
Chapter 6
Memory

2

Chapter 6 Objectives

•  Master the concepts of hierarchical memory
organization.

•  Understand how each level of memory contributes
to system performance, and how the performance
is measured.

•  Master the concepts behind cache memory, virtual
memory, paging, memory segmentation, and
address translation.

3

6.1 Introduction

•  Memory lies at the heart of the stored-program
computer.

•  In previous chapters, we studied the components
from which memory is built and the ways in which
memory is accessed by various ISAs.

•  In this chapter, we focus on memory organization.
A clear understanding of these ideas is essential
for the analysis of system performance.

4

6.2 Types of Memory

•  There are two kinds of main memory: random access
memory, RAM (read-write memory), and read-only-
memory, ROM.

•  There are two types of RAM, dynamic RAM (DRAM)
and static RAM (SRAM).

•  Dynamic RAM consists of capacitors that slowly leak
their charge over time. Thus they must be refreshed
every few milliseconds to prevent data loss.

•  DRAM is �cheap� memory owing to its simple design.

5

6.2 Types of Memory

•  SRAM consists of circuits similar to the D flip-flop that
we studied in Chapter 3.

•  SRAM is very fast memory and it doesn’t need to be
refreshed like DRAM does. It is used to build cache
memory, which we will discuss in detail later.

•  ROM also does not need to be refreshed, either. In
fact, it needs very little charge to retain its memory.

•  ROM is used to store permanent, or semi-permanent
data that persists even while the system is turned off.

6

6.3 The Memory Hierarchy

•  Generally speaking, faster memory is more
expensive than slower memory.

•  To provide the best performance at the lowest cost,
memory is organized in a hierarchical fashion.

•  Small, fast storage elements are kept in the CPU,
larger, slower main memory is accessed through
the data bus.

•  Larger, (almost) permanent storage in the form of
disk and tape drives is still further from the CPU.

7

6.3 The Memory Hierarchy

•  This storage organization can be thought of as a pyramid:

SSDs have no moving
mechanical components .
They are about 7-8 times
as expensive per unit of
storage than HDDs.
Hybrid drives combine the
features of SSDs and
HDDs in the same unit

8

6.3 The Memory Hierarchy

•  We are most interested in the memory hierarchy
that involves registers, cache, main memory, and
virtual memory.

•  Registers are storage locations available on the
processor itself.

•  Virtual memory is typically implemented using a
hard drive; it extends the address space from
RAM to the hard drive.

•  Virtual memory provides more space.
Cache memory provides speed.

9

6.3 The Memory Hierarchy

•  To access a particular piece of data, the CPU first
sends a request to its nearest memory, usually
cache (a special high-speed (high-cost) memory).

•  If the data is not in cache, then main memory is
queried. If the data is not in main memory, then
the request goes to disk.

•  Once the data is located, then the data, and a
number of its nearby data elements are fetched
into cache memory. A request for the content at
location X fetches data "around" X (..., X-2, X-1,
X, X+1, X+2, ...) into cache memory.

10

6.3 The Memory Hierarchy

•  This leads us to some definitions.
–  A hit is when data is found at a given memory level.
–  A miss is when it is not found.
–  The hit rate is the percentage of time data is found at a given

memory level.
–  The miss rate is the percentage of time it is not.
 Miss rate = 1 - hit rate.
–  The hit time is the time required to access data at a given

memory level.
–  The miss penalty is the time required to process a miss,

including the time that it takes to replace a block of memory
plus the time it takes to deliver the data to the processor.

11

6.3 The Memory Hierarchy

•  An entire block of data is copied after a miss
because the principle of locality tells us that once a
byte is accessed, it is likely that a nearby data
element will be needed soon.

•  There are three forms of locality:
–  Temporal locality - Recently-accessed data elements tend

to be accessed again.
–  Spatial locality - Accesses tend to cluster.
–  Sequential locality - Instructions tend to be accessed

sequentially.

12

6.4 Cache Memory

•  The purpose of cache memory is to speed up
accesses by storing recently used data closer to the
CPU, instead of storing it in main memory.

•  Although cache is much smaller than main memory,
its access time is a fraction of that of main memory.

•  Unlike main memory, which is accessed by address,
cache is typically accessed by content; hence, it is
often called content addressable memory.

•  Because of this, a single large cache memory isn’t
always desirable -- it takes longer to search.

13

6.4 Cache Memory

•  The simplest cache mapping scheme is direct
mapped cache.

•  In a direct mapped cache consisting of N blocks of
cache, block X of main memory maps to cache block
Y = X mod N.

•  Thus, if we have 10 blocks of cache, block 7 of cache
may hold blocks 7, 17, 27, 37, . . . of main memory.

