
1

CLASS COMBINEDSIMULATION

Installation Guide

This software contains the SIMULA-class COMBINEDSIMULATION and its extension, class
DISCO (version March 1982).

There are 38 files containing the following information:

 File Name Contents

 1 DOC/INSTALL.pdf Installation guide

 2 DOC/USERGUIDE.pdf User's guide to COMBINEDSIMULATION

 3 DOC/MANUAL.pdf Reference manual to COMBINEDSIMULATION

 4 SRC/SIMULATION.sim The source text of COMBINEDSIMULATION

 5 SRC/PLOTGUIDE .pdf User's guide to PLOTENVIRONMENT

 6 SRC/PLOTENVIRONMENT.sim The source text of PLOTENVIRONMENT

 7 SRC/TEST.sim A test program for COMBINEDSIMULATION

 8 SRC/SYSTEM.sim Class SYSTEM - a class for table-lookup

 9 EXAMPLES/EX01.sim: Prey-predator system

 10 EXAMPLES/EX02.sim: Launch of a three-stage rocket

 11 EXAMPLES/EX03.sim World model

 12 EXAMPLES/EX04.sim: World model with discrete events

 13 EXAMPLES/WORLDDATA Data for example EX03 and EX04

 14 EXAMPLES/EX05.sim Ingot heating system

 15 EXAMPLES/EX06.sim Chemical reaction process

 16 EXAMPLES/EX07.sim Higher-order differential equations

 17 EXAMPLES/EX08.sim: Van der Pol's equation

 18 EXAMPLES/EX09.sim: Exponential delays

2

 19 EXAMPLES/EX10.sim Ideal delays

 20 EXAMPLES/EX011.sim Collection of statistics

 21 DOC/DISCOGUIDE.pdf User's guide to DISCO

 22 SRC/DISCO.sim The source text of DISCO

 23 EXAMPLES/EX12.sim Hydraulic servo drive

 24 EXAMPLES/EX13.sim Fire-fighting

 25 EXAMPLES/EX14.sim Pilot ejection study

 26 EXAMPLES/EX15.sim DOMINO game

 27 EXAMPLES/EX16a.sim PHYSBE (version A)

 28 EXAMPLES/EX16b.sim PHYSBE (version B)

 29 SRC/WAITGREATER.sim Procedure WAITGREATER

 30 SRC/NODISCO.sim Class NODISCO - the user-attributes of DISCO

 31 SRC/XSIMULATION.sim An extended version of COMBINEDSIMULATION

 32 DOC/XUSERGUIDE.pdf Guide to extended version of COMBINEDSIMULATION

 33 SRC/XDISCO.sim Revised version of DISCO

 34 SRC/PDEONE.sim PDEONE - Solution of Partial Differential Equations

 35 DOC/PDEONEGUIDE.pdf User's guide to PDEONE

 36 EXAMPLES/EX17.sim Central heating of a building

 37 SRC/XXSIMULATION.sim COMBINEDSIMULATION - stiff differential equations

 38 SRC/XXDISCO DISCO - stiff differential equations

3

Comments:

File

2 This guide is intended to give a SIMULA-user sufficient information to express models in
the terminology and notation provided by COMBINEDSIMULATION. An introduction
may also be found in ref. 1, 2 and 18.

A detailed documentation of COMBINEDSIMULATION is given in file 4. The
interpolation method used is described separately in ref. 6.

 3 This file contains a reference manual to class COMBINEDSIMULATION.

4 COMBINEDSIMULATION is written in Common Base Language. The only machine
dependence is found in the procedure MAXREAL which returns the maximum real-value
expressible on the computer. This procedure (line 4) probably should be rewritten.

 The class has been prefixed by the class PLOTENVIRONMENT. If the facilities of the
latter class are not desired, prefixing with class SIMULATION will suffice.

5 This guide to class PLOTENVIRONMENT is very brief, but should be sufficient for most
applications.

6 PLOTENVIRONMENT is written in Common Base Language. However, some caution is
in order:

(1) Temporary direct files are automatically created to be used for storing
 intermediate plot information. Each PRINTERPLOT-object has associated
 with it a direct file which contains the plot points.

