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Abstract 
 

This report describes an enhancement of the Lin-Kernighan-Helsgaun TSP solver (LKH) for fast generation 
of candidate sets for very-large scale traveling salesman problems. Its implementation is based on a me-
taheuristic called POPMUSIC. The enhancement makes it possible to generate high-quality candidate sets 
in almost linear time, even for non-geometric instances. 

 
 
1. Introduction 
 
A key point for treating large TSP instances is to consider only a subset of edges connecting the 
cities. For this purpose, it is essential to build a network with an extremely low density, typically by 
keeping only a few connections (candidate edges) for each city. In the case of geometric problems, 
several techniques have been proposed for generating an adequate network. For 2-dimensional Eu-
clidean instances, a Delaunay triangulation can be built in O(n log(n)) time, where n is the number 
of cities in the problem. When the cities are specified with coordinates in K dimensions, another 
technique is to build a k-d tree (in O(Kn log(n)) time) and to keep only few of the nearest cities in 
each of the geometric quadrants around each city. Both techniques, which ensure a connected and 
sparse network, are implemented in the Lin-Kernighan-Helsgaun TSP solver, LKH [1][2].  
 
For non-geometric (as well as for geometric) instances, LKH provides an implementation of a tech-
nique based on minimum-spanning 1-trees. For each of the possible O(n2) edges, a value called a is 
computed. Given the cost of a minimum 1-tree, the a-value of an edge is the increase of this cost 
when a minimum 1-tree is required to contain the edge. The a-values provide a good estimate of the 
edges’ chances of belonging to an optimum tour. Node penalties found by subgradient optimization 
are used to improve this estimate. A sparse and connected network is ensured by selecting the k a-
nearest neighbors to each city where k is a small constant. In general, using a-nearness for specifying 
the candidate set is much better than using ordinary nearest neighbors. Both techniques require quad-
ratic computational effort, but usually, the a-nearness based candidate set may be smaller, without 
degradation of the solution quality. 
 
Candidate set generation based on 1-trees and a-nearness is default in LKH. It is acceptably fast for 
instances of up to 100,000 cites. However, for larger instances its quadratic time results in unaccepta-
ble execution times. A subquadratic algorithm is needed. It turns out that POPMUSIC fulfils the need. 
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POPMUSIC (Partial OPtimization Metaheuristic Under Special Intensification Conditions) is a tem-
plate for tackling large problem instances. This metaheuristic has been shown to be very efficient for 
various hard combinatorial problems such as p-median, sum of squares clustering, vehicle routing, 
map labelling and location routing. The basic idea of POPMUSIC is to locally optimize sub-parts 
of a solution, once a solution of the problem is available. These local optimizations are repeated 
until no improvements are found. 
 
The POPMUSIC template may be used on TSP as follows. Given an initial tour, optimize locally 
sub-paths of r consecutive cities on the tour [3]. This definition allows to easily identify a sub-part 
of a solution. Moreover, an optimized sub-path can be easily replaced in the current tour. 
 
In the following it will be shown how to obtain reasonably good initial tours and improve them 
with POPMUSIC in almost linear time. The union of the edges of a specified number of these 
improved tours constitutes a candidate set. 
 
2. POPMUSIC for LKH 
 
The code below sketches in C-style notation how POPMUSIC is used in LKH for generating a can-
didate set.  
 

 1 for (s = 1; s <= POPMUSIC_SOLUTIONS; s++) { 
 2     for (i = 0; i < n; i++) 
 3         solution[i] = i;  
 4     shuffle(n, solution); 
 5     solution[n] = solution[0]; 
 6     build_path(n, solution, POPMUSIC_SAMPLE_SIZE); 
 7     fast_POPMUSIC(n, solution, pow(POPMUSIC_SAMPLE_SIZE, 2)); 
 8     add_to_candidate_set(n, solution); 
 9 } 
10 trim_candidate_set(n, MAX_CANDIDATES); 

 
Lines 2-4 generates a random tour for an n-city instance. An initial tour is built in line 6, and improved 
by POPMUSIC in line 7. The n edges of this improved tour are then added to an initially empty 
candidate set in line 8. This process of generating solution tours and adding their edges to the 
candidate set is repeated a specified number of times (POPMUSIC_SOLUTIONS). Finally, in line 
10, the candidate set is trimmed so that a specified maximum number (MAX_CANDIDATES) of 
candidate edges emanates from each city. 
 
