COMBINEDSIMULATION

Reference M anual

CONTENTS:

1. BASIC CONCEPTS

2. EXECUTION OF A SSIMULATION

3. THEATTRIBUTES OF COMBINEDSIMULATION
4. APPENDICES

5. REFERENCES

6. TABLE OF CONTENTS

1. BASIC CONCEPTS

The class outline below shows the most essential user-attributes of class COVBI NEDSI MULATI ON.

SI MULATI ON cl ass COVBI NEDSI MULATI ON,;
begi n
cl ass CONTI NUQOUS;
begi n
procedure START; ... ;
procedure STOP; ...
Bool ean procedure ACTI VE, ... ;
end;

cl ass VARI ABLE(STATE); real STATE;
begi n

real RATE;

procedure START; ... ;

procedure STOP; ... ;

Bool ean procedure ACTIVE;, ... ;
end;

cl ass REPORTER;
begi n
procedur e SETFREQJENCY(F) real F, ... ;
procedure START; ... ;
procedure STOP;, ... ;
Bool ean procedure ACTIVE;, ... ;
end;

procedure WAI TUNTIL(B); nanme B; Boolean B, ... ;

real DTM N, DTMAX, MAXRELERROR, MAXABSERROR;
end;

COVBI NEDSI MULATI ONis a subclass of class SI MULATI ON. The discrete events of the simu-
lated system may be described in the usual way by means of the class PROCESS. Objects of class
PROCESS are called "discrete processes”.

The continuous state changes of the system may be described by means of the two new classes -
CONTI NUQOUS and VARI ABLE.

In one or more subclasses of class CONTI NUOUS the user can express the difference and/or dif-
ferential equations of the model in question. A CONTI NUOUS-object, called a "continuous proc-
ess', will "continuously” execute its actions after its START-procedure has been called. The con-
tinuous process is said to be "active" during this period. The active phase will cease when the
STOP-procedure of the processis called.

Objects of class VARI ABLE is used to represent state variables whose continuous variation is ex-
pressible as difference or differential equations. For such a variable the attribute STATE denotes
its current value, while RATE denotes its derivative with respect to time. STATE is changed "con-
tinuously" according to the value of RATE, as computed by the active continuous processes. The
VARI ABLE-object is said to be "active" during this period. The active phase will cease when the
object's STOP-procedureis called.

Class REPORTER is used for reporting purposes. A REPORTER-object may have its user-defined
actions executed with a specified frequency. The frequency is specified by procedure
SETFREQUENCY and the object's continual execution is started and stopped by the procedures
START and STOP, respectively.

Discrete events, which are scheduled to occur at a specified point in time (EVTI MVE), are called
"time-events'. Thistype of event iswell-known to a user of class SI MULATI ON.

The procedure WAI TUNTI L makes it possible to schedule a new type of discrete event, a so-
called "state-event”. Thisis an event planned to take place as soon as the state of the model fulfils
a specified condition.

Between the discrete events the state of the model is advanced in steps using numerical integra-
tion. DTM N and DTMAX are used to specify the minimum and the maximum allowable step-size,

respectively. MAXREL ERROR and MAXABSERROR may be used to specify the relative and abso-
lute integration error that can be tolerated at each step.

2. EXECUTION OF A SSMULATION
A simulation is controlled behind the scenes, so to speak, by an object called the "monitor".
It isthe monitor's responsibility that

(2) the state of the model changes "continuously" between the discrete events,

(2) the events (time- as well as state-events) take place at the right time and in correct
order, and

(3) the active REPORTER-objects have their user-defined actions executed with the
specified frequency.

The monitor updates the state of the model between the discrete events as prescribed by the active
CONTI NUQUS processes. The updating is performed in time steps using numerical integration
(see Section 2.2.1). The step-size is adjusted so that the requested accuracy requirements are met,
and so that no events take place within a step. In order to reduce rounding errors, "quasi double-
precision summation” is used in updating the state of the model (see Section 2.2.3).

The monitor ensures that the scheduled events take place. The time-events take place precisely a
their given time points (EVTI ME); on the other hand, state-events, that is, events scheduled by
procedure WAI TUNTI L, are time-determined with a certain error (DTM N, see Section 3.1 and
3.3).

Moreover the monitor takes care that the user-defined actions (inner) of the active REPORTER-
objects are executed as frequently as prescribed, which for a REPORTER-object with frequency F
means.

F > 0: at uniformly spaced intervals of length F time units and also at event times.
F = 0: at the end of each time step (which includes event times).
F <0: only at event times.

When an event takes place, the user-defined actions of all active REPORTER-objects, regardless of
frequency, are executed - both immediately before and after the event.

The monitor is active between the events, even when they are "concurrent”. However, an event
which isinitiated by "direct" activation - that is, by acti vat e P or the like - will not be "de-
tected" by the monitor.

The work of the monitor is outlined below.

cl ass MONI TOR;

while nore projected events do

begi n
DT: =0;
execute all active CONTI NUOUS-obj ect s;
execute all active REPORTER-objects;

whil e no event now do

begi n
take an integration step, DT, fulfilling the
accuracy requirenents;

if a state-event was passed
then determ ne event tinme and reduce step accordingly;

execut e active REPORTER-objects when requested,;
end;

| et an event take place now
end;

In order to perform its tasks, the monitor has access to the following lists:
1) class SI MULATI ON's event list, SQS, which represents the scheduled time-events
2) alist of "wait-notices" representing the planned state-events
3) alist of active CONTI NUOUS-objects
4) alist of active VARI ABLE-objects
5) alist of active REPORTER-o0bjects

The actions of the active CONTI NUOUS- and REPORTER-objects are executed by the monitor as
so-called "RESUME-chains':

(1) the monitor RESUMVES the first object in the chain,
(2) each object RESUMES its successor, and
(3) the last object in the chain RESUMES the monitor.

The monitor will take care that all processes of the model are synchronised. Two PROCESS-ob-
jects, called CONTROLLER1 and CONTROLLERZ, control the activity of the monitor, and ensure
that the user does not destroy the synchronisation (for example by activating a discrete process
directly from a continuous process).

2.1. Time advance

Between discrete events the state of the model is advanced in time steps using numerical integra-
tion. The step-size varies within limits specified by the user (DTM N, DTMAX) and is adjusted so
that the integration error in each step is less than the error limit specified by the user (RELERROR,
ABSERROR).

Usually the step-size will vary between DTM N and DTMAX. However, steps smaller than DTM N
may be necessary in order to assure that no time-events are passed within a step. In using any of
the fixed step-size integration methods (see Section 2.2) DTNEXT is equal to DTMAX. The event
times of state-events are determined with an accuracy of DTM N.

If the step-size becomes too small, that is, time "stands still", an error message is given and the
simulation stops (see Section 2.2.3).

The execution of asingle step is described below.

First the actual step-size, DTNOW is chosen. If there are active continuous processes, then DTNOW
isset to

M N(DTNEXT, NEXTEVENTTI ME- LASTTI ME)

where DTNEXT denotes a proposal for the step-size, NEXTEVENTTI VE denotes the event time of
the next event, and LASTTI ME denotes the start time of the step.