 "PLOT1" is the name of the first file created, "PLOT2" is the name of the
 second, and so on. However, the direct file associated with the system-defined
 PRINTERPLOT-object SYSPLOT is given the name "SYSPLOT".

 Moreover, a temporary direct file named "COMPLOT" is used in case the X-
 values of the plot are not monotonically increasing.

 These conventions for naming files may possibly cause a little trouble when
 the class is installed.

(2) MAXRANK denotes the maximum character rank. Its value has been set to
 127. Possibly this setting is inexpedient and should be corrected (line 439).

(3) The line length of the printer device must be at least 122 characters (at least if
 5 significant digits are wanted for the X-Y-values).

4

 PLOTENVIRONMENT has been prefixed by class SIMULATION. None of the latter's
facilities, however, are used in the implementation.

7 It is highly recommended to run this test program when COMBINEDSIMULATION is
 installed.

 8 The class SYSTEM extends COMBINEDSIMULATION with facilities for table look-up.

 The user has the following view of the class:

 COMBINEDSIMULATION class SYSTEM;
 begin
 class TABLE;
 begin
 procedure ADD(X,Y); real X,Y; ... ;
 procedure VAL(X); real X; VAL:= ... ;
 end;
 end;

 A function table is represented by a TABLE-object.

An entry (X,Y) is added to the table by calling ADD(X,Y). The entries can be added in
arbitrary order. The X-es must be distinct, but need not be uniformly spaced.

 A call VAL(X) returns the Y-value corresponding to X using linear interpolation.

If X is less than the minimum X-value of the table, XMIN, then VAL(X)=VAL(XMIN). If
X is greater than the maximum X-value, XMAX, then VAL(X)=VAL(XMAX).

 Example 3 (in file 11) illustrates the use of the facilities of class SYSTEM.

 9 This example is a simulation of a simple ecosystem. The cycle time of the system is
determined by using the procedure WAITUNTIL.

 10 This is the rocket example described in the User's guide (in file 2).

 11 The world model presented in this example was defined by Forrester and has been
described in detail in ref. 7.

 As far as possible Forrester's nomenclature has been followed. All five level equations of
the model have been expressed as first-order differential equations (lines 21-65).

5

Alternatively, the equations could have been expressed as difference equations:

 P.STATE := P.LASTSTATE+DT*(BR-DR);
 NR.STATE := NR.LASTSTATE+DT*(-NRUR);
 CI.STATE := CI.LASTSTATE+DT*(CIG-CID);
 POL.STATE := POL.LASTSTATE+DT*(POLG-POLA);
 CIAF.STATE := CIAF.LASTSTATE+DT*(CFIFR*CIQR-CIAF)/CIAFT;

where P denotes population, NR natural resources, CI capital investment, POL pollution
and CIAG capital investment-in-agriculture fraction. The step-size, DT, will remain
constant at DTMAX. Efficiency may be gained by setting EULER to true in this case.

 Data for the simulation may be found in file 13.

 12 The model of example 5 is extended to include the following discrete events:

 Time-events:

 - food shortage (occurs every 20 years and lasts 4 years)
 - discovery of new resources (occurs in 1975)
 - a world epidemic (occurs in 1980)

 State-events:

 - overpopulation (causes birth control)
 - overpollution (causes legislation)
 - resource shortage (causes conservation)

 The model has been taken from ref. 8, pp. 285-304.

 Data for the simulation may be found in file 13.

13 This file contains data for the world models in example 3 and 4.

14 This example of simulating the heating of steel ingots in a furnace of limited capacity has
been taken from ref. 9. It can also be seen in ref. 1.

15 This example has been taken from ref. 10. As may be seen by this example
COMBINEDSIMULATION provides a much more convenient language than GASP
(which is FORTRAN-PL/I-based).

6

16 This example illustrates how a general class of continuous processes may be defined for
the solution of higher-order differential equations. Normally a user has to rewrite these
equations into first-order differential equations. The class FUNCTION frees the user from
this task.

