x86 Function Call Conventions

Register use in the stack frame

% ESP - Stack Pointer
This 32-bit register always points to the last element used on the stack.

%EBP - Base Pointer
This 32-bit register is used to reference all the function parameters and

local variables in the current stack frame.

9% EIP - Instruction Pointer
This holds the address of the next CPU instruction to be executed.
It is saved onto the stack as part of the CALL instruction.

ebp —>

Before entry

Stack frame

ebp ——

After entry

ebp + 8
ebp +4

ebp-4

awed} yoeis

Calling a function

1. Push parameters onto the stack, from right to left.

2. Call the function. The contents of the %EIP
(instruction pointer) is pushed onto the stack.
It points to the first byte after the CALL instruction.

Executing a function

3. Save and update the %ebp.
pushl %ebp
movl S%esp, %ebp
4.Save CPU reqisters used for temporaries.

5. Allocate local variables.

6. Perform the function's purpose.
Store return value, if any, in $eax.

/. Restore saved CPU registers.

8. Release local storage.
movl %ebp, %esp

s
9. Restore the old base pointer. leave
popl %ebp

10. Return from the function.
ret

11. Clean up pushed parameters.
The caller must clean up the parameters pushed
onto the stack.

An example

int main() {
int 1 = 7;
int j = 13;
swap(&i, &J);

}

void swap(int *a, int *b)
int temp = *a;
*a = *b;
*b = temp;

Stack frame

Before entry After entry

ebp ——

ebp + 8
esp —>

ebp + 4
ebp ——
ebp-4 temp

esp ——>

