, to, from);
}
```

#### Call tree



## **Complexity**

The **time complexity** is proportional to the number of moves, M(N), where N is the number of disks.

$$M(N) = M(N-1) + 1 + M(N-1) = 2M(N-1) + 1$$
, for  $N > 1$   
 $M(1) = 1$ 

which has the solution  $M(N) = 2^N - 1$ .

The **space complexity** is proportional to the maximum number of unfinished calls of move, that is O(N).

The total time needed for 64 disks, given that each move takes one second, is

$$2^{64}$$
 seconds  $\approx 10^{19}$  seconds  $\approx 10^{12}$  years



## **Divide-and-conquer**

Divide-and-conquer is a important algorithm design technique. It is an example of the use of strong induction.

- (1) **Divide**: If the input is smaller than a certain threshold (say, one or two elements), solve the problem directly using a straightforward method and return the solution so obtained. Otherwise, divide the input data into two or more disjoint subsets.
- (2) **Recur**: Recursively solve the subproblems associated with the subsets.
- (3) Conquer: Take the solutions to the subproblems and "merge" them into a solution of the original problem.

#### Template for divide-and-conquer

Pseudocode:

```
solve(Problem p) {
   if (size(p) <= critical_size)
        solve_small_problem(p);
   else {
        subproblem = divide(p);
        solve(subproblem[0]);
        solve(subproblem[1]);
        ....
        combine_solutions();
   }
}</pre>
```

## **Example**

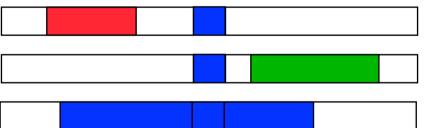
Computing the maximum contiguous sum

Divide the input into two halves:



Either the maximum subsequence resides

- (1) entirely in the left part,
- (2) entirely in the right part, or
- (3) in a sequence that contains the center element



## Three subproblems

The first two sums are computed using recursion.

The last sum is determined as the sum of

- the maximum **suffix** for the sequence to the left of the center element (including this element), and
- the maximum **prefix** for the sequence to the right of the center element.



The maximum subsequence sum is determined as the maximum of these three values.

| First Half                                                    |    |   |    | Second Half |   |    |    |              |
|---------------------------------------------------------------|----|---|----|-------------|---|----|----|--------------|
| 4                                                             | -3 | 5 | -2 | -1          | 2 | 6  | -2 | Values       |
| 4*                                                            | 0  | 3 | -2 | -1          | 1 | 7* | 5  | Running sums |
| Running sum from the center (*denotes maximum for each half). |    |   |    |             |   |    |    |              |

#### figure 7.19

Dividing the maximum contiguous subsequence problem into halves

#### figure 7.20

A divide-and-conquer algorithm for the maximum contiguous subsequence sum problem

