
1	

Preliminaries II	

2	

Agenda	

Objects and classes	

•  Encapsulation and information hiding	

•  Documentation	

•  Packages	

Inheritance	

•  Polymorphism	

•  Implementation of inheritance in Java	

•  Abstract classes	

•  Interfaces	

•  Generics	

3	

Desirable qualities of software systems	

•  Usefulness	

•  Timeliness	

•  Reliability	

•  Maintainability	

•  Reusability	

•  User friendliness 	

•  Efficiency	

Not all these qualities are attainable at the same time, nor are
they of equal importance.	

4	

Object-oriented programming	

Maintainability is simplified by	

•  Flexibility (aspects are easily changeable) 	

•  Simplicity 	

•  Readability	

Focuses primarily on	

•  Reusability	

•  Maintainability	

5	

Software development	

Abstraction: only essential and relevant
parts are captured, others are ignored	

Algorithms	

Model	

Abstraction	

Interpretation	

The real world	

Software system	

System	

6	

Basic concepts in object-oriented
programming	

Object:	

 Interpretation in the real world: 	

 	

 	

 	

 	

 	

 	

	

An object represents anything in the real world that can be 	

	

distinctly identified	

 Representation in the model: 	

 	

 	

 	

 	

 	

 	

 	

	

An object has an identity, a state, and a behavior	

7	

State and behavior	

The state of an object is composed of a set of fields, or attributes.
Each field has has a name, a type, and a value.	

	

The behavior of an object is defined by a set of methods that may
operate on the object. In other words, a method may access or
manipulate the state of the object.	

	

The features of an object refer to the combination of the state and
the behavior of the object.	

8	

Classes	

Class:	

	

Interpretation in the real world: 	

 	

 	

 	

 	

 	

 	

	

 	

A class represents a set of objects with similar characteristics
	

 	

and behavior. These objects are called instances of the class.	

 	

Representation in the model: 	

 	

 	

 	

 	

 	

 	

 	

	

 	

A class characterizes the structure of states and behaviors 	

	

 	

that are shared by all its instances. 	

9	

Noun-verb analysis in 	

object oriented design	

Noun-verb analysis is a means of identifying classes
and their methods. 	

If you look in the “problem statement” for nouns,
they will often wind up as classes. 	

If you look for verbs, they will be methods of those
classes.	

10	

An example of a class	

class Point { !// Class name! ! !!
 int x, y;! !// Fields!
!
 void move(int dx, int dy) { // Method!!
 x += dx; ! ! ! ! !
 y += dy;! ! ! ! ! !
 } ! ! ! ! ! ! !!
}!

A class is a template, blueprint, that defines what an object's
fields and methods will be.	

11	

A simple example	

12	

A view of the accessibility	

13	

Using the class	

14	

javadoc for the class	

15	

16	

!public class Point {!
 int x, y;!
!

! public Point() { !// no-arg constructor!
! x = 0; y = 0;!
! }!

!
! public Point(int x0, int y0) {!
! x = x0; y = y0;!
! }!
!}!

Constructors

Constructors may be overloaded:	

A class may have several constructors, if only they have a different
number of parameters, or their types differ.	

17	

Point p1 = new Point();!
!
Point p2 = new Point(13, 17);!
	

Creation of Point objects

If no constructor is provided for a class, a default no-arg
constructor with an empty body is provided implicitly.	

18	

19	

The keyword this may be used inside an instance method or constructor
to denote the receiving instance of the call. 	

The this reference	

public class Point {!
 int x, y;!
!
 public Point(int x, int y) {!
 this.x = x; this.y = y;!
 }!
}!

Allows access to fields “shadowed” (hidden) by parameters.	

Example of use:

	

	

20	

Passing this as a parameter	

class Line {!
 Point p1, p2;!
!
 public Line(Point p1, Point p2) {!
 this.p1 = p1; this.p2 = p2;!
 }!
}!

public class Point { ! ! ! ! ! !
!int x, y;
! ! ! ! ! ! ! ! ! ! !
!public Line connect(Point otherPoint) {!
! return new Line(this, otherPoint);
!} ! ! ! ! ! ! ! !

}!

21	

public class Point {!
 public Line connect(Point otherPoint) {!
 if (this == otherPoint)!
 return null;!
 return new Line(this, otherPoint);!
 }!
}!

