
1

CLASS DISCO

User Guide

Class DISCO is an extension of class COMBINEDSIMULATION containing facilities for:

 (1) Solution of higher-order differential equations (class FUNCTION)

 (2) Table-interpolation (class TABLE)

(3) Description of exponential and ideal delays (class EXPDELAY and class IDELAY)

 (4) Formulation of implicit functions (procedure IMPLICIT)

 (5) Collection of statistics (class STATVAR, class TALLY, class HISTOGRAM,
 class ACCUMULATE and class COUNT)

 (6) Program testing (procedure DUMP).

The following description of the facilities is very brief but should be sufficient for most applications.

(1) SOLUTION OF HIGHER-ORDER DIFFERENTIAL EQUATIONS

The solution of higher-order differential equations normally requires that the user rewrites the system
as first-order equations. The class FUNCTION frees the user from this task.

The user's view of class FUNCTION is:

 class FUNCTION(N); integer N;
 begin
 ref(VARIABLE) array D(0:N);
 procedure START; ... ;
 procedure STOP; ... ;
 Boolean procedure ACTIVE; ACTIVE:= ... ;
 end;

2

A FUNCTION-object represents a variable whose continuous change can be described by an Nth
order differential equation. The D array of the object contains the derivatives; D(I).STATE
contains the I'th derivative (D(0).STATE contains the function value itself).

D(I).RATE should not be used by the user.

Example:

The second-order equation of Van der Pol:

d2y/dt2 + e(1-y2)dy/dt + y = 0

may be represented by:

 Y.D(2).STATE:= -E*(1-Y.D(0).STATE**2)*Y.D(1).STATE
 -Y.D(0).STATE

where Y is a FUNCTION-object with parameter N=2. Note that Y must be STARTed to undergo
continuous change (cf. VARIABLE-objects).

It is assumed that no continuous process is given a priority less than -MAXREAL/2.

(2) TABLE-INTERPOLATION

Class TABLE facilitates table-lookup.

The user has the following view of the class:

 class TABLE;
 begin
 procedure ADD(X,Y); real X,Y; ... ;
 real procedure VAL(X); real X; VAL:= ... ;
 procedure READ(N); integer N; ... ;
 procedure PRINT; ... ;
 procedure PLOT; ... ;
 procedure SETTITLE(TITLE); value TITLE; text TITLE; ... ;

end;

A TABLE-object represents a function table.

An entry (X,Y) is added to the table by calling ADD(X,Y). The entries may be added in arbitrary
order. The X-es must be distinct, but need not be uniformly spaced.

A call VAL(X) returns the Y-value corresponding to X using linear interpolation. If X is less than
the minimum X-value of the table, XMIN, then VAL(X)=VAL(XMIN). If X is greater than the
maximum X-value of the table, XMAX, then VAL(X)=VAL(XMAX).

A call READ(N) reads N table entries from SYSIN using INREAL.

3

The procedure PRINT may be used to print the contents of the table.

A line printer plot of the function defined by the table may be produced by calling procedure
PLOT. The table-entries themselves are designated with an 'O' on the curve.

A print or plot of the table may be accompanied with an explanatory title. Calling SETTITLE(T)
sets the title to T.

(3) DELAYS

Class EXDELAY may be used to describe exponential delays of arbitrary order. The order of the
delay, N, is the number of cascaded first-order delays that compose the delay in question.

The user's view of class EXPDELAY is:

 class EXPDELAY(N,INITIALSTATE,TARGET,LAG);
integer N; real INITIALSTATE,LAG; ref(VARIABLE) TARGET;

 begin
 real procedure STATE; STATE:= ... ;
 procedure START; ... ;
 procedure STOP; ... ;
 Boolean procedure ACTIVE; ACTIVE:= ... ;
 end;

The STATE of an ACTIVE EXPDELAY-object continuously approaches the TARGET's STATE
with the specified delay, LAG. The initial value is a parameter, INITIALSTATE. The TARGET
may itself be moving.