POPMUSIC_SOLUTIONS, POPMUSIC_SAMPLE_SIZE and MAX_CANDIDATES are parame-
ters to LKH with default values 40, 10 and 5, respectively.  
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3. Building an Initial Tour 
 
An initial tour is built by the function build_path. 
 

  1 void build_path(int n, int *path, int sample_size) { 
 2     if (n <= pow(sample_size, 2)) 
 3         optimize_path(n, path); 
 4     else { 
 5         S = select_sample(n, path, sample_size); 
 6         S[sample_size + 1] = S[0]; 
 7         optimize_path(sample_size + 1, S); 
 8         for (city = 0; city <= n; city++) 
 9             if (!belongs(city, S, sample_size)) 
10                 insert(city, S, sample_size); 
11         for (cluster = 0; cluster < sample_size; cluster++) 
12             build_path(size(S[cluster]) + 2, &S[cluster] - 1); 
13     } 
14 } 

 
The function takes as input an array path[0..n] of cities and builds recursively a path from 
path[0] to path[n]. In line 5 a random sample, S, of sample_size cities from path[0..n] 
is selected. An attempt is made in line 7 to find an optimal tour for the sample. Lines 8-10 insert any 
non-sample city after its closest sample city, thereby organizing path[0..n] as a sequence of 
clusters. Lines 11-12 build recursively a path for each of these clusters. 
 
If n is less than or equal to sample_size squared, an attempt is made to optimize the path (lines 
2-3). 
 
Path optimization is done using the 3-opt heuristic. Few nearest neighbor candidates (default is 5), 
“positive gain criterion” and “don’t look bits” are used for speeding up the heuristic. 
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4. Improving an Initial Tour 
 
An initial tour is improved using the function fast_POPMUSIC. 
 

 1 void fast_POPMUSIC(int n, int *path, int r) { 
 2     for (scan = 1; scan <= 2; scan++) 
 3         if (scan == 2) { 
 4             circular_right_shift(n, path, r / 2); 
 5         for (i = 0; i < n / r; i++) 
 6             optimize_path(r, path + r * i); 
 7         if (n % r != 0) 
 8             optimize_path(r, path + n - r); 
 9     } 
10 } 

 
The function performs two scans of the given closed path (tour). In each scan, it locally optimizes 
non-overlapping sub-paths of r consecutive cities on path[0..n] (lines 5-6). A possible remain-
ing portion of the path is optimized in line 8. A circular right shift of path with r/2 positions before 
the second scan (line 4) is used in order to optimize sub-paths involving r/2 cities for each of two 
adjacent sub-paths in the first scan. 
 
4. Reducing the POPMUSIC Candidate Set 
 
A POPMUSIC crated candidate graph is usually quite sparse, even when based on a large number of 
POPMUSIC solutions. However, for better performance of LKH, the candidate set may be trimmed. 
The function shown below reduces the POPMUSIC candidate set such that each node has a specified 
maximum number of emanating candidate edges, max_candidates (default is 5).  
 

1 void trim_candidate_set(int n, int max_candidates) { 
2     subgradient_optimization(); 
3     compute_alpha_values(); 
4     for (city = 0; city < n; city) 
5         eliminate_candidates(city, max_candidates); 
6 } 

 
The function attempts to eliminate candidate edges of low prospect of belonging to an optimum tour. 
The edges’ chances of belonging to an optimum tour are estimated using the a-nearness measure. For 
each candidate edge its a-value is computed (line 3) based on node penalties found by subgradient 
optimization (line 2). Note that the sparseness of the candidate graph enables this computation to be 
performed quickly (in O(n log n) time). Lines 4-5 eliminate, for each city, those emanating candidate 
edges that are not among the max_candidates edges with the smallest a-values. 
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6. Experimental Evaluation 
 
The incorporation of POPMISIC into LKH has been evaluated on an iMac with an 3.6 GHz Intel 
Core i7 CPU and 16 GB of RAM running macOS High Sierra operating system. The evaluation is 
divided into four parts. First, the time efficiency and quality of POPMUSIC solutions are evaluated. 
Then, the effect of reducing the POPMUSIC candidate set is examined. Next, the overall performance 
is illustrated using some large-scale instances. Finally, POPMUSIC is compared with two of LKH’s 
built-in candidate set generation algorithms: ALPHA and DELAUNAY.  
 
