
Chapter 6 
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Chapter 6 Objectives 

•  Master the concepts of hierarchical memory 
organization. 

•  Understand how each level of memory contributes 
to system performance, and how the performance 
is measured. 

•  Master the concepts behind cache memory, virtual 
memory, paging, memory segmentation, and 
address translation. 
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6.1 Introduction 

•  Memory lies at the heart of the stored-program 
computer. 

•  In previous chapters, we studied the components 
from which memory is built and the ways in which 
memory is accessed by various ISAs. 

•  In this chapter, we focus on memory organization. 
A clear understanding of these ideas is essential 
for the analysis of system performance. 
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6.2 Types of Memory 

•  There are two kinds of main memory: random access 
memory, RAM (read-write memory), and read-only-
memory, ROM. 

•  There are two types of RAM, dynamic RAM (DRAM) 
and static RAM (SRAM). 

•  Dynamic RAM consists of capacitors that slowly leak 
their charge over time. Thus they must be refreshed 
every few milliseconds to prevent data loss. 

•  DRAM is �cheap� memory owing to its simple design. 
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6.2 Types of Memory 

•  SRAM consists of circuits similar to the D flip-flop that 
we studied in Chapter 3. 

•  SRAM is very fast memory and it doesn’t need to be 
refreshed like DRAM does. It is used to build cache 
memory, which we will discuss in detail later. 

•  ROM also does not need to be refreshed, either. In 
fact, it needs very little charge to retain its memory. 

•  ROM is used to store permanent, or semi-permanent 
data that persists even while the system is turned off. 
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6.3 The Memory Hierarchy 

•  Generally speaking, faster memory is more 
expensive than slower memory. 

•  To provide the best performance at the lowest cost, 
memory is organized in a hierarchical fashion. 

•  Small, fast storage elements are kept in the CPU, 
larger, slower main memory is accessed through 
the data bus. 

•  Larger, (almost) permanent storage in the form of 
disk and tape drives is still further from the CPU. 
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6.3 The Memory Hierarchy 

•  This storage organization can be thought of as a pyramid: 

SSDs have no moving 
mechanical components . 
They are about 7-8 times 
as expensive per unit of 
storage than HDDs.  
Hybrid drives combine the 
features of SSDs and 
HDDs in the same unit 
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6.3 The Memory Hierarchy 

•  We are most interested in the memory hierarchy 
that involves registers, cache, main memory, and 
virtual memory. 

•  Registers are storage locations available on the 
processor itself. 

•  Virtual memory is typically implemented using a 
hard drive; it extends the address space from 
RAM to the hard drive. 

•  Virtual memory provides more space.  
Cache memory provides speed.  
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6.3 The Memory Hierarchy 

•  To access a particular piece of data, the CPU first 
sends a request to its nearest memory, usually 
cache (a special high-speed (high-cost) memory). 

•  If the data is not in cache, then main memory is 
queried. If the data is not in main memory, then 
the request goes to disk. 

•  Once the data is located, then the data, and a 
number of its nearby data elements are fetched 
into cache memory. A request for the content at 
location X fetches data "around" X (..., X-2, X-1, 
X, X+1, X+2, ...) into cache memory.  
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6.3 The Memory Hierarchy 

•  This leads us to some definitions. 
–  A hit is when data is found at a given memory level. 
–  A miss is when it is not found. 
–  The hit rate is the percentage of time data is found at a given 

memory level. 
–  The miss rate is the percentage of time it is not.  
    Miss rate = 1 - hit rate. 
–  The hit time is the time required to access data at a given 

memory level. 
–  The miss penalty is the time required to process a miss, 

including the time that it takes to replace a block of memory 
plus the time it takes to deliver the data to the processor. 
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6.3 The Memory Hierarchy 

•  An entire block of data is copied after a miss 
because the principle of locality tells us that once a 
byte is accessed, it is likely that a nearby data 
element will be needed soon. 

•  There are three forms of locality: 
–  Temporal locality - Recently-accessed data elements tend 

to be accessed again. 
–  Spatial locality - Accesses tend to cluster. 
–  Sequential locality - Instructions tend to be accessed 

sequentially. 

12 

6.4 Cache Memory 

•  The purpose of cache memory is to speed up 
accesses by storing recently used data closer to the 
CPU, instead of storing it in main memory. 

•  Although cache is much smaller than main memory, 
its access time is a fraction of that of main memory. 

•  Unlike main memory, which is accessed by address, 
cache is typically accessed by content; hence, it is 
often called content addressable memory. 

•  Because of this, a single large cache memory isn’t 
always desirable -- it takes longer to search. 
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6.4 Cache Memory 

•  The simplest cache mapping scheme is direct 
mapped cache. 

•  In a direct mapped cache consisting of N blocks of 
cache, block X of main memory maps to cache block 
Y = X mod N. 

•  Thus, if we have 10 blocks of cache, block 7 of cache 
may hold blocks 7, 17, 27, 37, . . . of main memory. 

