
1

COMBINEDSIMULATION

Reference Manual

 CONTENTS:

 1. BASIC CONCEPTS
 2. EXECUTION OF A SIMULATION
 3. THE ATTRIBUTES OF COMBINEDSIMULATION
 4. APPENDICES
 5. REFERENCES
 6. TABLE OF CONTENTS

1. BASIC CONCEPTS

The class outline below shows the most essential user-attributes of class COMBINEDSIMULATION.

 SIMULATION class COMBINEDSIMULATION;
 begin
 class CONTINUOUS;
 begin
 procedure START; ... ;
 procedure STOP; ... ;
 Boolean procedure ACTIVE; ... ;
 end;

 class VARIABLE(STATE); real STATE;
 begin
 real RATE;
 procedure START; ... ;
 procedure STOP; ... ;
 Boolean procedure ACTIVE; ... ;
 end;

 class REPORTER;
 begin
 procedure SETFREQUENCY(F); real F; ... ;
 procedure START; ... ;
 procedure STOP; ... ;
 Boolean procedure ACTIVE; ... ;
 end;

 procedure WAITUNTIL(B); name B; Boolean B; ... ;

 real DTMIN,DTMAX, MAXRELERROR,MAXABSERROR;
 end;

2

COMBINEDSIMULATION is a subclass of class SIMULATION. The discrete events of the simu-
lated system may be described in the usual way by means of the class PROCESS. Objects of class
PROCESS are called "discrete processes".

The continuous state changes of the system may be described by means of the two new classes -
CONTINUOUS and VARIABLE.

In one or more subclasses of class CONTINUOUS the user can express the difference and/or dif-
ferential equations of the model in question. A CONTINUOUS-object, called a "continuous proc-
ess", will "continuously" execute its actions after its START-procedure has been called. The con-
tinuous process is said to be "active" during this period. The active phase will cease when the
STOP-procedure of the process is called.

Objects of class VARIABLE is used to represent state variables whose continuous variation is ex-
pressible as difference or differential equations. For such a variable the attribute STATE denotes
its current value, while RATE denotes its derivative with respect to time. STATE is changed "con-
tinuously" according to the value of RATE, as computed by the active continuous processes. The
VARIABLE-object is said to be "active" during this period. The active phase will cease when the
object's STOP-procedure is called.

Class REPORTER is used for reporting purposes. A REPORTER-object may have its user-defined
actions executed with a specified frequency. The frequency is specified by procedure
SETFREQUENCY and the object's continual execution is started and stopped by the procedures
START and STOP, respectively.

Discrete events, which are scheduled to occur at a specified point in time (EVTIME), are called
"time-events". This type of event is well-known to a user of class SIMULATION.

The procedure WAITUNTIL makes it possible to schedule a new type of discrete event, a so-
called "state-event". This is an event planned to take place as soon as the state of the model fulfils
a specified condition.

Between the discrete events the state of the model is advanced in steps using numerical integra-
tion. DTMIN and DTMAX are used to specify the minimum and the maximum allowable step-size,
respectively. MAXRELERROR and MAXABSERROR may be used to specify the relative and abso-
lute integration error that can be tolerated at each step.

2. EXECUTION OF A SIMULATION

A simulation is controlled behind the scenes, so to speak, by an object called the "monitor".

It is the monitor's responsibility that

 (1) the state of the model changes "continuously" between the discrete events,

 (2) the events (time- as well as state-events) take place at the right time and in correct
 order, and

(3) the active REPORTER-objects have their user-defined actions executed with the
 specified frequency.

3

The monitor updates the state of the model between the discrete events as prescribed by the active
CONTINUOUS processes. The updating is performed in time steps using numerical integration
(see Section 2.2.1). The step-size is adjusted so that the requested accuracy requirements are met,
and so that no events take place within a step. In order to reduce rounding errors, "quasi double-
precision summation" is used in updating the state of the model (see Section 2.2.3).

The monitor ensures that the scheduled events take place. The time-events take place precisely a
their given time points (EVTIME); on the other hand, state-events, that is, events scheduled by
procedure WAITUNTIL, are time-determined with a certain error (DTMIN, see Section 3.1 and
3.3).

Moreover the monitor takes care that the user-defined actions (inner) of the active REPORTER-
objects are executed as frequently as prescribed, which for a REPORTER-object with frequency F
means:

 F > 0: at uniformly spaced intervals of length F time units and also at event times.

 F = 0: at the end of each time step (which includes event times).

 F < 0: only at event times.

When an event takes place, the user-defined actions of all active REPORTER-objects, regardless of
frequency, are executed - both immediately before and after the event.

The monitor is active between the events, even when they are "concurrent". However, an event
which is initiated by "direct" activation - that is, by activate P or the like - will not be "de-
tected" by the monitor.

The work of the monitor is outlined below.

 class MONITOR;
 while more projected events do
 begin
 DT:=0;
 execute all active CONTINUOUS-objects;
 execute all active REPORTER-objects;

 while no event now do
 begin
 take an integration step, DT, fulfilling the
 accuracy requirements;

 if a state-event was passed
 then determine event time and reduce step accordingly;

 execute active REPORTER-objects when requested;
 end;

 let an event take place now;
 end;

4

In order to perform its tasks, the monitor has access to the following lists:

 1) class SIMULATION's event list, SQS, which represents the scheduled time-events

 2) a list of "wait-notices" representing the planned state-events

 3) a list of active CONTINUOUS-objects

 4) a list of active VARIABLE-objects

 5) a list of active REPORTER-objects

The actions of the active CONTINUOUS- and REPORTER-objects are executed by the monitor as
so-called "RESUME-chains":

(1) the monitor RESUMEs the first object in the chain,

(2) each object RESUMEs its successor, and

(3) the last object in the chain RESUMEs the monitor.

The monitor will take care that all processes of the model are synchronised. Two PROCESS-ob-
jects, called CONTROLLER1 and CONTROLLER2, control the activity of the monitor, and ensure
that the user does not destroy the synchronisation (for example by activating a discrete process
directly from a continuous process).

2.1. Time advance

Between discrete events the state of the model is advanced in time steps using numerical integra-
tion. The step-size varies within limits specified by the user (DTMIN, DTMAX) and is adjusted so
that the integration error in each step is less than the error limit specified by the user (RELERROR,
ABSERROR).

Usually the step-size will vary between DTMIN and DTMAX. However, steps smaller than DTMIN
may be necessary in order to assure that no time-events are passed within a step. In using any of
the fixed step-size integration methods (see Section 2.2) DTNEXT is equal to DTMAX. The event
times of state-events are determined with an accuracy of DTMIN.

If the step-size becomes too small, that is, time "stands still", an error message is given and the
simulation stops (see Section 2.2.3).

The execution of a single step is described below.

5

First the actual step-size, DTNOW, is chosen. If there are active continuous processes, then DTNOW
is set to

 MIN(DTNEXT,NEXTEVENTTIME-LASTTIME)

where DTNEXT denotes a proposal for the step-size, NEXTEVENTTIME denotes the event time of
the next event, and LASTTIME denotes the start time of the step.

If there are no active continuous processes, then DTNOW will instead be set to

 MIN(DTMAX,NEXTEVENTTIME-LASTTIME)

unless there are no state-events, in which case DTNOW is set to

 NEXTEVENTTIME-LASTTIME

Next, using numerical integration, a STATE increment, DS, corresponding to the TIME increment,
DTNOW, is determined for each active VARIABLE-object.

If, however, the integration error for merely one VARIABLE-object is greater than the acceptable
error, the step computation is redone with a new step of size

 MAX(1/2*DTNOW,DTMIN)

The process is repeated until either acceptable accuracy is achieved, or the step-size becomes
smaller than DTMIN. In the latter case the virtual procedure INTEGRATIONERROR is called and
the simulation is stopped. The user may rewrite this procedure if he wishes an alternative course of
action.

When the step is acceptable, the assertion holds that

 TIME = LASTTIME+DTNOW

and for the active VARIABLE-objects that

 STATE = OLDSTATE+DS

where OLDSTATE denotes the value of STATE at the beginning of the step, that is, at LASTTIME
(quasi double-precision summation is not taken into account in this explanation).

Next, at the end point of the step the monitor determines if a state-condition has been fulfilled, that
is to say, if a state-event has been passed within the step. In this case, the event time of the earliest
state-event is determined and the step is reduced accordingly. The event time is determined with
an accuracy of DTMIN by a binary search within the step; the model state is determined by Her-
mite interpolation - see Section 2.2.2.

Lastly, the active REPORTER-objects have their user-defined actions executed at the correct times.
For those reporting times which were passed within the actual step, the model state is determined
by Hermite interpolation - see Section 2.2.2.

6

Below is given an algorithm outline showing how, in principle, the monitor advances time be-
tween events.

 while TIME<NEXTEVENTTIME do
 begin
 LASTTIME:=TIME;

 if there are any active CONTINUOUS-objects then
 begin
 for each active VARIABLE-object do OLDSTATE:=STATE;
 DTNOW:=MIN(DTNEXT,NEXTEVENTTIME-LASTTIME);

 INTEGRATION:
 for each active VARIABLE-object do DS:= ... ;
 if the error is unacceptable then
 begin
 if DTNOW<=DTMIN then
 begin
 INTEGRATIONERROR;
 if REPEATSTEP then goto INTEGRATION;
 end;
 DTNOW:=DTNEXT:=MAX(1/2*DTNOW,DTMIN);
 goto INTEGRATION;
 end;
 for each active VARIABLE-object do STATE:=OLDSTATE+DS;
 if DTNOW=DTNEXT then DTNEXT:= ... ;
 DTNEXT:= ... ;
 end
 else if there are any planned state-events
 then DTNOW:=MIN(DTMAX,NEXTEVENTTIME-LASTTIME)
 else DTNOW:=NEXTEVENTTIME-LASTTIME;

 TIME:=LASTTIME+DTNOW;

 if a state-event was passed and TIME<NEXTEVENTTIME then
 begin
 DTLOWER:=0;
 while DTNOW-DTLOWER>DTMIN do
 begin
 DT:=MAX(1/2*(DTLOWER+DTNOW),DTMIN);
 TIME:=LASTTIME+DT;
 determine the state of the model at TIME (using
 interpolation);
 if a state-condition is fulfilled then DTNOW:=DT
 else DTLOWER:=DT;
 end;
 TIME:=LASTTIME+DTNOW;
 if DT=DTLOWER
 then determine the state of the model at TIME;
 end;

 while NEXTREPTIME<=TIME do
 begin
 determine the state of the model at
 NEXTREPTIME (using interpolation);
 execute relevant active REPORTER-objects;
 if NEXTREPTIME>TIME
 then re-establish the state of the model at LASTTIME+DTNOW;
 end;

 execute all active REPORTER-objects having FREQUENCY=0;
 end;

7

2.2. Numerical methods

2.2.1. Integration

COMBINEDSIMULATION allows the user to describe continuous state changes by a system of
ordinary first-order differential equations:

 dy/dt = f(t,y)

where t is the independent variable, y is a vector of differentiable state variables, and f is a vector
function of t and y.

The variable t is the model time, TIME, while y is represented by active VARIABLE-objects,
where

 d STATE / d TIME = RATE

The function f is defined by active CONTINUOUS-objects which "continuously" compute the
VARIABLE-objects' RATEs. Note that f may be exchanged in connection with a discrete event.

The monitor will integrate the actual equation system numerically, that is, it will cause the
STATEs of the active VARIABLE-objects to change according to their RATEs.

The user is offered the choice of six numerical integration methods: Runge-Kutta-England, Euler,
Trapezoidal, Adams, Simpson, and Improved Heun. Any of these methods may be chosen at any
time during a simulation. If the user does not specify an integration method, the program uses the
fourth-order Runge-Kutta-England method, RKE for short (ref. 2).

The Boolean variables EULER, ADAMS, TRAPEZ and SIMPSON can be used to select the desired
integration method according to the following table.

EULER ADAMS TRAPEZ SIMPSON Method Order Step-size
false false false false RKE 4 variable
true false false false EULER 1 fixed

- true false false ADAMS 2 fixed
- false true false TRAPEZ 2 fixed
- true true false HEUN 2 fixed
- false - true SIMPSON 3 fixed
- true - true no name 4 fixed

In using the RKE-method the step-size is variable and it is possible to control the integration error
by setting MAXRELERROR and/or MAXABSERROR. The tolerated error may even be specified
separately for each VARIABLE-object by setting the VARIABLE-attributes RELERROR and
ABSERROR.

In using a fixed step-size integration method the step-size remains constant at the maximum pre-
scribed by the user, DTMAX, unless an event occurs within a step.

8

In order to compute the function value of f at a given time, that is, the RATE-values, the monitor
executes the user-defined actions of all active CONTINUOUS-objects. The execution takes place as
a RESUME-chain in the same order as the list of active CONTINUOUS-objects. The number of
times that the user-defined actions of all active CONTINUOUS-objects are executed for each inte-
gration step is listed below:

Integration method Times
RKE 9

EULER 1
ADAMS 2
TRAPEZ 2
HEUN 2

SIMPSON 3

In a continuous process the order in which the equations are written is left to the user. Because
COMBINEDSIMULATION does not change the execution order of the equations, a correct se-
quencing is the responsibility of the user. To prevent unintentional time delays from being intro-
duced into the model dynamics, the user must make sure that variables occurring on the right hand
side of an equation have values which reflect the current state of the system. The user can deter-
mine the order of evaluation within each continuous process, and the continuous processes them-
selves may be ranked by giving each a priority (by calling procedure SETPRIORITY).