Dealing with aliasing	

22	

The this shorthand for constructors	

Many classes have multiple constructors that behave similarly.	

	

We can use this inside a constructor to call one of the other
constructors.	

Example:	

	

	

public Date() {!
! this(1, 1, 2010);!
!}!

The call to this must be the first statement in the constructor.	

23	

The instanceof operator	

The instanceof operator performs a runtime test of class
membership.	

	

The result of 	

	

	

exp instanceof ClassName!
	

is true if exp is an instance of ClassName, and false otherwise.	

	

If exp is null, the result is always false.	

24	

Static fields and methods	

A static field is used when we have a variable that all the instances
of the same class need to share. Typically, this is a symbolic
constant, but need not be.	

	

A static method is a method that does not need a controlling object,
and thus is typically called by supplying the class name in stead of
the controlling object.	

	

Static fields and methods are called class fields and class methods,
respectively. 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

Non-static fields and methods are called instance fields and
instance methods, respectively.	

25	

26	

Static initializers	

Static fields are initialized when the class is loaded. Occasionally,
we need a complex initialization.	

	

Such an initialization may be performed in a block preceded by the
keyword static. The block must follow the declaration of the
static field.	

27	

28	

Packages	

Packages are used to organize similar classes. A package is a collection of
related classes, interfaces, or other packages.	

	

Package declaration is file based; that is, all classes in the same source file
belong to the same package. The name of the package may be given in the
beginning of the source file: 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

	

	

 	

	

!! !package PackageName;!

29	

An example package	

The source file Point.java:!
!package geometry;!

!
!public class Point {!

 ! int x, y;!
 ! // ...!

!}!
!
The source file Line.java:!

!package geometry;!
!

!public class Line {!
 ! Point p1, p2;!

!}!

30	

(1) Using the fully qualified name:! ! ! ! !!
!import geometry;! ! ! ! ! !
!geometry.Point p = new geometry.Point(3, 4);!

!
(2) Importing the class and using the simple class name: ! ! !
!import geometry.Point; ! ! ! ! ! ! !
!Point p = new Point(3, 4);!

!
(3) Importing all classes: 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

	

import geometry.*; ! ! ! ! ! ! ! !
!Point p1 = new Point(3, 4), ! ! ! ! !
! p2 = new Point(6, 9); ! ! ! ! ! !
!Line l = new Line(p1, p2);!

Examples of application of the package	

31	

Use of a package requires a directory structure that corresponds to
the name of the package. 	

	

Example:	

	

	

The package	

 	

	

	

 	

dk.ruc.jDisco!
	

	

	

must be placed in the directory	

	

	

 	

	

	

 	

dk/ruc/jDisco	

Packages and directory structure	

32	

Inheritance	

33	

Inheritance 	

Inheritance is the fundamental object-oriented principle that is
used to reuse code among related classes.	

	

Inheritance models the IS-A relation.	

Point!

ColoredPoint!

int x!
int y!
void move!
!
Color color!

Example:	

	

	

class ColoredPoint extends Point {!
! Color color;!

 }!

34	

Inherence terminology	

A class C2 is said to inherit from another class C1, if all
instances of C2 are also instances of C1. 	

C2 is said to be a subclass of C1. 	

 	

C1 is said to be a superclass of C2.	

C2	

C1	

35	

Interpretations of inheritance	

A subclass is a specialization of its superclass. 	

A superclass is a generalization of its subclasses.	

A subclass is an extension of its superclass.	

Point!

ColoredPoint!

36	

37	

// grade point average!

38	

39	

40	

41	

42	

import java.awt.Color;
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

public class ColoredPoint extends Point {! ! ! ! !
!public Color color;
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
!public ColoredPoint(int x, int y, Color color) {!
! super(x, y); // must be the first statement
! this.color = color;
!!}!

!
 !public ColoredPoint(int x, int y) { ! // black point ! !
 ! this(x, y, Color.black); // must be the first statement

!}!
!
 !public ColoredPoint() { ! !

! color = Color.black; // invokes super() implicitly
!}! ! ! ! ! ! ! ! ! !

}!

Constructors for subclasses	

43	

44	

45	

In Java, a class may inherit from at most one superclass.	

Single inheritance	

C1a!