•  Once a block of memory is copied into its slot in 
cache, a valid bit is set for the cache block to let the 
system know that the block contains valid data. 

The next slide illustrates this mapping. 
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6.4 Cache Memory 

• Direct mapping of main memory blocks to cache blocks 

•  With direct 
mapped cache 
consisting of N 
blocks of cache, 
block X of main 
memory maps to 
cache block      
Y = X mod N. 

N = 4 
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•  A larger 
example. 

6.4 Cache Memory 
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6.4 Cache Memory 

•  To perform direct mapping, the binary main memory 
address is partitioned into the fields shown below. 
–  The offset field uniquely identifies an address within a 

specific block. 
–  The block field selects a unique block of cache. 
–  The tag field is whatever is left over. 

•  The sizes of these fields are determined by characteristics 
of both memory and cache. 
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6.4 Cache Memory 

•  The diagram below is a schematic of what cache 
looks like. 

•  Block 0 contains multiple words from main memory, 
identified with the tag 00000000. Block 1 contains 
words identified with the tag 11110101. 

•  The other two blocks are not valid. 
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6.4 Cache Memory 

•  The size of each field into which a memory address 
is divided depends on the size of the cache. 

•  Suppose our memory consists of 214 words, cache 
has 16 = 24 blocks, and each block holds 8 words. 
–  Thus memory is divided into 214 / 23 = 211 blocks. 

•  For our field sizes, we know we need 4 bits for the 
block, 3 bits for the word (offset), and the tag is 
what’s left over: 
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6.4 Cache Memory 

•  As an example, suppose a program generates the 
address 1AA. In 14-bit binary, this number is: 
00000110101010. 

•  The first 7 bits of this address go in the tag field, the 
next 4 bits go in the block field, and the final 3 bits 
indicate the word within the block. 
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6.4 Cache Memory 

•  If subsequently the program generates the address 
1AB, it will find the data it is looking for in block 
0101, word 011. 

•  However, if the program generates the address, 3AB, 
instead, the block loaded for address 1AA would be 
evicted from the cache, and replaced by the block 
associated with the 3AB reference. 
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6.4 Cache Memory 

•  Suppose a program generates a series of memory 
references such as: 1AB, 3AB, 1AB, 3AB, . . . 
The cache will continually evict and replace 
blocks. 

•  The theoretical advantage offered by the cache is 
lost in this extreme case. 

•  This is the main disadvantage of direct mapped 
cache. 

•  Other cache mapping schemes are designed to 
prevent this kind of thrashing (wasted time caused 
by data swapping). 
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6.4 Cache Memory 

•  Instead of placing memory blocks in specific 
cache locations based on memory address, we 
could allow a block to go anywhere in cache. 

•  In this way, cache would have to fill up before 
any blocks are evicted. 

•  This is how fully associative cache works. 

•  A memory address is partitioned into only two 
fields: the tag and the word. 
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6.4 Cache Memory 

•  Suppose, as before, we have 14-bit memory 
addresses and a cache with 16 blocks, each block 
of size 8. The field format of a memory reference is: 

 

•  When the cache is searched, all tags are searched 
in parallel to retrieve the data quickly. 

•  This requires special, costly hardware. 
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6.4 Cache Memory 

•  You will recall that direct mapped cache evicts a 
block whenever another memory reference 
needs that block. 

•  With fully associative cache, we have no such 
mapping, thus we must devise an algorithm to 
determine which block to evict from the cache. 

•  The block that is evicted is the victim block. 
•  There are a number of ways to pick a victim, we 

will discuss them shortly later. 



25 

6.4 Cache Memory 

•  Set associative cache combines the ideas of direct 
mapped cache and fully associative cache. 

•  An N-way set associative cache mapping is like 
direct mapped cache in that a memory reference 
maps to a particular location in cache. 

•  Unlike direct mapped cache, a memory reference 
maps to a set of several (N) cache blocks, similar to 
the way in which fully associative cache works. 

•  Instead of mapping anywhere in the entire cache, a 
memory reference can map only to the subset of 
cache slots. 
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6.4 Cache Memory 

•  The number of cache blocks per set in set 
associative cache varies according to overall system 
design. 

 

Logical view Linear view 

–  For example, a 2-way set associative    
cache can be conceptualized as shown in 
the schematic below. 

–  Each set contains two different memory 
blocks. 
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6.4 Cache Memory 

•  In set associative cache mapping, a memory 
reference is divided into three fields: tag, set, and 
word, as shown below. 

•  As with direct-mapped cache, the word field chooses 
the word within the cache block, and the tag field 
uniquely identifies the memory address. 

•  The set field determines the set to which the memory 
block maps. 
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6.4 Cache Memory 

•  Suppose we are using 2-way set associative 
mapping with a word-addressable main 
memory of 214 words and a cache with 16 
blocks, where each block contains 8 words.  
–  Cache has a total of 16 blocks, and each set has 2 blocks, 

then there are 8 sets in cache.  
–  Thus, the set field is 3 bits, the offset field is 3 bits, and 

the tag field is 8 bits.  
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6.4 Cache Memory 

•  Set associative cache is a good compromise 
between direct mapped and fully associative 
cache. 