If there are no active continuous processes, then DTNOWwill instead be set to
M N(DTMVAX, NEXTEVENTTI ME- LASTTI MVE)
unless there are no state-events, in which case DTNOWIs set to

NEXTEVENTTI ME- LASTTI ME

Next, using numerical integration, a STATE increment, DS, corresponding to the TI ME increment,
DTNOW is determined for each active VARI ABLE-object.

If, however, the integration error for merely one VARI ABLE-object is greater than the acceptable
error, the step computation is redone with a new step of size

MAX(1/ 2* DTNOW DTM N)

The process is repeated until either acceptable accuracy is achieved, or the step-size becomes
smaller than DTM N. In the latter case the virtual procedure | NTEGRATI ONERROR is called and
the simulation is stopped. The user may rewrite this procedure if he wishes an alternative course of
action.

When the step is acceptable, the assertion holds that
TI ME = LASTTI ME+DTNOW

and for the active VARI ABL E-objects that
STATE = OLDSTATE+DS

where OLDSTATE denotes the value of STATE at the beginning of the step, that is, at LASTTI ME
(quasi double-precision summation is not taken into account in this explanation).

Next, at the end point of the step the monitor determinesif a state-condition has been fulfilled, that
isto say, if a state-event has been passed within the step. In this case, the event time of the earliest
state-event is determined and the step is reduced accordingly. The event time is determined with
an accuracy of DTM N by a binary search within the step; the model state is determined by Her-
mite interpolation - see Section 2.2.2.

Lastly, the active REPORTER-objects have their user-defined actions executed at the correct times.
For those reporting times which were passed within the actual step, the model state is determined
by Hermite interpolation - see Section 2.2.2.

Below is given an algorithm outline showing how, in principle, the monitor advances time be-
tween events.

whi | e TI ME<NEXTEVENTTI ME do
begin
LASTTI ME: =TI ME;

if there are any active CONTI NUOUS-objects then
begin
for each active VAR ABLE-obj ect do OLDSTATE: =STATE;
DTNOW =M N(DTNEXT, NEXTEVENTTI ME- LASTTI ME) ;

| NTEGRATI ON:
for each active VAR ABLE-object do DS:= ... ;
if the error is unacceptable then
begin
i f DITNOW&=DTM N t hen
begi n
| NTEGRATI ONERROR;
i f REPEATSTEP then goto | NTEGRATI ON;
end;
DTNOW =DTNEXT: =MAX(1/ 2* DTNOW DTM N) ;
got o | NTEGRATI ON;
end;
for each active VAR ABLE-obj ect do STATE: =OLDSTATE+DS;
i f DTNO/\#DTNEXT then DTNEXT:= ... ;
DTNEXT: = ... ;
end
else if there are any planned state-events
t hen DTNOW =M N(DTMAX, NEXTEVENTTI ME- LASTTI MVE)
el se DTNOW =NEXTEVENTTI ME- LASTTI ME;

TI ME: =LASTTI ME+DTNOW

if a state-event was passed and TI MEXNEXTEVENTTI ME t hen
begin
DTLOVER: =0;
whi | e DTNOW DTLOMNER>DTM N do
begin
DT: =MAX(1/ 2* (DTLONER+DTNOW , DTM N) ;
Tl ME: =LASTTI ME+DT;
determine the state of the nmodel at TIME (using
i nterpol ati on);
if a state-condition is fulfilled then DTNOW =DT
el se DTLONER: =DT;
end;
TI ME: =LASTTI ME+DTNOW
i f DT=DTLONER
then determ ne the state of the nodel at TINE
end;

whi | e NEXTREPTI ME<=TI ME do
begin

determ ne the state of the nodel at

NEXTREPTI ME (using interpolation);

execute rel evant active REPORTER-objects;

i f NEXTREPTI ME>TI ME

then re-establish the state of the npdel at LASTTI ME+DTNOW
end;

execute all active REPORTER-objects havi ng FREQUENCY=0;
end;

2.2. Numerical methods

2.2.1. Integration

COVBI NEDSI MULATI ON allows the user to describe continuous state changes by a system of
ordinary first-order differential equations:

dy/dt = f(t,y)

where t is the independent variable, y is a vector of differentiable state variables, and f is a vector
function of t and y.

The variable t is the model time, Tl ME, while y is represented by active VARI ABLE-objects,
where

d STATE/d Tl ME=RATE

The function f is defined by active CONTI NUOUS-objects which "continuously” compute the
VARI ABLE-objects RATEs. Note that f may be exchanged in connection with a discrete event.

The monitor will integrate the actual equation system numerically, that is, it will cause the
STATEsS of the active VARI ABL E-objects to change according to their RATES.

The user is offered the choice of six numerical integration methods. Runge-K utta-England, Euler,
Trapezoidal, Adams, Simpson, and Improved Heun. Any of these methods may be chosen at any
time during a simulation. If the user does not specify an integration method, the program uses the
fourth-order Runge-Kutta-England method, RKE for short (ref. 2).

The Boolean variables EULER, ADAMS, TRAPEZ and SI MPSON can be used to select the desired
integration method according to the following table.

EULER | ADAMS | TRAPEZ | SI MPSON Method Order | Step-size
false | false| false fal se RKE 4 variable
true | false| false fal se EULER 1 fixed

- true fal se fal se ADANS 2 fixed

- fal se true fal se TRAPEZ 2 fixed

- true true fal se HEUN 2 fixed

- fal se - true S| MPSON 3 fixed

- true - true no name 4 fixed

In using the RKE-method the step-size is variable and it is possible to control the integration error
by setting MAXRELERRCR and/or MAXABSERROR. The tolerated error may even be specified
separately for each VARI ABLE-object by setting the VARI ABLE-attributes RELERROR and
ABSERROR.

In using a fixed step-size integration method the step-size remains constant at the maximum pre-
scribed by the user, DTMAX, unless an event occurs within a step.

In order to compute the function value of f at a given time, that is, the RATE-values, the monitor
executes the user-defined actions of all active CONTI NUOUS-objects. The execution takes place as
a RESUME-chain in the same order as the list of active CONTI NUOUS-objects. The number of
times that the user-defined actions of all active CONTI NUOUS-objects are executed for each inte-
gration step islisted below:

Integration method Times
RKE
EULER
ADANMS
TRAPEZ
HEUN
S| MPSON

WMNNN - O

In a continuous process the order in which the equations are written is left to the user. Because
COMVBI NEDSI MULATI ON does not change the execution order of the equations, a correct se-
guencing is the responsibility of the user. To prevent unintentiona time delays from being intro-
duced into the model dynamics, the user must make sure that variables occurring on the right hand
side of an equation have values which reflect the current state of the system. The user can deter-
mine the order of evaluation within each continuous process, and the continuous processes them-
selves may be ranked by giving each apriority (by caling procedure SETPRI ORI TY).

2.2.1.1. Euler'smethod

When Euler's method is selected, EULER: =t r ue, time is advanced with a fixed step length of
DTMAX. However, time steps smaller than DTMAX may be taken in order to assure that no event is
passed within a step. User-specified accuracy requirements (RELERROR, ABSERROR) are not
taken into account.

Let y be the solution to the initial value problem

dy/dt =f(ty) , y(t0) =y0
Euler's method approximates the solution y at the pointst,, t;+h, t,;+2h, ... , with u, where

u(t+h) = u(t)+h*f(t,u(t)) and u(ty) = y(to)
The method is efficient with respect to computer time because only one computation of f is per-
formed per integration step (versus 4.5 when using RKE). On the other hand, the method is not
very accurate. The integration error

u(t+h)-y;(t+h)

for a given variable y; and step-size h, is approximately proportional to h* when h is small, that is
O(h?). In comparison, when RKE is used, the error is O(Iv).