C2!

C1b!C1!

C2a! C2b!

C3!

46	

In Java, all classes are organized in a hierarchy (tree) that has the
class Object as root.	

	

All classes, except Object, has a unique superclass.	

	

If no superclass is specified for a class, then Object is its
superclass.	

Class Object	

47	

public class Object {!
 public String toString();!
 public boolean equals(Object obj);!
 public int hashCode();!
 protected Object clone();!
!
 ...!
}!

Class Object	

48	

Polymorphic assignment	

Rule of assignment: The type of the expression at the right-hand
side of an assignment must be a subtype of the type at the left-
hand side of the assignment. 	

Person p = new Person(...); ! ! ! ! !
Student s = new Student(...);! ! !
Employee e = new Employee(...); !

e = p;!

s = e;!

p = p;!

p = s;! !// ok!

!// ok!

!// compilation error!

!// compilation error!

Polymorphic (from Greek): having many forms 	

49	

The rule of assignment is checked at compile time.	

!e = p;! !// compilation error!

The validity of an explicit cast is always checked at run time.	

	

If the cast is invalid, a ClassCastException is thrown.	

The rule may be satisfied by narrowing the type at the right-hand
side of the assignment:	

e = (Employee) p;! !// explicit cast, ok!

Type conversion	

(casting)	

50	

Overriding methods	

Methods in a superclass may be overridden by methods defined in a
subclass. Overriding refers to the introduction of an instance method in a
subclass that has the same name, same signature, and a type-compatible
return type of a method in the superclass. Implementation of the methods
in the subclass replaces the implementation in the superclass. 	

class Shape {!
 public String toString() { !
 return "Shape"; !
 }!
}!
!
class Line extends Shape {!
 Point p1, p2;!
!
 public String toString() { !
 return "Line from " + p1 + " to " + p2; !
 }!
} !

51	

In Java 5, the annotation @Override forces the compiler to check that a
method is overridden.!

@Override	

The compiler prints out the error message	

method does not override a method from its superclass!
 @Override!
 ^!

class Line extends Shape {!
 @Override !
 public String toSting() {!
 ...!
 }!
}! Misspelling	

52	

Polymorphic method invocation	

Which implementation of a overridden method will be invoked depends
on the actual class of the object referenced by the variable at run time,
not the declared type of the variable. This is known as dynamic binding.	

	

	

Example:	

	

	

 	

Person p;!
! !p = Math.random() > 0.5 ? new Student(...) !

 ! : new Employee(...);!
! !System.out.println(p.toString());!

53	

54	

public ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
!The feature is accessible to any class.	

	

private! ! ! ! ! ! ! ! ! ! ! ! ! ! !

!The feature is only accessible by the class itself.	

!
protected ! ! ! ! ! ! ! ! ! ! ! ! !

!The feature is accessible by the class itself, all its subclasses, and all the
	

classes within the same package.	

	

Neither public, private, nor protected 	

 	

 	

 	

 	

 	

 	

	

The feature is accessible by all the classes in the same package.	

!
final 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

	

A final field has a constant value, which may not be changed.! ! !
!A final method may not be overridden in subclasses.	

	

static ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

!A static field is shared by all instances of the class. 	

 	

 	

 	

 	

	

A static method accesses only static fields.	

Field and method modifiers

55	

Design of hierarchies

56	

57	

58	

59	

Abstract methods and classes

An abstract method is a method that declares functionality that
all derived class objects must eventually implement. In other
words, it says what these objects can do. However, it does not
provide a default implementation.	

A class that has a least one abstract method is an abstract class. 	

Java requires that abstract classes explicitly be declared as such
(using the keyword abstract).	

	

Any attempt to construct an instance of an abstract class is illegal.	

60	

61	

Interfaces

An interface can be thought of as a special form of class, which
declares only the features to be supported by the class. 	

 	

Java interfaces provide no implementation. Implementation is
deferred to classes that implement the interfaces.	

	

Interface features can be either abstract methods or constants (that
is, static and final fields). All features are public.	

	

Like abstract classes, an interface may not have instances.	

62	

Implementation of interfaces

A class that implements an interface provides implementation for the
abstract methods declared in interface by overriding those methods. 	

interface Drawable {!
 void draw(Graphics g);!
}!

public class Line implements Drawable {!
 Point p1, p2;!
!
 public void draw(Graphics g) {!
 g.drawLine(p1.x, p1.y, p2.x, p2.y);!
 }!
}!