```
* Recursive maximum contiguous subsequence sum algorithm.
2
        * Finds maximum sum in subarray spanning asleft..rightl.
3
4
        * Does not attempt to maintain actual best sequence.
5
       private static int maxSumRec( int [ ] a, int left, int right )
6
7
           int maxLeftBorderSum = 0, maxRightBorderSum = 0;
8
           int leftBorderSum = 0, rightBorderSum = 0;
9
           int center = ( left + right ) / 2;
10
11
           if( left == right ) // Base case
12
               return a[ left ] > 0 ? a[ left ] : 0;
13
14
           int maxLeftSum = maxSumRec( a, left, center );
15
           int maxRightSum = maxSumRec( a, center + 1, right );
16
17
           for( int i = center; i >= left; i-- )
18
19
20
               leftBorderSum += a[ i ]:
               if( leftBorderSum > maxLeftBorderSum )
21
22
                   maxLeftBorderSum = leftBorderSum;
23
24
           for( int i = center + 1: i <= right: i++ )</pre>
25
26
27
               rightBorderSum += a[ i ];
               if( rightBorderSum > maxRightBorderSum )
28
                   maxRightBorderSum = rightBorderSum;
29
30
31
           return max3( maxLeftSum, maxRightSum,
32
33
                        maxLeftBorderSum + maxRightBorderSum );
34
35
36
        * Driver for divide-and-conquer maximum contiguous
37
        * subsequence sum algorithm.
38
39
40
       public static int maxSubsequenceSum( int [ ] a )
41
           return a.length > 0 ? maxSumRec(a, 0, a.length - 1) : 0;
42
43
```

## Complexity

Let T(N) represent the time to solve a maximum contiguous subsequence problem of size N. Suppose N is a power of 2. Then T(N) satisfies the recurrence

$$T(N) = 2T(N/2) + O(N)$$
  
$$T(1) = O(1)$$

If O(N) and O(1) are replaced by N and 1, respectively, the solution is

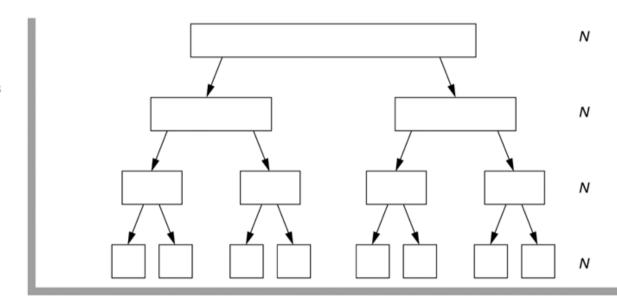
$$T(N) = N \log_2 N + N$$

Thus, the total running time is  $O(N \log N)$ .

#### Call tree

#### figure 7.21

Trace of recursive calls for recursive maximum contiguous subsequence sum algorithm for N=8 elements



There are about  $log_2N$  levels

# A general upper bound for divide-and-conquer algorithms

The solution to the equation  $T(N) = AT(N/B) + O(N^k)$ , where  $A \ge 1$  and B > 1, is

$$T(N) = \begin{cases} O(N^{\log_B A}) & \text{for } A > B^k \\ O(N^k \log N) & \text{for } A = B^k \\ O(N^k) & \text{for } A < B^k \end{cases}$$

## **Dynamic programming**

#### **Divide-and conquer** (top-down):

To solve a large problem, the problem is divided into smaller problems that are solved independently.

#### **Dynamic programming** (bottom-up):

To solve a large problem, all small problems are solved, and their solutions are saved and used to solve larger problems. This process continues until the original problem has been solved.

## **Dynamic programming**

#### **Modern definition:**

Implementation of recursive programs with overlapping subproblems. Top-down and bottom-up implementations are possible.

**Top-down dynamic programming** (*memoization*) means storing the results of certain calculations, which are then re-used later. **Bottom-up dynamic programming** involves formulating a complex calculation as a recursive series of calculations.

#### Fibonacci numbers

#### figure 7.6

A recursive routine for Fibonacci numbers: A bad idea