For describing ideal delays the class IDELAY is available.

The user's view of class IDELAY is:

 class IDELAY(V,LAG); ref(VARIABLE) V; real LAG;
 begin
 real procedure STATE; STATE:= ... ;
 procedure START; ... ;
 procedure STOP; ... ;
 Boolean procedure ACTIVE; ACTIVE:= ... ;
 end;

The STATE of an ACTIVE IDELAY-object lags behind the given variable V. The delay is speci-
fied through the parameter LAG. During the first LAG time units of an IDELAY-object's existence
its STATE is equal to V's STATE at the creation of the IDELAY-object.

An IDELAY actually stores samples of V's STATE at the end of each integration step and interpo-
lates linearly between sampled values.

4

(4) IMPLICIT FUNCTIONS

In describing continuous processes it is the user's responsibility that the equations are evaluated in
the correct order: variables must be updated before they are used on the right-hand side of an
equation.

The user can determine the order of evaluation within each continuous process and the continuous
processes themselves may be ranked by giving them a priority. Usually by these means a correct
evaluation order can be achieved. In some cases, however, this is impossible: there is an "algebraic
loop" in the equation system.

An algebraic loop can often be circumvented by either rewriting the equations or using the proce-
dure IMPLICIT.

Procedure IMPLICIT is used to solve equations of the form

 x = f(x)

The procedure heading is:

 procedure IMPLICIT(X,FX,TOL);
 name X,FX; real X,FX,TOL;

IMPLICIT finds an X satisfying the equation within the tolerance TOL, i.e.

 ABS(X-FX) <= ABS(TOL)

FX is an arithmetic expression involving X at least once.

Wegstein's accelerated convergence algorithm is used to compute X. The algorithm is iterative and
uses the value of X at procedure entry as an initial guess for X. If the tolerance criterion is not sat-
isfied after 100 iterations, the algorithm stops with the error message:

 IMPLICIT: CONVERGENCE IS NOT ACHIEVED WITHIN 100 ITERATIONS

(5) COLLECTION OF STATISTICS

The class STATVAR may be used for collecting statistics about state variables that vary continu-
ously with time.

The user's view of class STATVAR is the following:

 VARIABLE class STATVAR;
 begin
 real procedure MIN; MIN:= ... ;
 real procedure MAX; MAX:= ... ;
 real procedure MEAN; MEAN:= ... ;
 real procedure SDV; SDV:= ... ;
 end;

5

In addition to its VARIABLE-attributes, each STATVAR-object has the property that its minimum
(MIN), maximum (MAX), mean (MEAN) and standard deviation (SDV) are automatically computed
during the simulation. The mean and standard deviation are estimated by trapezoidal integration.

For obtaining statistics about discrete variables the following four data collection devices are pro-
vided:

 class TALLY
 class HISTOGRAM
 class ACCUMULATE
 class COUNT

The user has the following view of these classes:

 class TALLY(TITLE); value TITLE; text TITLE;
 begin
 procedure UPDATE(V); real V; ... ;
 procedure REPORT; ... ;
 procedure RESET; ... ;
 end;

 class HISTOGRAM(TITLE,LOWER,UPPER,NCELLS);
 value TITLE;

text TITLE; real LOWER,UPPER; integer NCELLS;
 begin
 procedure UPDATE(V); real V; ... ;
 procedure REPORT; ... ;
 procedure RESET; ... ;
 end;

 class ACCUMULATE(TITLE); value TITLE; text TITLE;
 begin
 procedure UPDATE(V); real V; ... ;
 procedure INTEGRATE(V); real V; ... ;
 procedure REPORT; ... ;
 procedure RESET; ... ;
 end;

 class COUNT(TITLE); value TITLE; text TITLE;
 begin
 procedure UPDATE(V); real V; ... ;
 procedure REPORT; ... ;
 procedure RESET; ... ;
 end;

6

The four classes share the following attributes:

TITLE: is a user-supplied descriptive text parameter, cut off at 12 characters if
 initially longer.

