
1

Network Programming in Java

2

Agenda

•  Socket-based communication

•  Remote method invocation (RMI)

3

Today’s computing environments are

distributed: computations take place on
 different network hosts

heterogeneous: the hosts can be running
 different operating systems

Distributed computations

4

Java provides two mechanisms for distributed computing:

(1) Socket-based communication (java.net)
Sockets are the endpoints of two-way connections
between two distributed components that communicate
with each other.

(2) Remote method invocation (RMI) (java.rmi)
RMI allows distributed components to be manipulated
(almost) as if they were all on the same host.

Communication

5

Sockets are the end points of connections between two hosts
and can be used to send and receive data.

There are two kinds of sockets: server sockets and client
sockets.

A server socket waits for requests from clients.
A client socket can be used to send and receive data.

Socket-based
communication

6

A server socket listens at a specific port.

A port is positive integer less than or equal to 65565.

The port number is necessary to distinguish different server
applications running on the same host.

Ports 1 through 1023 are reserved for administrative purposes
(e.g., 21 for FTP, 22 for SSH and SFTP, 23 for Telnet,
25 for e-mail, and 80 for HTTP).

Ports

7

A server socket is an instance of the ServerSocket class and
can be created by one of these constructors:

ServerSocket(int port)
ServerSocket(int port, int backlog)

port: port number at which the server will be
 listening for requests from clients.
backlog: the maximum length of the queue of
 clients waiting to be processed
 (default is 50).

Server sockets can be created only with Java applications,
not applets.

Server sockets

8

Socket accept()
Waits for a connection request. The thread that
executes the method will be blocked until a request is
received, at which time the method returns a client socket.

void close()
Stops waiting for requests from clients.

Methods of ServerSocket

9

try {
ServerSocket s = new ServerSocket(port);
while (true) {
 Socket incoming = s.accept();

 «Handle a client»
 incoming.close();
 }
 s.close();
} catch (IOException e) {
 «Handle exception»
}

Typical use of ServerSocket

10

Client sockets

A client socket is an instance of the Socket class and can be
obtained in two ways:

(1) On the server side as return value of the accept()
 method.

(2) On the client side by using the constructor

 Socket(String host, int port)

host: the address of the host
port: the port number

11

Clients’ communication with a server

Client

Socket

Client

Socket

new Socket(...)
ServerSocket Server application

Socket

Socket

Socket

ServerSocket

Communication is handled on both sides by Socket objects.
12

getInputStream()
Returns an InputStream object for receiving data

getOutputStream()
Returns and OutputStream object for sending data

close()
Closes the socket connection

Methods of Socket

13

try {
Socket socket = new Socket(host, port);

 BufferedReader in = new BufferedReader(
 new InputStreamReader(

 socket.getInputStream()));
PrintWriter out = new PrintWriter(
 new OutputStreamWriter(
 socket.getOutputStream()));

 «Send and receive data»
 in.close();

out.close();
socket.close();

} catch (IOException e) {
 «Handle exception»
}

Typical use of Socket

14

Development of client/server programs

1.  Decide if it reasonable to implement a server and
one or more matching clients

2.  Design a text based communication protocol

3.  Implement the server

4.  Test the server with a telnet program

5.  Implement and test a Java client

telnet: A terminal emulation program for TCP/IP networks (such as the Internet)

15

import java.io.*;
import java.net.*;

public class EchoServer {
 public static void main(String[] args) {
 try {
 ServerSocket s = new ServerSocket(8008);
 while (true) {
 Socket incoming = s.accept();
 BufferedReader in = new BufferedReader(
 new InputStreamReader(
 incoming.getInputStream()));
 PrintWriter out = new PrintWriter(
 new OutputStreamWriter(
 incoming.getOutputStream()));

A simple echo server

continued

16

 out.println("Hello! This is the Java EchoServer.");
 out.println("Enter BYE to exit.");
 out.flush();

 while (true) {
 String str = in.readLine();

 if (str == null)
 break; // client closed connection

 out.println("Echo: " + str);
 out.flush();
 if (str.trim().equals("BYE"))

 break;
}

 in.close();
 out.close();

 incoming.close();
 }
 } catch (Exception e) {}
 }
}

17

Testing the server with telnet

venus% telnet saturn 8008
Trying 140.192.34.63 ...
Connected to saturn.
Escape character is '^]'.
Hello! This is the Java EchoServer.
Enter BYE to exit.
Hi, this is from venus
Echo: Hi, this is from venus
BYE
Echo: BYE
Connection closed by foreign host.