•  Once a block of memory is copied into its slot in
cache, a valid bit is set for the cache block to let the
system know that the block contains valid data.

The next slide illustrates this mapping.
14

6.4 Cache Memory

• Direct mapping of main memory blocks to cache blocks

•  With direct
mapped cache
consisting of N
blocks of cache,
block X of main
memory maps to
cache block
Y = X mod N.

N = 4

15

•  A larger
example.

6.4 Cache Memory

16

6.4 Cache Memory

•  To perform direct mapping, the binary main memory
address is partitioned into the fields shown below.
–  The offset field uniquely identifies an address within a

specific block.
–  The block field selects a unique block of cache.
–  The tag field is whatever is left over.

•  The sizes of these fields are determined by characteristics
of both memory and cache.

17

6.4 Cache Memory

•  The diagram below is a schematic of what cache
looks like.

•  Block 0 contains multiple words from main memory,
identified with the tag 00000000. Block 1 contains
words identified with the tag 11110101.

•  The other two blocks are not valid.

18

6.4 Cache Memory

•  The size of each field into which a memory address
is divided depends on the size of the cache.

•  Suppose our memory consists of 214 words, cache
has 16 = 24 blocks, and each block holds 8 words.
–  Thus memory is divided into 214 / 23 = 211 blocks.

•  For our field sizes, we know we need 4 bits for the
block, 3 bits for the word (offset), and the tag is
what’s left over:

19

6.4 Cache Memory

•  As an example, suppose a program generates the
address 1AA. In 14-bit binary, this number is:
00000110101010.

•  The first 7 bits of this address go in the tag field, the
next 4 bits go in the block field, and the final 3 bits
indicate the word within the block.

20

6.4 Cache Memory

•  If subsequently the program generates the address
1AB, it will find the data it is looking for in block
0101, word 011.

•  However, if the program generates the address, 3AB,
instead, the block loaded for address 1AA would be
evicted from the cache, and replaced by the block
associated with the 3AB reference.

21

6.4 Cache Memory

•  Suppose a program generates a series of memory
references such as: 1AB, 3AB, 1AB, 3AB, . . .
The cache will continually evict and replace
blocks.

•  The theoretical advantage offered by the cache is
lost in this extreme case.

•  This is the main disadvantage of direct mapped
cache.

•  Other cache mapping schemes are designed to
prevent this kind of thrashing (wasted time caused
by data swapping).

22

6.4 Cache Memory

•  Instead of placing memory blocks in specific
cache locations based on memory address, we
could allow a block to go anywhere in cache.

•  In this way, cache would have to fill up before
any blocks are evicted.

•  This is how fully associative cache works.

•  A memory address is partitioned into only two
fields: the tag and the word.

23

6.4 Cache Memory

•  Suppose, as before, we have 14-bit memory
addresses and a cache with 16 blocks, each block
of size 8. The field format of a memory reference is:

•  When the cache is searched, all tags are searched
in parallel to retrieve the data quickly.

•  This requires special, costly hardware.

24

6.4 Cache Memory

•  You will recall that direct mapped cache evicts a
block whenever another memory reference
needs that block.

•  With fully associative cache, we have no such
mapping, thus we must devise an algorithm to
determine which block to evict from the cache.

•  The block that is evicted is the victim block.
•  There are a number of ways to pick a victim, we

will discuss them shortly later.

25

6.4 Cache Memory

•  Set associative cache combines the ideas of direct
mapped cache and fully associative cache.

•  An N-way set associative cache mapping is like
direct mapped cache in that a memory reference
maps to a particular location in cache.

•  Unlike direct mapped cache, a memory reference
maps to a set of several (N) cache blocks, similar to
the way in which fully associative cache works.

•  Instead of mapping anywhere in the entire cache, a
memory reference can map only to the subset of
cache slots.

26

6.4 Cache Memory

•  The number of cache blocks per set in set
associative cache varies according to overall system
design.

Logical view Linear view

–  For example, a 2-way set associative
cache can be conceptualized as shown in
the schematic below.

–  Each set contains two different memory
blocks.

27

6.4 Cache Memory

•  In set associative cache mapping, a memory
reference is divided into three fields: tag, set, and
word, as shown below.

•  As with direct-mapped cache, the word field chooses
the word within the cache block, and the tag field
uniquely identifies the memory address.

•  The set field determines the set to which the memory
block maps.

28

6.4 Cache Memory

•  Suppose we are using 2-way set associative
mapping with a word-addressable main
memory of 214 words and a cache with 16
blocks, where each block contains 8 words.
–  Cache has a total of 16 blocks, and each set has 2 blocks,

then there are 8 sets in cache.
–  Thus, the set field is 3 bits, the offset field is 3 bits, and

the tag field is 8 bits.