2.2.1.1. Euler's method

When Euler's method is selected, EULER:=true, time is advanced with a fixed step length of
DTMAX. However, time steps smaller than DTMAX may be taken in order to assure that no event is
passed within a step. User-specified accuracy requirements (RELERROR, ABSERROR) are not
taken into account.

Let y be the solution to the initial value problem

 dy/dt = f(t,y) , y(t0) = y0

Euler's method approximates the solution y at the points t0, t0+h, t0+2h, ... , with u, where

 u(t+h) = u(t)+h*f(t,u(t)) and u(t0) = y(t0)

The method is efficient with respect to computer time because only one computation of f is per-
formed per integration step (versus 4.5 when using RKE). On the other hand, the method is not
very accurate. The integration error

 ui(t+h)-yi(t+h)

for a given variable yi and step-size h, is approximately proportional to h2 when h is small, that is
O(h2). In comparison, when RKE is used, the error is O(h5).

9

Euler's method is well-suited

- when the accuracy is of lesser importance (e.g., in the first trial simulations),

- when the continuous changes of the simulated system are described by difference
 equations (e.g., in simulations of models of the System Dynamics type where the
 equations are of the form Y.STATE=Y.LASTSTATE+DT*(expression)).

An integration step with Euler's method is executed by the monitor as described below.

 1. LASTTIME:=TIME;
 2. DTNOW:=MIN(DTMAX,NEXTEVENTTIME-LASTTIME)
 3. VAR:-FIRSTVAR;
 4. while VAR=/=none do inspect VAR do
 5. begin
 6. OLDSTATE:=STATE;
 7. DS:=DTNOW*RATE;
 8. STATE:=OLDSTATE+DS;
 9. RATE:=0;
 10. VAR:-SUCVAR;
 11. end;
 12. DT:=DTNOW; TIME:=LASTTIME+DTNOW;
 13. RESUME(FIRSTCONT);

Comments:

2 The current step size is chosen. It is assumed that all active continuous processes have just
 been executed so that all RATEs have been computed.

3 The variable VAR traverses the list of active VARIABLE-objects. FIRSTVAR denotes
 the first object in this list.

7-8 The STATE-increment DS corresponding to the TIME increment DTNOW is determined
 and added to LASTSTATE, the value of STATE at the starting point of the step.

 9 Unless RATE is computed by the active continuous processes, its value must be zero
 (difference equations are "integrated" with RATE=0).

 12-13 Time is advanced and all active continuous processes are executed (to compute the
 RATEs). FIRSTCONT denotes the first CONTINUOUS-object of the list of active
 continuous processes. The execution takes place as RESUME-chain where the
 monitor itself is the last link.

10

2.2.1.2. Runge-Kutta-England's method

Unless the user sets one or more of the Boolean variables EULER, ADAMS, TRAPEZ, or SIMPSON
to true, the program selects the fourth-order variable step-size Runge-Kutta-England integration
method, RKE.

The method has been described by England (ref. 2, process 9) and is further examined by
Shampine and Watts (ref. 5).

RKE is a fourth-order method for numerical solution of the initial value problem

 dy/dt = f(t,y) , y(t0) = y0

where y is a vector of differentiable state variables (VARIABLE-objects), and y0 is the vector's
initial value.

The method has several advantages that make it appropriate for combined simulation. First of all,
it is easy to change the step-size. This is very important in a combined simulation where events are
not normally spaced uniformly in time. Secondly, RKE is self-starting, thus there is no loss of effi-
ciency when restarting from an event. Thirdly, there is the possibility, by means of interpolation,
of determining the state of the model at time points within an integration step (see Section 2.2.2).

At each step the RKE-method estimates the integration error (the local truncation error), and tries
to meet the user-prescribed accuracy requirements (RELERROR, ABSERROR).

RKE is a two-step method involving nine function evaluations over the two steps. A step of length
DTNOW is divided into two ordinary Runge-Kutta integration steps, each having a length of
H=1/2*DTNOW. The integration error is estimated in the middle of the second sub-step. If the
error is unacceptable, the step is discarded, and a fresh step of half the length, 1/2*DTNOW, is
attempted. The following is a detailed description of one RKE-step.

Let t1=t0+H and t2=t1+H=t0+2H. Then a RKE-step from t0 to t2, a computation of y(t2), involves the
evaluation of the following equations:

 c1 = H*f(t0,y(t0))
 c2 = H*f(t0+H/2,y(t0)+c1/2)
 c3 = H*f(t0+H/2,y(t0)+(c1+c2)/4)
 c4 = H*f(t0+H,y(t0)-c2+2*c3)

 y(t1) = y(t0)+(c1+4c3+c4)/6

 c5 = H*f(t1,y(t1))
 c6 = H*f(t1+H/2,y(t1)+c5/2)
 c7 = H*f(t1+H/2,y(t1)+(c5+c6)/4)

 ERROR = (-c1+4c3+17c4-23c5+4c7-r)/90 , where

 r = H*f(t1+H, y(t0)+(-c1-96c2+92c3-121c4+144c5+6c6-12c7)/6)

11

If ABS(ERROR)<=ABS(ABSERROR)+ABS(RELERROR*y(t1)), then
y(t2) = y(t1)+(c5+4c7+H*f(t2,y(t1)-c6+2c7))/6 + ERROR.

Here the c's, y, ERROR, ABSERROR and RELERROR are all vectors.

Only if the estimated integration error, ERROR, is acceptable for all state variables will the y(t2)
values be computed. If the step is acceptable, the algorithm involves nine function evaluations,
that is, four and a half evaluations per Runge-Kutta step.

Local extrapolation is used to achieve a better accuracy in the computation of y(t2), thus the vari-
able ERROR is used as a correction value.

In the implementation of the RKE-algorithm attempts have been made to hold the storage require-
ments down by using as few auxiliary variables as possible. The five VARIABLE-attributes A1,
A2, A3, A4 and A5 are used with the following meaning:

 A1 denotes c1

 A2 denotes c2 and c6

 A3 denotes c3 and c7

 A4 denotes c4 and ERROR
 A5 denotes c5

The function value of f is evaluated by assigning TIME and the STATEs of all active VARIABLE-
objects suitable values, and thereafter execute all active CONTINUOUS-objects.

The following assertions hold:

 t0 = LASTTIME, t1 = LASTTIME+H, t2 = LASTTIME+DTNOW
 y(t0)= OLDSTATE, y(t1)= OLDSTATE+DSH, y(t2)= OLDSTATE+DS

As long as the estimated error is unacceptable, the step-size is halved:

 DTNOW:=MAX(1/2*DTNOW,DTMIN)

However, if the step-size is reduced to DTMIN and the error is still unacceptable, then the virtual
procedure INTEGRATIONERROR is called. Unless the user has redefined this procedure, the
simulation will be stopped with the following error message:

 THE REQUESTED INTEGRATION ACCURAY CAN NOT BE ACHIEVED

RKE is a fourth-order method, which means that the integration error at each step, H, is O(H5). The
integration error itself is estimated with an error of O(H6). This estimate is asymptotically correct,
that is to say that the estimated error divided by the true error approaches one as the step-size ap-
proaches zero.

When the error is acceptable, it will be used for local extrapolation. It will also be used to predict
the length of the next integration step. The method is described below.

Assume that the next step is of length DTNEXT = K*DTNOW. The factor K is determined in the
following way.

12

Since the integration error for small values of the step-size, H, is approximately proportional to H5,
the integration error for the i'th variable, Yi, at the next step is expected to be

 K5 * ERRORi

where ERRORi is the estimated error in Yi.

Therefore a local optimal choice for the factor K is found by choosing K as large as possible under
the restriction that

 K5 * ABS(ERRORi) <= ABS(ABSERRORi)+ABS(RELERRORi*Yi(t1))

holds for every i, that is, by selecting

 K = ERRORRATIO1/5

where ERRORRATIO denotes

 min(ABS(ABSERRORi)+ABS(RELERRRORi*Yi(t1))/ABS(ERRORi))
 i

However, selecting K so that the expected error is exactly equal to the maximum error allowed
may frequently cause the error to become too large so that the step have to be discarded. In order
to avoid this situation a more conservative approach is used. K is selected so that the expected
error is half the acceptable error, that is,

 K = (1/2*ERRORRATIO)1/5

In addition, K must be less than 2. That is to say, DTNEXT is at most twice DTNOW. Since
DTNEXT must be less than DTMAX, DTNEXT is computed as follows:

 DTNEXT:= MIN(MIN(2,K)*DTNOW , DTMAX)

The determination of K is performed by setting ERRORRATIO to (25)*2, which corresponds to a
doubling of the step-size. During a pass through the list of active VARIABLE-objects
ERRORRATIO is set to

 (ABS(ABSERRORi)+ABS(RELERRORi*Yi(t1)))/ABS(ERRORi)

each time a VARIABLE-object, Yi, satisfies the following inequality

 ABS(ABSERROR)+ABS(RELERROR*Yi(t1)) > ABS(ERRORi)*ERRORRATIO

By using this procedure arithmetic overflow is avoided in the computation of ERRORRATIO when
ERRORi is equal or close to zero.

13

2.2.1.3. The trapezoid method

The second-order trapezoid integration method is selected by setting the Boolean variable
TRAPEZ to true. At the same time the Boolean variables ADAMS and SIMPSON must be
false.

The trapezoid method is sometimes referred to as Improved Euler.

The trapezoid method is a fixed step-size method. As with the other fixed step-size methods the
step-size is usually kept at its maximum value, DTMAX, and there is no integration error check.

The mathematics of this method is given below. The integration step, DTNOW, is divided into two
equal sub-steps, each of width H = 1/2*DTNOW.

 A1 = H*f(t,y(t))
 A2 = H*f(t+h,y(t)+A1)
 y(t+DTNOW) = y(t)+(A1+A2)/2

Each step involves two function evaluations, that is, at each step the user-defined actions of all
active CONTINUOUS-objects are executed twice.

2.2.1.4. Adams' method

Adams' second-order fixed step-size integration method may be selected by setting the Boolean
variable ADAMS to true. At the same time the Boolean variables TRAPEZ and SIMPSON must
be false.

Below is given the mathematics of the method. The error criterion (RELERROR, ABSERROR) is
not used.

 DSH = 0.5*DTNOW*f(t-DTNOW,y(t-DTNOW))
 A1 = DTNOW*f(t,y(t))
 y(t+DTNOW) = 1.5*A1-DSH

Only one function evaluation is performed at each integration step. The method is a so-called im-
plicit method, which means that a function value of the previous step, f(t-DTNOW,y(t-
DTNOW)), is remembered and enters into the computation of the current step.

As can be seen, this computation scheme gives problems both immediately before and immedi-
ately after a discrete event, because the required old function value, f(t-DTNOW,y(t-
DTNOW)), has not been computed. In these cases, the trapezoid method is used (see Section
2.2.1.3).

14

2.2.1.5. Simpson's method

The user may select Simpson's fixed step-size integration method by setting the Boolean variable
SIMPSON to true.

The Boolean variable ADAMS must be false; otherwise, a combination of Adam's and Simpson's
method is used. This combination has not been analysed in detail. However, experiments have
shown promising results.

The following gives the mathematics of Simpson's method. The integration step, DTNOW, is di-
vided into two equal sub-steps, each of width H = 1/2*DTNOW. The error criteria, RELERROR
and ABSERROR, are not used.

 A1 = H*f(t,y(t))
 A2 = H*f(t+H,y(t)+A1)
 A3 = f(t+DTNOW,y(t)+(A1+A2)/2)
 y(t+DTNOW) = y(t)+(A1+4*A2+A3)/6

Each step involves three function evaluations.

2.2.1.6. The improved Heun method

The improved Heun integration method may be selected by setting the two Boolean variables
ADAMS and TRAPEZ to false. At the same time the Boolean variable SIMPSON must be
false.

The mathematics of this third-order fixed step-size method is shown below (see also Sections
2.2.1.3 and 2.2.1.4).

 DSH = 0.5*DTNOW*f(t-DTNOW,y(t-DTNOW))
 A1 = DTNOW*f(t,y(t))
 A2 = DTNOW*f(t+DTNOW,y(t)+1.5*A1-DSH)
 y(t+DTNOW) = y(t)+(A1+A2)/2

Each step involves two function evaluations.

2.2.2. Interpolation

Interpolation is used to determine efficiently the state of the model at times within an integration
step. The method is used both in connection with the time determination of state-events
(WAITUNTIL-events) and with the regular reporting of REPORTER-objects with a positive fre-
quency.

The interpolation is performed with polynomials in FRAC, where FRAC is the fraction
DT/DTFULL, that is, the actual time increment DT (=TIME-LASTTIME) divided by the length
of the full integration step, DTFULL.

15

When the RKE-method is used, a fifth-order polynomial

 P(FRAC) = c5*FRAC
5 + c4*FRAC

4 + c3*FRAC
3 +c2*FRAC

2 + c1*FRAC + c0

is established for each active VARIABLE-object on the basis of the object's STATE and RATE at
the three time points

 LASTTIME , LASTTIME+1/2*DTFULL , LASTTIME+DTFULL

By means of such an interpolation polynomial for each active VARIABLE-object, it is possible to
determine the model's state for TIME between LASTTIME and LASTTIME+DTFULL.