Euler's method is well-suited

when the accuracy is of lesser importance (e.g., in the first trial simulations),

when the continuous changes of the simulated system are described by difference
equations (e.g., in simulations of models of the System Dynamics type where the
equations are of theform Y. STATE=Y. LASTSTATE+DT* (expression)).

An integration step with Euler's method is executed by the monitor as described below.

LCoNoOkwoNE

LASTTI ME: =TI ME;
DTNOW =M N(DTMAX, NEXTEVENTTI ME- LASTTI ME)
VAR: - FI RSTVAR;
whi | e VAR=/ =none do i nspect VAR do
begi n
OLDSTATE: =STATE;
DS: =DTNOW RATE;
STATE: =OLDSTATE+DS;

RATE: =0:;
VAR: - SUCVAR
end:

DT: =DTNOW Tl ME; =LASTTI ME+DTNOW
RESUME(FI RSTCONT) ;

Comments:

2

3

7-8 The STATE-increment DS corresponding to the TI ME increment DTNOWi's determined
and added to LASTSTATE, the value of STATE at the starting point of the step.

9

The current step sizeis chosen. It is assumed that all active continuous processes have just
been executed so that all RATES have been computed.

The variable VAR traverses the list of active VARI ABLE-objects. FI RSTVAR denotes
the first object in thislist.

Unless RATE is computed by the active continuous processes, its value must be zero
(difference equations are "integrated" with RATE=0).

12-13 Timeisadvanced and al active continuous processes are executed (to compute the

RATES). FI RSTCONT denotes the first CONTI NUOUS-object of the list of active
continuous processes. The execution takes place as RESUME-chain where the
monitor itself isthe last link.

2.2.1.2. Runge-K utta-England's method

Unless the user sets one or more of the Boolean variables EULER, ADANS, TRAPEZ, or SI MPSON
tot r ue, the program selects the fourth-order variable step-size Runge-Kutta-England integration
method, RKE.

The method has been described by England (ref. 2, process 9) and is further examined by
Shampine and Watts (ref. 5).

RKE is afourth-order method for numerical solution of theinitial value problem

dy/dt =f(ty) , y(t) =Y,

where y is a vector of differentiable state variables (VARI ABLE-objects), and vy, is the vector's
initial value.

The method has several advantages that make it appropriate for combined simulation. First of all,
it is easy to change the step-size. Thisis very important in a combined simulation where events are
not normally spaced uniformly in time. Secondly, RKE is self-starting, thus there is no loss of effi-
ciency when restarting from an event. Thirdly, there is the possibility, by means of interpolation,
of determining the state of the model at time points within an integration step (see Section 2.2.2).

At each step the RKE-method estimates the integration error (the local truncation error), and tries
to meet the user-prescribed accuracy requirements (RELERROR, ABSERROR).

RKE is a two-step method involving nine function evaluations over the two steps. A step of length
DTNOW s divided into two ordinary Runge-Kutta integration steps, each having a length of
H=1/ 2* DTNOW The integration error is estimated in the middle of the second sub-step. If the
error is unacceptable, the step is discarded, and a fresh step of half the length, 1/ 2* DTNOW is
attempted. The following is a detailed description of one RKE-step.

Let t,=t,+H and t,=t,+H=t,+2H. Then a RKE-step from t, to t,, a computation of y(t,), involves the
evaluation of the following equations:

¢, = Hf(to,y(to))

C, = Hf(t,+H2,y(t))+c./2)

Cy = Hf(t+H2,y(ty)+(c,+c,)/4)

¢, = Hf(t,+Hy(t)-c,+2%cy)

y(t) = y(to)+(c,+4cstc,)/6

Cs = Hf(t,y(ty)

Cs = Hf(t,+H2,y(t)+c/2)

C, = Hf(t, +H2,y(t)+(cs+Cq)/4)

ERRCR = (-c,+4c,+17¢,-23c,+4c,-1)/90 , where

r = Hf(t,+H, y(t,)+(-c,-96¢,+92¢,-121c,+144c.+6¢,-12c,)/6)

10

If ABS(ERROR) <=ABS(ABSERROR) +ABS(RELERROR*Yy(t,)) , then
y(t,) = y(t)+(cs+4c+H f(t,y(t)-cs+2c,))/6 + ERROR.

Herethe C's, y, ERROR, ABSERROR and RELERROR are al vectors.

Only if the estimated integration error, ERROR, is acceptable for al state variables will the y(t,)
values be computed. If the step is acceptable, the algorithm involves nine function evaluations,
that is, four and a half evaluations per Runge-K utta step.

Local extrapolation is used to achieve a better accuracy in the computation of y(t,), thus the vari-
able ERROR is used as a correction value.

In the implementation of the RKE-algorithm attempts have been made to hold the storage require-
ments down by using as few auxiliary variables as possible. The five VARI ABLE-attributes Al,
A2, A3, A4 and A5 are used with the following meaning:

Al denotesc,

A2 denotes ¢, and ¢,

A3 denotes c; and ¢,

A4 denotes ¢, and ERROR
A5 denotes ¢,

The function value of f is evaluated by assigning Tl ME and the STATEs of all active VARl ABLE-
objects suitable values, and thereafter execute all active CONTI NUOUS-objects.

The following assertions hold:

t,= LASTTI ME, t, = LASTTI ME+H, t,= LASTTI ME+DTNOW
y(t)= OLDSTATE, y(t,)= OLDSTATE+DSH, y(t,)= OLDSTATE+DS

Aslong as the estimated error is unacceptable, the step-size is halved:
DTNOW =MAX(1/ 2* DTNOW DTM N)

However, if the step-size is reduced to DTMIN and the error is still unacceptable, then the virtua
procedure INTEGRATIONERROR is called. Unless the user has redefined this procedure, the
simulation will be stopped with the following error message:

THE REQUESTED | NTEGRATI ON ACCURAY CAN NOT BE ACHI EVED

RKE is a fourth-order method, which means that the integration error at each step, H, is O(H°). The
integration error itself is estimated with an error of O(H°). This estimate is asymptotically correct,
that is to say that the estimated error divided by the true error approaches one as the step-size ap-
proaches zero.

When the error is acceptable, it will be used for local extrapolation. It will also be used to predict
the length of the next integration step. The method is described below.

Assume that the next step is of length DTNEXT = K*DTNOW. The factor K is determined in the
following way.

11

Since the integration error for small values of the step-size, H, is approximately proportional to H,
the integration error for thei'th variable, Yi, at the next step is expected to be

K®* ERROR
where ERROR isthe estimated error in ;.