 The user's view of the class is:

 class FUNCTION(N); integer N;
 begin
 ref(VARIABLE) array D(0:N);
 procedure START; … ;
 procedure STOP; … ;
 Boolean procedure ACTIVE; ACTIVE:= … ;
 end;

A FUNCTION-object represents a variable whose continuous change can be described by
an equation involving an Nth order derivative. The D array of the object contains the
derivatives: D(I).STATE contains the I'th derivative (D(0).STATE contains the
function value itself).

 D(I).RATE should not be used by the user.

 It is assumed that no continuous process is given a priority less than -MAXREAL/2.

Example 8 (file 17) illustrates the use of class FUNCTION in solving a second-order
differential equation.

17 This example numerically solves the second-order equation of Van der Pol:

d2y

dt2
+E(1− y2)

dy

dt
+y = 0

 Using the class FUNCTION of Example 8 this equation may be written as:

 Y.D(2).STATE:= -E*(1-Y.D(0).STATE**2)*Y.D(1).STATE-Y.D(0).STATE

where Y is a FUNCTION-object with parameter N=2. Note that Y must be STARTed to undergo
continuous change (cf. VARIABLE-objects).

7

 18 This example defines a class, EXPDELAY, for describing exponential delays of arbitrary
order. The order of the delay, N, is the number of cascaded first-order delays that
compose the delay in question.

The user's view of the class is:

 class EXPDELAY(N,INITIALSTATE,TARGET,LAG);
 integer N; real INITIALSTATE,LAG; ref(VARIABLE) TARGET;
 begin
 real procedure STATE; ... ;
 procedure START; ... ;
 procedure STOP; ... ;
 Boolean procedure ACTIVE; ACTIVE:= ... ;
 end;

The STATE of an ACTIVE EXPDELAY-object continuously approaches TARGET's
STATE with the specified delay, LAG.

 The initial value is a parameter, INITIALSTATE.

 The TARGET may itself be moving (ACTIVE).

 19 This example defines a class, IDELAY, for describing ideal delays.

 The user's view of the class is:

 class IDELAY(V,LAG); ref(VARIABLE) V; real LAG;
 begin
 real procedure STATE; ... ;
 procedure START; ... ;
 procedure STOP; ... ;
 Boolean procedure ACTIVE; ACTIVE:= ... ;
 end;

The STATE of an ACTIVE IDELAY-object lags behind the given variable V. The delay is
specified through the parameter LAG. During the first LAG time units of an IDELAY-
object's existence its STATE is equal to V's STATE at the creation of the IDELAY-object.

An IDELAY-object actually stores samples of V's STATE at the end of each integration
step and interpolates linearly between sampled values.

8

20 This example defines a class, STATSIM, for collecting statistics about variables that vary
with time.

 The user's view of the class is the following:

 COMBINEDSIMULATION class STATSIM;
 begin
 VARIABLE class STATVAR;
 begin
 real procedure MIN; ... ;
 real procedure MAX; ... ;
 real procedure MEAN; ... ;
 real procedure SDV; ... ;
 end;
 end;

In addition to its VARIABLE-attributes, each STATVAR-object has the property that its
minimum (MIN), maximum (MAX), mean (MEAN) and standard deviation (SDV) are
automatically computed during the simulation. The mean and standard deviation are
estimated by trapezoidal integration.

 21 Class DISCO extends class COMBINEDSIMULATION with facilities for:

 - solution of higher-order differential equations
 - table-lookup
 - exponential and ideal delays
 - formulation of implicit functions
 - collection of statistics

 This file contains a brief user guide to DISCO.