```
// Compute the Nth Fibonacci number.
// Bad algorithm.
public static long fib( int n )
{
    if( n <= 1 )
        return n;
    else
        return fib( n - 1 ) + fib( n - 2 );
}</pre>
```

Don't use this code. The same subproblems are solved many times.

# Avoiding re-calculations with memoization

Maintain an array (indexed by the parameter value) containing

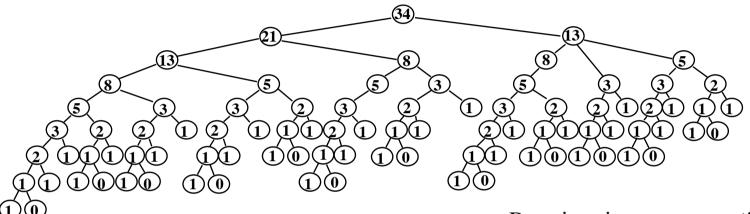
- \* 0, if the recursive methods has not yet been called with this parameter value; otherwise
- \* the result computed by a previous call

For the first call for a given parameter value: compute and save the result. For later calls with this parameter value: return the saved value.

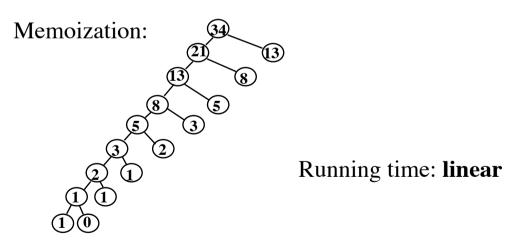
```
int fib(int n) {
    if (fibKnown[n] != 0)
        return fibKnown[n];
    int f = n <= 1 ? n : fib(n-1) + fib(n-2);
    fibKnown[n] = f;
    return f;
}</pre>
```

## **Efficiency**

Simple recursive algorithm: F(9)



Running time: exponential



### **Bottom-up approach**

Dynamic programming (traditional):

- \* Tabulate the solutions of the subproblems
- \* Build the table in increasing problem size
- \* Use tabulated solutions for obtaining new solutions

Example: Computation of Fibonacci numbers

```
F[0] = 0; F[1] = 1;
for (i = 2; i <= n; i++)
   F[i] = F[i - 1] + F[i - 2];</pre>
```

Running time is linear.

#### **Optimal change-making**



#### **Change-making problem**

For a currency with coins  $C_1$ ,  $C_2$ , ...,  $C_N$  (cents) what is the minimum number of coins needed to make K cents of change?

#### Example:

U.S. currency has coins in 1-, 5-, 10- and 25-cent denominations. We can make 63 cents by using two 25-cent pieces, one 10 cent piece, and three 1-cent pieces, for a total of six coins.

For U.S. coins it can be shown that a **greedy** algorithm where we repeatedly use the largest coin available always minimizes the total number of coins uses.

However, this algorithm does not work if U.S. currency included a 21-cent. The greedy algorithm would still use six coins, but the optimal solution uses three coins (all 21-cent pieces).

#### **Top-down solution**

Compute for each possible coin the minimum number of coins that can be used in a change of the remaining amount of money. Take minimum.

Do not use this algorithm! Exponential time. Avoid recomputations.

#### Use known solutions

```
int makeChange(int change) {
    if (change == 0)
        return 0;
    if (minKnown[change] > 0)
        return minKnown[change];
    int min = Integer.MAX VALUE;
    for (int i = 0; i < coins.length; i++)
        if (change >= coins[i])
            min = Math.min(min,
                  1 + makeChange(change - coins[i]));
    minKnown[change] = min;
    return min;
```

## Printing the coins used in an optimal change

Save in an array, lastCoin, the last coin used to make an optimal change.

```
while (change > 0) {
    System.out.println(lastCoin[change]);
    change -= lastCoin[change];
}
```