Therefore alocal optimal choice for the factor K is found by choosing K as large as possible under
the restriction that

K°* ABS(ERROR) <= ABS(ABSERROR) +ABS(RELERROR*Y/(t,))
holdsfor every i, that is, by selecting
K = ERRORRATI 0%

where ERRORRATIO denotes

min(ABS(ABSERROR,) +ABS(RELERRROR*Y,(t,)) /ABS(ERROR))
[

However, selecting K so that the expected error is exactly equal to the maximum error alowed
may frequently cause the error to become too large so that the step have to be discarded. In order
to avoid this situation a more conservative approach is used. K is selected so that the expected
error is half the acceptable error, that is,

K = (1/2* ERRORRATI O)**
In addition, K must be less than 2. That is to say, DTNEXT is at most twice DTNOW Since
DTNEXT must be less than DTMAX, DTNEXT is computed as follows:

DTNEXT: = M N(M N(2, K) *DTNOW , DTMAX)
The determination of K is performed by setting ERRORRATI Oto (2°)*2, which corresponds to a
doubling of the step-size. During a pass through the list of active VARI ABLE-objects
ERRORRATI Oissetto

(ABS(ABSERROR) +ABS(RELERROR *Y/(t,))) /ABS(ERRCR)
each time a VARl ABLE-object, Y, satisfies the following inequality

ABS(ABSERROR) +ABS(RELERROR*Y,(t,)) > ABS(ERROR) * ERRORRATI O

By using this procedure arithmetic overflow is avoided in the computation of ERRORRATI Owhen
ERRCR isequal or close to zero.

12

2.2.1.3. The trapezoid method

The second-order trapezoid integration method is selected by setting the Boolean variable
TRAPEZ to true. At the same time the Boolean variables ADAMS and SI MPSON must be
fal se.

The trapezoid method is sometimes referred to as Improved Euler.

The trapezoid method is a fixed step-size method. As with the other fixed step-size methods the
step-sizeis usually kept at its maximum value, DTMAX, and there is no integration error check.

The mathematics of this method is given below. The integration step, DTNOW is divided into two
equal sub-steps, each of widthH = 1/ 2* DTNOW

Al Hf(t,y(t))
A2 H*f (t+h, y(t) +Al)
y(t+DTNOWN = y(t)+(AL+A2)/2

Each step involves two function evaluations, that is, at each step the user-defined actions of all
active CONTI NUQUS-aobjects are executed twice.

2.2.1.4. Adams method

Adams' second-order fixed step-size integration method may be selected by setting the Boolean
variable ADAMStot r ue. At the same time the Boolean variables TRAPEZ and SI MPSON must
bef al se.

Below is given the mathematics of the method. The error criterion (RELERROR, ABSERROR) is
not used.

DSH = 0. 5* DTNOW f (t - DTNOW y(t - DTNOW)
Al = DTNOWf (t,y(t))
y(t+DTNOW = 1.5*Al- DSH

Only one function evaluation is performed at each integration step. The method is a so-called im-
plicit method, which means that a function value of the previous step, f (t- DTNOW y(t -
DTNOW) , isremembered and enters into the computation of the current step.

As can be seen, this computation scheme gives problems both immediately before and immedi-
ately after a discrete event, because the required old function value, f (t-DTNOW y(t-
DTNOW) , has not been computed. In these cases, the trapezoid method is used (see Section
2.2.1.3).

13

2.2.1.5. Simpson's method

The user may select Simpson's fixed step-size integration method by setting the Boolean variable
SI MPSONtot r ue.

The Boolean variable ADAMS must be f al se; otherwise, a combination of Adam's and Simpson's
method is used. This combination has not been analysed in detail. However, experiments have
shown promising results.

The following gives the mathematics of Simpson's method. The integration step, DTNOW, is di-
vided into two equal sub-steps, each of width H = 1/ 2* DTNOW The error criteria, RELERROR
and ABSERROR, are not used.

Al = Hf(t,y(t))
A2 = Hf(t+H y(t)+Al)
A3 = f(t+DTNOW y(t) +(Al+A2)/ 2)

y(t+DTNOW = y(t)+(Al+4*A2+A3)/ 6

Each step involves three function evaluations.

2.2.1.6. Theimproved Heun method

The improved Heun integration method may be selected by setting the two Boolean variables
ADAMS and TRAPEZ to f al se. At the same time the Boolean variable SI MPSON must be
fal se.

The mathematics of this third-order fixed step-size method is shown below (see also Sections
2.2.1.3and 2.2.1.4).

DSH = 0. 5* DTNOW f (t - DTNOW y(t - DTNOW)
Al = DTNOWf (t,y(t))

A2 = DTNOW f (t+DTNOW y(t)+1. 5*Al- DSH)
y(t+DTNOWN = y(t)+(AL+A2)/2

Each step involves two function evaluations.

2.2.2. Interpolation

Interpolation is used to determine efficiently the state of the model at times within an integration
step. The method is used both in connection with the time determination of state-events
(WAI TUNTI L-events) and with the regular reporting of REPORTER-objects with a positive fre-
quency.

The interpolation is performed with polynomias in FRAC, where FRAC is the fraction

DT/ DTFULL, that is, the actual time increment DT (=TI ME- LASTTI ME) divided by the length
of the full integration step, DTFULL.

14

When the RKE-method is used, a fifth-order polynomial
P(FRAC) = ¢,*FRAC® + ¢,*FRAC' + ¢,* FRAC® +c,* FRAC? + ¢,* FRAC + ¢,

is established for each active VARI ABLE-object on the basis of the object's STATE and RATE at
the three time points

LASTTI ME , LASTTI ME+1/ 2* DTFULL , LASTTI ME+DTFULL

By means of such an interpolation polynomial for each active VARI ABLE-object, it is possible to
determine the model's state for TI ME between LASTTI ME and LASTTI ME+DTFULL.

A VARI ABLE-object's STATE at TI ME=ELASTTI ME+FRAC* DTFULL (0<=FRAC<=1) is com-
puted by Horner's scheme:

STATE: =((((c*FRAGHC,) * FRACHC,) * FRACHC,) * FRACHC,) * FRACHC,

The six coefficients ¢, through ¢, are determined using the following results available from the
RKE-integration:

OLDSTATE isSTATE at LASTTI ME

OLDSTATE+DSHis STATE at LASTTI ME+1/ 2* DTFULL
OLDSTATE+DS is STATE at LASTTI ME+DTFULL

Al isthevaueof H* RATE at LASTTI ME

A5 isthevaueof H* RATE at LASTTI ME+1/ 2* DTFULL
RATE isthevalue of RATE at LASTTI ME+DTFULL

(further, A4 isthe estimated integration error over the full step)

The coefficients are determined as follows:

C, = 8% (- 3* DS+AL+4* A5+H* RATE)

c,= 4* (4* DSH+13* DS- 6* Al- 20* A5- 4* H* RATE)

C,= 2% (- 16* DSH 17* DS+13* A1+32* A5+5* H* RATE)
C,= 16* DSH+7* DS- 12* Al- 16* A5- 2* H* RATE

c, =2*Al

¢, = OLDSTATE

The VARIABLE-attributes Al, A2, A3, A4, A5 are used to contain the coefficients ¢, c,, Cs, C,,
Cs, respectively.

When a fixed step-size integration method, instead of RKE, is used, the interpolation polynomial is
of third order:

P(FRAC) = ¢;* FRAC® + ¢,* FRAC’ + ¢,* FRAC + ¢,

It is established on the basis of the active VARI ABLE-objects STATE and RATE at the two time
points

LASTTI ME , LASTTI ME+DTFULL

15

The four coefficients are determined as follows:

c,= AL+DTFULL* RATE- 2* DS
c,=DS- Al- A3

c, =Al

¢, = OLDSTATE

This interpolation method, sometimes called Hermite interpolation, is examined and described in
more detail in reference 3. It may be shown that the interpolation error is at least of the same order
asthelocal integration error.