A VARIABLE-object's STATE at TIME=LASTTIME+FRAC*DTFULL (0<=FRAC<=1) is com-
puted by Horner's scheme:

 STATE:=((((c5*FRAC+c4)*FRAC+c3)*FRAC+c2)*FRAC+c1)*FRAC+c0

The six coefficients c0 through c5 are determined using the following results available from the
RKE-integration:

 OLDSTATE is STATE at LASTTIME
 OLDSTATE+DSH is STATE at LASTTIME+1/2*DTFULL
 OLDSTATE+DS is STATE at LASTTIME+DTFULL
 A1 is the value of H*RATE at LASTTIME
 A5 is the value of H*RATE at LASTTIME+1/2*DTFULL
 RATE is the value of RATE at LASTTIME+DTFULL
 (further, A4 is the estimated integration error over the full step)

The coefficients are determined as follows:

 c5 = 8*(-3*DS+A1+4*A5+H*RATE)
 c4 = 4*(4*DSH+13*DS-6*A1-20*A5-4*H*RATE)
 c3 = 2*(-16*DSH-17*DS+13*A1+32*A5+5*H*RATE)
 c2 = 16*DSH+7*DS-12*A1-16*A5-2*H*RATE
 c1 = 2*A1
 c0 = OLDSTATE

The VARIABLE-attributes A1, A2, A3, A4, A5 are used to contain the coefficients c1, c2, c3, c4,
c5, respectively.

When a fixed step-size integration method, instead of RKE, is used, the interpolation polynomial is
of third order:

 P(FRAC) = c3*FRAC
3 + c2*FRAC

2 + c1*FRAC + c0

It is established on the basis of the active VARIABLE-objects' STATE and RATE at the two time
points

 LASTTIME , LASTTIME+DTFULL

16

The four coefficients are determined as follows:

 c3 = A1+DTFULL*RATE-2*DS
 c2 = DS-A1-A3
 c1 = A1
 c0 = OLDSTATE

This interpolation method, sometimes called Hermite interpolation, is examined and described in
more detail in reference 3. It may be shown that the interpolation error is at least of the same order
as the local integration error.

2.2.3. Quasi double-precision summation

To reduce rounding errors in the step-wise increase of the model's state, a method called "quasi-
double precision summation" is used (ref. 4). The method is used both in updating the system
time, TIME, and in updating the STATE-values of the active VARIABLE-objects. The method is
especially useful when the simulation is carried out in many, relatively small, time-steps.

The summation procedure is illustrated in the algorithm outline below which shows how TIME, in
principle, is advanced between discrete events. The variable EPSTIME denotes a small correction
to the value of LASTTIME. In relation to LASTTIME, EPSTIME is so small that EPSTIME added
to LASTTIME gives LASTTIME as a result.

while TIME<NEXTEVENTTIME do
begin
 LASTTIME:=TIME;
 DTNOW:= ... ;

 take a step of size DTNOW: TIME:=LASTTIME+(EPSTIME+DTNOW);

 if EPSTIME+DTNOW<=EPPSTIME and TIME<NEXTEVENTTIME then
 ERROR("7: THE CURRENT TIME STEP IS TOO SMALL TO ADVANCE TIME");

 EPSTIME:=(EPSTIME+DTNOW)-(TIME-LASTTIME);
end;

2.3. State-events

The planned state-events are represented in an ordered list of so-called "wait-notices". When the
procedure WAITUNTIL is called, a wait-notice (an object of class WAITNOTICE) is inserted
into the list and the active discrete process, CURRENT, becomes passive.

The user may determine the order of notices of the list by setting the global variables
WAITPRIORITY and/or WAITPRIOR. The order of the notices is of significance only when there
is a possibility of "simultaneous" state-events, that is, state-events occurring at the same instant of
time. The monitor will examine the state-conditions in a sequence corresponding to the list order.
In the case where two or more state-events may take place at the same time, the monitor will cause
the state-event met first take place. Thereafter the list is examined from the beginning.

17

The class WAITNOTICE along with an outline of procedure WAITUNTIL is shown below.

 class WAITNOTICE(PROC,PRIORITY);
 ref(PROCESS) PROC; real PRORITY;
 begin ref(WAITNOTICE) PREDWAIT,SUCWAIT; end;

 1. procedure WAITUNTIL(B); name B; Boolean B;
 2. inspect new WAITNOTICE(CURRENT,WAPRIORITY) do
 3. begin
 4. rank this WAITNOTICE in the list of wait-notices;
 5. PASSIVATE;

 6. while PROC=/=CURRENT do
 7. if B then
 8. begin THEMONITOR.STATEEVENT:-PROC; RESUME(THEMONITOR); end
 9. else
 10. RESUME(if SUCWAIT=/=none then SUCWAIT.PROC else THEMONITOR);
 11. remove this WAITNOTICE from the list of wait-notices;
 12. end;

Each wait-notice has a reference to its waiting process, PROC, and a priority value, PRIORITY.

When procedure WAITUNTIL is called, a WAITNOTICE-object is created (line 2) with PROC
referencing the calling discrete process, CURRENT, and with PRIORITY equal to the current
value of the global real-variable WAITPRIORITY.

Next, the notice is inserted into the list of wait-notices (line 4). Its place in the list is determined
from its priority, namely before all notices having a lower priority value and after all notices hav-
ing a greater priority value. Thus the wait-notices are ranked in a high-value-first order (HVF).
The value of the global Boolean variable WAITPRIOR determines if the notice is to be inserted
before (WAITPRIOR is true) or after (WAITPRIOR is false) notices having the same priority
value (cf. activate P prior).

Thereupon, the calling discrete process becomes passive (line 5).

To examine if a state-condition has been fulfilled, the monitor sets the PROCESS-reference
STATEEVENT to none and RESUMEs the first waiting process (FIRSTWAIT.PROC). Every
time a waiting process is RESUMEd, it will examine its own state-condition B (line 7). If this con-
dition is true, then STATEEVENT is set to reference the process in question, PROC, and the
monitor is RESUMEd (line 8). If, on the other hand, the condition is false, then the process will
RESUME the next waiting process (SUCWAIT.PROC), if any; the last process RESUMEs the
monitor (line 10).

When the monitor is RESUMEd, the condition

 STATEEVENT=/=none

is true only if a waiting process, namely STATEEVENT, has its state-condition fulfilled.

18

The monitor's algorithm for state-event detection is sketched below.

 STATEEVENT:-none;
 if FIRSTWAIT=/=none then RESUME(FIRSTWAIT.PROC);
 if STATEEVENT=/=none
 then locate earliest state-event within current step;

If a waiting process is made active, either by the monitor because the state-event of the process
must take place, or by some other discrete process (using activate or reactivate), then the
wait-notice of the waiting process is removed from the list of wait-notices (line 11), and the proc-
ess resumes its actions after the WAITUNTIL call.

The event times of state-events are determined with an accuracy of DTMIN using interpolation
(see Section 2.2.2) and a binary search method (see Section 2.2.2). The monitor assure that no
state-event takes place unless its corresponding condition is true. Moreover, no state-event is al-
lowed to take place before all "simultaneous" time-events have occurred.

Generally, the following rules hold for "simultaneous" events:

 (1) Time-events take place prior to state-events
 (2) Time-events take place in their scheduled order
 (3) State-events take place according to their priorities (HVF)

These rules may sometimes be of importance to the user. Note that they do not restrict the model
formulation in any way since every time-event may be converted to a state-event.

2.4. Simulation control

A simulation is controlled by two PROCESS-objects, called CONTROLLER1 and CONTROLLER2,
which during the whole simulation period are represented successively in the event list of class
SIMULATION (SQS), that is,

CONTROLLER1.NEXTEV==CONTROLLER2.

It is the responsibility of CONTROLLER1 (an object of class CONTROL1) that the monitor be-
comes active after each discrete event.

CONTROLLER2 (an object of class CONTROL2) is used to assure that the user does not attempt to
call any event scheduling procedure (e.g., HOLD or PASSIVATE) between discrete events. All
discrete changes are namely restricted to the discrete processes and must take place at event times.
This control ensures that the RESUME-chains of (1) CONTINUOUS-objects, (2) REPORTER-ob-
jects and (3) PROCESS-objects calling WAITUNTIL, can not be destroyed by the user.

19

The two classes CONTROL1 and CONTROL2 are shown below.

 PROCESS class CONTROL1;
 while not THEMONITOR.ACTIVE do RESUME(THEMONITOR);

 PROCESS class CONTROL2;
 if THEMONITOR.CONTROLLER1.IDLE then
 begin
 if THEMONITOR.CONTROLLER1.TERMINATED
 then ERROR("17: ILLEGAL CALL OF (RE)ACTIVATE");
 ERROR("18: ILLEGAL CALL OF PASSIVATE (OR CANCEL(CURRENT))");
 end
 else ERROR("19: ILLEGAL CALL OF HOLD (OR REACTIVATE CURRENT)");

Each time CONTROLLER1 becomes active (CURRENT), it will RESUME the monitor (which is not
a PROCESS-object). If the monitor already has control, that is, if its attribute ACTIVE is true, then
the user must have made an error. In that case, CONTROLLER1 will terminate causing
CONTROLLER2 to become active at once. The simulation is then stopped with an error message.

CONTROLLER2 becomes active if one of the following actions takes place during execution of a
CONTINUOUS-object or a REPORTER-object, or as a side-effect of evaluating a state-condition
(the name parameter of procedure WAITUNTIL).

 1) HOLD or reactivate CURRENT,
 2) PASSIVATE or CANCEL(CURRENT), or
 3) activate P or reactivate P, where P is a PROCESS-object (direct activation).

CONTROLLER2 is able to distinguish between these three error cases merely by examining the
current state of CONTROLLER1:

re 1) CONTROLLER1 will be suspended which causes CONTROLLER2 to become active.
 Then the following assertion is true:

 not CONTROLLER1.IDLE

re 2) CONTROLLER1 will be passivated which causes CONTROLLER2 to become active.
 Then the following assertion is true:

 CONTROLLER1.IDLE and not CONTROLLER1.TERMINATED

re 3) An event of process P is inserted before CONTROLLER1. When CONTROLLER1
 again becomes active, the monitor's attribute ACTIVE is true which causes
 CONTROLLER1 to terminate and thus CONTROLLER2 to become active. Then the
 following assertion is true:

 CONTROLLER1.TERMINATED

The following algorithm outline shows how the monitor exploits CONTROLLER1 and
CONTROLLER2. Note that the monitor itself assures that the next future event scheduled by the
user is legal.

20

 LINK class MONITOR;
 begin
 real TIME,NEXTEVENTTIME;
 Boolean ACTIVE;
 ref(WAITNOTICE) FIRSTWAIT;
 ref(PROCESS) STATEEVENT,NEXTTIMEEVENT,CONTROLLER1,CONTROLLER2;

 CONTROLLER1:-new CONTROL1;
 CONTROLLER2:-new CONTROL2;
 reactivate CONTROLLER2 after MAIN;
 reactivate CONTROLLER1 before CONTROLLER2;
 DETACH;

 NEXTTIMEEVENT:-CONTROLLER2.NEXTEV;

 while NEXTTIMEEVENT=/=none or FIRSTWAIT=/=none do
 begin
 ACTIVE:=true;
 comment *** Immediately AFTER an event;
 .
 .
 .
 while TIME<NEXTEVENTTIME do take a step;
 .
 .
 .
 comment *** Immediately BEFORE an event;
 if STATEEVENT=/=none then
 begin
 reactivate STATEEVENT at TIME;
 NEXTTIMEEVENT:-STATEEVENT; STATEEVENT:-none;
 end;
 reactivate CONTROLLER2 after NEXTTIMEEVENT;

 if CONTROLLER1.NEXTEV=/=NEXTTIMEEVENT then
 begin
 if NEXTTIMEVENT.IDLE
 then ERROR("20: ILLEGAL CALL OF CANCEL");
 ERROR("17: ILLEGAL CALL OF (RE)ACTIVATE");
 end
 else
 if not TIME=NEXTTIMEEVENT.EVTIME
 then ERROR("17: ILLEGAL CALL OF (RE)ACTIVATE");

 ACTIVE:=false;
 reactivate CONTROLLER1 before CONTROLLER2;
 comment *** Now NEXTTIMEEVENT has taken place;
 NEXTTIMEEVENT:-CONTROLLER2.NEXTEV;
 end;

 ERROR("3: THERE ARE NO DISCRETE EVENTS SCHEDULED");
 end;

21

Moreover, between discrete events it is forbidden to call the CONTINUOUS- and REPORTER-pro-
cedures START, STOP, SETPRIORITY and SETFREQEUNCY, and the procedures WAITUNTIL,
CANCELSTATEEVENT and PAUSE. Any attempt to make such a procedure call will be detected
by the procedure in question in that the monitor's attribute ACTIVE is tested and found to be
true.

3. THE ATTRIBUTES OF COMBINEDSIMULATION

The class skeleton below shows all the attributes of class COMBINEDSIMULATION. The user-
attributes are printed in large type, whereas attributes which should be hidden from the user are
printed in small type.