18

A simple Java client

import java.io.*;
import java.net.*;

public class EchoClient {
 public static void main(String[] args) {
 try {
 String host =
 args.length > 0 ? args[0] : "localhost";
 Socket socket = new Socket(host, 8008);
 BufferedReader in = new BufferedReader(
 new InputStreamReader(
 socket.getInputStream()));
 PrintWriter out = new PrintWriter(
 new OutputStreamWriter(
 socket.getOutputStream()));

continued

19

 // send data to the server
 for (int i = 1; i <= 10; i++) {
 System.out.println("Sending: line " + i);
 out.println("line " + i);
 out.flush();
 }
 out.println("BYE");
 out.flush();

 // receive data from the server
 while (true) {
 String str = in.readLine();
 if (str == null)
 break;
 System.out.println(str);
 }
 in.close();
 out.close();
 socket.close();
 } catch (Exception e) {}
 }
}

20

Running the Java client

venus% java EchoClient saturn
Sending: line 1
Sending: line 2
...
Sending: line 10
Hello! This is Java EchoServer.
Enter BYE to exit.
Echo: line 1
Echo: line 2
...
Echo: line 10
Echo: BYE

21

An echo server that handles
multiple clients simultaneously

public class MultiEchoServer {
 public static void main(String[] args) {
 try {
 ServerSocket s = new ServerSocket(8009);
 while (true) {
 Socket incoming = s.accept();
 new ClientHandler(incoming).start();
 }
 } catch (Exception e) {}
 }
}

Use a separate thread for each client.

22

ClientHandler

public class ClientHandler extends Thread {
 protected Socket incoming;

 public ClientHandler(Socket incoming) {
 this.incoming = incoming;
 }

 public void run() {
 try {
 BufferedReader in = new BufferedReader(
 new InputStreamReader(
 incoming.getInputStream()));
 PrintWriter out = new PrintWriter(
 new OutputStreamWriter(
 incoming.getOutputStream()));

continued

23

 out.println("Hello! ...");
 out.println("Enter BYE to exit.");
 out.flush();
 while (true) {
 String str = in.readLine();
 if (str == null)
 break;
 out.println("Echo: " + str);
 out.flush();
 if (str.trim().equals("BYE"))
 break;
 }
 in.close();
 out.close();
 incoming.close();
 } catch (Exception e) {}
 }
}

24

Broadcasting messages to clients

Development of a chat server that

•  handles multiple clients simultaneously

•  broadcasts a message received from a client to all
other active clients.

The server needs to keep track of active clients.

25

Chat example

26

ChatServer

public class ChatServer {
public ChatServer(int port) throws IOException {
 ServerSocket s = new ServerSocket(port);

 while (true)
 new ChatHandler(s.accept()).start();
 }

public static void main(String[] args)

 throws IOException {
 if (args.length != 1)
 throw new RuntimeException(
 "Syntax: java ChatServer <port>");
 new ChatServer(Integer.parseInt(args[0]));
}

}

27

public class ChatHandler extends Thread {
Socket socket;

 DataInputStream in;
 DataOutputStream out;

static Set<ChatHandler> handlers =
 (Set<ChatHandler>) Collections.synchronizedSet(
 new HashSet<ChatHandler>());

 public ChatHandler(Socket socket) throws IOException {
 this.socket = socket;
 in = new DataInputStream(socket.getInputStream());
 out = new DataOutputStream(socket.getOutputStream());

 handlers.add(this);
 }

ChatHandler

continued

28

public void run() {
String name = "";
try {
 name = in.readUTF();
 System.out.println("New client " + name + " from " +
 socket.getInetAddress());
 broadcast(name + " entered");

 while(true)
 broadcast(name + ": " + in.readUTF());

 } catch (IOException e) {
 System.out.println("-- Connection to user lost.");

 } finally {
 handlers.remove(this);
 try {
 broadcast(name + " left");

 in.close();
 out.close();
 socket.close();

 } catch (IOException e) {}
 }
}

continued

29

static void broadcast(String message)
 throws IOException {

synchronized(handlers) {
 for (ChatHandler handler : handlers) {

 handler.out.writeUTF(message);
 handler.out.flush();
 }
 }
}

Note that the for-loop needs to be synchronized because it
will be executed by all threads that are handling clients.