2.2.3. Quasi double-precision summation

To reduce rounding errors in the step-wise increase of the model's state, a method called "quasi-
double precision summation™” is used (ref. 4). The method is used both in updating the system
time, TI ME, and in updating the STATE-values of the active VARI ABLE-objects. The method is
especially useful when the simulation is carried out in many, relatively small, time-steps.

The summation procedure isillustrated in the algorithm outline below which shows how TI ME, in
principle, is advanced between discrete events. The variable EPSTI VE denotes a small correction
tothevalue of LASTTI ME. Inrelationto LASTTI ME, EPSTI ME is so small that EPSTI ME added
to LASTTI ME gives LASTTI ME as aresult.

whi | e TI MESNEXTEVENTTI ME do
begi n

LASTTI ME: =TI ME;

DTNOW = ... ;

take a step of size DINOW TI ME: =LASTTI ME+(EPSTI ME+DTNOW ;

i f EPSTI ME+DTNOW=EPPSTI ME and TI MESNEXTEVENTTI ME t hen
ERROR("7: THE CURRENT TIME STEP IS TOO SMALL TO ADVANCE TI ME");

EPSTI ME: =(EPSTI ME+DTNOW - (TI ME- LASTTI MVE) ;
end;

2.3. State-events

The planned state-events are represented in an ordered list of so-called "wait-notices’. When the
procedure WAI TUNTI L iscalled, await-notice (an object of class WAI TNOTI CE) isinserted
into the list and the active discrete process, CURRENT, becomes passive.

The user may determine the order of notices of the list by setting the global variables
WAI TPRI ORI TY and/or WAI TPRI OR. The order of the noticesis of significance only when there
isapossibility of "simultaneous' state-events, that is, state-events occurring at the same instant of
time. The monitor will examine the state-conditions in a sequence corresponding to the list order.
In the case where two or more state-events may take place at the same time, the monitor will cause
the state-event met first take place. Thereafter the list is examined from the beginning.

16

The class WAI TNOTI CE along with an outline of procedure WAI TUNTI L is shown below.

cl ass WAI TNOTI CE(PROC, PRI ORI TY) ;
ref (PROCESS) PROC, real PRORITY;
begi n ref (WAI TNOTI CE) PREDWAI T, SUCWAI T; end;

1. procedure WAI TUNTIL(B); nane B; Bool ean B;

2. i nspect new WAI TNOTI CE(CURRENT, WAPRI ORI TY) do

3. begin

4. rank this WAITNOTICE in the list of wait-notices;

5 PASSI VATE;

6 whi | e PROC=/ =CURRENT do

7. if B then

8. begi n THEMONI TOR. STATEEVENT: - PROC, RESUME(THEMONI TOR) ; end
9 el se

10: RESUVE(iT f SUCWAI T=/ =none t hen SUCWAI T. PROC el se THEMONI TOR) ;
11. renove this WAITNOTICE fromthe |list of wait-notices;
12. end;

Each wait-notice has a reference to its waiting process, PROC, and a priority value, PRI ORI TY.

When procedure WAI TUNTI L is called, a WAI TNOTI CE-object is created (line 2) with PRCC
referencing the calling discrete process, CURRENT, and with PRI ORI TY equal to the current
value of the global r eal -variable WAI TPRI ORI TY.

Next, the notice is inserted into the list of wait-notices (line 4). Its place in the list is determined
from its priority, namely before all notices having a lower priority value and after all notices hav-
ing a greater priority value. Thus the wait-notices are ranked in a high-value-first order (HVF).
The value of the global Boolean variable WAl TPRI OR determines if the notice is to be inserted
before (WAI TPRI ORist r ue) or after (WAl TPRI ORisf al se) notices having the same priority
value (cf. activate P prior).

Thereupon, the calling discrete process becomes passive (line 5).
To examine if a state-condition has been fulfilled, the monitor sets the PROCESS-reference
STATEEVENT to none and RESUMES the first waiting process (FI RSTWAI T. PROC). Every
time a waiting process is RESUME(, it will examine its own state-condition B (line 7). If this con-
dition is true, then STATEEVENT is set to reference the process in question, PROC, and the
monitor is RESUVEd (line 8). If, on the other hand, the condition is false, then the process will
RESUME the next waiting process (SUCWAI T. PROC), if any; the last process RESUVES the
monitor (line 10).
When the monitor is RESUVMEd, the condition

STATEEVENT=/ =none

istrue only if awaiting process, namely STATEEVENT, hasits state-condition fulfilled.

17

The monitor's algorithm for state-event detection is sketched below.

STATEEVENT: - none;

i f FI RSTWAI T=/ =none t hen RESUME(FI RSTWAI T. PROC) ;

i f STATEEVENT=/ =none

then |l ocate earliest state-event within current step;

If awaiting process is made active, either by the monitor because the state-event of the process
must take place, or by some other discrete process (using act i vat e or r eact i vat e), then the
walit-notice of the waiting process is removed from the list of wait-notices (line 11), and the proc-
ess resumes its actions after the WAI TUNTI L call.

The event times of state-events are determined with an accuracy of DTM N using interpolation
(see Section 2.2.2) and a binary search method (see Section 2.2.2). The monitor assure that no
state-event takes place unless its corresponding condition is true. Moreover, no state-event is al-
lowed to take place before all "simultaneous’ time-events have occurred.

Generaly, the following rules hold for "simultaneous’ events:

(1) Time-events take place prior to state-events
(2) Time-events take place in their scheduled order
(3) State-events take place according to their priorities (HVF)

These rules may sometimes be of importance to the user. Note that they do not restrict the model
formulation in any way since every time-event may be converted to a state-event.

2.4. Simulation control

A simulation is controlled by two PROCESS-objects, called CONTROLLERL and CONTROLLERZ2,
which during the whole simulation period are represented successively in the event list of class
S| MULATI ON(SQS), that is,

CONTROLLER1. NEXTEV==CONTROLLERZ.

It is the responsibility of CONTROLLERL (an object of class CONTROL1) that the monitor be-
comes active after each discrete event.

CONTROLLERZ (an object of class CONTROL2) is used to assure that the user does not attempt to
call any event scheduling procedure (e.g., HOLD or PASSI VATE) between discrete events. All
discrete changes are namely restricted to the discrete processes and must take place at event times.
This control ensures that the RESUVE-chains of (1) CONTI NUOUS-objects, (2) REPORTER-ob-
jects and (3) PROCESS-objects calling WAI TUNTI L, can not be destroyed by the user.

18

The two classes CONTROL1 and CONTROL2 are shown below.

PROCESS cl ass CONTROL1;
whi | e not THEMONI TOR. ACTI VE do RESUVE(THEMONI TOR) ;

PROCESS cl ass CONTROLZ;
i f THEMONI TOR. CONTROLLER1. | DLE t hen
begi n
i f THEMONI TOR. CONTROLLERL1. TERM NATED
then ERROR("17: | LLEGAL CALL OF (RE) ACTI VATE");
ERROR("18: | LLEGAL CALL OF PASSI VATE (OR CANCEL(CURRENT))");
end

el se ERROR("19: |LLEGAL CALL OF HOLD (OR REACTI VATE CURRENT)");

Each time CONTROLLERL becomes active (CURRENT), it will RESUME the monitor (which is not
a PROCESS-object). If the monitor already has control, that is, if its attribute ACTI VE is true, then
the user must have made an error. In that case, CONTROLLER1 will terminate causing
CONTROLLERZ to become active at once. The simulation is then stopped with an error message.