```
int makeChange(int change) {
    if (change == 0)
        return 0;
    if (minKnown[change] > 0)
        return minKnown[change];
    int min = Integer.MAX VALUE, minCoin = 0;
    for (int i = 0; i < coins.length; i++)</pre>
        if (change >= coins[i]) {
            int m = 1 + makeChange(change - coins[i]);
            if (m < min)
              { min = m; minCoin = coins[i]; }
    lastCoin[change] = minCoin;
   minKnown[change] = min;
    return min;
```

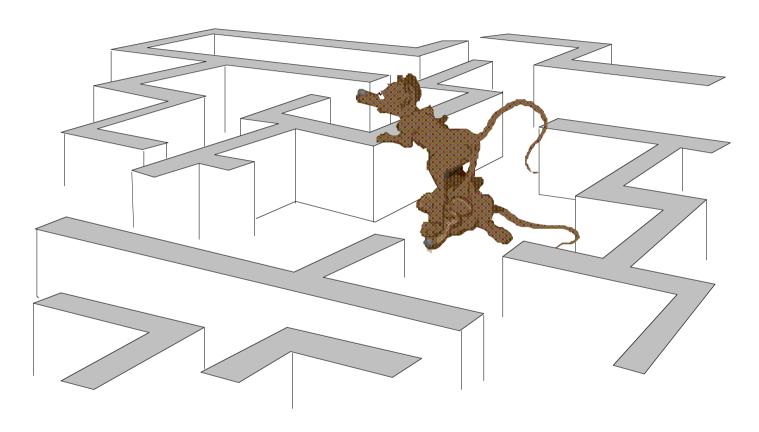
## **Bottom-up solution**

(no recursion)

Use known solutions to compute new solutions.

Running time is proportional to change \* coins.length.

## **Backtracking**



Use recursion to try all possibilities

## Search in a maze

### Problem

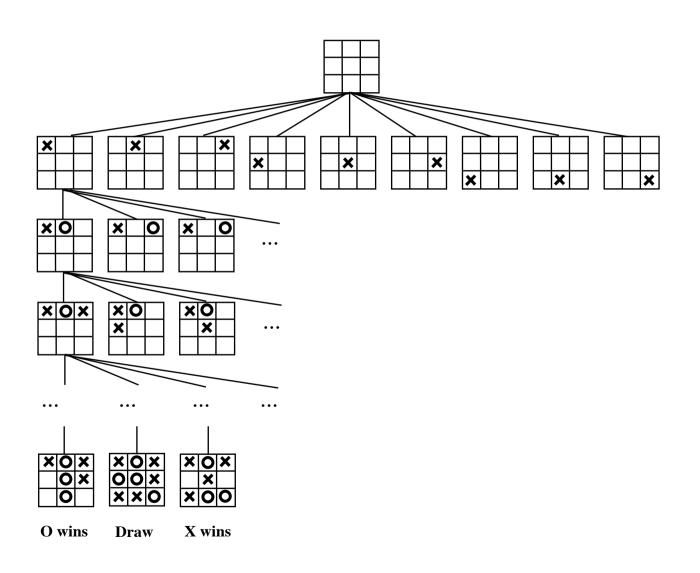
| Start | <b>ММММММММММММММММММММММММММММММММММММ</b>   |
|-------|-----------------------------------------------|
|       | W W W W W W W W W                             |
|       | WWWWWWWWWWWW W W W WWWWWWWWWWW                |
|       | W W WWWW W WWW W W W                          |
|       | W WWWWWW W W W WWWWWW W                       |
|       | W W W W W W WWWW W                            |
|       | W WWWWWWWWWWW W WW WW WWWWWWWW W              |
|       | W W W WWWW W                                  |
|       | WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW        |
|       | W WWWWWWWWW WWWWWWW W                         |
|       | W WWWWWWWW WWWW W WW WW WW WW WW W            |
|       | W $W$ $W$ $W$ $End$                           |
|       | <b>МИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИ</b> |
|       | Solution                                      |
| Start | WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW       |
|       | *****W W W W W W W W                          |
|       | WWWWWWWWWWWWW W W W W W WWWWWWW               |
|       | W**** WW W WWWW WWW W W W W                   |
|       | W*WWWWWWW W W W **** W***** W WWWWWW          |
|       | W* W W W**W*WWWW** W                          |
|       | W*WWWWWWWWWW WW WW*W*W*WWW*** W WWWW W        |
|       | W******** W*WWW W W                           |
|       | WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW        |
|       | W WWWWWWWWW*WWWWWW                            |
|       | W WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW        |
|       | Knd                                           |
|       | W W W ***W***** = 11111                       |