29 29

6.4 Cache Memory

•  Set associative cache is a good compromise
between direct mapped and fully associative
cache.

•  Studies indicate that it exhibits good
performance, and that 2-way up to 16-way
caches perform almost as well as fully
associative cache.

•  Therefore, most modern computers use some
form of set associative cache, with 4-way set
associative being one of the most common.

30

6.4 Cache Memory

•  With fully associative and set associative cache, a
replacement policy is invoked when it becomes
necessary to evict a block from cache.

•  An optimal replacement policy would be able to look
into the future to see which blocks won't be needed
for the longest period of time.

•  Although it is impossible to implement an optimal
replacement algorithm, it is instructive to use it as a
benchmark for assessing the efficiency of any other
scheme we come up with.

31

6.4 Cache Memory

•  The replacement policy that we choose depends
upon the locality that we are trying to optimize --
usually, we are interested in temporal locality.

•  A least recently used (LRU) algorithm keeps track of
the last time that a block was accessed and evicts
the block that has been unused for the longest period
of time.

•  The disadvantage of this approach is its complexity:
LRU has to maintain an access history for each
block, which ultimately slows down the cache.

32

6.4 Cache Memory

•  First-in, first-out (FIFO) is a popular cache
replacement policy.

•  In FIFO, the block that has been in the cache the
longest, regardless of when it was last used.

•  A random replacement policy does what its name
implies: It picks a block at random and replaces it
with a new block.

•  Random replacement can certainly evict a block that
will be needed often or needed soon, but it never
thrashes.

33

6.4 Cache Memory

•  The performance of hierarchical memory is
measured by its effective access time (EAT).

•  EAT is a weighted average that takes into account
the hit ratio and relative access times of successive
levels of memory.

•  The EAT for a two-level memory is given by:
 EAT = H × AccessC + (1-H) × AccessMM.

 where H is the cache hit rate and AccessC and AccessMM are
the access times for cache and main memory, respectively.

34

6.4 Cache Memory

•  For example, consider a system with a main memory
access time of 200ns supported by a cache having a
10ns access time and a hit rate of 99%.

•  Suppose access to cache and main memory occurs
concurrently. (The accesses overlap.)

•  The EAT is:
 0.99(10ns) + 0.01(200ns) = 9.9ns + 2ns = 11ns.

35

6.4 Cache Memory

•  For example, consider a system with a main memory
access time of 200ns supported by a cache having a
10ns access time and a hit rate of 99%.

•  If the accesses do not overlap, the EAT is:

 0.99(10ns) + 0.01(10ns + 200ns)
 = 9.9ns + 2.01ns = 12ns.

•  This equation for determining the effective access
time can be extended to any number of memory
levels, as we will see in later sections.

36

6.4 Cache Memory

•  Caching depends upon programs exhibiting good
locality.
–  Some object-oriented programs have poor locality

owing to their complex, dynamic structures.

–  Arrays stored in column-major rather than row-major
order can be problematic for certain cache
organizations.

•  With poor locality, caching can actually cause
performance degradation rather than performance
improvement.

37

6.4 Cache Memory

•  Cache replacement policies must also take into
account dirty blocks, those blocks that have been
updated while they were in the cache.

•  Dirty blocks must be written back to memory.
A write policy determines how this will be done.

•  There are two types of write policies, write through
and write back.

•  Write through updates cache and main memory
simultaneously on every write.

•  Write back (also called copyback) updates memory
only when the block is selected for replacement.

38

6.4 Cache Memory

•  The disadvantage of write through is that memory
must be updated with each cache write, which slows
down the access time on updates. This slowdown is
usually negligible, because the majority of accesses
tend to be reads, not writes.

•  Write back (also called copyback) updates memory
only when the block is selected for replacement.

•  The advantage of write back is that memory traffic is
minimized, but its disadvantage is that memory does
not always agree with the value in cache, causing
problems in systems with many concurrent users.

39

6.4 Cache Memory

•  The cache we have been discussing is called a
unified or integrated cache where both instructions
and data are cached.

•  Many modern systems employ separate caches for
data and instructions.
–  This is called a Harvard cache.

•  The separation of data from instructions provides
better locality, at the cost of greater complexity.
–  Simply making the cache larger provides about the same

performance improvement without the complexity.

40

6.4 Cache Memory

•  Cache performance can also be improved by adding
a small associative cache to hold blocks that have
been evicted recently.
–  This is called a victim cache.

•  A trace cache is a variant of an instruction cache that
holds decoded instructions for program branches,
giving the illusion that noncontiguous instructions are
really contiguous.

41

6.4 Cache Memory

•  Most of today's small systems employ multilevel
cache hierarchies.