CONTROLLERZ2 becomes active if one of the following actions takes place during execution of a
CONTI NUQUS-object or a REPORTER-object, or as a side-effect of evaluating a state-condition
(the name parameter of procedure WAI TUNTI L).

1) HOLDorreacti vat e CURRENT,
2) PASSI VATE or CANCEL (CURRENT) , or
3)activate Porreactivate P,whereP isaPROCESS-object (direct activation).

CONTROLLERZ is able to distinguish between these three error cases merely by examining the
current state of CONTROLLER1.:

re 1) CONTROLLERL will be suspended which causes CONTROLLER2 to become active.
Then the following assertion is true:

not CONTROLLERL. | DLE

re2) CONTROLLERL will be passivated which causes CONTROLLER2 to become active.
Then the following assertion is true:

CONTROLLER1. | DLE and not CONTROLLER1. TERM NATED

re 3) An event of process P isinserted before CONTROLLER1. When CONTROLLER1L
again becomes active, the monitor's attribute ACT1 VE ist r ue which causes
CONTROLLERL1 to terminate and thus CONTROLLERZ to become active. Then the
following assertion istrue:

CONTROLLER1. TERM NATED
The following agorithm outline shows how the monitor exploits CONTROLLERL and

CONTROLLERZ. Note that the monitor itself assures that the next future event scheduled by the
user islegal.

19

LI NK cl ass MONI TOR;
begi n
real TI ME, NEXTEVENTTI VE;
Bool ean ACTI VE;
ref (VWAI TNOTI CE) FI RSTWAI T;
ref (PROCESS) STATEEVENT, NEXTTI MEEVENT, CONTROLLER1, CONTROLLER?Z;

CONTROLLER1L: - new CONTROL1L;

CONTROLLER2: - new CONTROLZ;

reacti vate CONTROLLER2 after MAIN;

reacti vate CONTROLLER1 before CONTROLLERZ2;
DETACH;

NEXTTI MEEVENT: - CONTROLLER2. NEXTEV;

whi | e NEXTTI MEEVENT=/ =none or FIlI RSTWAlI T=/ =none do
begi n

ACTI VE: =t r ue;

comment *** | mmedi ately AFTER an event;

whil e TI ME<NEXTEVENTTI ME do take a step;

comment *** | mmedi atel y BEFORE an event;
i f STATEEVENT=/ =none t hen
begi n
reacti vate STATEEVENT at TI ME;
NEXTTI MEEVENT: - STATEEVENT; STATEEVENT: - none;
end;
reacti vate CONTROLLER2 after NEXTTI MEEVENT;

i f CONTROLLERL. NEXTEV=/ =NEXTTI MEEVENT t hen
begi n
i f NEXTTI MEVENT. | DLE
then ERROR("20: | LLEGAL CALL OF CANCEL");
ERROR("17: | LLEGAL CALL OF (RE)ACTI VATE");
end
el se
i f not TI ME=NEXTTI MEEVENT. EVTI ME
then ERROR("17: | LLEGAL CALL OF (RE) ACTI VATE");

ACTI VE: =f al se;
reacti vate CONTROLLER1 before CONTROLLERZ?;
comment *** Now NEXTTI MEEVENT has taken pl ace;
NEXTTI MEEVENT: - CONTROLLER2. NEXTEV;

end;

ERROR(" 3: THERE ARE NO DI SCRETE EVENTS SCHEDULED") ;
end;

20

Moreover, between discrete eventsit is forbidden to call the CONTI NUOUS- and REPORTER-pro-
cedures START, STOP, SETPRI ORI TY and SETFREQEUNCY, and the procedures WAI TUNTI L,
CANCEL STATEEVENT and PAUSE. Any attempt to make such a procedure call will be detected
by the procedure in question in that the monitor's attribute ACTI VE is tested and found to be
true.

3. THEATTRIBUTESOF COMBINEDSIMULATION

The class skeleton below shows al the attributes of class COVBI NEDSI MULATI ON. The user-
attributes are printed in large type, whereas attributes which should be hidden from the user are
printed in small type.

SI MULATI ON cl ass COVBI NEDSI MULATI ON,;
virtual: procedure S| MULATI ONERROR, | NTEGRATI ONERROR;
begi n
LI NK cl ass CONTINUOUS; virtual: procedure PRELUDE;
begi n
procedur e PRELUDE; ;
procedure START; ... ;
procedure STOP; ...
Bool ean procedure ACTI VE, ... ;
ref (CONTI NUOUS) procedure SETPRI RITY(R); real R ... ;
real procedure PRIORITY;
real pri;
ref (CONTI NUQUS) predcont; ref(LINK) succont;

end;

LI NK cl ass VARI ABLE(STATE); real STATE;
begi n
real RATE;
procedure START; ... ;
procedure STOP; ... ;
Bool ean procedure ACTIVE, ... ;
real procedure LASTSTATE, ... ;
real RELERROR, ABSERROR;
real ol dstate, epsstate, ds, dsh, al, a2, a3, a4, a5;
ref (VARI ABLE) predvar, sucvar;
end;

LI NK cl ass REPORTER;, virtual: procedure PRELUDE;
begi n

procedur e PRELUDE; ;

procedure START; ... ;

procedure STOP; ... ;

Bool ean procedure ACTIVE, ... ;

ref (REPORTER) procedure SETFREQJENCY(F) real F, ... ;

real procedure FREQUENCY; C

real procedure REPORTTI ME;

real frq,reptine;

ref (REPORTER) predrep; ref(LINK) sucrep;

end;

21

procedure WAI TUNTIL(B); nanme B; Boolean B; ... ;
real WAI TPRI ORI TY;

Bool ean WAI TPRI OR;

procedur e CANCELSTATEEVENT(P); ref (PRCCESS) P, ... ;

real DTM N, DTMAX;

real procedure TIME ... ;

real procedure LASTTI I\/E cee
real procedure DT; ... ;

real MAXRELERROR, MAXABSERROCR;
Bool ean EULER, ADAMS, TRAPEZ, SI MPSCON,

procedure PAUSE; ...

r ef (PROCESS) procedur e NEXTTI I\/EEVENT(P); ref(PROCESS) P;
procedur e | NTEGRATI ONERROR; . ..

ref (VARI ABLE) procedure ERR(RVARI ABLE;, ... ;

Bool ean REPEATSTEP;

procedur e S| MULATI ONERROR;

ref (CONTI NUOUS) procedure ERRORCONTI NUQUS; ... ;

ref (REPORTER) procedure ERRORREPORTER, ... ;

real procedure maxreal cee
procedure abort; ... ;
procedur e error(rressage); val ue nessage; text nessage;

class waitnotice(proc,priority);
ref (PROCESS) proc; real priority;
begin ref(waitnotice) predwait, sucwait; end;

PROCESS cl ass control 1; ... ;
PROCESS cl ass control 2; ... ;

LI NK cl ass monitor;
begin

real tine,lasttinme, epstine, nexttinme, nexteventtine,

nextreporttinme, dt, dt now, dt next, dtful |, dt| ower,
h,frac,errorratio, tenp;

Bool ean acti ve;

ref (CONTI NUOUS) firstcont, | astcont;

ref (VARI ABLE) firstvar, var;

ref (REPORTER) firstposreporter,firstzeroreporter,

firstnegreporter;
ref (waitnotice) firstwait,lastwait;
ref (PROCESS) st at eevent, next st at eevent, nextti meevent,
controllerl,controller?2;

ref (CONTI NUOUS) errorcontinuous;

ref (VARI ABLE) errorvari abl e;

ref (REPORTER) errorreporter;
end;
ref (monitor) thenonitor;
t henmoni t or: - new noni t or;
i nner;

st opsi nul ati on:;
end;

22

3.1 The SIMULATION-prefix

COVBI NEDSI MULATI ON is a subclass of SIMULA's system-defined class for discrete event
simulation, class SI MULATI ON.