 SIMULATION class COMBINEDSIMULATION;
 virtual: procedure SIMULATIONERROR,INTEGRATIONERROR;
 begin
 LINK class CONTINUOUS; virtual: procedure PRELUDE;
 begin
 procedure PRELUDE;;
 procedure START; ... ;
 procedure STOP; ... ;
 Boolean procedure ACTIVE; ... ;
 ref(CONTINUOUS) procedure SETPRIORITY(R); real R; ... ;
 real procedure PRIORITY; ... ;
 real pri;
 ref(CONTINUOUS) predcont; ref(LINK) succont;
 ...;
 end;

 LINK class VARIABLE(STATE); real STATE;
 begin
 real RATE;
 procedure START; ... ;
 procedure STOP; ... ;
 Boolean procedure ACTIVE; ... ;
 real procedure LASTSTATE; ... ;
 real RELERROR,ABSERROR;
 real oldstate,epsstate,ds,dsh,a1,a2,a3,a4,a5;
 ref(VARIABLE) predvar,sucvar;
 end;

 LINK class REPORTER; virtual: procedure PRELUDE;
 begin
 procedure PRELUDE;;
 procedure START; ... ;
 procedure STOP; ... ;
 Boolean procedure ACTIVE; ... ;
 ref(REPORTER) procedure SETFREQUENCY(F); real F; ... ;
 real procedure FREQUENCY; ... ;
 real procedure REPORTTIME; ... ;
 real frq,reptime;
 ref(REPORTER) predrep; ref(LINK) sucrep;
 ...;
 end;

22

 procedure WAITUNTIL(B); name B; Boolean B; ... ;
 real WAITPRIORITY;
 Boolean WAITPRIOR;
 procedure CANCELSTATEEVENT(P); ref(PROCESS) P; ... ;

 real DTMIN,DTMAX;
 real procedure TIME; ... ;
 real procedure LASTTIME; ... ;
 real procedure DT; ... ;

 real MAXRELERROR,MAXABSERROR;
 Boolean EULER,ADAMS,TRAPEZ,SIMPSON;

 procedure PAUSE; ... ;
 ref(PROCESS) procedure NEXTTIMEEVENT(P); ref(PROCESS) P; ... ;
 procedure INTEGRATIONERROR; ... ;
 ref(VARIABLE) procedure ERRORVARIABLE; ... ;
 Boolean REPEATSTEP;
 procedure SIMULATIONERROR;
 ref(CONTINUOUS) procedure ERRORCONTINUOUS; ... ;
 ref(REPORTER) procedure ERRORREPORTER; ... ;

 real procedure maxreal; ... ;
 procedure abort; ... ;
 procedure error(message); value message; text message; ... ;

 class waitnotice(proc,priority);
 ref(PROCESS) proc; real priority;
 begin ref(waitnotice) predwait, sucwait; end;

 PROCESS class control1; ... ;

 PROCESS class control2; ... ;

 LINK class monitor;
 begin
 real time,lasttime,epstime,nexttime,nexteventtime,
 nextreporttime,dt,dtnow,dtnext,dtfull,dtlower,
 h,frac,errorratio,temp;
 Boolean active;
 ref(CONTINUOUS) firstcont,lastcont;
 ref(VARIABLE) firstvar,var;
 ref(REPORTER) firstposreporter,firstzeroreporter,
 firstnegreporter;
 ref(waitnotice) firstwait,lastwait;
 ref(PROCESS) stateevent,nextstateevent,nexttimeevent,
 controller1,controller2;
 ref(CONTINUOUS) errorcontinuous;
 ref(VARIABLE) errorvariable;
 ref(REPORTER) errorreporter;
 ...;
 end;

 ref(monitor) themonitor;

 themonitor:-new monitor;
 inner;
 stopsimulation:;
 end;

23

3.1 The SIMULATION-prefix

COMBINEDSIMULATION is a subclass of SIMULA's system-defined class for discrete event
simulation, class SIMULATION.

All of class SIMULATION's properties are at the user's disposal. Thus class PROCESS may be
used in the familiar manner for the description of discrete processes of a model.

3.2. Class CONTINUOUS

Class CONTINUOUS is used to describe the continuous processes of a model.

The continuous state changes are described in one or more subclasses of class CONTINUOUS, so
that objects of these subclasses through their actions compute the current values or derivatives of
state variables. It is the user's responsibility to make sure that the sequence of these computations
is correct so that the quantities involved always reflect the current state of the model. Sometimes
the sequence may be decisive for correct model behaviour. This applies for example when a
VARIABLE-object's RATE appears on the right-hand side of an assignment statement. Execution
of the active continuous processes is governed by a sequence of decreasing priorities (high-value-
first). Processes with equal priorities are executed according to when they became active (earliest-
first).

Only continuous changes may be described with class CONTINUOUS. All discrete state changes
should be handled by discrete processes (PROCESS-objects).

24

A skeleton of class CONTINUOUS is shown below.

 LINK class CONTINUOUS;
 virtual: procedure PRELUDE;
 begin
 procedure PRELUDE;;

 procedure START; ... ;

 procedure STOP; ... ;

 Boolean procedure ACTIVE; ACTIVE:=SUCCONT=/=none;

 ref(CONTINUOUS) procedure SETPRIORITY(R); real R;
 begin
 PRI:=R;
 if ACTIVE then begin START; STOP; end;
 SETPRIORITY:-this CONTINUOUS;
 end;

 real procedure PRIORITY; PRIORITY:=PRI;

 real PRI;

 ref(CONTINUOUS) PREDCONT; ref(LINK) SUCCONT;

 PRELUDE;
 DETACH;
 EXECUTE:;
 inner;
 RESUME(SUCCONT);
 goto EXECUTE;
 end;

The active continuous processes are placed in a list controlled by the monitor. When the monitor
RESUMEs the first process of the list (FIRSTCONT), the user-defined actions (inner) of all active
continuous processes will be executed. Each CONTINUOUS-object will namely, after having exe-
cuted its own user-defined actions, RESUME its successor in the list (SUCCONT), and the last ob-
ject of the list (LASTCONT) will RESUME the monitor (because LASTCONT.SUCCONT==
THEMONITOR).

3.2.1. The LINK-prefix

The LINK-property is at the user's disposal. The CONTINUOUS-objects are placed in the list of
active continuous processes independently of their LINK-property.

25

3.2.2. Procedure PRELUDE

The procedure PRELUDE, defined with an empty procedure-body in class CONTINUOUS, is
called at generation of each CONTINUOUS-object.

The procedure is defined virtual and therefore can be redefined by the user in subclasses of class
CONTINUOUS.

3.2.3. Procedure START

START inserts the object into the list of active continuous processes. Its place in the list is deter-
mined by the priority value of the object, PRIORITY (high-value-first). If there are other objects
with the same priority value, then the object in question is inserted after the others.

Calling START when the object is already active has no effect.

Note that each object is inactive until its START-procedure is called.

START may only be called by a discrete process. Violating this rule leads to the error message

 ILLEGAL CALL OF START (CLASS CONTINUOUS)

after which the simulation is stopped.

3.2.4. Procedure STOP

STOP removes the object from the list of active continuous processes.

Calling STOP has no effect unless the object is active.

STOP may only be called by a discrete process. Violating this rule leads to the error message

 ILLEGAL CALL OF STOP (CLASS CONTINUOUS)

after which the simulation is stopped.

3.2.5. Boolean procedure ACTIVE

ACTIVE returns the value true if the object is in the list of active continuous processes; other-
wise, false.

Since the monitor is the successor of the last object in the list (LASTCONT.SUCCONT==
THEMONITOR), and an object which is not in the list has no successor (SUCCONT==none),
ACTIVE is always equivalent to the condition

 SUCCONT=/=none

26

3.2.6. Procedure SETPRIORITY(R); real R

The list of active continuous processes is ordered according to decreasing priority values (high-
value-first). Calling SETPRIORITY(R) sets the object's priority to R.

The priority may be changed as often as necessary. Each continuous process has priority zero until
its SETPRIORITY-procedure is called.

If the object is active at the time of the call, then it probably should be given a new place in the
list. In this case, SETPRIORITY calls STOP followed by START.

SETPRIORITY may be called not only when the object is active, but also when it is inactive.
However, SETPRIORITY may only be called by a discrete process. Violating this rule leads to
the error message

 ILLEGAL CALL OF SETPRIORITY (CLASS CONTINUOUS)

after which the simulation is stopped.

Actually, SETPRIORITY is a ref(CONTINUOUS)-procedure that returns a reference to this
CONTINUOUS-object. This allows the user to write as follows:

 new DERIVATIVES.SETPRIORITY(2).START

where DERIVATIVES is a subclass of class CONTINUOUS.

3.2.7. Real procedure PRIORITY

PRIORITY returns the current value of PRI (see below).

3.2.8. Real PRI

PRI denotes the current priority value of the CONTINUOUS-object.

The user has access to the value of PRI through the procedure PRIORITY and may assign a value
to PRI by procedure SETPRIORITY.

The initial value of PRI is zero.

27

3.2.9. Ref(CONTINUOUS) PREDCONT; ref(LINK) SUCCONT

PREDCONT and SUCCONT denote the object's predecessor and successor in the list of active con-
tinuous processes.

The first object of the list has PREDCONT==none. The last object has SUCCONT==
THEMONITOR (the monitor is a LINK-object). For objects not in the list PREDCONT==
SUCCONT==none.

3.3. Class VARIABLE

Class VARIABLE is used to represent state variables that vary between discrete events according
to ordinary first-order differential equations and/or difference equations. These equations are ex-
pressed in subclasses of class CONTINUOUS.

A skeleton of class VARIABLE is shown below.

 LINK class VARIABLE(STATE); real STATE;
 begin
 real RATE;

 procedure START; ... ;

 procedure STOP; ... ;

 Boolean procedure ACTIVE; ACTIVE:=PREDVAR=/=none;

 real procedure LASTSTATE; LASTSTATE:=OLDSTATE;

 real RELERROR,ABSERROR;

 real OLDSTATE,EPSSTATE,DS,DSH,A1,A2,A3,A4,A5;

 ref(VARIABLE) PREDVAR,SUCVAR;

 RELERROR:=MAXRELERROR; ABSERROR:=MAXABSERROR;
 end;

The only actions of the class consist of assigning the attributes RELERROR and ABSERROR the
value of MAXRELERROR and MAXABSERROR, respectively.

Active VARIABLE-objects are held in a list controlled by the monitor. Between discrete events
the STATEs of these objects is updated by the monitor as defined by the active continuous proc-
esses.

28

The continuous variation may be expressed either as first-order "differential equation", for exam-
ple,

 V.RATE := 2+TIME*V.STATE

or as first-order "difference equation", for example,

 V.STATE := V.LASTSTATE+DT*(2+LASTTIME*V.LASTSTATE)

where V is a VARIABLE-object.

3.3.1. The LINK-prefix

The LINK-property is at the user's disposal. The VARIABLE-objects are placed in the list of ac-
tive VARIABLE-objects independently of their LINK-property.

3.3.2. Real STATE

STATE denotes the current value of the VARIABLE-object in question.

The initial value is passed as a parameter at object generation.

When the object is in the list of active VARIABLE-objects, the monitor will "continuously"
change the object's STATE according to the value of its RATE.

3.3.3. Real RATE

RATE denotes the derivative of STATE with respect to TIME.

RATE is to be computed by the user by means of active CONTINUOUS-objects. When RATE is not
computed in any CONTINUOUS-object, its value is equal to zero.

3.3.4. Procedure START

START inserts the object foremost in the list of active VARIABLE-objects.

Calling START when the object is already active has no effect.

Note that each VARIABLE-object is inactive until its START-procedure has been called. Note also
that it is allowed to call START between discrete events, for example in connection with a call of
the virtual procedure INTEGRATIONERROR (Section 3.17).

29

3.3.5. Procedure STOP

STOP removes the object from the list of active VARIABLE-objects and sets the object's RATE to
zero.

Calling STOP has no effect unless the object is active.

Note that it is allowed to call STOP between discrete events, for example in connection with a call
of the virtual procedure INTEGRATIONERROR (Section 3.17).

3.3.6. Boolean procedure ACTIVE

ACTIVE returns the value true if the object is in the list of active VARIABLE-objects; other-
wise, false.

Since the predecessor of the first object in the list is defined as the object itself (FIRSTVAR.
PREDVAR==FIRSTVAR), and an object not in the list has no predecessor (PREDVAR==none),
ACTIVE is always equivalent to the condition

 PREDVAR=/=none

3.3.7. Real procedure LASTSTATE

LASTSTATE returns the value of OLDSTATE, that is, the value of STATE at the starting point of
the current step (see Section 3.3.9).

LASTSTATE may be used to describe continuous changes defined by difference equations.

3.3.8. Real RELERROR, ABSERROR

RELERROR and ABSERROR may be used by the user to set an upper bound for the relative and
the absolute integration error allowed in each integration step.

When the RKE-method is used, the monitor at each step will assure that, for each active
VARIABLE-object, the integration error is less than

 ABS(ABSERROR) + ABS(RELERROR*m)

where m denotes the value of STATE in the middle of the current integration step (that is, at
OLDTIME+1/2*DTFULL). If this condition can not be fulfilled, not even with the minimum
step-size, DTMIN, and if the user has not redefined the virtual procedure INTEGRATIONERROR
(Section 3.17), then the following error message is output

 THE REQUESTED INTEGRATION ACCURACY CAN NOT BE ACHIEVED

after which the simulation is stopped.

30

When a fixed step-size integration method is used, the values of RELERROR and ABSERROR are
irrelevant.

Note that, at the generation of a VARIABLE-object, its RELERROR and ABSERROR are automati-
cally assigned the values of the two global variables MAXRELERROR and MAXABSERROR, re-
spectively.

3.3.9. Real OLDSTATE

When the VARIABLE-object is active, OLDSTATE holds the value of STATE at the starting point
of the current step, that is, at OLDTIME. When the object is inactive, the value of OLDSTATE will
not be updated.

The user has access to the value of OLDSTATE through the procedure LASTSTATE (Section
3.3.7).