•  The levels of cache form their own small memory
hierarchy.

•  Level 1 (L1) cache (8KB to 64KB) is situated on the
processor itself.
–  Access time is typically about 4ns.

•  Level 2 (L2) cache (64KB to 2MB) may be
on the motherboard, or on an expansion
card.
–  Access time is usually around 15 - 20ns.

42

6.4 Cache Memory

•  In systems that employ three levels of cache, the
Level 2 cache is placed on the same die as the CPU
(reducing access time to about 10ns)

•  Accordingly, the Level 3 (L3) cache (2MB to 256MB)
refers to cache that is situated between the
processor and main memory.

•  Once the number of cache levels is determined, the
next thing to consider is whether data (or
instructions) can exist in more than one cache level.

43

6.4 Cache Memory

•  If the cache system uses an inclusive cache, the
same data may be present at multiple levels of
cache. In the Intel Pentium family, data found in L1
may also be found in L2.

•  Strictly inclusive caches guarantee that all data at
one level is also found in the next lower level.

•  Exclusive caches permit only one copy of the data.
•  The tradeoffs in choosing one over the other

involve weighing the variables of access time,
memory size, and circuit complexity.

44

6.5 Virtual Memory

•  Cache memory enhances performance by providing
faster memory access speed.

•  Virtual memory enhances performance by providing
greater memory capacity, without the expense of
adding main memory.

•  Instead, a portion of a disk drive serves as an
extension of main memory.

•  If a system uses paging, virtual memory partitions
main memory into individually managed page frames,
that are written (or paged) to disk when they are not
immediately needed.

45

6.5 Virtual Memory

•  A physical address is the actual memory address of
physical memory.

•  Programs create virtual addresses that are mapped
to physical addresses by the memory manager.

•  Page faults occur when a logical address requires
that a page be brought in from disk.

•  Memory fragmentation occurs when the paging
process results in the creation of small, unusable
clusters of memory addresses.

46

6.5 Virtual Memory

•  Main memory and virtual memory are divided into
equal sized pages.

•  The entire address space required by a process
need not be in memory at once. Some parts can be
on disk, while others are in main memory.

•  Further, the pages allocated to a process do not
need to be stored contiguously -- either on disk or in
memory.

•  In this way, only the needed pages are in memory
at any time, the unnecessary pages are in slower
disk storage.

47

6.5 Virtual Memory

•  Information concerning the location of each page,
whether on disk or in memory, is maintained in a data
structure called a page table (shown below).

•  There is one page table for each active process.

48

6.5 Virtual Memory

•  When a process generates a virtual address, the
operating system translates it into a physical memory
address.

•  To accomplish this, the virtual address is divided into
two fields: A page field, and an offset field.

•  The page field determines the page location of the
address, and the offset indicates the location of the
address within the page.

•  The logical page number is translated into a physical
page frame through a lookup in the page table.

49

6.5 Virtual Memory

•  If the valid bit is zero in the page table entry for the
logical address, this means that the page is not in
memory and must be fetched from disk.
–  This is a page fault.
–  If necessary, a page is evicted from memory and is replaced

by the page retrieved from disk, and the valid bit is set to 1.

•  If the valid bit is 1, the virtual page number is replaced
by the physical frame number.

•  The data is then accessed by adding the offset to the
physical frame number.

50

6.5 Virtual Memory

•  As an example, suppose a system has a virtual address
space of 8KB, a physical memory size of 4KB, and a
page size of 1KB.
–  We have 213/210 = 23 virtual pages.

•  A virtual address has 13 bits (8K = 213) with 3 bits for the page
field and 10 for the offset, because the page size is 1024.

•  A physical memory address requires 12 bits, the first two bits
for the page frame and the trailing 10 bits for the offset.

51

6.5 Virtual Memory

•  Suppose we have the page table shown below.
•  What happens when CPU generates address 545910

= 10101010100112 = 0x1553?

52

The high-order 3 bits of the virtual address, 101
(510), provide the page number in the page table.

•  What happens when CPU generates address 545910
= 10101010100112 = 0x1553?

6.5 Virtual Memory

53

6.5 Virtual Memory

•  The address 10101010100112 is converted to
physical address 0101010100112 = 0x1553 because
the page field 101 is replaced by frame number 01
through a lookup in the page table.

54

6.5 Virtual Memory

•  What happens when the CPU generates address
10000000001002?

55

6.5 Virtual Memory

•  We said earlier that effective access time (EAT) takes
all levels of memory into consideration.

•  Thus, virtual memory is also a factor in the calculation,
and we also have to consider page table access time.