22 This file contains the source text of DISCO.

9

23 This hydraulic servo drive simulation example is taken from ref. 11. The equations to be
simulated are:

 yd=w-y
 u =c1*yd

 1; (u>1)
 x = u; (-1<=u<=1)
 -1; (u<-1)

 s = c2*sign(p)*p

 v1= 1+c3*abs(x)+c4*x**2; (abs(x)<0.07)
 c5+c6*abs(x)+c7*x**2; (abs(x)>=0.07)

 v2= 1+c8*abs(x)+c9*x**2; (abs(x)<0.07)
 0 ; (abs(x)>=0.07)

 v = c10*sign(x)*(v1*sqrt(1-s)-v2*sqrt(1+s))
 F = c11*p-c12*y'-Fl

 c13; (F>c13)
 z = F; (-c13<=F<=c13)
 -c13; (F<-c13)

 c13; (y'>0)
 cf= z; (y'=0)
 -c13; (y'<0)

 p'=c14*v-c15*y'-c16*sign(p)*sqrt(abs(p))
 y"=c17*(F-cf)

24 This example is a simulation of a fire station. The model is formulated by R.W.
Sierenberg, Delft University of Technology, The Netherlands.

A small city owns one fire-station with three fire-engines. Fire alarms are given randomly
at exponential distributed intervals with a mean of six hours.

Each house on fire contains a certain amount of inflammable material. When a fire is
discovered, it already has a certain size. This size increases with a rate which is
proportional to the size itself as long as no extinguishing activity takes place. At the
moment an alarm is given, one engine (if possible) will be sent to the fire. When a fire-
engine reaches the fire and finds out that its capacity is smaller than the rate with which
the size increases, it will request assistance by sending an alarm for the same fire. If all
inflammable material is burnt up, the fire will stop and the house is lost.

25 This example is a parametric study of an aircraft's pilot ejection system. The objective is
to determine safe ejection as a function of aircraft altitude and velocity. The specific
model and experiment is extracted from ref. 12.

10

26 This example has been suggested by F.E. Cellier (ref.13) as a benchmark problem which
can be used to test the capability of a variable structure simulation, that is a simulation in

 which the number of differential equations varies with time.

Fifty five identical stones of the DOMINO game are placed upright in a sequence with a
distance of D space units between any two stones. If the first stone is pushed, all the
stones fall flat.

The aim of the simulation is to determine the distance (D) between successive stones
which maximises the velocity (V) of the chain.

27 This file contains an implementation of PHYSBE.

PHYSBE is an acronym for Physiological Benchmark Simulation Experiment, and is a
benchmark problem which has been widely used in comparing continuous simulation
languages. It is a mathematical model of the human cardiovascular system and relates
pressure, volume and flow.

The example demonstrates exploitation of SIMULA's class concept for "structured"
modelling. A good description of the model is given in ref. 14.

 28 This file contains another implementation of PHYSBE.

This implementation, however, cannot be recommended! Not only is it "unstructured",
but, what is worse, numerical problems may arise because discrete changes are executed
directly by a continuous process (the use of the MAX-function makes the second-order
derivatives of the volumes discontinuous).

 29 This file contains the procedure WAITGREATER.

The call WAITGREATER(EXPR1,EXPR2,TOL), where EXPR1 and EXPR2 are
arithmetic expressions, corresponds to the call WAITUNTIL(EXPR1>=EXPR2).
However, the state-event may take place a little bit earlier, namely when
EXPR1>=EXPR2-TOL, or a little bit later, namely when EXPR2<=EXPR1<=
EXPR2+TOL, where TOL is a positive tolerance. WAITGREATER(EXPR1,EXPR2,0)
is fully equivalent to WAITUNTIL(EXPR1>=EXPR2).

Weakening a state-condition by using WAITGREATER instead of WAITUNTIL may
reduce the execution time significantly if the simulated system involves comparatively
many state-events (as in example 15).

WAITGREATER is made available through the class XDISCO, an extension of class
DISCO. The code is a bit tricky as it exploits intimate knowledge of
COMBINEDSIMULATION's algorithm for state-event detection. It is assumed that no
state-event is given a priority less than -MAXREAL/2.

11

30 Class NODISCO only contains the user attributes of class DISCO. Class NODISCO may,
for example, be used for the syntactical checking of DISCO-programs.

31 This file contains a new extended version of class COMBINEDSIMULATION. The most
important extension is the provision of a predictor-corrector method, namely Adams
method with variable step size and variable order (ref. 15).