All of class SI MULATI ON's properties are at the user's disposal. Thus class PROCESS may be
used in the familiar manner for the description of discrete processes of a model.

3.2. ClassCONTINUOUS

Class CONTI NUQUS is used to describe the continuous processes of a model.

The continuous state changes are described in one or more subclasses of class CONTI NUOUS, so
that objects of these subclasses through their actions compute the current values or derivatives of
state variables. It is the user's responsibility to make sure that the sequence of these computations
is correct so that the quantities involved always reflect the current state of the model. Sometimes
the sequence may be decisive for correct model behaviour. This applies for example when a
VARI ABLE-object's RATE appears on the right-hand side of an assignment statement. Execution
of the active continuous processes is governed by a sequence of decreasing priorities (high-value-
first). Processes with equal priorities are executed according to when they became active (earliest-
first).

Only continuous changes may be described with class CONTI NUOUS. All discrete state changes
should be handled by discrete processes (PROCESS-objects).

23

A skeleton of class CONTI NUQUS is shown below.

LI NK cl ass CONTI NUOUS;
virtual : procedure PRELUDE;
begi n

procedur e PRELUDE; ;

procedure START; ... ;
procedure STOP; ... ;
Bool ean procedure ACTIVE; ACTI VE: =SUCCONT=/ =none,

ref (CONTI NUOUS) procedure SETPRIORITY(R); real R
begi n

PRI : =R;

i f ACTIVE then begin START; STOP; end;

SETPRI ORI TY: -t hi s CONTI NUQUS;
end;

real procedure PRIORITY; PRIORITY: =PRI ;
real PRI;
ref (CONTI NUOUS) PREDCONT; ref (LI NK) SUCCONT;

PRELUDE;
DETACH;
EXECUTE: ;
i nner;
RESUME(SUCCONT) ;
got o EXECUTE;
end;

The active continuous processes are placed in alist controlled by the monitor. When the monitor
RESUNMES the first process of the list (FI RSTCONT), the user-defined actions (inner) of all active
continuous processes will be executed. Each CONTI NUOUS-object will namely, after having exe-
cuted its own user-defined actions, RESUME its successor in the list (SUCCONT), and the last ob-
ject of the list (LASTCONT) will RESUVE the monitor (because LASTCONT. SUCCONT==
THEMONI TOR).

3.2.1. The LINK-prefix

The LI NK-property is at the user's disposal. The CONTI NUOUS-objects are placed in the list of
active continuous processes independently of their LI NK-property.

24

3.2.2. Procedure PRELUDE

The procedure PRELUDE, defined with an empty procedure-body in class CONTI NUQUS, is
called at generation of each CONTI NUOUS-object.

The procedure is defined virtual and therefore can be redefined by the user in subclasses of class
CONTI NUOUS.

3.2.3. Procedure START

START inserts the object into the list of active continuous processes. Its place in the list is deter-
mined by the priority value of the object, PRI ORI TY (high-value-first). If there are other objects
with the same priority value, then the object in question is inserted after the others.
Calling START when the object is already active has no effect.
Note that each object isinactive until its START-procedure is called.
START may only be called by a discrete process. Violating this rule leads to the error message

| LLEGAL CALL OF START (CLASS CONTI NUQUS)

after which the simulation is stopped.

3.2.4. Procedure STOP

STOP removes the object from the list of active continuous processes.

Calling STOP has no effect unless the object is active.

STOP may only be called by a discrete process. Violating this rule leads to the error message
| LLEGAL CALL OF STOP (CLASS CONTI NUQUS)

after which the simulation is stopped.

3.2.5. Boolean procedure ACTIVE

ACTI VE returns the value t r ue if the object isin the list of active continuous processes; other-
wise, f al se.

Since the monitor is the successor of the last object in the list (LASTCONT. SUCCONT==
THEMONI TOR), and an object which is not in the list has no successor (SUCCONT==none),
ACTI VE is aways equivalent to the condition

SUCCONT=/ =none

25

3.2.6. Procedure SETPRIORITY(R); real R

The list of active continuous processes is ordered according to decreasing priority values (high-
value-first). Calling SETPRI ORI TY(R) setsthe object's priority to R.

The priority may be changed as often as necessary. Each continuous process has priority zero until
its SETPRI ORI TY-procedureis called.

If the object is active at the time of the call, then it probably should be given a new place in the
list. Inthiscase, SETPRI ORI TY calls STOP followed by START.

SETPRI ORI TY may be called not only when the object is active, but aso when it is inactive.
However, SETPRI ORI TY may only be called by a discrete process. Violating this rule leads to
the error message

| LLEGAL CALL OF SETPRI ORI TY (CLASS CONTI NUQOUS)
after which the simulation is stopped.

Actualy, SETPRI ORI TY is a r ef (CONTI NUQUS) -procedure that returns a reference to this
CONTI NUQUS-object. This allows the user to write as follows:

new DERI VATI VES. SETPRI ORI TY(2) . START

where DERI VATI VES is a subclass of class CONTI NUQOUS.

3.2.7. Real procedure PRIORITY

PRI ORI TY returns the current value of PRI (see below).

3.2.8. Real PRI

PRI denotes the current priority value of the CONTI NUOUS-object.

The user has access to the value of PRI through the procedure PRI ORI TY and may assign avalue
to PRI by procedure SETPRI ORI TY.

Theinitial value of PRI is zero.

26

3.2.9. Ref(CONTINUOUS) PREDCONT; ref(LINK) SUCCONT

PREDCONT and SUCCONT denote the object's predecessor and successor in the list of active con-
tinuous processes.

The first object of the list has PREDCONT==none. The last object has SUCCONT==
THEMONI TOR (the monitor is a LINK-object). For objects not in the list PREDCONT==
SUCCONT==none.

3.3.ClassVARIABLE

Class VARI ABLE is used to represent state variables that vary between discrete events according
to ordinary first-order differential equations and/or difference equations. These equations are ex-
pressed in subclasses of class CONTI NUOUS.

A skeleton of class VARI ABLE is shown below.

LI NK cl ass VARI ABLE(STATE); real STATE;

begi n
real RATE;
procedure START; ... ;
procedure STOP; ... ;
Bool ean procedure ACTI VE; ACTI VE: =PREDVAR=/ =none;
real procedure LASTSTATE; LASTSTATE: =OLDSTATE;
real RELERROR, ABSERROR;
real OLDSTATE, EPSSTATE, DS, DSH, Al, A2, A3, A4, A5;
ref (VARI ABLE) PREDVAR, SUCVAR,

RELERROR: =MAXRELERROR;, ABSERROR: =MAXABSERROR:
end;

The only actions of the class consist of assigning the attributes RELERROR and ABSERROR the
value of MAXREL ERROR and MAXABSERROR, respectively.