•  Studies indicate that it exhibits good 
performance, and that 2-way up to 16-way 
caches perform almost as well as fully 
associative cache. 

•  Therefore, most modern computers use some 
form of set associative cache, with 4-way set 
associative being one of the most common. 
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6.4 Cache Memory 

•  With fully associative and set associative cache, a 
replacement policy is invoked when it becomes 
necessary to evict a block from cache. 

•  An optimal replacement policy would be able to look 
into the future to see which blocks won't be needed 
for the longest period of time. 

•  Although it is impossible to implement an optimal 
replacement algorithm, it is instructive to use it as a 
benchmark for assessing the efficiency of any other 
scheme we come up with. 
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6.4 Cache Memory 

•  The replacement policy that we choose depends 
upon the locality that we are trying to optimize -- 
usually, we are interested in temporal locality. 

•  A least recently used (LRU) algorithm keeps track of 
the last time that a block was accessed and evicts 
the block that has been unused for the longest period 
of time. 

•  The disadvantage of this approach is its complexity: 
LRU has to maintain an access history for each 
block, which ultimately slows down the cache. 
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6.4 Cache Memory 

•  First-in, first-out (FIFO) is a popular cache 
replacement policy. 

•  In FIFO, the block that has been in the cache the 
longest, regardless of when it was last used. 

•  A random replacement policy does what its name 
implies: It picks a block at random and replaces it 
with a new block. 

•  Random replacement can certainly evict a block that 
will be needed often or needed soon, but it never 
thrashes. 
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6.4 Cache Memory 

•  The performance of hierarchical memory is 
measured by its effective access time (EAT). 

•  EAT is a weighted average that takes into account 
the hit ratio and relative access times of successive 
levels of memory. 

•  The EAT for a two-level memory is given by: 
  EAT = H × AccessC + (1-H) × AccessMM. 

 where H is the cache hit rate and AccessC and AccessMM are 
the access times for cache and main memory, respectively. 
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6.4 Cache Memory 

•  For example, consider a system with a main memory 
access time of 200ns supported by a cache having a 
10ns access time and a hit rate of 99%. 

•  Suppose access to cache and main memory occurs 
concurrently. (The accesses overlap.) 

•  The EAT is: 
  0.99(10ns) + 0.01(200ns) = 9.9ns + 2ns = 11ns. 
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6.4 Cache Memory 

•  For example, consider a system with a main memory 
access time of 200ns supported by a cache having a 
10ns access time and a hit rate of 99%. 

•  If the accesses do not overlap, the EAT is: 

  0.99(10ns) + 0.01(10ns + 200ns)  
     = 9.9ns + 2.01ns = 12ns. 

•  This equation for determining the effective access 
time can be extended to any number of memory 
levels, as we will see in later sections. 
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6.4 Cache Memory 

•  Caching depends upon programs exhibiting good 
locality. 
–  Some object-oriented programs have poor locality 

owing to their complex, dynamic structures. 

–  Arrays stored in column-major rather than row-major 
order can be problematic for certain cache 
organizations. 

•  With poor locality, caching can actually cause 
performance degradation rather than performance 
improvement. 
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6.4 Cache Memory 

•  Cache replacement policies must also take into 
account dirty blocks, those blocks that have been 
updated while they were in the cache. 

•  Dirty blocks must be written back to memory.          
A write policy determines how this will be done. 

•  There are two types of write policies, write through 
and write back. 

•  Write through updates cache and main memory 
simultaneously on every write. 

•  Write back (also called copyback) updates memory 
only when the block is selected for replacement. 
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6.4 Cache Memory 

•  The disadvantage of write through is that memory 
must be updated with each cache write, which slows 
down the access time on updates. This slowdown is 
usually negligible, because the majority of accesses 
tend to be reads, not writes. 

•  Write back (also called copyback) updates memory 
only when the block is selected for replacement. 

•  The advantage of write back is that memory traffic is 
minimized, but its disadvantage is that memory does 
not always agree with the value in cache, causing 
problems in systems with many concurrent users. 
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6.4 Cache Memory 

•  The cache we have been discussing is called a 
unified or integrated cache where both instructions 
and data are cached. 

•  Many modern systems employ separate caches for 
data and instructions. 
–  This is called a Harvard cache. 

•  The separation of data from instructions provides 
better locality, at the cost of greater complexity. 
–  Simply making the cache larger provides about the same 

performance improvement without the complexity. 
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6.4 Cache Memory 

•  Cache performance can also be improved by adding 
a small associative cache to hold blocks that have 
been evicted recently. 
–  This is called a victim cache. 

•  A trace cache is a variant of an instruction cache that 
holds decoded instructions for program branches, 
giving the illusion that noncontiguous instructions are 
really contiguous. 
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6.4 Cache Memory 

•  Most of today's small systems employ multilevel 
cache hierarchies. 