3.3.10. Real EPSSTATE

EPSSTATE is used in connection with the quasi-double precision summation of STATE-incre-
ments, DS, and denotes a small correction to OLDSTATE. The method is described in Section
2.2.3.

3.3.11. Real DS

DS is the increment of STATE for the current integration step (DTNOW). The following assertion
holds

 STATE = OLDSTATE+(EPSSTATE+DS)

During RKE-integration DS is also used for storing intermediate results.

3.3.12. Real DSH

During RKE-integration DSH is used to hold increment of STATE corresponding to half the cur-
rent integration step (that is, 1/2*DTNOW).

If Adams' implicit integration method is applied, DSH is used to store the value of STATE at the
starting point of the previous step (that is, at OLDTIME-DTNOW).

3.3.13. Real A1, A2, A3, A4, A5

The variables A1 through A5 are auxiliary variables used by the monitor for both integration (see
Section 2.2.1) and interpolation (see Section 2.2.2).

31

3.3.14. Ref(VARIABLE) PREDVAR, SUCVAR

PREDVAR and SUCVAR denote the object's predecessor and successor, respectively, in the list of
active VARIABLE-objects. When the object is not in this list, PREDVAR and SUCVAR both have
the value none.

If the object is the first object of the list, then PREDVAR points to the object itself, that is,
FIRSTVAR.PREDVAR==FIRSTVAR. The last object of the list has no successor, SUCVAR==
none.

During RKE-integration the monitor may, for the sake of efficiency, change the list order. When
the step-size is too large to achieve the user-requested accuracy for a VARIABLE-object, the ob-
ject in question will be moved to the front of the list.

3.4. Class REPORTER

Class REPORTER may be used for reporting purposes. In one or more subclasses of class
REPORTER the user may define actions for gathering information about the model's behaviour.

Each object of class REPORTER may automatically have its user-defined actions executed with a
specified frequency, namely either (1) at uniformly spaced intervals, (2) after each time step, or
(3) at event times.

Note that all state changes should be restricted to PROCESS- and CONTINUOUS-objects. Class
REPORTER must not be used for any kind of state change.

32

A skeleton of class REPORTER is shown below.

 LINK class REPORTER;
 virtual: procedure PRELUDE;
 begin
 procedure PRELUDE;;

 procedure START; ... ;

 procedure STOP; ... ;

 Boolean procedure ACTIVE; ACTIVE:=SUCREP=/=none;

 ref(REPORTER) procedure SETFREQUENCY(F); real F;
 begin
 if not ACTIVE or SIGN(FRQ)=SIGN(F) then
 begin REPTIME:=TIME; FRQ:=F; end
 else begin STOP; FRQ:=F; START; end;
 SETFREQUENCY:-this REPORTER;
 end;

 real procedure FREQUENCY; FREQUENCY:=FRQ;

 real procedure REPORTTIME; REPORTTIME:=REPTIME;

 real FRQ,REPTIME;

 ref(REPORTER) PREDREP,SUCREP;

 PRELUDE;
 DETACH;
 EXECUTE:;
 inner;
 ...;
 RESUME(SUCREP);
 ...;
 goto EXECUTE;
 end;

According to its frequency - positive, zero, or negative - an active REPORTER-object is in one of
three lists controlled by the monitor. When the monitor RESUMEs the first object in one of these
lists, the user-defined actions (inner) of all the list's REPORTER-objects are executed. Each
REPORTER-object will namely, after having executed its own user-defined actions, RESUME its
successor in the list, SUCREP, an the last object will RESUME the monitor (because its SUCREP
==THEMONITOR).

Each REPORTER-object assures that its user-defined actions are executed only as determined by
the specified frequency, and that the frequency is not so small that time "stands still".

33

3.4.1. The LINK-prefix

The LINK-property is at the user's disposal. The REPORTER-objects are placed in one of the lists
of active REPORTER-objects independently of their LINK-property.

3.4.2. Procedure PRELUDE

The procedure PRELUDE, defined in class CONTINUOUS with an empty procedure-body, is
called at generation of each REPORTER-object.

The procedure is defined virtual and therefore can be redefined by the user in subclasses of class
REPORTER.

3.4.3. Procedure START

START inserts the object in one of the three lists of active REPORTER-objects. The list the object
is placed in is determined by the value of FREQUENCY - positive, zero, or negative. The first ob-
ject of the three lists is denoted FIRSTPOSREPORTER, FIRSTZEROREPORTER and
FIRSTNEGREPORTER, respectively.

Calling START when the object is already active has no effect.

Note that each object is inactive until its START-procedure is called.

START may only be called by a discrete process. Violating this rule leads to the error message

 ILLEGAL CALL OF START (CLASS REPORTER)

after which the simulation is stopped.

3.4.4. Procedure STOP

STOP removes the object from the list of active REPORTER-objects of which the object is a
member.

Calling STOP has no effect unless the object is active.

STOP may only be called by a discrete process. Violating this rule leads to the error message

 ILLEGAL CALL OF STOP (CLASS REPORTER)

after which the simulation is stopped.

34

3.4.5. Boolean procedure ACTIVE

ACTIVE returns the value true if the object is a member of one of the three lists of active
REPORTER-objects; otherwise, false.

Since the monitor is the successor of the last object in each of these lists (SUCREP==
THEMONITOR), and an object which is not in the list has no successor (SUCREP==none),
ACTIVE is always equivalent to the condition

 SUCREP=/=none.

3.4.6. Procedure SETFREQUENCY(F); real F

SETFREQUENCY(F) sets the object's frequency to F (for the meaning of F, see Section 3.4.9).

The frequency may be changed as often as necessary. The frequency of each REPORTER-object is
zero until its SETFREQUENCY-procedure is called.

If the object is active and has to be moved to another list (that is, if ACTIVE and SIGN(F)=
SIGN(FREQUENCY)), then SETFREQUENCY calls STOP followed by START.

SETFREQUENCY may be called not only when the object is active, but also when it is inactive.
However, SETFREQUENCY may only be called by a discrete process. Violating this rule leads to
the error message

 ILLEGAL CALL OF SETFREQUENCY (CLASS REPORTER)

after which the simulation is stopped.

Actually, SETFREQUENCY is a ref(REPORTER)-procedure that returns a reference to this
REPORTER-object. This allows the user to write as follows:

 new PLOTTER.SETFREQUENCY(0.1).START

where PLOTTER is a subclass of class REPORTER.

3.4.7. Real procedure FREQUENCY

FREQUENCY returns the value of FRQ, the frequency of the REPORTER-object (see Section
3.4.9).

3.4.8. Real procedure REPORTTIME

REPORTTIME returns the value of REPTIME (see Section 3.4.10).

35

3.4.9. Real FRQ

FRQ is the current frequency of the REPORTER-object.

The meaning of FRQ is explained by the following:

 FRQ>0: Execution takes place at uniformly spaced intervals and also at event times

 FRQ=0: Execution takes place at the end of each time step (which includes event times)

FRQ<0: Execution takes place only at event times

When a discrete event takes place, all active REPORTER-objects, regardless of frequency, have
their user-defined actions executed twice at the event time, namely both immediately before and
immediately after the event.

The initial value of FRQ is zero.

The user has access to the value of FRQ through the procedure FREQUENCY and may assign a
value to FRQ with the procedure SETFREQUENCY.

3.4.10. Real REPTIME

For an active REPORTER-object with a positive frequency REPTIME denotes the time when the
next regular execution of the object's user-defined actions will take place. Executions due to dis-
crete event occurrences are not taken into account.

REPTIME may be viewed as a counterpart to the PROCESS-attribute EVTIME.

The user has access to the value of REPTIME through the procedure REPORTTIME.

If the object is inactive, the value of REPTIME is of no interest to the user and is not updated.

The initial value of REPTIME is zero. By calling START or SETFREQUENCY, REPTIME is set to
TIME. The active REPORTER-objects themselves are responsible for updating REPTIME and for
the determination of the earliest regular execution time, NEXTREPORTTIME. If during updating
of REPTIME it is discovered that FREQUENCY is so small that the addition REPTIME +
FREQUENCY gives REPTIME as a result, then the simulation is stopped with the following error
message

 FREQUENCY IS TOO SMALL TO ADVANCE TIME

36

3.4.11. Ref(REPORTER) PREDREP,SUCREP

PREDREP and SUCREP are the object's predecessor and successor, respectively, in the relevant
list of active REPORTER-objects.

PREDREP and SUCREP both have the value none when the object is not a member in any of the
three lists of active REPORTER-objects.

3.5. Procedure WAITUNTIL(B); name B; Boolean B

The procedure WAITUNTIL may be used to define state-events, that is, events whose time of oc-
currence is dependent upon a given state-condition.

WAITUNTIL(B), where B is a Boolean expression of arbitrary complexity, causes the active dis-
crete process, CURRENT, to become passive (IDLE) over a period which is planned to last until B
evaluates to true. However, this passive period will end sooner if the waiting process is activated
by another discrete process.

It is possible to schedule a time-event for a waiting process, so that the process has simultaneously
a state-event and a time-event scheduled (e.g., activate P delay 10, where P is a waiting
PROCESS-object). When the first of these events takes place, the other one will be annulled.

A state-event takes place as soon as the corresponding state-condition is fulfilled. The event time
will be determined with an accuracy of DTMIN (see Section 2.3).

Discrete processes operate in quasi-parallel, which means that "simultaneous" events occur in a
certain order. With regard to simultaneous events, the following rules apply:

 (1) Time-events take place before state-events

(2) Time-events take place in their scheduled order, that is to say, in the same sequence as
 they are represented in class SIMULATION's list of event notices (SQS)

(3) State-events take place in accordance with their priorities (WAITPRIORITY, high-
 value-first).

A state-event takes place only if its condition is true. Notice that the occurrence of a simultaneous
event can change the condition's truth value.

WAITUNTIL must only be called by a discrete process. Violating this rule leads to the error mes-
sage

 ILLEGAL CALL OF WAITUNTIL

after which the simulation is stopped.

37

3.6. Real WAITPRIORITY

The global real-variable WAITPRIORITY may be used to give a state-event a priority.

When procedure WAITUNTIL is called, the state-event in question is assigned a priority equal to
the current value of WAITPRIORITY.

The priority of a state-event has importance only if two or more state-events can take place si-
multaneously. In this case, the state-event having the highest priority will take place first.

WAITPRIORITY will only changed by the user. Initially its value is zero.

3.7. Boolean WAITPRIOR

The global Boolean-variable WAITPRIOR may be used to rank state-events having equal priority.

When procedure WAITUNTIL is called, the value of WAITPRIOR determines if the state-event in
question is to be ranked higher (WAITPRIOR is true), or lower (WAITPRIOR is false) than
all planned state-events having the same priority (cf. the construction activate P at T
prior).

WAITPRIOR will only changed by the user. Initially its value is false. WAITPRIOR will only be
changed

3.8. Procedure CANCELSTATEEVENT(P); ref(PROCESS) P

CANCELSTATEEVENT may be used to cancel a planned state-event.

Calling CANCELSTATEEVENT(P) causes the planned state-event of the discrete process P, if
any, to be annulled (cf. the procedure CANCEL of class SIMULATION).

First, CANCELSTATEEVENT determines if the process P has any state-event associated with it,
that is, if in the list of wait-notices there exists one notice having PROC==P (see Section 3.26). In
this case, the notice in question is removed from the list. By letting the predecessor and the suc-
cessor of the removed notice be the notice itself (PREDWAIT==SUCWAIT==this
WAITNOTICE), it is assured that no problems arise when the WAITUNTIL-procedure attempts to
remove the notice from the list later on.

Calling CANCELSTATEEVENT(P) is without effect if P==none, or P has not any planned state-
events.

38

3.9. Real DTMIN, DTMAX

During the simulation time advances in steps of variable size. The step-size, among other things, is
governed by the event times and the user's requirements regarding integration accuracy. DTMIN
and DTMAX are used to specify the minimum and the maximum allowable step-size, respectively.

In general, step-size will vary within these bounds. There are the following exceptions, however:

(1) A time step less than DTMIN can be taken in order to assure that a time-event is not
 passed. In addition, the length of the first step taken after an event is equal to zero.

(2) A time step greater than DTMAX can be taken whenever there are neither planned
 state-events nor active continuous processes. In this case, step-size is as large as
 possible without passing a time-event.

The first trial step of a simulation is of length DTMAX. In using a fixed step-size integration
method the step-size remains constant at DTMAX, unless an event occurs within a step.

Eventual active REPORTER-objects have no influence on the integration step-size. The state of the
model at the regular reporting times is determined by interpolation (see Section 2.2.2).

Before a step is completed, the conditions for planned state-events are examined at the end of the
step. If a condition is met, a more precise time determination is made, so that the earliest state-
event is found within the step. The step-length is reduced accordingly. Observe that a state-event
can be passed unnoticed, if DTMAX is so large that the corresponding condition is met within a
step, but not at its endpoint.

The time of a state-event's occurrence is determined (by binary search) with an accuracy of
DTMIN. One may set DTMIN to zero. In this case, state-events will be time-determined with the
best accuracy obtainable on the computer in question.

DTMIN and DTMAX are two global variables which initially both have the value zero.

Assignment of their values should be made such that 0<=DTMIN<=DTMAX. If this is not the case,
the simulation is stopped with one of the following error messages

 DTMIN<0

 DTMIN>DTMAX

These errors can only be discovered immediately after an event, or immediately after a call of the
virtual procedure INTEGRATIONERROR (Section 3.17).