6.1 Efficiency and Quality of POPMUSIC Solutions  
 
The time usage for generating POPMUSIC solutions as well as their quality have been evaluated by 
means of Euclidean instances of the DIMACS TSP Challenge, which are instances consisting of 
uniformly distributed points in a square (E-instances) and clustered points in a square (C-instances). 
The advantage of using these instances is that optimal or high-quality solutions are known (found by 
LKH). 
 
Table 6.1.1 reports the time usage in seconds for generating 50 POPMUSIC solutions, the average 
percentage excess over the best known tour length, the average node degree in the candidate graph, 
and the number of edges in the best known solution tour missing from the candidate set. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.1.1 Results for generating 50 POPMUSIC solutions (default parameter values) 
 
The time usage for the E-instances is plotted in Figure 6.1.1. As can be seen, the growth is almost 
linear (O(n1.06)). 

Instance n Time (s) Gap (%) Degree Missing 
E10k.0 10000 2.3 11.3 7.0 2 
E31k.0 31623 7.6 11.9 7.2 2 
E100k.0 100000 26.1 12.1 7.2 14 
E316k.0 316228 93.6 12.2 7.3 39 
E1M.0 1000000 308.8 12.3 7.3 97 
E3M.0 3162278 1064.9 12.4 7.3 348 
E10M.0 10000000 4012.2 12.4 7.3 1115 
C10k.0 10000 2.2 18.4 6.4  1 
C31k.0 31623 7.9 19.4 6.4 6 
C100k.0 10000 26.8  20.0 6.4 14 
C316k.0 3162278 92.1 20.5 6.5 78 
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Figure 6.1.1 Computational time for generating 50 POPMUSIC solutions (E-instances) 
 
Although the quality of each POPMUSIC solution tour is modest (10-20%), it turns out that the union 
of relatively few of them includes all edges of the best known solution. This powerful property is 
documented in Table 6.1.2, which gives the number of POPMUSIC solutions and the time used for 
reaching a state where all edges of the best known tour are included in the union of solutions. The 
last column contains the average node degree for the resulting candidate graph. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.1.2 Results for termination when all edges of a best known tour are included 
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E10k.0 54 2.9 7.3 
E31k.0 97 17.1 8.5 
E100k.0 90 53.8 8.4 
E316k.0 136 382.6 9.3 
E1M.0 182 925.2 12.3 
E3M.0 187 4406.4 12.4 
E10M.0 289 20950.6 11.5 
C10k.0 63 3.4 6.7 
C31k.0 74 13.5 7.0 
C100k.0 187 114.2 8.9 
C316k.0 164 344.9 8.7 
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The number of missing best tour edges as a function of generated POPMUSIC solutions for E10k.0 
is depicted in Figure 6.1.3. 

 

 
 

Figure 6.1.3 Missing best tour edges for E10k.0 as a function of POPMUSIC solutions 
 
LKH with POPMUSIC contains four parameters that can be used to govern the candidate generation 
process. They are: 
  

POPMUSIC_SOLUTIONS:  
        Number of POPMUSIC solutions to be generated (default: 40) 

 
POPMUSIC_SAMPLE_SIZE:  

        The sample size (default: 10) 
 

POPMUSIC_TRIALS:  
        Number of trials used in iterated 3-opt (default: 1). 
        If the value is zero, the number of trials is the size of the sub-path to be optimized. 

 
POPMUSIC_MAX_NEIGHBORS:  
      Maximum number of nearest neighbors used in 3-opt (default: 5) 

 
If one is willing to spend more computing time, higher quality of each of the POPMUSIC may be 
achieved by choosing higher values than their defaults for the last three parameters. Table 6.1.3 shows 
the results for the parameter settings 
 
 CANDIDATE_SET_TYPE = POPMUSIC 
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Table 6.1.3 Results for generating one POPMUSIC solution (non-default parameter values) 
 
However, it should be noted that better POPMUSIC solutions not necessarily lead to better candidate 
sets. Diversity among solutions appears to be more important than getting as good solutions as pos-
sible. 
 
6.2 Effect of Candidate Set Reduction 
 
To speed up the Lin-Kernighan search, the POPMUSIC generated candidate set may be reduced 
using the a-nearness measure. Good a-values for the edges are found by subgradient optimization. 
Note that no new edges are added; for each city, its emanating POPMUSIC generated candidate edges 
are just sorted according to their a-values, and the first MAX_CANDIDATES (default: 5) edges are 
selected. 
 