•  The levels of cache form their own small memory 
hierarchy. 

•  Level 1 (L1) cache (8KB to 64KB) is situated on the 
processor itself. 
–  Access time is typically about 4ns. 

•  Level 2 (L2) cache (64KB to 2MB) may be              
on the motherboard, or on an expansion             
card. 
–  Access time is usually around 15 - 20ns. 
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6.4 Cache Memory 

•  In systems that employ three levels of cache, the 
Level 2 cache is placed on the same die as the CPU 
(reducing access time to about 10ns) 

•  Accordingly, the Level 3 (L3) cache (2MB to 256MB) 
refers to cache that is situated between the 
processor and main memory. 

•  Once the number of cache levels is determined, the 
next thing to consider is whether data (or 
instructions) can exist in more than one cache level. 
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6.4 Cache Memory 

•  If the cache system uses an inclusive cache, the 
same data may be present at multiple levels of 
cache. In the Intel Pentium family, data found in L1 
may also be found in L2. 

•  Strictly inclusive caches guarantee that all data at 
one level is also found in the next lower level. 

•  Exclusive caches permit only one copy of the data. 
•  The tradeoffs in choosing one over the other 

involve weighing the variables of access time, 
memory size, and circuit complexity. 
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6.5 Virtual Memory 

•  Cache memory enhances performance by providing 
faster memory access speed. 

•  Virtual memory enhances performance by providing 
greater memory capacity, without the expense of 
adding main memory. 

•  Instead, a portion of a disk drive serves as an 
extension of main memory. 

•  If a system uses paging, virtual memory partitions 
main memory into individually managed page frames, 
that are written (or paged) to disk when they are not 
immediately needed. 
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6.5 Virtual Memory 

•  A physical address is the actual memory address of 
physical memory. 

•  Programs create virtual addresses that are mapped 
to physical addresses by the memory manager. 

•  Page faults occur when a logical address requires 
that a page be brought in from disk. 

•  Memory fragmentation occurs when the paging 
process results in the creation of small, unusable 
clusters of memory addresses. 
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6.5 Virtual Memory 

•  Main memory and virtual memory are divided into 
equal sized pages. 

•  The entire address space required by a process 
need not be in memory at once. Some parts can be 
on disk, while others are in main memory. 

•  Further, the pages allocated to a process do not 
need to be stored contiguously -- either on disk or in 
memory. 

•  In this way, only the needed pages are in memory 
at any time, the unnecessary pages are in slower 
disk storage. 
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6.5 Virtual Memory 

•  Information concerning the location of each page, 
whether on disk or in memory, is maintained in a data 
structure called a page table (shown below). 

•  There is one page table for each active process. 
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6.5 Virtual Memory 

•  When a process generates a virtual address, the 
operating system translates it into a physical memory 
address. 

•  To accomplish this, the virtual address is divided into 
two fields: A page field, and an offset field. 

•  The page field determines the page location of the 
address, and the offset indicates the location of the 
address within the page. 

•  The logical page number is translated into a physical 
page frame through a lookup in the page table. 
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6.5 Virtual Memory 

•  If the valid bit is zero in the page table entry for the 
logical address, this means that the page is not in 
memory and must be fetched from disk. 
–  This is a page fault. 
–  If necessary, a page is evicted from memory and is replaced 

by the page retrieved from disk, and the valid bit is set to 1. 

•  If the valid bit is 1, the virtual page number is replaced 
by the physical frame number. 

•  The data is then accessed by adding the offset to the 
physical frame number. 
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6.5 Virtual Memory 

•  As an example, suppose a system has a virtual address 
space of 8KB, a physical memory size of 4KB, and a 
page size of 1KB. 
–  We have 213/210 = 23 virtual pages. 

•  A virtual address has 13 bits (8K = 213) with 3 bits for the page 
field and 10 for the offset, because the page size is 1024. 

•  A physical memory address requires 12 bits, the first two bits 
for the page frame and the trailing 10 bits for the offset. 
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6.5 Virtual Memory 

•  Suppose we have the page table shown below. 
•  What happens when CPU generates address 545910 

= 10101010100112 = 0x1553? 
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The high-order 3 bits of the virtual address, 101 
(510), provide the page number in the page table.  

•  What happens when CPU generates address 545910 
= 10101010100112 = 0x1553?  

6.5 Virtual Memory 
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6.5 Virtual Memory 

•  The address 10101010100112 is converted to 
physical address 0101010100112 = 0x1553 because 
the page field 101 is replaced by frame number 01 
through a lookup in the page table. 

54 

6.5 Virtual Memory 

•  What happens when the CPU generates address 
10000000001002? 
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6.5 Virtual Memory 

•  We said earlier that effective access time (EAT) takes 
all levels of memory into consideration. 

•  Thus, virtual memory is also a factor in the calculation, 
and we also have to consider page table access time. 