•  Suppose a main memory access takes 200ns, the page
fault rate is 1%, and it takes 10ms to load a page from
disk. We have:

 EAT = 0.99(200ns + 200ns) + 0.01(10ms) = 100,396ns.

56

6.5 Virtual Memory

•  Even if we had no page faults, the EAT would be
400ns because memory is always read twice: First to
access the page table, and second to load the page
from memory.

•  Because page tables are read constantly, it makes
sense to keep them in a special cache called a
translation look-aside buffer (TLB).

•  TLBs are a special associative cache that stores the
mapping of virtual pages to physical pages. It contains
the most recently referenced entries in the page table.

The next slide shows address lookup
steps when a TLB is involved.

6.5 Virtual Memory

1. Extract the page number from
the virtual address.
2. Extract the offset from the virtual
address.
3. Search for the virtual page number in
the TLB.
4. If the (virtual page #, page frame #)
pair is found in the TLB, add the offset to
the physical frame number and access the
memory location.
5. If there is a TLB miss, go to the page
table to get the necessary frame number.
If the page is in memory, use the
corresponding frame number and add the
offset to yield the physical address.
6. If the page is not in main memory,
generate a page fault and restart the access
when the page fault is complete.

TLB lookup process

57

6.5 Virtual Memory
Putting it all together:
The TLB, Page Table,
Cache, and Main
Memory

58

59

6.5 Virtual Memory

•  Another approach to virtual memory is the use of
segmentation.

•  Instead of dividing memory into equal-sized pages,
virtual address space is divided into variable-length
segments, often under the control of the programmer.

•  A segment is located through its entry in a segment
table, which contains the segment's memory location
and a bounds limit that indicates its size.

•  After a page fault, the operating system searches for
a location in memory large enough to hold the
segment that is retrieved from disk.

60

6.5 Virtual Memory

•  Both paging and segmentation can cause
fragmentation.

•  Paging is subject to internal fragmentation because a
process may not need the entire range of addresses
contained within the page. Thus, there may be many
pages containing unused fragments of memory.

•  Segmentation is subject to external fragmentation,
which occurs when contiguous chunks of memory
become broken up as segments are allocated and
deallocated over time.
The next slides illustrate internal and external fragmentation.

61

•  Consider a small computer
having 32K of memory.

•  The 32K memory is divided
into 8 page frames of 4K each.

•  A schematic of this
configuration is shown at the
right.

•  The numbers at the right are
memory frame addresses.

6.5 Virtual Memory

62

•  Suppose there are four
processes waiting to be
loaded into the system with
memory requirements as
shown in the table.

•  We observe that these
processes require 31K of
memory.

6.5 Virtual Memory

63

•  When the first three processes are
loaded, memory looks like this:

•  All of the frames are occupied by
three of the processes.

6.5 Virtual Memory

64

•  Despite the fact that there are enough
free bytes in memory to load the
fourth process, P4 has to wait for one
of the other three to terminate,
because there are no unallocated
frames.

•  This is an example of internal
fragmentation.

6.5 Virtual Memory

65

•  Suppose that instead of
frames, our 32K system
uses segmentation.

•  The memory segments of
two processes is shown
in the table at the right.

•  The segments can be
allocated anywhere in
memory.

6.5 Virtual Memory

66

•  All of the segments of P1 and one of
the segments of P2 are loaded as
shown at the right.

•  Segment S2 of process P2 requires
11K of memory, and there is only 1K
free, so it waits.

6.5 Virtual Memory

67

•  Eventually, Segment 2 of Process 1
is no longer needed, so it is
unloaded giving 11K of free memory.

•  But Segment 2 of Process 2 cannot
be loaded because the free memory
is not contiguous.

6.5 Virtual Memory

68

•  Over time, the problem gets
worse, resulting in small
unusable blocks scattered
throughout physical memory.

•  This is an example of external
fragmentation.

•  Eventually, this memory is
recovered through compaction,
and the process starts over.

6.5 Virtual Memory

69

6.5 Virtual Memory

•  Large page tables are cumbersome and slow, but with
its uniform memory mapping, page operations are fast.
Segmentation allows fast access to the segment table,
but segment loading is labor-intensive.

•  Paging and segmentation can be combined to take
advantage of the best features of both by assigning
fixed-size pages within variable-sized segments.

•  Each segment has a page table. This means that a
memory address will have three fields, one for the
segment, another for the page, and a third for the
offset.

70

6.6 A Real-World Example

•  The Pentium architecture supports both paging and
segmentation, and they can be used in various
combinations including unpaged unsegmented,
segmented unpaged, and unsegmented paged.

•  The processor supports two levels of cache (L1 and
L2), both having a block size of 32 bytes.

•  The L1 cache is next to the processor, and the L2
cache sits between the processor and memory.