Table 6.2.1 reports the experimental results for 6 instances, where the T-instances are uniformly dis-
tributed toroidal instances in 2D. The following non-default LKH parameter settings were used: 
 

CANDIDATE_SET_TYPE = POPMUSIC  
INITIAL_PERIOD = 100 
MAX_TRIALS = 1000 

 
As can be seen, LKH is able to find high-quality solutions for these instances, even though the re-
duction causes elimination of some of the edges in the best known solution tours. 
 
  

Instance Gap (%) Time (s) 
E10k.0 1.6 2.1 
E31k.0 1.6 5.6 
E100k.0 1.9 24.5 
E316k.0 2.1 81.3 
E1M.0 2.0 223.9 
E3M.0 2.0 737.8 
E10M.0 2.2 2746.6 
C10k.0 3.0 3.3 
C31k.0 5.4 8.8 
C100k.0 5.3 36.4 
C316k.0 5.4 118.8 
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 E10k.0 C10k.0 T10k.0 E100k.0 C100k.0 T100k.0 
POPMUSIC Time (s) 2.3 2.2 2.5 26.1 26.8 28.8 
Reduction Time (s) 1.4 1.1 0.8 29.6 24.6 25.1 
Lin-Kernighan Time (s) 105.2 236.3 165.8 3830.9 2461.3 4491.1 
POPMUSIC Degree 7.0 6.4 7.3 7.2 6.4 7.3 
Reduction Degree 4.9 4.8 4.9 4.9 4.8 4.9 
POPMUSIC Missing 2 1 2 14 14 13 
Reduction Missing 11 102 11 102 167 112 
Lin-Kernighan Gap (%) 0.011 0.045 0.022 0.041 0.208 0.062 

 
Table 6.2.1 Effect of candidate set reduction on tour quality (with subgradient optimization) 

 
The reduction may be performed without subgradient optimization (by setting SUBGRADIENT = 
NO or INITIAL_PERIOD = 0). However, this usually decreases the performance of LKH (see Table 
6.2.2).  
 

 E10k.0 C10k.0 T10k.0 E100k.0 C100k.0 T100k.0 
Reduction Time (s) 0.2 0.2 0.2 0.3 0.3 0.3 
Lin-Kernighan Time (s) 127.8 200.2 164.6 5211.8 4658.1 6380.4 
POPMUSIC Missing 2 1 2 14 14 13 
Reduction Missing 55 58 63 596 547 667 
Lin-Kernighan Gap (%) 0.014 0.052 0.037 0.092 0.200 0.121 

 
Table 6.2.2 Effect of candidate set reduction on tour quality (without subgradient optimization) 

 
The Lin-Kernighan search in LKH uses distances transformed by the node penalties found by sub-
gradient optimization. This has turned out to be advantageous. It is presumably due to a “smoothing” 
effect upon the original instance. Even a few steps of subgradient optimization often have a positive 
effect. 
 
Figure 6.2.3 depicts the total time used for generating candidate sets for the E-instance (with candi-
date set reduction). As can be seen, the growth is almost linear (O(n1.15)). 
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Figure 6.2.3 Total time for generating candidate sets for E-instances 
 
6.3 Performance on some Large-Scale Instances  
 
The performance of POPMUSIC has been evaluated on 5 benchmark instances with about 100,000 
cites. Optima are known for two of the instances: pla85900 and star109339 (both found by LKH). 
High-quality (probably optimal) solutions are known for the other three. 
 
Table 6.3.1 gives the number of POPMUSIC solutions and the time used for reaching a state where 
all edges of the best known tour are included in the union of solutions.  
 
 
 
 
 
 
 
 

Table 6.3.1 Results for termination when all edges of a best known tour are included 
 

Table 6.3.2 reports the overall performance for these instances. 
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sra104814 322 182.7 13.0 
star109399 105 64.8 15.0 
usa115475 241 120.2 13.8 



11 

 pla85900 mona-lisa100K sra104814 star109399 usa115475 
POPMUSIC Time (s) 27.5 25.8 32.1 53.8 36.5 
Reduction Time (s) 18.3 21.5 24.7 26.8 28.9 
Lin-Kernighan Time (s) 9483.9 3828.0 3628.6 2121.1 3858.8 
POPMUSIC Degree 7.3 6.1 8.5 11.6 7.1 
Reduction Degree 4.9 5.0 5.0 5.0 4.9 
POPMUSIC Missing 26 0 94 10 10 
Reduction Missing 61 2 388 77 110 
Lin-Kernighan Gap (%) 0.056 0.015 0.068 0.023 0.031 