30

ChatClient
public class ChatClient {
 String name;

Socket socket;
 DataInputStream in;
 DataOutputStream out;
 ChatFrame gui;

 public ChatClient(String name, String server, int port) {
 try {
 this.name = name;
 socket = new Socket(server, port);
 in = new DataInputStream(socket.getInputStream());
 out = new DataOutputStream(socket.getOutputStream());
 out.writeUTF(name);
 gui = new ChatFrame(this);
 while (true)
 gui.output.append(in.readUTF() + "\n");
 } catch (IOException e) {}
 }

continued

31

void sendTextToChat(String str) {
 try {
 out.writeUTF(str);
 } catch (IOException e) { e.printStackTrace(); }
 }

void disconnect() {
 try {
 in.close();
 out.close();
 socket.close();
 } catch (IOException e) { e.printStackTrace(); }
 }

public static void main(String[] args) throws IOException {
 if (args.length != 3)
 throw new RuntimeException(
 "Syntax: java ChatClient <name> <serverhost> <port>");
 new ChatClient(args[0], args[1], Integer.parseInt(args[2]);
 }
}

32

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ChatFrame extends JFrame {
JTextArea output = new JTextArea();

 JTextField input = new JTextField();

 public ChatFrame(final ChatClient client) {
 super(client.name);
 Container pane = getContentPane();
 pane.setLayout(new BorderLayout());
 pane.add(new JScrollPane(output), BorderLayout.CENTER);
 output.setEditable(false);
 pane.add(input, BorderLayout.SOUTH);

continued

ChatFrame

33

 input.addKeyListener(new KeyAdapter() {
 public void keyPressed(KeyEvent e) {
 if (e.getKeyCode() == KeyEvent.VK_ENTER) {
 client.sendTextToChat(input.getText());
 input.setText("");
 }
 }
 });

 setSize(400, 200);
 setVisible(true);
 input.requestFocus();
 }
}

 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {

 client.disconnect();
 System.exit(0);
 }
 });

34

Remote method invocation
RMI

Objects residing on different hosts may be manipulated
as if they were on the same host.

server host

server:

void m()

client:

server.m()

client host

server

35

Server:
An object on the server host that provides services to clients

Client:
An object that uses the services provided by the server

Stub:
An object that resides on the same host as the client and serves as a
proxy, or surrogate, for the remote server

Skeleton:
An object that resides on the same host as the server, receiving
requests from the stubs and dispatching the requests to the server

Service contract:
A Java interface that defines the services provided by the server

The RMI architecture
Client Server

Stub
JVM

Skeleton
JVM

36

Remote method invocation

Invocation of server.m() by the client:
1.  The method of the stub, stub.m(), is invoked
2.  The stub marshals the arguments and call information to the skeleton

on the server host
3.  The skeleton unmarshals the call information and the arguments and

invokes the method of the server: server.m()
4.  The server object executes the method and returns the result to

the skeleton
5.  The skeleton marshals the result and sends the result back to

the stub
6. The stub unmarhals the result and returns the result to the client

Client Server

Stub
JVM

Skeleton
JVM

1

2

3

5

6 4

37

RMI programming

Server, Client and Service contract are written by the
programmer.

Stubs and skeletons are generated by a RMI compiler (e.g., rmic)
from the compiled Server class.

38

Passing of arguments

If an argument of a remote method invocation is a local object,
the object is serialized, sent to the remote host, and deserialized
(that is, a copy of the local object is passed to the remote host).

If an argument of a remote method invocation is a remote
object, a remote object reference is passed.

An important question is: How does a client locate the server
that will provide the service?

39

Each RMI server is identified by a URL with the protocol rmi.

rmi://host:port/name

host: name or IP address of the host on which the RMI
 registry is running (if omitted: localhost)
port: port number of the RMI registry (if omitted: 1099)
name: name bound to the RMI server

RMI registry

The server is registered on the server host in a RMI registry.
This process is called binding:

Naming.bind(name, server)

40

A client can locate a remote object by a lookup in the
server host’s RMI registry:

Lookup in a RMI registry

Remote server = Naming.lookup(url)

Here url is of the form

//host:port/name

where host is the host (remote or local) where the registry is
located, and port is the port number on which the registry
accepts calls. If port is omitted, then the port defaults to 1099.

41

Operations on a RMI registry
(static methods in Naming)

static void bind(String name, Remote obj)

static void rebind(String name, Remote obj)

static void unbind(String name)

static Remote lookup(String url)

static String[] list(String url)

42

Application of RMI

1.  Define an interface for the remote object.

continued

public interface Contract extends Remote {
 public void aService(...) throws RemoteException;

// other services
}

This is the contract between the server and its clients.
The contract interface must extend the Remote interface.
The methods in this interface must declare that they throw
the RemoteException exception.
The types of the arguments and return values must be
serializable.