•  Suppose a main memory access takes 200ns, the page 
fault rate is 1%, and it takes 10ms to load a page from 
disk. We have: 

 EAT = 0.99(200ns + 200ns) + 0.01(10ms) = 100,396ns. 
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6.5 Virtual Memory 

•  Even if we had no page faults, the EAT would be 
400ns because memory is always read twice: First to 
access the page table, and second to load the page 
from memory. 

•  Because page tables are read constantly, it makes 
sense to keep them in a special cache called a 
translation look-aside buffer (TLB). 

•  TLBs are a special associative cache that stores the 
mapping of virtual pages to physical pages. It contains 
the most recently referenced entries in the page table. 

The next slide shows address lookup 
steps when a TLB is involved. 



6.5 Virtual Memory 

1. Extract the page number from  
the virtual address. 
2. Extract the offset from the virtual 
address. 
3. Search for the virtual page number in 
the TLB. 
4. If the (virtual page #, page frame #) 
pair is found in the TLB, add the offset to 
the physical frame number and access the 
memory location. 
5. If there is a TLB miss, go to the page 
table to get the necessary frame number. 
If the page is in memory, use the 
corresponding frame number and add the 
offset to yield the physical address. 
6. If the page is not in main memory, 
generate a page fault and restart the access 
when the page fault is complete. 

TLB lookup process 
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6.5 Virtual Memory 
Putting it all together: 
The TLB, Page Table, 
Cache, and Main 
Memory 
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6.5 Virtual Memory 

•  Another approach to virtual memory is the use of 
segmentation. 

•  Instead of dividing memory into equal-sized pages, 
virtual address space is divided into variable-length 
segments, often under the control of the programmer. 

•  A segment is located through its entry in a segment 
table, which contains the segment's memory location 
and a bounds limit that indicates its size.  

•  After a page fault, the operating system searches for 
a location in memory large enough to hold the 
segment that is retrieved from disk. 
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6.5 Virtual Memory 

•  Both paging and segmentation can cause 
fragmentation. 

•  Paging is subject to internal fragmentation because a 
process may not need the entire range of addresses 
contained within the page. Thus, there may be many 
pages containing unused fragments of memory.  

•  Segmentation is subject to external fragmentation, 
which occurs when contiguous chunks of memory 
become broken up as segments are allocated and 
deallocated over time. 
The next slides illustrate internal and external fragmentation.  
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•  Consider a small computer 
having 32K of memory. 

•  The 32K memory is divided 
into 8 page frames of 4K each. 

•  A schematic of this 
configuration is shown at the 
right. 

•  The numbers at the right are 
memory frame addresses. 

6.5 Virtual Memory 
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•  Suppose there are four 
processes waiting to be 
loaded into the system with 
memory requirements as 
shown in the table. 

•  We observe that these 
processes require 31K of 
memory. 

6.5 Virtual Memory 
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•  When the first three processes are 
loaded, memory looks like this: 

•  All of the frames are occupied by 
three of the processes. 

6.5 Virtual Memory 
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•  Despite the fact that there are enough 
free bytes in memory to load the 
fourth process, P4 has to wait for one 
of the other three to terminate, 
because there are no unallocated 
frames. 

•  This is an example of internal 
fragmentation. 

6.5 Virtual Memory 
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•  Suppose that instead of 
frames, our 32K system 
uses segmentation. 

•  The memory segments of 
two processes is shown 
in the table at the right. 

•  The segments can be 
allocated anywhere in 
memory. 

6.5 Virtual Memory 
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•  All of the segments of P1 and one of 
the segments of P2 are loaded as 
shown at the right. 

•  Segment S2 of process P2 requires 
11K of memory, and there is only 1K 
free, so it waits. 

6.5 Virtual Memory 
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•  Eventually, Segment 2 of Process 1 
is no longer needed, so it is 
unloaded giving 11K of free memory. 

•  But Segment 2 of Process 2 cannot 
be loaded because the free memory 
is not contiguous. 

6.5 Virtual Memory 
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•  Over time, the problem gets 
worse, resulting in small 
unusable blocks scattered 
throughout physical memory. 

•  This is an example of external 
fragmentation. 

•  Eventually, this memory is 
recovered through compaction, 
and the process starts over. 

6.5 Virtual Memory 



69 

6.5 Virtual Memory 

•  Large page tables are cumbersome and slow, but with 
its uniform memory mapping, page operations are fast.  
Segmentation allows fast access to the segment table, 
but segment loading is labor-intensive. 

•  Paging and segmentation can be combined to take 
advantage of the best features of both by assigning 
fixed-size pages within variable-sized segments. 

•  Each segment has a page table. This means that a 
memory address will have three fields, one for the 
segment, another for the page, and a third for the 
offset. 
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6.6 A Real-World Example 

•  The Pentium architecture supports both paging and 
segmentation, and they can be used in various 
combinations including unpaged unsegmented, 
segmented unpaged, and unsegmented paged. 

•  The processor supports two levels of cache (L1 and 
L2), both having a block size of 32 bytes. 

•  The L1 cache is next to the processor, and the L2 
cache sits between the processor and memory. 