 
Table 6.3.2 Overall performance for five benchmark instances 

INITIAL_PERIOD = 100, MAX_TRIALS = 1000 
 

Finally, the performance on the world TSP instance with 1,904,711 locations of the world is evalu-
ated. The experimental results are shown in Tables 6.3.3 and 6.3.4. It is remarkable that all 1,904,711 
edges of the best known tour (found by LKH) are contained in the union of only 467 POPMUSIC 
tours. Just one edge was missing in the union of the first 245 POPMUSIC tours. 
 
 

 
 

Table 6.3.3 Results for termination when all edges of a best known tour are included 
 

 world 
POPMUSIC Time (s) 1830.9 
Reduction Time (s) 550.6 
Lin-Kernighan Time (s) 10558.1 
POPMUSIC Degree 7.1 
Reduction Degree 4.9 
POPMUSIC Missing 287 
Reduction Missing 2074 
Lin-Kernighan Gap (%) 0.109 

 
Table 6.3.4 Overall performance for the world instance 

INITIAL_PERIOD = 100, MAX_TRIALS = 100 
 
Note that the present evaluation has mainly used LKH’s default parameter settings. Better tour quality 
may be achieved by other settings, such as settings that cause high-order basic moves to be used (see 
[2]). 
  

Instance Solutions Time (s) Degree 
world 467 17815.4 12.7 
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6.4 Comparison of POPMUSIC with ALPHA and DELAUNAY candidate set generation  
 
POPMUSIC has been compared with two other candidate set generation algorithms of LKH, ALPHA 
and DELAUNAY. The ALPHA algorithm is based on computation of minimum spanning 1-trees 
and is, like POPMUSIC, generally applicable. The DELAUNAY algorithm is based on Delaunay 
triangulation and applicable for Euclidean 2D-instances. 
 
Table 6.4.1 gives for 9 large-scale instances the preprocessing time and number of edges missing 
from the best known tours. As shown, the time usage of ALPHA on these large instances is much 
higher than the two other algorithms. DELAUNAY is the fastest of the three algorithms, but the 
quality of the produced candidate sets (when measured by the number of edges missing from the best 
known tours) is always best for POPMUSIC. 
 

Instance Performance POPMUSIC ALPHA DELAUNAY 
E100k.0 Preprocessing Time (s) 55.7 3524.7 36.8 
 Missing 102 192 198 
C100k.0 Preprocessing Time (s) 61.4 3584.6 35.0 
 Preprocessing Missing 167 404 401 
T100k.0 Preprocessing Time (s) 53.9 3647.1 42.3 
 Missing 112 221 3841 
pla85900 Preprocessing Time (s) 45.8 1483.5 23.6 
 Missing 61 92 88 
mona-lisa100K Preprocessing Time (s) 47.3 3858.1 37.4 
 Missing 2 3 3 
sra104815 Preprocessing Time (s) 56.8 3037.5 33.7 
 Missing 388 388 394 
usa115475 Preprocessing Time (s) 80.6 4621.6 39.3 
 Missing 77 85 211 
star109399 Preprocessing Time (s) 65.4 4294.5                    -2  
 Missing 110 200                   - 
world Preprocessing Time (s) 2381.5 -3 823.4 
 Missing 2074          - 4725 

 
Table 6.4.1 Comparison of POPMUSIC, ALPHA and DELAUNAY 

INITIAL_PERIOD = 100, MAX_CANDIDATES = 5 
 
      

                                                
1 Delaunay triangulation does not work correctly for toroidal instances 
2 Delaunay triangulation for 3D instances is not implemented in LKH 
3 The computation is too time-consuming (an estimate is 13 days) 
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7. Conclusions 
 
This report has described the implementation in LKH of POPMUSIC for generating candidate sets. 
The implemented method can be applied to any TSP instance for which the distance between two 
cities can be computed in constant time. It does not make any assumptions about the problem struc-
ture. Experimental evaluation has shown that sparse high-quality candidate graphs can be produced 
fast. The empirical time complexity is almost linear, which makes it applicable for very large in-
stances with millions of cities. 
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