```
public class Maze {
   static String[] problem =
     W W W W W
                      W
                            W
      "WWWWW W
               W
                    W W W W
                             W
                                WWWWWWWWW ,
      '' W
             WW WWWWW W WWW WWWW W W
      "W WWWWWWW W W W
                          W
                                 W WWWWWW",
      ''W
                                       W",
                 WWWWW W W W W
      "W WWWWWWWWWWW WW W W WWW
                                 W WWWW W",
      ''W
                        WWW
                             WWWW W
      "WWWWWWWWWWWWWWWWWWWWWW
                                 W W WW W",
      '' W
                        WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
      ''W
          WWWWWWWWW WWWWWWWW
                                W
                                     WW W",
      '' W
            W
                              W
                                   W
      static int xStart = 0, yStart = 1, xEnd = 40, yEnd = 11;
   static boolean solutionFound = false;
   static StringBuffer[] solution = new StringBuffer[problem.length];
```

```
public static void main(String[] args) {
   for (int x = 0; x < problem.length; x++)
      solution[x] = new StringBuffer(problem[y]);
   visit(xStart, yStart);
   if (solutionFound)
      for (int y = 0; y < solution.length; y++)
            System.out.println(solution[y]);
}</pre>
```

```
static void visit(int x, int y) {
    solution[x].setCharAt(y, '*');
    solutionFound = (x == xEnd && y == yEnd);
    for (int d = 1; d \le 4 \&\& !solutionFound; <math>d++) {
        int xNext = 0, yNext = 0;
        switch(d) {
        case 1: xNext = x; yNext = y - 1; break;
        case 2: xNext = x - 1; yNext = y; break;
        case 3: xNext = x; yNext = y + 1; break;
        case 4: xNext = x + 1; yNext = y; break;
        if (yNext >= 0 && yNext < solution.length &&
            xNext >= 0 && xNext < solution[yNext].length &&</pre>
            solution[yNext].charAt(xNext) == ' ')
            visit(xNext, yNext);
    if (!solutionFound)
       solution[x].setCharAt(y, ' ');
```

### Tic-tac-toe



Class to store an evaluated move

```
1 final class Best
2 {
3    int row;
4    int column;
5    int val;
6
7    public Best( int v )
8        { this( v, 0, 0 ); }
9
10        public Best( int v, int r, int c )
11        { val = v; row = r; column = c; }
12 }
```