 UPDATE: is used to record the observations. The call UPDATE(V) records the value V.

 REPORT: may be used to print the current status of the object.

RESET: may be used to re-initialize the object so that data collection can start afresh
 with a new time period.

Class TALLY

A TALLY-object is used to record a profile of a time-independent variable, for example the num-
ber of items bought by customers in a supermarket. The statistics collected (by calling UPDATE)
are (1) the number of observations, (2) the average, (3) the estimated standard deviation, (4) the
minimum, and (5) the maximum.

Class HISTOGRAM

A HISTOGRAM-object maintains the same statistics as a TALLY-object, but in addition it gives a
graphic representation of the frequency distribution. Each HISTOGRAM-object requires at its
generation: a text TITLE, a lower bound, LOWER, an upper bound, UPPER, and also the number
of recording cells, NCELLS. The range from LOWER to UPPER will be divided into NCELLS
number of cells, each of the same width, (UPPER-LOWER)/NCELLS. When a value V is re-
corded the appropriate cell incidence count is incremented by one. Underflow values (V<LOWER),
and overflow values (V>UPPER) are recorded separately.

Class ACCUMULATE

An ACCUMULATE-object is used to record a profile of a time-dependent variable, for example the
length of a queue. The variable in question is assumed to have maintained a constant value be-
tween the recording times (i.e. the UPDATE-points). For keeping statistics on variables that vary
continuously between events, the procedure-attribute INTEGRATE is provided. INTEGRATE per-
forms the same function as procedure UPDATE except that the last value and the current value are
used to integrate the time dependent variable. Combined with the use of class REPORTER, the
trapezoidal integration used by INTEGRATE yields better estimates for continuous variables than
does UPDATE. Statistics collected are (1) the number of observations, (2) the average, (3) the es-
timated standard deviation, (4) the minimum, and (5) the maximum.

Class COUNT

A COUNT-object is used to record incidences only, for example the number of ingots produced by
a furnace. A COUNT-object records the sum of its input sequence.

When a simulation is ended the statistics collected by all user-created TALLY-, HISTOGRAM-,
ACCUMULATE and COUNT-objects are automatically reported.

7

At any time during the simulation the user may obtain a report on the current status of all such
data collecting objects. This is accomplished by calling the global procedure REPORT.

The automatic reporting at the end of the simulation may be switched off by calling the global
procedure NOREPORT.

A HISTOGRAM example

The program below

 DISCO
 begin
 ref(HISTOGRAM) H; integer I,U;
 U:=7913;
 H:-new HISTOGRAM("Normal distribution",0.0,2.0,20);
 for I:=1 step 1 until 1000 do H.UPDATE(NORMAL(1.0,0.5,U));
 end;

will produce the following output:

8

**
* *
* R E P O R T *
* *
**

 H I S T O G R A M S

 S U M M A R Y

TITLE / (RE)SET/ OBS/ AVERAGE/EST.ST.DV/ MINIMUM/ MAXIMUM
NORMAL DISTR 0.000 1000 1.0180 0.5174 -0.740 2.8330

CELL/LOWER LIM/ N/ FREQ/ CUM %
 I------------------------------
 0 -INFINITY 25 0.02 2.50 I*********
 1 0.000 11 0.01 3.60 I****
 2 0.1000 29 0.03 6.50 I**********
 3 0.2000 30 0.03 9.50 I***********
 4 0.3000 30 0.03 12.50 I***********
 5 0.4000 26 0.03 15.10 I*********
 6 0.5000 51 0.05 20.20 I******************
 7 0.6000 69 0.07 27.10 I************************
 8 0.7000 51 0.05 32.20 I******************
 9 0.8000 85 0.08 40.70 I******************************
 10 0.9000 70 0.07 47.70 I*************************
 11 1.0000 80 0.08 55.70 I****************************
 12 1.1000 81 0.08 63.80 I*****************************
 13 1.2000 69 0.07 70.70 I************************
 14 1.3000 73 0.07 78.00 I**************************
 15 1.4000 49 0.05 82.90 I*****************
 16 1.5000 52 0.05 88.10 I******************
 17 1.6000 35 0.03 91.60 I************
 18 1.7000 17 0.02 93.30 I******
 19 1.8000 23 0.02 95.60 I********
 20 1.9000 12 0.01 96.80 I****
 21 2.0000 32 0.03 100.00 I***********
 I------------------------------