If the time step ever becomes so small that time "stands still", the error message

 THE CURRENT TIME STEP IS TOO SMALL TO ADVANCE TIME

is output, after which the simulation is stopped.

39

3.10. Real procedure TIME

TIME returns the value of THEMONITOR.TIME, that is, the current model time.

3.11. Real procedure LASTTIME

LASTTIME returns the value of THEMONITOR.LASTTIME, that is, the starting point of the cur-
rent time step.

The value of LASTTIME may be used, for example, to describe first-order difference equations
(see Section 3.3).

3.12. Real procedure DT

DT returns the value of THEMONITOR.DT, that is, the current time increment, TIME-
LASTTIME.

The value of DT may be used, for example, to describe first-order difference equations.

Note that DT is equal to zero immediately after the occurrence of an event, so that division by DT
should be avoided.

3.13. Real MAXRELERROR, MAXABSERROR

When a VARIABLE-object is generated the upper bound for the relative and the absolute error is
set to the current value of MAXRELERROR and MAXABSERROR, respectively.

MAXRELERROR and MAXABSERROR are two global variables which initially both have the value
zero.

Their values have meaning only when VARIABLE-objects are generated (see Section 3.3.8).

3.14. Boolean EULER, TRAPEZ, ADAMS, SIMPSON

Unless specified otherwise by the user, Runge-Kutta-England's fourth-order variable step-size
integration method, RKE, is used. However, by setting one or more of the Boolean variables
EULER, TRAPEZ, ADAMS or SIMPSON to true, an alternative integration method may be se-
lected (see Section 2.2.1).

In contrast to RKE, the other integration methods operate with constant time steps and without
consideration of user-specified error bounds. The step-size with these methods is equal to DTMAX,
unless, of course, this causes an event to be bypassed.

40

When the continuous parts of the model are defined exclusively by difference equations, EULER,
for the sake of efficiency, should be set to true. This causes namely the user-defined actions of
the active continuous processes to be executed only once at each time step (in contrast to 9 times
with RKE).

EULER, TRAPEZ, ADAMS and SIMPSON are global variables which initially are false. Their val-
ues may be changed at any time during the simulation.

3.15. Procedure PAUSE

The actions of the active continuous processes will, as a rule, be executed immediately after each
event. Through the use of procedure PAUSE a so-called "event internal" execution of the actions
of all active continuous processes can be achieved. Such a call causes the user-defined actions of
all active CONTINUOUS-objects together with the user-defined actions of all active REPORTER-
objects to be executed instantaneously (DT=0). Afterwards, the discrete process which called
PAUSE resumes its actions.

PAUSE may only be called by a discrete process. Violating this rule leads to the error message

 ILLEGAL CALL OF PAUSE

after which the simulation is stopped.

The desired effect of PAUSE is achieved by causing the monitor to become active (CONTROLLER1
==CURRENT).

3.16. ref(PROCESS) procedure NEXTTIMEEVENT(P); ref(PROCESS) P

The simulation is automatically controlled by two PROCESS-objects, CONTROLLER1 and
CONTROLLER2, which during the whole simulation are always present in class SIMULATION's
list of event notices, SQS (see Section 2.4).

In order to avoid unintentional referencing these two PROCESS-objects, the user should not use
the PROCESS-attribute NEXTEV. In stead, it is strongly recommended that procedure
NEXTTIMEEVENT be used.

NEXTTIMEEVENT "hides" CONTROLLER1 and CONTROLLER2 from the user, but in other re-
spects it has the same effect as NEXTEV.

The call NEXTTIMEEVENT(P) with P==none returns the value none.

41

3.17. Procedure INTEGRATIONERROR

The procedure INTEGRATIONERROR is automatically called if the requested integration accu-
racy (RELERROR and ABSERROR) can not be achieved without taking a step smaller than
DTMIN.

INTEGRATIONERROR stops the simulation with the following error message

 THE REQUESTED INTEGRATION ACCURACY CAN NOT BE ACHIEVED

However, the procedure is defined virtual in class COMBINEDSIMULATION and therefore can be
redefined by the user. Thus the user may determine the course of action to be taken in the cases
where the accuracy requirements can not be met. The user may, for example, (1) choose to de-
crease DTMIN, (2) slacken the accuracy requirements, (3) change from RKE-integration to one of
the fixed step-size integration methods, (4) output a warning, or (5) totally ignore the error (by
defining INTEGRATIONERROR with an empty procedure-body).

In connection with a redefinition of INTEGRATIONERROR the procedure ERRORVARIABLE
(Section 3.18) and the Boolean procedure REPEATSTEP (Section 3.19) might be useful.

3.18. Ref(VARIABLE) ERRORVARIABLE

In the virtual procedure INTEGRATIONERROR (Section 3.17), the user is able to determine
which VARIABLE-object gave rise to the call. ERRORVARIABLE returns a reference to the
VARIABLE-object in question.

When INTEGRATIONERROR is not called, ERRORVARIABLE returns none.

ERRORVARIABLE returns the value of THEMONITOR.ERRORVARIABLE (Section 3.18.28).

3.19. Boolean REPEATSTEP

In connection with a redefinition of the virtual procedure INTEGRATIONERROR (Section 3.17),
the user is able to specify that the actual integration step must be repeated after a call of the proce-
dure. If REPEATSTEP is true, the step is repeated from its beginning; otherwise, the step is
completed even though INTEGRATIONERROR has been called.

REPEATSTEP is a global Boolean variable which initially has the value false. Its value may be
changed at any time during the simulation.

42

3.20. Procedure SIMULATIONERROR

If the simulation is to be stopped due to the occurrence of an error, the procedure
SIMULATIONERROR is called just prior to termination. A complete list of fatal errors can be
found in Appendix A.

SIMULATIONERROR prints the values DT, DTMIN and DTMAX.

However, the procedure is defined virtual in class COMBINEDSIMULATION and therefore may
be redefined by the user. The user may, for example, use the procedure for printing information
about the model's state at the time of the error, or close possibly open files. In connection with a
redefinition of procedure SIMULATIONERROR the procedures ERRORVARIABLE (Section 3.18),
ERRORCONTINUOUS (Section 3.21) and ERRORREPORTER (Section 3.22) might be useful.

3.21. Ref(CONTINUOUS) procedure ERRORCONTINUOUS

In the virtual procedure SIMULATIONERROR (Section 3.20) the user is able by means of proce-
dure ERRORCONTINUOUS to determine if it was a CONTINUOUS-object that gave rise to the
error. If this was the case (ERRORCONTINUOUS=/=none), then ERRORCONTINUOUS returns
a reference to the CONTINUOUS-object in question.

ERRORCONTINUOUS returns the value of THEMONITOR.ERRORCONTINUOUS (Section
3.29.27).

3.21. Ref(REPORTER) procedure ERRORREPORTER

In the virtual procedure SIMULATIONERROR (Section 3.20) the user is able by means of proce-
dure ERRORREPORTER to determine if it was a REPORTER-object that gave rise to the error. If
this was the case (ERRORREPORTER=/=none), then ERRORREPORTER returns a reference to
the REPORTER-object in question.

ERRORREPORTER returns the value of THEMONITOR.ERRORREPORTER (Section 3.29.28).

3.22. Real procedure MAXREAL

MAXREAL returns the largest real-value that can be represented in the computer.

MAXREAL is the only machine dependent part of class COMBINEDSIMULATION. When the class
is installed on a computer, the procedure MAXREAL probably must be rewritten.

The monitor uses the value of MAXREAL when there are no time-events scheduled. In that case,
NEXTEVENTTIME=MAXREAL.

43

3.24. Procedure ABORT

The procedure ABORT is called if a fatal error is detected during the simulation. This causes the
simulation to be stopped at once.

Unfortunately, SIMULA has no built-in facility for aborting a program. A solution would seem to
be a jump to a label, say STOPSIMULATION, placed last in the main program. However, such a
jump is not legal when the main program is inactive and would cause a runtime-error.

Nevertheless, for lack of a better method, this solution is used anyway and has been programmed
with

 inner;
 STOPSIMULATION:;

as the last statements of class COMBINEDSIMULATION.

3.25. Procedure ERROR(MESSAGE); value MESSAGE; text MESSAGE

Procedure ERROR is called when an error is detected which is so serious that the simulation must
be stopped. A complete list of such errors can be found in Appendix A.

First, an error message is printed on the form

 ***COMBINEDSIMULATION
 ***ERROR m
 ***ENCOUNTERED AT TIME t

where m is the text parameter MESSAGE, and t is the current value of TIME.

Next, the virtual procedure SIMULATIONERROR (Section 3.20) is called, and finally, the simula-
tion is stopped by calling procedure ABORT (Section 3.24).

3.26. Class WAITNOTICE

Planned state-events (WAITUNTIL-events) are represented as objects of class WAITNOTICE (see
Section 2.3).

The class in full is as follows

 class WAITNOTICE(PROC,PRIORITY);
 ref(PROCESS) PROC; real PRIORITY;
 begin ref(WAITNOTICE) PREDWAIT,SUCWAIT; end;

44

3.26.1. Ref(PROCESS) PROC

PROC is a parameter of class WAITNOTICE and references the waiting discrete process.

When WAITUNTIL is called, a WAITNOTICE-object is created having PROC==CURRENT.

3.26.2. Real PRIORITY

PRIORITY is a parameter of class WAITNOTICE and contains the priority of the state-event.

When WAITUNTIL is called, a WAITNOTICE-object is created having PRIORITY equal to the
current value of the global real-variable WAITPRIORITY.

3.26.3. Ref(WAITPRIORITY) PREDWAIT,SUCWAIT

PREDWAIT and SUCWAIT denote WAITNOTICE-object's predecessor and successor in the list of
wait-notices.

PREDWAIT and SUCWAIT both have the value none when the WAITNOTICE-object is not in the
list of wait-notices. However, when the procedure CANCELSTATEEVENT (Section 3.8) has been
used to remove the notice from the list, but the corresponding discrete process, PROC, is still
waiting, then PREDWAIT==SUCWAIT==this WAITNOTICE.

3.27. PROCESS class CONTROL1

It is the responsibility of CONTROLLER1, an object of the class CONTROL1, that the monitor be-
comes active after each discrete event (see Section 2.4).

3.28. PROCESS class CONTROL2

CONTROLLER2, an object of the class CONTROL2, assures that between discrete event the user
does not attempt to use the procedures HOLD, activate, reactivate, CANCEL or
PASSIVATE (see Section 2.4).

3.29. Class MONITOR

The simulation is controlled behind the scenes, so to speak, by an object of class MONITOR, called
the monitor (THEMONITOR).

45

The monitor is active between discrete events and accomplishes the following tasks:

 (1) Time advance
 The model time, TIME, is advanced in steps (see Section 2.1).

 (2) Updating of state variables
 Between discrete events the values of state variables are updated using numerical

 integration (see Section 2.2).

 (3) Event control
 The discrete events are triggered at the right time and in the correct sequence (see

 Section 2.3). Together with two PROCESS-objects, CONTROLLER1 and
 CONTROLLER2, the monitor assures that no event is planned or cancelled while the
 monitor is active (see Section 2.4).

(4) Reporting
 The active REPORTER-objects have their user-defined actions executed with the
 specified frequency (see Section 2.1).

The following class skeleton shows all attributes of class MONITOR. An algorithm outline is given
in Appendix C.

 LINK class MONITOR;
 begin
 real TIME,LASTTIME,EPSTIME,NEXTTIME,NEXTEVENTTIME,
 NEXTREPORTTIME,DT,DTNOW,DTNEXT,DTFULL,DTLOWER,
 H,FRAC,ERRORRATIO,TEMP;

 Boolean ACTIVE;

 ref(CONTINUOUS) FIRSTCONT,LASTCONT;

 ref(VARIABLE) FIRSTVAR,VAR;

 ref(REPORTER) FIRSTPOSREPORTER,FIRSTZEROREPORTER,
 FIRSTNEGREPORTER;

 ref(WAITNOTICE) FIRSTWAIT,LASTWAIT;

 ref(PROCESS) STATEEVENT,NEXTSTATEEVENT,NEXTTIMEEVENT,
 CONTROLLER1,CONTROLLER2;

 ref(CONTINUOUS) ERRORCONTINUOUS;
 ref(VARIABLE) ERRORVARIABLE;
 ref(REPORTER) ERRORREPORTER;

 ...;
 end;

46

3.29.1. The LINK-prefix

Class MONITOR has been provided with the LINK-property so as to give the class a common pre-
fix with class CONTINUOUS and class REPORTER. By this means, the monitor object,
THEMONITOR, can be a successor of the last object in the list of active CONTINUOUS-objects,
and also the successor of the last object in each of the three lists of active REPORTER-objects.

3.29.2. Real TIME

TIME denotes the current model time.

The user has access to the value of TIME through the global procedure TIME (Section 3.10).

The monitor assures that time does not "stand still". If the step-size, DTNOW, ever becomes so
small that

 EPSTIME+DTNOW = EPSTIME

and there is no event at that time, then the simulation will be stopped with the error message

 THE CURRENT TIME STEP IS TOO SMALL TO ADVANCE TIME

3.29.3. Real LASTTIME

LASTTIME denotes the starting point of the current step.

The user has access to the value of LASTTIME through the global procedure LASTTIME (Sec-
tion 3.11).

3.29.4. Real EPSTIME

TIME is advanced using quasi-double precision summation (see Section 2.2.3).

EPSTIME is a correction to LASTTIME. In relation to LASTTTIME it is numerically so small that
the addition of EPSTIME to LASTTIME will produce LASTTIME as a result.