•  The L1 cache is in two parts: an instruction cache      
(I-cache) and a data cache (D-cache). 

The next slide shows this organization schematically.  
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6.6 A Real-World Example 
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•  Computer memory is organized in a hierarchy, with 
the smallest, fastest memory at the top and the 
largest, slowest memory at the bottom. 

•  Cache memory gives faster access to main memory, 
while virtual memory uses disk storage to give the 
illusion of having a large main memory. 

•  Cache maps blocks of main memory to blocks of 
cache memory. Virtual memory maps page frames 
to virtual pages. 

•  There are three general types of cache: Direct 
mapped, fully associative and set associative. 

Chapter 6 Conclusion 
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•  With fully associative and set associative cache, 
as well as with virtual memory, replacement 
policies must be established. 

•  Replacement policies include LRU, FIFO, or LFU. 
These policies must also take into account what 
to do with dirty blocks. 

•  All virtual memory must deal with fragmentation, 
internal for paged memory, external for 
segmented memory. 

Chapter 6 Conclusion 

74 

End of Chapter 6 

Chapter 7 
Input/Output and 
Storage Systems 
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Chapter 7 Objectives 

•  Understand how I/O systems work, including I/O 
methods and architectures. 
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7.1 Introduction 

•  Data storage and retrieval is one of the primary 
functions of computer systems.  
–  One could easily make the argument that computers are 

more useful to us as data storage and retrieval devices than 
they are as computational machines. 

•  All computers have I/O devices connected to them, 
and to achieve good performance I/O should be kept 
to a minimum! 
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7.2 I/O and Performance 

•  Sluggish I/O throughput can have a ripple effect, 
dragging down overall system performance. 
–  This is especially true when virtual memory is involved. 

•  The fastest processor in the world is of little use 
if it spends most of its time waiting for data. 

•  If we really understand what's happening in a 
computer system we can make the best possible 
use of its resources. 
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7.3 Amdahl's Law 

•  The overall performance of a system is a result of 
the interaction of all of its components. 

•  System performance is most effectively improved 
when the performance of the most heavily used 
components is improved.  

•  This idea is quantified by Amdahl's Law: 
where S is the overall speedup;  
f is the fraction of work performed 
by a faster component; and  
k is the speedup of the faster 
component. 
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7.3 Amdahl's Law 

•  Amdahl's Law gives us a handy way to estimate the 
performance improvement we can expect when we 
upgrade a system component. 

•  On a large system, suppose we can upgrade a CPU 
to make it 50% faster for $10,000 or upgrade its 
disk drives for $7,000 to make them 150% faster.  

•  Processes spend 70% of their time running in the 
CPU and 30% of their time waiting for disk service. 

•  An upgrade of which component would offer the 
greater benefit for the lesser cost? 
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7.3 Amdahl�s Law 

•  The processor option offers a 30% speedup: 

•  And the disk drive option gives a 22% speedup: 

•  Each 1% of improvement for the processor costs 
$10,000/30 = $333, and for the disk a 1% 
improvement costs $7,000/22 = $318. 

Should price/performance be your only concern?  82 

7.4 I/O Architectures 

•  We define input/output as a subsystem of 
components that moves coded data between 
external devices and a host system. 

•  I/O subsystems include: 
–  Blocks of main memory that are devoted to I/O functions. 
–  Buses that move data into and out of the system.  
–  Control modules in the host and in peripheral devices 
–  Interfaces to external components such as keyboards and 

disks. 
–  Cabling or communication links between the host system 

and its peripherals. 
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7.4 I/O Architectures 

This is a  
model I/O 
configuration. 

I/O modules takes care of moving 
data between main memory and a 
particular device interface. 
 
Interfaces are designed to 
communicate with certain types of 
devices. 

84 

•  I/O devices are very different (i.e., keyboard and hard 
disk performs totally different functions), yet they are 
both part of the I/O subsystem. All are slower than 
CPU and RAM. 

•  The interfaces between the CPU and I/O devices are 
very similar.  

•  Each I/O device needs to be connected to: 
–  Address bus – to pass address to the peripheral 
–  Data bus – to pass data to and from the peripheral 
–  Control bus – to control signals to peripherals 

7.4 I/O Architectures 
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7.4 I/O Architectures 
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I/O can be controlled in five general ways. 
•  Programmed I/O reserves a register for each              

I/O device. Each register is continually polled to detect 
data arrival. The CPU is busy-waiting. 

•  Interrupt-Driven I/O allows the CPU to do other things 
until I/O is requested. 

•  Memory-Mapped I/O shares memory address space 
between I/O devices and program memory. 

•  Direct Memory Access (DMA) offloads I/O processing 
to a special-purpose chip that takes care of the 
details. 

•  Channel I/O uses dedicated I/O processors. 

7.4 I/O Architectures 

Polling: actively sampling the status of an external device 
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7.4 I/O Architectures 
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This is an idealized I/O subsystem that uses interrupts. 

Each device connects its interrupt line to the interrupt controller. 