43

2. Define a service implementation class that implements the
contract interface. The class must extend the
UnicastRemoteObject class.

public class ServiceProvider extends UnicastRemoteObject
 implements Contract {

 public void aService(...) throws RemoteException {
 // implementation
 }

// implementation of other services
}

continued
In computer networking, unicast transmission is the sending of messages to a single
network destination identified by a unique address.

44

3. Create an instance of the server, and register that server
to the RMI registry:

Contract remoteObj = new ServiceProvider(...);
Naming.rebind(name, remoteObj);

continued

4. Generate the stub and skeleton classes, using the RMI
compiler.

45

Contract serverObj = (Contract) Naming.lookup(url);
//...
serverObj.aService(...);
//...

continued

5.  Develop a client that uses the service provided by the
contract interface.

It must first locate the remote object that provides the
service before the remote methods can be invoked.

46

Structure of RMI applications

aService()

ContractAClient

Remote

ServiceProvider_Stub

aService()

ServiceProvider

aService()

UnicastRemoteObject

47

Development of a RMI-based chat system

Remote method invocation on both server and
client.

Server:
login
logout
sendMessage

Client:
receiveLogin
receiveLogout
receiveMessage

48

public interface ChatServerInterface extends Remote {
public void login(String name, ChatClientInterface newClient)

 throws RemoteException;
 public void logout(String name) throws RemoteException;
 public void sendMessage(Message message) throws RemoteException;
}

public interface ChatClientInterface extends Remote {
 public void receiveLogin(String name) throws RemoteException;
 public void receiveLogout(String name) throws RemoteException;
 public void receiveMessage(Message message) throws RemoteException;
}

Interfaces

49

Message

public class Message implements java.io.Serializable {
public String name, text;

 public Message(String name, String text) {
 this.name = name;
 this.text = text;
 }
}

50

import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;
import java.util.*;

public class ChatServer extends UnicastRemoteObject
 implements ChatServerInterface {
Map<String, ChatClientInterface> chatters =

 new HashMap<String, ChatClientInterface>();

 public ChatServer() throws RemoteException {}

 public synchronized void login(String name,
 ChatClientInterface newClient) throws RemoteException {

 chatters.put(name, newClient);
 for (ChatClientInterface client : chatters.values())

 client.receiveLogin(name);
 }

ChatServer

continued

51

public synchronized void logout(String name)
 throws RemoteException {

 chatters.remove(name);
 for (ChatClientInterface client : chatters.values())

 client.receiveLogout(name);
 System.out.println("client " + name + " logged out");
 }

public synchronized void sendMessage(Message message)
 throws RemoteException {

 for (ChatClientInterface client : chatters.values())
 client.receiveMessage(message);
 }

public static void main(String[] args) {
 try {
 LocateRegistry.createRegistry(1099);

 Naming.rebind("ChatServer", new ChatServer());
 } catch (Exception e) { e.printStackTrace(); }
 }
}

52

public class ChatClient extends UnicastRemoteObject
 implements ChatClientInterface {

 String name;
 ChatServerInterface server;
 ChatFrame gui;

 public ChatClient(String name, String url) throws RemoteException {
 this.name = name;

 try {
 server = (ChatServerInterface)

 java.rmi.Naming.lookup("rmi://" + url + "/ChatServer");
 server.login(name, this);
 } catch (Exception e) { e.printStackTrace(); }
 gui = new ChatFrame(this);
 }

ChatClient

continued

53

public void receiveLogin(String name) {
 gui.output.append(name + " entered\n");
 }

 public void receiveLogout(String name) {
 gui.output.append(name + " left\n");
 }

 public void receiveMessage(Message message) {
 gui.output.append(message.name + ": " + message.text + "\n");
 }

continued
54

void sendTextToChat(String text) {
 try {
 server.sendMessage(new Message(name, text));
 } catch (RemoteException e) { e.printStackTrace(); }
 }

void disconnect() {
 try {
 server.logout(name);
 } catch (Exception e) { e.printStackTrace(); }
 }

public static void main(String[] args) {
 if (args.length != 2)

 throw new RuntimeException(
 "Usage: java ChatClient <user> <host>");

 try {
 new ChatClient(args[0], args[1]);

 } catch (RemoteException e) { e.printStackTrace(); }
}

}