3.29.5. Real NEXTTIME

NEXTTIME denotes the ending point of the current step, DTNOW, that is,

 NEXTTIME = LASTTIME+(EPSTIME+DTNOW)

It is always true that

 TIME <= NEXTTIME <= NEXTEVENTTIME

47

3.29.6. Real NEXTEVENTTIME

NEXTEVENTTIME denotes the time point of the next known event. As long as a state-event has
not been discovered by the monitor, NEXTEEVENTTIME is the time of the next time-event
(MAXREAL, if no time-events are scheduled). When a state-event is time-determined,
NEXTEVENTTIME is set to the event time of the state-event in question.

3.29.7. Real NEXTREPORTTIME

NEXTREPORTTIME denotes the time of the next regular reporting, namely the earliest
REPORTTIME of the active REPORTER-objects having a positive frequency. However,
NEXTREPORTTIME is never allowed to exceed NEXTEVENTTIME:

 NEXTREPORTTIME <= NEXTEVENTTIME

The value of NEXTREPORTTIME is updated by the REPORTER-objects when executed. The
monitor merely sets NEXTREPORTTIME to NEXTEVENTTIME before the execution of the
REPORTER-objects.

The value of NEXTREPORTTIME has no influence upon the size of an integration step. Unless
NEXTREPORTTIME is the end point of a step, the model's state at the reporting times will be de-
termined using interpolation (see Section 2.2.2).

3.29.8. Real DT

DT denotes the current time increment.

The user has access to the value through the global procedure DT (Section 3.12).

The assertion that

 TIME = LASTTIME+(EPSTIME+DT)

always holds.

DT is zero immediately after the occurrence of an event.

It is always true that

 DT <= DTNOW

The value of DT is, for example less than DTNOW during RKE-integration where DT in each step
takes the following values

 1/4*DTNOW , 1/2*DTNOW, 3/4*DTNOW and DTNOW

48

3.29.9. Real DTNOW

DTNOW denotes the size of the current step.

The assertion that

 NEXTTIME = LASTTIME+(EPSTIME+DTNOW)

always holds.

Usually DTNOW is bounded by DTMIN and DTMAX:

 DTMIN <= DTNOW <= DTMAX

However, no events may be passed within a step, that is, the condition

 NEXTTIME <= NEXTEVENTTIME

must always be true.

When there are neither active continuous processes nor planned state-events, then

 DTNOW = (NEXTEVENTTIME-LASTTIME)-EPSTIME

3.29.10. Real DTNEXT

DTNEXT is used during RKE-integration to denote a proposal for the size of the next integration
step (see Section 2.2.1.2).

Its value will, if DTNOW=DTFULL=DTNEXT, be determined as follows:

 DTNEXT:=MIN(MAX(1,MIN(2,(1/2*ERRORATIO)**(1/5)*DTNOW)),DTMAX)

During fixed step-size integration DTNEXT is equal to DTMAX.

Further, DTNEXT is equal to DTMAX at the beginning of the simulation.

The following condition is always true:

 DTMIN <= DTNEXT <= DTMAX

3.29.11. Real DTFULL

DTFULL is used during interpolation to denote the size of the full integration step (see Section
2.2.2).

49

3.29.12. Real DTLOWER

DTLOWER is used in the binary search for a state-event (see Section 2.3).

During the process of locating the event time of a state-event, the following conditions hold:

 (1) DTLOWER <= DTNOW.

 (2) There is no state-event at the time

 LASTTIME+(EPSTIME+DTLOWER), but

 (3) there is at least one state-event (NEXTSTATEEVENT) at the time

 LASTTIME+(EPSTIME+DTNOW).

The interval from DTLOWER to DTNOW is repeatedly halved until its length, DTNOW-DTLOWER,
becomes smaller than DTMIN. When this happens a state-event, STATEEVENT, has been time-
determined and occurs at the time

 LASTTIME+(EPSTIME+DTNOW)

3.29.13. Real H

H is used during RKE-integration to hold the value 1/2*DTNOW.

3.29.14. Real FRAC

FRAC is used during interpolation to denote the fraction DT/DTFULL (see Section 2.2.2).

3.29.15. Real ERRORRATIO

ERRORRATIO is used during RKE-integration to hold the maximum value of the user-acceptable
integration error divided by the estimated integration error (ABS(A4)) for all active VARIABLE-
objects, that is:

 (ABS(ABSERROR)+ABS(RELERROR*(OLDSTATE+(EPSSTATE+DSH)))/ABS(A4)

The value of ERRORRATIO is used to determine DTNEXT (see Section 2.2.1.2).

ERRORATIO is not allowed to become greater than what corresponds to a doubling of the current
step-size, DTNOW. Accordingly,

 ERRORATIO <= 2*(2**5)

50

3.29.16. Real TEMP

TEMP is an auxiliary variable which is used for temporary storage of a real-value.

3.29.17. Boolean ACTIVE

When the monitor is active, that is between discrete events, the value of ACTIVE is true; other-
wise, ACTIVE is false. By means of ACTIVE it is possible to ensure that the user does not de-
stroy the process synchronisation. For example, the illegal activation of a discrete process from a
CONTINUOUS-object is detected and reported to the user (see Section 2.4).

3.29.18. Ref(CONTINUOUS) FIRSTCONT, LASTCONT

FIRSTCONT and LASTCONT denote the first and the last CONTINUOUS-object, respectively, in
the list of active continuous processes.

Both have the value none when the list is empty.

3.29.19. Ref(VARIABLE) FIRSTVAR

FIRSTVAR denotes the first object in the list of active VARIABLE-objects. Its value is none
when the list is empty.

3.29.20. Ref(VARIABLE) VAR

VAR is used to traverse the list of active VARIABLE-objects.

3.29.21. Ref(REPORTER) FIRSTPOSREPORTER, FIRSTZEROREPORTER,
FIRSTNEGREPORTER

FIRSTPOSREPORTER, FIRSTZEROREPORTER and FIRSTNEGREPORTER denote the first
object in (1) the list of active REPORTER-objects with a positive frequency, (2) the list of active
REPORTER-objects with a frequency of zero, and (3) the list of active REPORTER-objects with a
negative frequency, respectively. The value is none when the corresponding list is empty.

51

3.29.22. Ref(WAITNOTICE) FIRSTWAIT, LASTWAIT

FIRSTWAIT and LASTWAIT denote the first and the last WAITNOTICE-object in the list of
wait-notices (see Section 2.3).

Both have the value none when the list is empty.

3.29.23. Ref(PROCESS) STATEEVENT

STATEEVENT is used by the monitor to determine if a state-condition has been fulfilled (see Sec-
tion 2.3).

3.29.24. Ref(PROCESS) NEXTSTATEEVENT

NEXTSTATEEVENT is used during the time-determination of a state-event to store the value of
STATEEVENT.

NEXTSTATEEVENT references the PROCESS-object which has planned next state-event.

3.29.25. Ref(PROCESS) NEXTTIMEEVENT

NEXTTIMEEVENT references the PROCESS-object which has scheduled the next time-event.

The following condition must always be true:

 NEXTTIMEEVENT == CONTROLLER2.NEXTEV

This rule is used by the monitor to assure that the user does not destroy the process synchronisa-
tion (see Section 2.4).

3.29.27. Ref(CONTINUOUS) ERRORCONTINUOUS

When an error is discovered in the use of a CONTINUOUS-object, ERRORCONTINUOUS is set to
reference the object in question. Thereafter, procedure ERROR is called. This is the case, for ex-
ample, when CONTINUOUS-object is STARTed or STOPped between discrete events, that is to
say, while the monitor is active.

The user has access to the value of ERRORCONTINUOUS through the global procedure
ERRORCONTINUOUS (Section 3.21).

52

3.29.28. Ref(VARIABLE) ERRORVARIABLE

When the requested integration accuracy can not be achieved, ERRORVARIABLE is set to refer-
ence the VARIABLE-object that gave rise to the error. Thereafter, the virtual procedure
INTEGRATIONERROR is called. If the user has redefined this procedure, ERRORVARIABLE will
be set to none after a call.

The user has access to the value of ERRORVARIABLE through the global procedure
ERRORVARIABLE (Section 3.18).

3.29.29. Ref(REPORTER) ERRORREPORTER

When an error is discovered in the use of a REPORTER-object, ERRORREPORTER is set to refer-
ence the object in question. Thereafter, procedure ERROR is called. This is the case, for example,
when a REPORTER-object is STARTed or STOPped between discrete events, that is to say, while
the monitor is active.

The user has access to the value of ERRORREPORTER through the global procedure
ERRORREPORTER (Section 3.22).

3.30. Ref(MONITOR) THEMONITOR

THEMONITOR references the MONITOR-object. The object is generated by the main program,
MAIN.

53

4. APPENDICES

4.1. Appendix A: Error messages

If an error is discovered during the simulation, the procedure ERROR is called. The causes an error
message to be output after which the virtual procedure SIMULATIONERROR is called and the
simulation is stopped.

The error message has the form:

 ***COMBINEDSIMULATION
 ***ERROR m
 ***ENCOUNTERED AT t

where m is a message describing the error and t is the current value of TIME.

The possible error messages with their associated numbers are given below.

 1: THE REQUESTED INTEGRATION ACCURACY CAN NOT BE ACHIEVED

 The virtual procedure INTEGRATIONERROR has not been redefined by the user and
there is at least one VARIABLE-object, ERRORVARIABLE, which has an estimated
integration error (A4) greater than the requested accuracy. That is to say,
ABS(A4) >
 ABS(ABSERROR)+ABS(RELERROR*(OLDSTATE+(EPSSTATE+DSH)))

 2: THE CURRENT TIME STEP IS TOO SMALL TO ADVANCE TIME

 EPSTIME+DTNOW=EPSTIME and TIME<NEXTEVENTTIME

 3: THERE ARE NO DISCRETE EVENTS SCHEDULED

 NEXTTIMEEVENT==none and FIRSTWAIT==none

 4: DTMIN<0

 5: DTMIN>DTMAX

 The conditions that cause errors 4 and 5 are checked for only immediately after the
occurrence of an event, and immediately after the execution of a user-defined version of
the virtual procedure INTEGRATIONERROR.

54

6: FREQUENCY IS TOO SMALL TO ADVANCE TIME (CLASS REPORTER)

 There is at least one REPORTER-object, ERRORREPORTER, with
 FREQUENCY>0 for which REPORTTIME+FREQUENCY=REPORTTIME.

 7: TIME IS AT ITS MAXIMUM VALUE AND NO EVENTS OCCUR

 TIME=MAXREAL and NEXTTIMEEVENT==none and STATEEVENT==none

 8: ILLEGAL CALL OF PAUSE

 9: ILLEGAL CALL OF CANCELSTATEEVENT

10: ILLEGAL CALL OF WAITUNTIL

11: ILLEGAL CALL OF SETPRIORITY (CLASS CONTINUOUS)

12: ILLEGAL CALL OF START (CLASS CONTINUOUS)

13: ILLEGAL CALL OF STOP (CLASS CONTINUOUS)

14: ILLEGAL CALL OF SETFREQUENCY (CLASS REPORTER)

15: ILLEGAL CALL OF START (CLASS REPORTER)

16: ILLEGAL CALL OF STOP (CLASS REPORTER)

17: ILLEGAL CALL OF (RE)ACTIVATE

18: ILLEGAL CALL OF PASSIVATE (OR CANCEL(CURRENT))

19: ILLEGAL CALL OF HOLD (OR REACTIVATE CURRENT)

20: ILLEGAL CALL OF CANCEL

Error messages 8 through 20 indicates that the procedure in question has been called be-
tween discrete events, that is to say, while the monitor is active.

Errors 17 and 20 can only be discovered if the event in question is within the "horizon" of
the monitor, that is, if P.EVTIME<=NEXTEVENTTIME.

55

4.2. Appendix B: Efficiency and storage requirements

During the construction of class COMBINEDSIMULATION, generality and ease of use has been
emphasized.

It is well-known that practical simulation problems often demand many time-consuming computer
runs, and therefore it is of importance that the class is also efficient with respect to computer time.

Efficency has been enhanced through methods such as:

- Interpolation (Section 2.2.2)
 - Binary search of state-events (Section 2.3)
 - Step-size prediction (Section 2.2.1.2)
 - RESUME-chain execution (Section 2)

The storage requirements are of lesser importance. Yet, this aspect has been taken into account.
For example, the VARIABLE-attributes A1 through A5 are used repeatedly both during integra-
tion and interpolation.