 32 A brief description of the extended version of class COMBINEDSIMULATION.

33 This file contains a revised version of class DISCO to be used together with the extended
version of class COMBINEDSIMULATION (file 31). In relation to the original version of
DISCO (file 22), only minor corrections in procedure DUMP have been made.

34 The source text of PDEONE - a class for solving Partial Differential Equations in ONE
space dimension. PDEONE is a SIMULA implementation of the methods presented in
reference 16.

 35 User's guide to PDEONE.

36 This example demonstrates the use of PDEONE in a combined simulation involving partial
differential equations. The example has been taken from reference 17 and has to do
with the central heating of a building.

 The building is modelled by a stick of length one. The left side of the stick represents the
centre of the building where the heating takes place. The right side represents the walls of
the building.

The temperature distribution of the building is modelled using the following heat
diffusion equation:

dU

dt
=0.5*

d2U

dX2

12

The heating of the central room is modelled by the equation (left boundary condition)

 U = 30 * Z

 where Z is described by the ordinary first order differential equation

dZ

dt
= 4(1−Z) , if the heating is on

dZ

dt
= −4Z , if the heating is off.

 At night time (between 7 p.m. and 7 a.m.) the heating is always off. During the day the
heating is on when the wall temperature falls below 19.5 degrees centigrade, and is turned
off as soon as the wall temperature goes above 22.5 degrees centigrade. The simulation
starts at 6 a.m. with zero degrees centigrade throughout the whole building.

The model is far away from physical reality, but has been chosen intentionally since it
demonstrates the use of partial differential equations, ordinary differential equations,
time-events, as well as state-events in one single model.

 37 This file contains an extended version of COMBINEDSIMULATION (file 31). The
extension implements Fowler and Warten's second-order explicit integration method for
the solving of "stiff" differential equations (ref. 19).

 The user selects this method merely by setting the Boolean variable STIFF to true.
Initially the value of STIFF is false. Step-size is variable and error control is the same
as in the Runge-Kutta-England method and in the Adams method.

 38 This is a version of class DISCO that corresponds to the extended version of
COMBINEDSIMULATION in file 37.

 The use of semi-discretization to solve partial differential equations usually gives rise to
stiffness. It is therefore recommended to use this version of DISCO as a prefix for class
PDEONE (file 34).

13

REFERENCES

 1 Helsgaun, K.:
 "COMBINEDSIMULATION - a SIMULA-class for combined continuous and discrete simulation".
 Proceedings of the sixth SIMULA users' Conference,
 Lisboa, 1978.

 2 Helsgaun, K.:
 "COMBINEDSIMULATION. Speech given at the sixth SIMULA users' Conference, Lisboa 1978".
 Roskilde University Center, Roskilde, september 1978.

 3 Helsgaun, K.:
 "COMBINEDSIMULATION. User's manual". (in Danish)
 Roskilde University Center, Roskilde, november 1978.

 4 Helsgaun, K.:
 "COMBINEDSIMULATION. Documentation". (in Danish)
 Roskilde University Center, Roskilde, january 1979.

 5 Helsgaun, K.:
 "On interpolation in class COMBINEDSIMULATION". (in Danish)
 Roskilde University Center, Roskilde, october 1978.

 6 England, R.:
 "Error estimates for Runge-Kutta type solutions to systems of ordinary differential equations".
 Computer Journal, Vol. 12, 1969, pp. 116-170.

 7 Forrester, J.W.:
 "World Dynamics".
 Cambridge, Mass.: Wright-Allen Press, Inc., 1971.

 8 Pritsker, A. A. B., and R. E. Young:
 "Simulation with GASP_PL/1".
 John Wiley & Sons, New York 1975.

 9 Sim, R.:
 "CADSIM. User's Guide and Reference Manual".
 Imperial College. Publ. no. 75/23. London 1975.

 10 Hurst, N. R., and A. A. B. Pritsker:
 "Simulation of a Chemical Reaction Process Using GASP IV".
 SIMULATION, Vol. 21, September 1973, pp. 71-75.