63	

Extending and implementing interfaces

Classes that implement an interface must provide implementations
of all methods of the interface (unless the class itself should be
abstract). 	

	

An interface may inherit from one or more interfaces but not from a
class.	

	

Java allows only single inheritance for class extension but multiple
inheritance for interface extension and implementation.	

64	

interface Movable {!
 void move(int dx, int dy);!
}!

public class Line implements Drawable, Movable {!
 Point p1, p2;!
!
 public void move(int dx, int dy) {!
 p1.move(dx, dy);!
 p2.move(dx, dy);!
 }!
!
 public void draw(Graphics g) {!
 g.drawLine(p1.x, p1.y, p2.x, p2.y);!
 }!
}!

Multiple interface implementations

65	

Contract of the method compareTo:	

	

	

Result < 0, 	

if this precedes other;	

	

Result = 0, 	

if neither this precedes other, nor	

 	

other precedes this;	

	

Result > 0, 	

if other precedes this.	

66	

67	

Checked exception:	

Must be caught or declared in
the throws clause	

68	

69	

Generics	

70	

Using Object for genericity

Generic: broadly covering	

71	

72	

73	

Wrapper classes

Because in Java primitive types are not objects, wrapper classes are
provided to “wrap” the values of primitive types into objects when
needed. Each primitive type has a corresponding wrapper class. 	

Each wrapper object is immutable (meaning its state can never
change), and stores one primitive value that is set when the object is
constructed.	

Primitive type	

 	

Wrapper class	

boolean ! !Boolean!
byte ! ! !Byte!
char ! ! !Character!
double! ! !Double!
float ! ! !Float!
int!! ! ! !Integer!
long ! ! !Long!
short ! ! !Short!

74	

Boxing conversions

Automatic conversion of a value of a primitive type to an instance
of a wrapper class is called auto-boxing.

Automatic conversion of an instance of a wrapper class to a value
of a primitive type is called auto-unboxing.

int x = val; 	

	

is equivalent to 	

int x = val.intValue();!

Integer val = 7; 	

 is equivalent to 	

 	

 	

 	

 	

Integer val = new Integer(7);!

75	

Without automatic conversion	

76	

77	

78	

Generics in Java 5	

Generics allow a type or method to operate on objects of various types
while providing compile-time type safety.	

	

In Java 5, classes, interfaces and methods may be declared with one or
more type parameters. 	

Benefits:	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

	

• Compile-time type safety	

	

• Greater readability (unnecessary casting is avoided)	

79	

A generic ArrayList	

public class ArrayList<E> implements List {!
 public boolean add(E o);!
 public E get(int i);!
 public boolean addAll(Collection<? extends E> c);!
 ...!
}!

The name of the type parameter, here E, may be chosen freely. 	

 	

Alternative: ElementType.	

The notation <? extends E> denotes an arbitrary subtype of E
(or E itself). The wildcard character ? stands for an unknown type.	

80	

Example of application 	

ArrayList<String> names = new ArrayList<String>();!
!
names.add("Barack Obama");! !// OK!
names.add(new Integer(21)); !// Compile-time error!
!
String name = names.get(0); !// OK without cast!
!
for (String name : names)!

!System.out.println(name.toUpperCase()); !

81	

82	

Generic Comparable interface 	

83	

Generic collections are not covariant

Covariance: Type compatibility	

ArrayList<Square> is not type compatible with ArrayList<Shape>.	

(In contrast, Square[] is type compatible with Shape[]. Arrays are covariant.)	

84	

Use of wildcards with bound

85	

Generic static method

The type parameters in a generic method precede the return type.	

86	

The compiler cannot prove that the call to compareTo at line 6 is valid.	

87	

Using type bounds

The notation <? extends AnyType> denotes an arbitrary supertype
of AnyType (or AnyType itself). 	

88	

Because we cannot generate arrays
of generic objects, we must create an
array of Object and use a typecast. 	

89	

90	

The Comparator interface

91	

92	

93	

Static nested class

94	

Local inner class

Non-static nested classes are called inner classes.	

95	

Anonymous inner class

96	