•  The L1 cache is in two parts: an instruction cache
(I-cache) and a data cache (D-cache).

The next slide shows this organization schematically.

71

6.6 A Real-World Example

72

•  Computer memory is organized in a hierarchy, with
the smallest, fastest memory at the top and the
largest, slowest memory at the bottom.

•  Cache memory gives faster access to main memory,
while virtual memory uses disk storage to give the
illusion of having a large main memory.

•  Cache maps blocks of main memory to blocks of
cache memory. Virtual memory maps page frames
to virtual pages.

•  There are three general types of cache: Direct
mapped, fully associative and set associative.

Chapter 6 Conclusion

73

•  With fully associative and set associative cache,
as well as with virtual memory, replacement
policies must be established.

•  Replacement policies include LRU, FIFO, or LFU.
These policies must also take into account what
to do with dirty blocks.

•  All virtual memory must deal with fragmentation,
internal for paged memory, external for
segmented memory.

Chapter 6 Conclusion

74

End of Chapter 6

Chapter 7
Input/Output and
Storage Systems

76

Chapter 7 Objectives

•  Understand how I/O systems work, including I/O
methods and architectures.

77

7.1 Introduction

•  Data storage and retrieval is one of the primary
functions of computer systems.
–  One could easily make the argument that computers are

more useful to us as data storage and retrieval devices than
they are as computational machines.

•  All computers have I/O devices connected to them,
and to achieve good performance I/O should be kept
to a minimum!

78

7.2 I/O and Performance

•  Sluggish I/O throughput can have a ripple effect,
dragging down overall system performance.
–  This is especially true when virtual memory is involved.

•  The fastest processor in the world is of little use
if it spends most of its time waiting for data.

•  If we really understand what's happening in a
computer system we can make the best possible
use of its resources.

79

7.3 Amdahl's Law

•  The overall performance of a system is a result of
the interaction of all of its components.

•  System performance is most effectively improved
when the performance of the most heavily used
components is improved.

•  This idea is quantified by Amdahl's Law:
where S is the overall speedup;
f is the fraction of work performed
by a faster component; and
k is the speedup of the faster
component.

80

7.3 Amdahl's Law

•  Amdahl's Law gives us a handy way to estimate the
performance improvement we can expect when we
upgrade a system component.

•  On a large system, suppose we can upgrade a CPU
to make it 50% faster for $10,000 or upgrade its
disk drives for $7,000 to make them 150% faster.

•  Processes spend 70% of their time running in the
CPU and 30% of their time waiting for disk service.

•  An upgrade of which component would offer the
greater benefit for the lesser cost?

81

7.3 Amdahl�s Law

•  The processor option offers a 30% speedup:

•  And the disk drive option gives a 22% speedup:

•  Each 1% of improvement for the processor costs
$10,000/30 = $333, and for the disk a 1%
improvement costs $7,000/22 = $318.

Should price/performance be your only concern? 82

7.4 I/O Architectures

•  We define input/output as a subsystem of
components that moves coded data between
external devices and a host system.

•  I/O subsystems include:
–  Blocks of main memory that are devoted to I/O functions.
–  Buses that move data into and out of the system.
–  Control modules in the host and in peripheral devices
–  Interfaces to external components such as keyboards and

disks.
–  Cabling or communication links between the host system

and its peripherals.

83

7.4 I/O Architectures

This is a
model I/O
configuration.

I/O modules takes care of moving
data between main memory and a
particular device interface.

Interfaces are designed to
communicate with certain types of
devices.

84

•  I/O devices are very different (i.e., keyboard and hard
disk performs totally different functions), yet they are
both part of the I/O subsystem. All are slower than
CPU and RAM.

•  The interfaces between the CPU and I/O devices are
very similar.

•  Each I/O device needs to be connected to:
–  Address bus – to pass address to the peripheral
–  Data bus – to pass data to and from the peripheral
–  Control bus – to control signals to peripherals

7.4 I/O Architectures

85

7.4 I/O Architectures

86

I/O can be controlled in five general ways.
•  Programmed I/O reserves a register for each

I/O device. Each register is continually polled to detect
data arrival. The CPU is busy-waiting.

•  Interrupt-Driven I/O allows the CPU to do other things
until I/O is requested.

•  Memory-Mapped I/O shares memory address space
between I/O devices and program memory.

•  Direct Memory Access (DMA) offloads I/O processing
to a special-purpose chip that takes care of the
details.

•  Channel I/O uses dedicated I/O processors.

7.4 I/O Architectures

Polling: actively sampling the status of an external device

87

7.4 I/O Architectures

88

This is an idealized I/O subsystem that uses interrupts.

Each device connects its interrupt line to the interrupt controller.