The data storage requirements of COMBINEDSIMULATION are as follows:

 The basic data storage requirements (THEMONITOR etc.) 136 words
 Each VARIABLE-object 17 words

Each CONTINUOUS-object 9 words
 Each REPORTER-object 10 words
 Each idle PROCESS-object 6 words
 Each suspended PROCESS-object 10 words
 Each waiting PROCESS-object (WAITUNTIL) 16 words

56

4.3. Appedix C: Algorithm outline of the monitor

The actions of the monitor are sketched below.

 while there are more planned events do
 begin
 comment *** Immediately AFTER an event;
 DT:=0; LASTTIME:=TIME;

 if there are any active CONTINUOUS-objects then
 begin
 for each active VARIABLE-object do
 begin OLDSTATE:=STATE; RATE:=0; end;

 execute all active CONTINUOUS-objects;
 if DTNEXT=0 or a fixed step-size integration method is used
 then DTNEXT:=DTMAX;
 end;

 execute all active REPORTER-objects
 and determine NEXTREPORTTIME;
 NEXTEVENTTIME:=if no time-events are scheduled then MAXREAL
 else EVTIME for the earliest time-event;
 if a state-condition is fulfilled and TIME<NEXTEVENTTIME
 then NEXTEVENTTIME:=TIME;

 while TIME<NEXTEVENTTIME do
 begin
 comment *** Between events;
 LASTTIME:=TIME;
 for each active VARIABLE-object do
 begin OLDSTATE:=STATE; RATE:=0; end;

 comment *** Determine step-size, DTNOW;
 DTNOW:=if there are any active CONTINUOUS-objects
 then MIN(NEXTEVENTTIME-LASTTIME,DTNEXT) else
 if there are any planned state-events
 then MIN(NEXTEVENTTIME-LASTTIME,DTMAX)
 else DTMAX;

 INTEGRATION:

 comment *** Take an integration step of size DTNOW;
 for each active VARIABLE-object do
 begin
 determine the STATE-increment DS using integration;
 STATE:=OLDSTATE+DS; RATE:=0;
 end;

57

 if the integration error is unacceptable then
 begin
 if DTNOW>DTMIN then
 begin DTNOW:=MAX(0.5*DTNOW,DTMIN); goto INTEGRATION; end;
 ERRORVARIABLE:-the VARIABLE-object with unacceptable error;
 INTEGRATIONERROR;
 ERRORVARIABLE:-none;
 if REPEATSTEP then
 begin
 for each active VARIABLE-object do
 re-establish STATE and RATE to their values at LASTTIME;
 goto INTEGRATION;
 end;
 end;

 DT:=DTNOW; TIME:=LASTTIME+DT;
 execute all active CONTINUOUS-objects and determine DTNEXT;

 comment *** Test if a state-event was passed;
 if a state-condition has been fulfilled then
 begin
 determine the time, TIME, for the earliest state-event
 within the step, and the state of the model at this point;
 NEXTEVENTTIME:=TIME;
 end;

 comment *** Test if a REPORTTIME was passed;
 if NEXTREPORTTIME<=TIME then
 begin
 while NEXTREPORTTIME<=TIME do
 begin
 determine the model's state at NEXTREPORTTIME
 using interpolation;
 execute all active REPORTER-objects
 having REPORTTIME=NEXTEREPORTTIME;
 re-establish TIME;
 end;
 re-establish the model's state at TIME;
 end;

 comment *** Now the step has been taken;
 execute all active REPORTER-objects having FREQUENCY=0;
 end;

 comment *** Immediately BEFORE an event;
 if DT>0 then execute all active REPORTER-objects
 having FREQUENCY<0;

 let an event take place now;
 end;

58

5. REFERENCES

 1. Dahl,O-J, Myhrhaug,B., Nygaard,K.:
 "Common Base Language".
 Publication no s-22, Norwegian Computing Center,
 Oslo 1970.

 2. England,R.:
 "Error estimates for Runge-Kutta type solutions to systems of ordinary differential equations".
 Computer Journal, Vol. 12, 1969, pp. 166-170.

 3. Helsgaun, K.:
 "On interpolation in class COMBINEDSIMULATION" (in Danish).
 Roskilde University Center, October 1978.

 4. Møller,O.:
 "Quasi double-precision summation in floating point addition".
 BIT 5, 1965, pp. 37-50 and 251-255.

 5. Shampine,L.F., Watts,H.A.:
 "Comparing Error Estimators for Runge-Kutta Methods".
 Mathematics of Computation, Vol. 25, 1971, pp. 445-455.

59

TABLE OF CONTENTS

1. BASIC CONCEPTS__ 1

2. EXECUTION OF A SIMULATION___ 2

2.1. Time advance __4
2.2.1. Integration ___ 7
2.2.1.1. Euler's method___ 8
2.2.1.2. Runge-Kutta-England's method __ 10
2.2.1.3. The trapezoid method __ 13
2.2.1.4. Adams' method ___ 13
2.2.1.5. Simpson's method ___ 14
2.2.1.6. The improved Heun method ___ 14
2.2.2. Interpolation ___ 14
2.2.3. Quasi double-precision summation ___ 16
2.3. State-events ___ 16
2.4. Simulation control __ 18

3. THE ATTRIBUTES OF COMBINEDSIMULATION _____________________________ 21

3.1 The SIMULATION-prefix ___23

3.2. Class CONTINUOUS___23
3.2.1. The LINK-prefix ___ 24
3.2.2. Procedure PRELUDE__ 25
3.2.3. Procedure START __ 25
3.2.4. Procedure STOP__ 25
3.2.5. Boolean procedure ACTIVE __ 25
3.2.6. Procedure SETPRIORITY(R); real R ___ 26
3.2.7. Real procedure PRIORITY ___ 26
3.2.8. Real PRI __ 26
3.2.9. Ref(CONTINUOUS) PREDCONT; ref(LINK) SUCCONT__________________________________ 27

3.3. Class VARIABLE__27
3.3.1. The LINK-prefix ___ 28
3.3.2. Real STATE ___ 28
3.3.3. Real RATE __ 28
3.3.4. Procedure START __ 28
3.3.5. Procedure STOP__ 29
3.3.6. Boolean procedure ACTIVE __ 29
3.3.7. Real procedure LASTSTATE ___ 29
3.3.8. Real RELERROR, ABSERROR ___ 29
3.3.9. Real OLDSTATE___ 30
3.3.10. Real EPSSTATE __ 30
3.3.11. Real DS__ 30
3.3.12. Real DSH __ 30
3.3.13. Real A1, A2, A3, A4, A5 __ 30
3.3.14. Ref(VARIABLE) PREDVAR, SUCVAR ___ 31
3.4. Class REPORTER__ 31
3.4.1. The LINK-prefix ___ 33
3.4.2. Procedure PRELUDE__ 33
3.4.3. Procedure START __ 33
3.4.4. Procedure STOP__ 33
3.4.5. Boolean procedure ACTIVE __ 34
3.4.6. Procedure SETFREQUENCY(F); real F ___ 34
3.4.7. Real procedure FREQUENCY___ 34
3.4.8. Real procedure REPORTTIME __ 34
3.4.9. Real FRQ ___ 35

60

3.4.10. Real REPTIME__ 35
3.4.11. Ref(REPORTER) PREDREP,SUCREP __ 36
3.5. Procedure WAITUNTIL(B); name B; Boolean B ___ 36
3.6. Real WAITPRIORITY __ 37
3.7. Boolean WAITPRIOR __ 37
3.8. Procedure CANCELSTATEEVENT(P); ref(PROCESS) P ____________________________________ 37
3.9. Real DTMIN, DTMAX__ 38
3.10. Real procedure TIME __ 39
3.11. Real procedure LASTTIME ___ 39
3.12. Real procedure DT __ 39
3.13. Real MAXRELERROR, MAXABSERROR __ 39
3.14. Boolean EULER, TRAPEZ, ADAMS, SIMPSON__ 39
3.15. Procedure PAUSE ___ 40
3.16. ref(PROCESS) procedure NEXTTIMEEVENT(P); ref(PROCESS) P __________________________ 40
3.17. Procedure INTEGRATIONERROR ___ 41
3.18. Ref(VARIABLE) ERRORVARIABLE __ 41
3.19. Boolean REPEATSTEP __ 41
3.20. Procedure SIMULATIONERROR __ 42
3.21. Ref(CONTINUOUS) procedure ERRORCONTINUOUS ____________________________________ 42
3.22. Ref(REPORTER) procedure ERRORREPORTER ___ 42
3.23. Real procedure MAXREAL ___ 42
3.24. Procedure ABORT __ 43
3.25. Procedure ERROR(MESSAGE); value MESSAGE; text MESSAGE___________________________ 43
3.26. Class WAITNOTICE __ 43
3.26.1. Ref(PROCESS) PROC__ 44
3.26.2. Real PRIORITY ___ 44
3.26.3. Ref(WAITPRIORITY) PREDWAIT,SUCWAIT ___ 44
3.27. PROCESS class CONTROL1__ 44
3.28. PROCESS class CONTROL2__ 44
3.29. Class MONITOR__ 44
3.29.1. The LINK-prefix __ 46
3.29.2. Real TIME ___ 46
3.29.3. Real LASTTIME __ 46
3.29.4. Real EPSTIME__ 46
3.29.5. Real NEXTTIME __ 46
3.29.6. Real NEXTEVENTTIME ___ 47
3.29.7. Real NEXTREPORTTIME __ 47
3.29.8. Real DT ___ 47
3.29.9. Real DTNOW___ 48
3.29.10. Real DTNEXT ___ 48
3.29.11. Real DTFULL ___ 48
3.29.12. Real DTLOWER ___ 49
3.29.13. Real H__ 49
3.29.14. Real FRAC __ 49
3.29.15. Real ERRORRATIO __ 49
3.29.16. Real TEMP__ 50
3.29.17. Boolean ACTIVE___ 50
3.29.18. Ref(CONTINUOUS) FIRSTCONT, LASTCONT _______________________________________ 50
3.29.19. Ref(VARIABLE) FIRSTVAR___ 50
3.29.20. Ref(VARIABLE) VAR __ 50
3.29.21. Ref(REPORTER) FIRSTPOSREPORTER, FIRSTZEROREPORTER, FIRSTNEGREPORTER__ 50
3.29.22. Ref(WAITNOTICE) FIRSTWAIT, LASTWAIT __ 51
3.29.23. Ref(PROCESS) STATEEVENT ___ 51
3.29.24. Ref(PROCESS) NEXTSTATEEVENT__ 51
3.29.25. Ref(PROCESS) NEXTTIMEEVENT ___ 51
3.29.27. Ref(CONTINUOUS) ERRORCONTINUOUS __ 51
3.29.28. Ref(VARIABLE) ERRORVARIABLE__ 52
3.29.29. Ref(REPORTER) ERRORREPORTER ___ 52

3.30. Ref(MONITOR) THEMONITOR ___52

61

4. APPENDICES ___ 53

4.1. Appendix A: Error messages __53

4.2. Appendix B: Efficiency and storage requirements ___________________________________55

4.3. Appedix C: Algorithm outline of the monitor _______________________________________56

5. REFERENCES __ 58

	BASIC CONCEPTS
	EXECUTION OF A SIMULATION
	Time advance
	Numerical methods
	Integration
	Euler's method
	Runge-Kutta-England's method
	The trapezoid method
	Adam's method
	Simpson's method
	The improved Heun method

	Interpolation
	Quasi double-precision summation

	State-events
	Simulation control

	THE ATTRIBUTES OF COMBINEDSIMULATION
	The SIMULATION-prefix
	Class CONTINUOUS
	The LINK-prefix
	Procedure PRELUDE
	Procedure START
	Procedure STOP
	Boolean procedure ACTIVE
	Procedure SETPRIORITY
	Real procedure PRIORITY
	Real PRI
	PREDCONT, SUCCONT

	Class VARIABLE
	The LINK-prefix
	Real State
	Real RATE
	Procedure START
	Procedure STOP
	Boolean procedure ACTIVE
	Real procedure LASTSTATE
	Real RELERROR, ABSERROR
	Real OLDSTATE
	Real EPSSTATE
	Real DS
	Real DSH
	Real A1, A2, A3, A4, A5
	PREDVAR, SUCVAR

	Class REPORTER
	The LINK-prefix
	Procedure PRELUDE
	Procedure START
	Procedure STOP
	Boolean procedure ACTIVE
	Procedure SETFREQUENCY
	Real procedure FREQUENCY
	Real procedure REPORTTIME
	Real FRQ
	Real REPTIME
	PREDREP, SUCREP

	Procedure WAITUNTIL
	Real procedure WAITPRIORITY
	Boolean WAITPRIOR
	Procedure CANCELSTATEEVENT
	Real DTMIN, DTMAX
	Real TIME
	Real LASTTIME
	Real procedure DT
	Real MAXRELERROR, MAXABSERROR
	Boolean EULER, TRAPEZ, ADAMS, SIMPSON
	Procedure PAUSE
	NEXTTIMEEVENT
	Procedure INTEGRATIONERROR
	ERRORVARIABLE
	Boolean REPEATSTEP
	Procedure SIMULATIONERROR
	ERRORCONTINUOUS
	ERRORREPORTER
	MAXREAL
	Procedure ABORT
	Procedure ERROR
	Class WAITNOTICE
	PROC
	Real Priority
	PREDWAIT, SUCWAIT

	PROCESS class CONTROL1
	PROCESS class CONTROL2
	Class MONITOR
	The LINK-prefix
	Real TIME
	Real LASTTIME
	Real EPSTIME
	Real NEXTTIME
	Real NEXTEVENTTIME
	Real NEXTREPORTTIME
	Real DT
	Real DTNOW
	Real DTNEXT
	Real DTFULL
	Real DTLOWER
	Real H
	Real FRAC
	Real ERRORRATIO
	Real TEMP
	Boolean ACTIVE
	FIRSTCONT, LASTCONT
	FIRSTVAR
	VAR
	FIRSTPOSREPORTER
	FIRSTZEROREPORTER
	FIRSTNEGREPORTER
	FIRSTWAIT, LASTWAIT
	STATEEVENT
	NEXTSTATEEVENT
	NEXTTIMEEEVENT
	ERRORCONTINUOUS
	ERRORVARIABLE
	ERRORREPORTER

	THEMONITOR

	APPENDICES
	Error messages
	Efficiency and storage requirements
	Algorithm outline of the monitor

	REFERENCES