7.4 I/O Architectures 

The controller 
signals the 
CPU when 
any of the 
interrupt lines 
are asserted. 
The data lines D0, D1 
are used to specify the  
interrupting device. 
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•  Recall from Chapter 4 that in a system that uses 
interrupts, the status of the interrupt signal is 
checked at the top of the fetch-decode-execute 
cycle. 

•  The particular code that is executed whenever 
an interrupt occurs is determined by a set of 
addresses called interrupt vectors that are stored 
in low memory. 

•  The system state is saved before the interrupt 
service routine is executed and is restored 
afterward. 

7.4 I/O Architectures 

We provide a flowchart on the next slide. 
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7.4 I/O Architectures 

ISR: Interrupt Service Routine 
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7.4 I/O Architectures 

•  In memory-mapped I/O devices and main memory 
share the same address space.  
–  Each I/O device has its own reserved block of memory.  
–  Memory-mapped I/O therefore looks just like a memory 

access from the point of view of the CPU.  
–  Thus the same instructions to move data to and from both 

I/O and memory, greatly simplifying system design. 
•  In small systems the low-level details of the data 

transfers are offloaded to the I/O controllers built 
into the I/O devices. 
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This is a DMA 
configuration.  

Notice that the DMA and 
the CPU share the bus.   

The DMA runs at a 
higher priority and steals 
memory cycles from the 
CPU. Slows down CPU 
but not as much as CPU 
doing transfer. 

 

7.4 I/O Architectures 

DMA: Direct Memory Access 



93 

•  A DMA device controller transfers a large block of data 
directly into or from main memory. 

•  CPU initiates the transfer by commanding the DMA device 
to transfer the data and then continue its work. 

•  The DMA device performs the data transfer and notifies 
(interrupts) the CPU when it is completed. 

•  DMA controller 
–  a word-count register 
–  an address register 
–  a data buffer 

7.4 I/O Architectures 
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•  Very large systems employ channel I/O. 
•  Channel I/O consists of one or more I/O 

processors (IOPs) that control various channel 
paths. 

•  Slower devices such as terminals and printers are 
combined (multiplexed) into a single faster 
channel. 

•  On IBM mainframes, multiplexed channels are 
called multiplexor channels, the faster ones are 
called selector channels. 

7.4 I/O Architectures 
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•  Channel I/O is distinguished from DMA by the 
intelligence of the IOPs. 

•  The IOP negotiates protocols, issues device 
commands, translates storage coding to memory 
coding, and can transfer entire files or groups of 
files independent of the host CPU.   

•  The host has only to create the program 
instructions for the I/O operation and tell the IOP 
where to find them. 

7.4 I/O Architectures 
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•  This is a channel I/O configuration. 

7.4 I/O Architectures 
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•  Character I/O devices process one byte (or 
character) at a time. 
–  Examples include modems, keyboards, and mice. 

–  Keyboards are usually connected through an interrupt-
driven I/O system. 

•  Block I/O devices handle bytes in groups. 
–  Most mass storage devices (disk and tape) are block I/O 

devices. 

–  Block I/O systems are most efficiently connected through 
DMA or channel I/O. 

7.4 I/O Architectures 
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•  I/O buses, unlike memory buses, operate 
asynchronously. Requests for bus access must 
be arbitrated among the devices involved. 

•  Bus control lines activate the devices when they 
are needed, raise signals when errors have 
occurred, and reset devices when necessary. 

•  The number of data lines is the width of the bus. 

•  A bus clock is required to define bit cell 
boundaries. 

7.4 I/O Architectures 
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7.4 I/O Architectures 

This is a generic DMA configuration showing how the DMA 
circuit connects to a data bus. 

100 

7.4 I/O Architectures 

This is how a bus connects to a disk drive. 

Control 

Request from CPU goes to I/O module – basically asking �are you ready?� 
Ready goes from I/O module to CPU 
Read/write indicates the type of operation 
Clock is used to synchronize transfer if available 
Error denotes that the I/O module wants the CPU�s attention 

I/O module 



101 

7.4 I/O Architectures 

Timing 
diagrams, 
such as this 
one, define 
bus operation 
in detail. 

7.5 Data Transmission Modes 

•  Bytes can be conveyed from one point to another 
by sending their encoding signals simultaneously 
using parallel data transmission or by sending 
them one bit at a time in serial data transmission. 
–  Parallel data 

transmission 
for a printer 
resembles the 
signal protocol 
of a memory 
bus. 
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nStrobe and nAck are strobe and acknowledgement signals 
that are asserted when they carry low voltage. The Busy and 
Data signals are asserted when they carry high voltage. 
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7.5 Data Transmission Modes 

•  In parallel data transmission, the interface requires 
one conductor for each bit. 

•  Parallel cables are fatter than serial cables. 
•  Compared with parallel data interfaces, serial 

communications interfaces: 
–  Require fewer conductors. 
–  Are less susceptible to attenuation (signal loss over time). 
–  Can transmit data farther and faster. 