7.4 I/O Architectures

The controller
signals the
CPU when
any of the
interrupt lines
are asserted.
The data lines D0, D1
are used to specify the
interrupting device.

89

•  Recall from Chapter 4 that in a system that uses
interrupts, the status of the interrupt signal is
checked at the top of the fetch-decode-execute
cycle.

•  The particular code that is executed whenever
an interrupt occurs is determined by a set of
addresses called interrupt vectors that are stored
in low memory.

•  The system state is saved before the interrupt
service routine is executed and is restored
afterward.

7.4 I/O Architectures

We provide a flowchart on the next slide.
90

7.4 I/O Architectures

ISR: Interrupt Service Routine

91

7.4 I/O Architectures

•  In memory-mapped I/O devices and main memory
share the same address space.
–  Each I/O device has its own reserved block of memory.
–  Memory-mapped I/O therefore looks just like a memory

access from the point of view of the CPU.
–  Thus the same instructions to move data to and from both

I/O and memory, greatly simplifying system design.
•  In small systems the low-level details of the data

transfers are offloaded to the I/O controllers built
into the I/O devices.

92

This is a DMA
configuration.

Notice that the DMA and
the CPU share the bus.

The DMA runs at a
higher priority and steals
memory cycles from the
CPU. Slows down CPU
but not as much as CPU
doing transfer.

7.4 I/O Architectures

DMA: Direct Memory Access

93

•  A DMA device controller transfers a large block of data
directly into or from main memory.

•  CPU initiates the transfer by commanding the DMA device
to transfer the data and then continue its work.

•  The DMA device performs the data transfer and notifies
(interrupts) the CPU when it is completed.

•  DMA controller
–  a word-count register
–  an address register
–  a data buffer

7.4 I/O Architectures

94

•  Very large systems employ channel I/O.
•  Channel I/O consists of one or more I/O

processors (IOPs) that control various channel
paths.

•  Slower devices such as terminals and printers are
combined (multiplexed) into a single faster
channel.

•  On IBM mainframes, multiplexed channels are
called multiplexor channels, the faster ones are
called selector channels.

7.4 I/O Architectures

95

•  Channel I/O is distinguished from DMA by the
intelligence of the IOPs.

•  The IOP negotiates protocols, issues device
commands, translates storage coding to memory
coding, and can transfer entire files or groups of
files independent of the host CPU.

•  The host has only to create the program
instructions for the I/O operation and tell the IOP
where to find them.

7.4 I/O Architectures

96

•  This is a channel I/O configuration.

7.4 I/O Architectures

97

•  Character I/O devices process one byte (or
character) at a time.
–  Examples include modems, keyboards, and mice.

–  Keyboards are usually connected through an interrupt-
driven I/O system.

•  Block I/O devices handle bytes in groups.
–  Most mass storage devices (disk and tape) are block I/O

devices.

–  Block I/O systems are most efficiently connected through
DMA or channel I/O.

7.4 I/O Architectures

98

•  I/O buses, unlike memory buses, operate
asynchronously. Requests for bus access must
be arbitrated among the devices involved.

•  Bus control lines activate the devices when they
are needed, raise signals when errors have
occurred, and reset devices when necessary.

•  The number of data lines is the width of the bus.

•  A bus clock is required to define bit cell
boundaries.

7.4 I/O Architectures

99

7.4 I/O Architectures

This is a generic DMA configuration showing how the DMA
circuit connects to a data bus.

100

7.4 I/O Architectures

This is how a bus connects to a disk drive.

Control

Request from CPU goes to I/O module – basically asking �are you ready?�
Ready goes from I/O module to CPU
Read/write indicates the type of operation
Clock is used to synchronize transfer if available
Error denotes that the I/O module wants the CPU�s attention

I/O module

101

7.4 I/O Architectures

Timing
diagrams,
such as this
one, define
bus operation
in detail.

7.5 Data Transmission Modes

•  Bytes can be conveyed from one point to another
by sending their encoding signals simultaneously
using parallel data transmission or by sending
them one bit at a time in serial data transmission.
–  Parallel data

transmission
for a printer
resembles the
signal protocol
of a memory
bus.

102
nStrobe and nAck are strobe and acknowledgement signals
that are asserted when they carry low voltage. The Busy and
Data signals are asserted when they carry high voltage.

103

7.5 Data Transmission Modes

•  In parallel data transmission, the interface requires
one conductor for each bit.

•  Parallel cables are fatter than serial cables.
•  Compared with parallel data interfaces, serial

communications interfaces:
–  Require fewer conductors.
–  Are less susceptible to attenuation (signal loss over time).
–  Can transmit data farther and faster.

Serial communications interfaces are suitable for time-
sensitive (isochronous) data such as voice and video.