```
1 class TicTacToe
 2 {
 3
       public static final int HUMAN
                                            = 0:
       public static final int COMPUTER
                                            = 1:
       public static final int EMPTY
                                            = 2:
       public static final int HUMAN WIN
                                           = 0:
       public static final int DRAW
 8
                                            = 1:
       public static final int UNCLEAR
                                            = 2:
 9
       public static final int COMPUTER_WIN = 3;
10
11
12
           // Constructor
13
       public TicTacToe( )
         { clearBoard(); }
14
15
           // Find optimal move
16
       public Best chooseMove( int side )
17
18
         { /* Implementation in Figure 7.29 */ }
19
           // Compute static value of current position (win, draw, etc.)
20
       private int positionValue( )
21
         { /* Implementation in Figure 7.28 */ }
22
23
           // Play move, including checking legality
24
       public boolean playMove( int side, int row, int column )
25
         { /* Implementation in online code */ }
26
27
           // Make board empty
28
       public void clearBoard( )
29
         { /* Implementation in online code */ }
30
31
           // Return true if board is full
32
33
       public boolean boardIsFull( )
         { /* Implementation in online code */ }
34
35
           // Return true if board shows a win
36
37
       public boolean isAWin( int side )
         { /* Implementation in online code */ }
38
39
           // Play a move, possibly clearing a square
40
       private void place( int row, int column, int piece )
41
         { board[ row ][ column ] = piece; }
42
43
44
           // Test if a square is empty
       private boolean squareIsEmpty( int row, int column )
45
         { return board[ row ][ column ] == EMPTY; }
46
47
       private int [ ] [ ] board = new int[ 3 ][ 3 ];
48
```

Skeleton for class TicTacToe

Supporting routine for evaluating positions

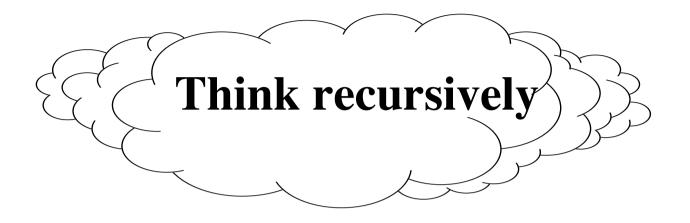
```
// Find optimal move
       public Best chooseMove( int side )
2
3
                                  // The other side
4
           int opp:
           Best reply:
                                  // Opponent's best reply
                                  // Placeholder
           int dc;
                                  // Result of an immediate evaluation
           int simpleEval:
           int bestRow = 0;
           int bestColumn = 0:
           int value:
10
11
           if( ( simpleEval = positionValue( ) ) != UNCLEAR )
12
               return new Best( simpleEval );
13
14
           if( side == COMPUTER )
15
16
17
               opp = HUMAN: value = HUMAN WIN:
18
           else
19
20
               opp = COMPUTER; value = COMPUTER_WIN;
21
22
23
24
           for( int row = 0: row < 3: row++ )
               for( int column = 0; column < 3; column++ )</pre>
25
26
                    if( squareIsEmpty( row, column ) )
27
                        place( row, column, side );
28
                        reply = chooseMove( opp );
29
                        place( row, column, EMPTY );
30
31
                          // Update if side gets better position
32
                       if( side == COMPUTER && reply.val > value
33
                            || side == HUMAN && reply.val < value )
34
35
                            value = reply.val;
36
                            bestRow = row; bestColumn = column;
37
38
39
40
41
           return new Best( value, bestRow, bestColumn );
42
```

A recursive routine for finding an optimal Tic-Tac-Toe move

The routine implements the *minimax strategy*.

For the computer, the value of a position is the *maximum* of the values of all positions that can result from making a move.

For the human, the value of a position is the *minimum* of the values of all positions that can result from making a move.



### to obtain

- simple and precise definitions
- elegant solutions of problems that otherwise are hard to solve
- algorithms that are simple to analyze

## Verification of algorithms

An algorithm A is said to be **partially correct** if the following holds: **If** A **terminates** for a given legal input, then its output is correct.

An algorithm *A* is said to be **correct** (or **totally correct**) if *A* is partially correct and *A* **terminates** for any legal input.

Proof of partial correctness is made by using assertions.

A program **assertion** is a condition associated to a given point of the algorithm that is true each time the algorithm reaches that point.

### **Assertions**



#### • Precondition

a condition that must always be true just prior to the execution of some section of code.

#### • Postcondition

a condition that must always be true just after the execution of some section of code.

### • Loop invariant

a statement of the conditions that should be true on entry into a loop and that are guaranteed to remain true on every iteration of the loop.

## **Examples of assertions**

### **Verification rules**

• Assignment:

```
{P_{w}}\ v = w; {w > 2}
{P^{w \to v}} {v > 2}
```

• Selection:

```
{P}
if (B) { P^B}
s1;
else { P^¬B}
```

# Verification example

Integer division

Given the algorithm

```
q = 0; r = x;
while (r >= y) {
    r = r - y;
    q = q + 1;
}
```

where x, y, q and r are integers,  $x \ge 0$  and y > 0.

Prove that the algorithm computes the quotient q and the remainder r for the integer division of x by y, that is

$$r = x - qy \qquad (0 \le r < y)$$



# The steps of the proof

- (1) The loop invariant is true at the entry of the loop
- (2) If the loop invariant is true at a given iteration it is also true at the next iteration

induction

- (3) If the algorithm terminates, its postcondition is true
- (4) The algorithm terminates



### **Termination**

```
q = 0; r = x;
while (r >= y) {
    r = r - y;
    q = q + 1;
}
```

The algorithm terminates

### **Proof**:

Since y > 0, each iteration will reduce r.

Thus, the loop condition will be false after a finite number of iterations.