Serial communications interfaces are suitable for time-
sensitive (isochronous) data such as voice and video. 
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•  Advances in technology have defied all efforts to 
define the ultimate upper limit for magnetic disk 
storage. 
–  In the 1970s, the upper limit was thought to be around 

2MB/in2.     (1 in = 2.54 cm) 
–  Today's disks commonly support 20GB/in2. 

•  Improvements have occurred in several different 
technologies including: 
–  Materials science 
–  Magneto-optical recording heads 
–  Error correcting codes 

7.10 The Future of Data Storage 
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•  As data densities increase, bit cells consist of 
proportionately fewer magnetic grains. 

•  There is a point at which there are too few grains to 
hold a value, and a 1 might spontaneously change 
to a 0, or vice versa. 

•  This point is called the superparamagnetic limit. 
–  In 2006, the superparamagnetic limit is thought to lie 

between 150GB/in2 and 200GB/in2 . 

•  Even if this limit is wrong by a few orders of 
magnitude, the greatest gains in magnetic storage 
have probably already been realized. 

7.10 The Future of Data Storage 

A magnetic grain is a unit of material that can be magnetized in a predictable direction. Today, one 
bit of information, 0 or 1, may require 50-100 grains clumped together for successful storage. 
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•  Future exponential gains in data storage most 
likely will occur through the use of totally new 
technologies. 

•  Research into finding suitable replacements for 
magnetic disks is taking place on several fronts. 

•  Some of the more interesting technologies include: 
–  Biological materials            - Carbon nanotubes 
–  Holographic systems            - Memristors 
–  Micro-electro-mechanical devices. 

7.10 The Future of Data Storage 
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•  Present day biological data storage systems 
combine organic compounds such as proteins or oils 
with inorganic (magnetizable) substances. 

•  Early prototypes have encouraged the expectation 
that densities of 1TB/in2 are attainable. 

•  Of course, the ultimate biological data storage 
medium is DNA. 
–  Trillions of messages can be stored in a tiny strand of DNA. 

•  Practical DNA-based data storage is most likely 
decades away. 

7.10 The Future of Data Storage 
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•  Holographic storage uses a pair of laser beams to etch a 
three-dimensional hologram onto a polymer medium. 

7.10 The Future of Data Storage 
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•  Data is retrieved by passing the reference beam through 
the hologram, thereby reproducing the original coded 
object beam. 

7.10 The Future of Data Storage 
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•  Because holograms are three-dimensional, 
tremendous data densities are possible. 

•  Experimental systems have achieved over 30GB/in2, 
with transfer rates of around 1GBps. 

•  In addition, holographic storage is content 
addressable. 
–  This means that there is no need for a file directory on the 

disk. Accordingly, access time is reduced. 
•  The major challenge is in finding an inexpensive, 

stable, rewriteable holographic medium. 

7.10 The Future of Data Storage 
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•  Micro-electro-mechanical storage (MEMS) 
devices offer another promising approach to 
mass storage. 

•  IBM's Millipede is one such device. 
•  Prototypes have achieved densities of 100GB/in2 

with 1Tb/in2 expected as the technology is 
refined. 

7.10 The Future of Data Storage 

A photomicrograph of Millipede is shown on the next slide. 
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•  Millipede consists of thousands of cantilevers that record 
a binary 1 by pressing a heated tip into a polymer 
substrate. 

7.10 The Future of Data Storage 

•  The tip reads a 
binary 1 when it 
dips into the 
imprint in the 
polymer 

Photomicrograph courtesy 
of the IBM Corporation. 
© 2005 IBM Corporation 

A cantilever is a beam anchored at only one end  
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•  CNTs are a cylindrical form of elemental carbon: The 
walls of the cylinders are one atom thick.  

•  CNTs can act like switches, opening and closing to 
store bits. 

•  Once “set” the CNT stays in place until a release 
voltage is applied. 

7.10 The Future of Data Storage 

Elemental carbon refers to inorganic forms of carbon 
114 

•  Memristors are electronic components that combine 
the properties of a resistor with memory.  

•  Resistance to current flow can be controlled so that 
states of “high” and “low” store data bits.  

•  Like CNTs, memristor memories are non-volatile, 
holding their state until certain threshold voltages are 
applied. 

•  These non-volatile memories promise enormous 
energy savings and increased data access speeds in 
the very near future. 

7.10 The Future of Data Storage 
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•  I/O systems are critical to the overall performance 
of a computer system. 

•  Amdahl�s Law quantifies this assertion. 
•  I/O systems consist of memory blocks, cabling, 

control circuitry, interfaces, and media. 
•  I/O control methods include programmed I/O, 

interrupt-based I/O, DMA, and channel I/O. 
•  Buses require control lines, a clock, and data 

lines. Timing diagrams specify operational details. 

Chapter 7 Conclusion 

116 

•  Any one of several new technologies including 
biological, holographic, or mechanical may 
someday replace magnetic disks. 

•  The hardest part of data storage may be end up 
be in locating the data after it�s stored. 

Chapter 7 Conclusion 
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End of Chapter 7 