104

•  Advances in technology have defied all efforts to
define the ultimate upper limit for magnetic disk
storage.
–  In the 1970s, the upper limit was thought to be around

2MB/in2. (1 in = 2.54 cm)
–  Today's disks commonly support 20GB/in2.

•  Improvements have occurred in several different
technologies including:
–  Materials science
–  Magneto-optical recording heads
–  Error correcting codes

7.10 The Future of Data Storage

105

•  As data densities increase, bit cells consist of
proportionately fewer magnetic grains.

•  There is a point at which there are too few grains to
hold a value, and a 1 might spontaneously change
to a 0, or vice versa.

•  This point is called the superparamagnetic limit.
–  In 2006, the superparamagnetic limit is thought to lie

between 150GB/in2 and 200GB/in2 .

•  Even if this limit is wrong by a few orders of
magnitude, the greatest gains in magnetic storage
have probably already been realized.

7.10 The Future of Data Storage

A magnetic grain is a unit of material that can be magnetized in a predictable direction. Today, one
bit of information, 0 or 1, may require 50-100 grains clumped together for successful storage.

106

•  Future exponential gains in data storage most
likely will occur through the use of totally new
technologies.

•  Research into finding suitable replacements for
magnetic disks is taking place on several fronts.

•  Some of the more interesting technologies include:
–  Biological materials - Carbon nanotubes
–  Holographic systems - Memristors
–  Micro-electro-mechanical devices.

7.10 The Future of Data Storage

107

•  Present day biological data storage systems
combine organic compounds such as proteins or oils
with inorganic (magnetizable) substances.

•  Early prototypes have encouraged the expectation
that densities of 1TB/in2 are attainable.

•  Of course, the ultimate biological data storage
medium is DNA.
–  Trillions of messages can be stored in a tiny strand of DNA.

•  Practical DNA-based data storage is most likely
decades away.

7.10 The Future of Data Storage

108

•  Holographic storage uses a pair of laser beams to etch a
three-dimensional hologram onto a polymer medium.

7.10 The Future of Data Storage

109

•  Data is retrieved by passing the reference beam through
the hologram, thereby reproducing the original coded
object beam.

7.10 The Future of Data Storage

110

•  Because holograms are three-dimensional,
tremendous data densities are possible.

•  Experimental systems have achieved over 30GB/in2,
with transfer rates of around 1GBps.

•  In addition, holographic storage is content
addressable.
–  This means that there is no need for a file directory on the

disk. Accordingly, access time is reduced.
•  The major challenge is in finding an inexpensive,

stable, rewriteable holographic medium.

7.10 The Future of Data Storage

111

•  Micro-electro-mechanical storage (MEMS)
devices offer another promising approach to
mass storage.

•  IBM's Millipede is one such device.
•  Prototypes have achieved densities of 100GB/in2

with 1Tb/in2 expected as the technology is
refined.

7.10 The Future of Data Storage

A photomicrograph of Millipede is shown on the next slide.

112

•  Millipede consists of thousands of cantilevers that record
a binary 1 by pressing a heated tip into a polymer
substrate.

7.10 The Future of Data Storage

•  The tip reads a
binary 1 when it
dips into the
imprint in the
polymer

Photomicrograph courtesy
of the IBM Corporation.
© 2005 IBM Corporation

A cantilever is a beam anchored at only one end

113

•  CNTs are a cylindrical form of elemental carbon: The
walls of the cylinders are one atom thick.

•  CNTs can act like switches, opening and closing to
store bits.

•  Once “set” the CNT stays in place until a release
voltage is applied.

7.10 The Future of Data Storage

Elemental carbon refers to inorganic forms of carbon
114

•  Memristors are electronic components that combine
the properties of a resistor with memory.

•  Resistance to current flow can be controlled so that
states of “high” and “low” store data bits.

•  Like CNTs, memristor memories are non-volatile,
holding their state until certain threshold voltages are
applied.

•  These non-volatile memories promise enormous
energy savings and increased data access speeds in
the very near future.

7.10 The Future of Data Storage

115

•  I/O systems are critical to the overall performance
of a computer system.

•  Amdahl�s Law quantifies this assertion.
•  I/O systems consist of memory blocks, cabling,

control circuitry, interfaces, and media.
•  I/O control methods include programmed I/O,

interrupt-based I/O, DMA, and channel I/O.
•  Buses require control lines, a clock, and data

lines. Timing diagrams specify operational details.

Chapter 7 Conclusion

116

•  Any one of several new technologies including
biological, holographic, or mechanical may
someday replace magnetic disks.

•  The hardest part of data storage may be end up
be in locating the data after it�s stored.

Chapter 7 Conclusion

117

End of Chapter 7