 11 Halin, H. J.:
 "Integration across discontinuities in ordinary differential equations".
 SIMULATION, Vol. 32, February 1979, pp. 33-45.

 12 SCi Simulation Software Committee:
 "The SCi Continuous System Simulation Language (CSSL)".
 SIMULATION, Vol. 9, December 1967, pp. 281-303.

14

 13 Cellier, C.F.:
 "Combined continuous discrete simulation by use of digital computers. Techniques and tools".
 Ph.D. Thesis, The Swiss Federal Institute of Technology Zurich,
 Zurich, 1979.

 14 Benham, R.D.:
 "An ISL-8 and ISL-15 study of the physiological simulation benchmark experiment".
 SIMULATION, Vol. 18, no. 4, March 1972, pp. 152-156.

 15 Shampine, L.F. and Gordon, M.K.:
 "Computer solution of ordinary differential equations".
 W.H. Freeman and Company, San Francisco, 1975.

 16 Sincovec, R.F and Madsen, N.K.:
 "Software for Nonlinear Partial Differential Equations".
 ACM Transactions on Mathematical Software,
 Vol. 1, No. 3, September 1975, pp. 232-260 and 261-263.

 17 Cellier, F.E. and Blitz, A.E.:
 "GASP-V: A universal simulation package".
 Simulation of Systems, L. Dekker (editor),
 North-Holland, 1976, pp. 391-402.

 18 Helsgaun, K.:
 "DISCO - a SIMULA-based language for combined continuous and discrete simulation".
 SIMULATION, Vol. 34, no. 7, July 1980, pp. 1-12.

 19 Fowler, M.E. and Warten, R.M.:
 "A Numerical Intergration Technique for Ordinary Equations with Widely Separated Eigenvalues".
 IBM J. Res. Develop. 11, September 1967, pp. 537-543.

15

RECOMMENDED INSTALLATION PROCEDURE

(1) Rewrite the procedure MAXREAL (line 3) of COMBINEDSIMULATION.

(2) Change the PLOTENVIRONMENT-prefix of COMBINEDSIMULATION to SIMULATION.

(3) Compile COMBINEDSIMULATION.

(4) Run the test program of file 7. The following message should result:

 *** COMBINEDSIMULATION
 *** NO ERRORS FOUND

 If necessary, make the proper corrections.

(6) Change the prefix of COMBINEDSIMULATION back to PLOTENVIRONMENT.

(7) Compile COMBINEDSIMULATION together with PLOTENVIRONMENT.

(8) Compile class DISCO together with COMBINEDSIMULATION.

(9) Run some of the examples.

If your SIMULA system has double precision capabilities, it may be advantageous to change the type
specifications of some of the real-variables into "long real". In class COMBINEDSIMULATION it is
recommended specifying the following attributes as "long real"-variables:

 STATE, OLDSTATE and EPSSTATE in class VARIABLE

If the "hidden-protected" facility is available, non-user attributes can be made inaccessible to the
user. In class COMBINEDSIMULATION the following attributes should be hidden from the user:

 OLDSTATE, EPSSTATE, DS, DSH, A1, A2, A3, A4, A5, PREDVAR,
 SUCVAR (and PHI, if present) in class VARIABLE

 FRQ, REPTIME, PREDREP, SUCREP and EXECUTE in class REPORTER

 PRI, PREDCONT, SUCCONT and EXECUTE in class CONTINUOUS

THEMONITOR and the classes MONITOR, CONTROLLER1, CONTROLLER2 and
WAITNOTICE in the main program.

16

If you have problems with installation, you are welcome to contact:

 K. Helsgaun
 Department of Computer Science, 20.1,
 Roskilde University,

4000 Roskilde
 Denmark

E-mail: keld@ruc.dk

You are also invited to send any proposal for improvement of the software found on this tape.

	COMMENTS
	Files 2-6
	Files 7-11
	Files 12-15
	Files 16-17
	Files 18-19
	Files 20-22
	Files 23-25
	Files 26-29
	Files 30-36
	Files 37-38

	REFERENCES
	RECOMMENDED INSTALLATION PROCEDURE