(6) PROGRAM TESTING

The procedure DUMP may be used for program testing.

DUMP may be called at any time during a simulation. Calling DUMP causes information about the
current state of the model to be printed. Below is given a example of output produced by DUMP.

**
* *
* D I S C O - D U M P *
* *
**

 TIME
 150.0000

9

 DTMIN DTMAX MAXRELERROR MAXABSERROR
 1.000&-03 1.0000 1.000&-05 1.000&-05

 DT LASTTIME NEXTEVENTTIME NEXTREPORTTIME
 7.420&-02 149.9258 150.0000 150.0000

 WAITPRIORITY WAITPRIOR
 0.000 FALSE

 INTEGRATION METHOD: RKE

**
* *
* A C T I V E V A R I A B L E - O B J E C T S *
* *
**

 STATE RATE LASTSTATE RELERROR ABSERROR
 1: 0.2205 -0.170 0.2334 1.000&-05 1.000&-05
 2: 0.1210 -0.105 0.1290 1.000&-05 1.000&-05
 3: 782.7003 -156.575 795.7096 1.000&-05 1.000&-05

**
* *
* A C T I V E C O N T I N U O U S - O B J E C T S *
* *
**

 PRIORITY
 1: 0.000

**
* *
* A C T I V E R E P O R T E R - O B J E C T S *
* *
**

 - NONE -

**
* *
* T I M E - E V E N T S *
* *
**

 EVTIME
 1: 150.0000 - CURRENT - MAIN
 2: 150.3517
 3: 150.5794

**
* *
* S T A T E - E V E N T S *
* *
**

 PRIORITY
 1: 0.1240
 2: 0.000
 3: 0.000

10

ERROR MESSAGES

In case of illegal use of the facilities described, an error message is output, and the program is
terminated.

The possible error messages are listed below:

 ADD: TWO TABLE ENTRIES WITH EQUAL X-VALUES

 VAL: TABLE IS EMPTY

 NEW EXPDELAY(, ,TARGET,): TARGET == NONE

 NEW EXPDELAY(, , ,LAG): LAG <= 0

 NEW IDELAY(V,): V == NONE

 NEW IDELAY(,LAG): LAG < 0

 IMPLICIT: CONVERGENCE IS NOT ACHIEVED WITHIN 100 ITERATIONS

 NEW HISTOGRAM(,LOWER,UPPER,): LOWER >= UPPER

 NEW HISTOGRAM(, , ,NCELLS): NCELLS < 1

ACKNOWLEDGEMENT

The classes TALLY, HISTOGRAM, ACCUMULATE and COUNT are taken from the SIMULA-class
DEMOS, written by Graham Birtwistle, University of Bradford, England (ref. 1).

REFERENCE

1. Birtwistle, G:
 "A System for Discrete Event Modelling on SIMULA",
 Macmillan Computer Science Series,
 London 1979.

	HIGHER-ORDER DIFFERENTIAL EQUATIONS
	TABLE-INTERPOLATION
	DELAYS
	IMPLICIT FUNCTIONS
	COLLECTION OF STATISTICS
	Class TALLY
	Class HISTOGRAM
	Class ACCUMULATE
	Class COUNT
	A HISTOGRAM example

	PROGRAM TESTING
	ERROR MESSAGES
	AKNOWLEDGEMENT
	RERERENCE