Active VARI ABLE-objects are held in a list controlled by the monitor. Between discrete events

the STATES of these objects is updated by the monitor as defined by the active continuous proc-
€sses.

27

The continuous variation may be expressed either as first-order "differential equation”, for exam-
ple,

V. RATE : = 2+TI ME*V. STATE
or asfirst-order "difference equation”, for example,
V. STATE : = V. LASTSTATE+DT* (2+LASTTI ME* V. LASTSTATE)

where VisaVARI ABLE-object.

3.3.1. The LINK-prefix

The LI NK-property is at the user's disposal. The VARI ABLE-objects are placed in the list of ac-
tive VARI ABL E-objects independently of their L1 NK-property.

3.3.2. Real STATE

STATE denotes the current value of the VARI ABLE-object in question.
Theinitial valueis passed as a parameter at object generation.

When the object is in the list of active VARI ABLE-objects, the monitor will "continuously"
change the object's STATE according to the value of its RATE.

3.3.3. Real RATE

RATE denotes the derivative of STATE with respect to Tl IVE.

RATE is to be computed by the user by means of active CONTI NUOUS-objects. When RATE is not
computed in any CONTI NUOUS-object, its value is equal to zero.

3.3.4. Procedure START

START inserts the object foremost in the list of active VARI ABLE-objects.
Calling START when the object is already active has no effect.
Note that each VARI ABLE-object isinactive until its START-procedure has been called. Note also

that it is allowed to call START between discrete events, for example in connection with a call of
the virtual procedure | NTEGRATI ONERROR (Section 3.17).

28

3.3.5. Procedure STOP

STOP removes the object from the list of active VARI ABLE-objects and sets the object's RATE to
zero.

Calling STOP has no effect unless the object is active.

Note that it is allowed to call STOP between discrete events, for example in connection with a call
of the virtual procedure INTEGRATIONERROR (Section 3.17).

3.3.6. Boolean procedure ACTIVE

ACTI VE returns the value t r ue if the object is in the list of active VARI ABLE-objects; other-
wise, f al se.

Since the predecessor of the first object in the list is defined as the object itself (FI RSTVAR.
PREDVAR==F| RSTVAR), and an object not in the list has no predecessor (PREDVAR==none),
ACTI VE is aways equivaent to the condition

PREDVAR=/ =none

3.3.7. Real procedure LASTSTATE

LASTSTATE returns the value of OLDSTATE, that is, the value of STATE at the starting point of
the current step (see Section 3.3.9).

LASTSTATE may be used to describe continuous changes defined by difference equations.

3.3.8. Real RELERROR, ABSERROR

REL ERROR and ABSERROR may be used by the user to set an upper bound for the relative and
the absolute integration error allowed in each integration step.

When the RKE-method is used, the monitor at each step will assure that, for each active
VARI ABLE-object, the integration error is less than

ABS(ABSERROR) + ABS(RELERROR*m)
where m denotes the value of STATE in the middle of the current integration step (that is, at
OLDTI Me+1/ 2* DTFULL). If this condition can not be fulfilled, not even with the minimum
step-size, DTM N, and if the user has not redefined the virtual procedure | NTEGRATI ONERROR
(Section 3.17), then the following error message is output

THE REQUESTED | NTEGRATI ON ACCURACY CAN NOT BE ACHI EVED

after which the smulation is stopped.

29

When a fixed step-size integration method is used, the values of RELERROR and ABSERROR are
irrelevant.

Note that, at the generation of a VARI ABLE-object, its RELERROR and ABSERROR are automati-

cally assigned the values of the two global variables MAXRELERROR and MAXABSERROR, re-
Spectively.

3.3.9. Real OLDSTATE

When the VARI ABLE-abject is active, OLDSTATE holds the value of STATE at the starting point
of the current step, that is, at OLDTI ME. When the object is inactive, the value of OLDSTATE will
not be updated.

The user has access to the value of OLDSTATE through the procedure LASTSTATE (Section
3.3.7).

3.3.10. Real EPSSTATE

EPSSTATE is used in connection with the quasi-double precision summation of STATE-incre-
ments, DS, and denotes a small correction to OLDSTATE. The method is described in Section
2.2.3.

3.3.11. Real DS

DS is the increment of STATE for the current integration step (DTNOW. The following assertion
holds

STATE = COLDSTATE+(EPSSTATE+DS)

During RKE-integration DS is also used for storing intermediate results.

3.3.12. Real DSH

During RKE-integration DSH is used to hold increment of STATE corresponding to half the cur-
rent integration step (that is, 1/ 2* DTNOW,.

If Adams implicit integration method is applied, DSH is used to store the value of STATE at the
starting point of the previous step (that is, at OLDTI ME- DTNOW.

3.3.13. Real A1, A2, A3, A4, A5

The variables Al through A5 are auxiliary variables used by the monitor for both integration (see
Section 2.2.1) and interpolation (see Section 2.2.2).

30

3.3.14. Ref(VARIABLE) PREDVAR, SUCVAR

PREDVAR and SUCVAR denote the object's predecessor and successor, respectively, in the list of
active VARl ABLE-objects. When the object is not in this list, PREDVAR and SUCVAR both have
thevaluenone.

If the object is the first object of the list, then PREDVAR points to the object itself, that is,
FI RSTVAR. PREDVAR==FI RSTVAR. The last object of the list has no successor, SUCVAR==
none.

During RKE-integration the monitor may, for the sake of efficiency, change the list order. When

the step-size is too large to achieve the user-requested accuracy for a VARI ABLE-object, the ob-
ject in question will be moved to the front of the list.

3.4. ClassREPORTER

Class REPORTER may be used for reporting purposes. In one or more subclasses of class
REPORTER the user may define actions for gathering information about the model's behaviour.

Each object of class REPORTER may automatically have its user-defined actions executed with a
specified frequency, namely either (1) at uniformly spaced intervals, (2) after each time step, or
(3) at event times.

Note that all state changes should be restricted to PROCESS- and CONTI NUOUS-objects. Class
REPORTER must not be used for any kind of state change.

31

A skeleton of class REPORTER is shown below.

LI NK cl ass REPORTER;
virtual: procedure PRELUDE;
begi n

procedur e PRELUDE; ;

procedure START; ... ;
procedure STOP; ... ;
Bool ean procedure ACTIVE; ACTI VE: =SUCREP=/ =none;

ref (REPORTER) procedure SETFREQUENCY(F); real F;
begi n
if not ACTIVE or SIGN(FRQ =SIG\(F) then
begi n REPTI ME: =TI ME; FRQ =F; end
el se begin STOP;, FRQ =F; START; end,
SETFREQUENCY: -t hi s REPORTER;
end;

real procedure FREQUENCY; FREQUENCY: =FRQ

real procedure REPORTTI ME; REPORTTI ME: =REPTI ME;
real FRQ REPTI ME;

r ef (REPORTER) PREDREP, SUCREP;

PREL UDE;

DETACH;

EXECUTE: ;
i nner;

RESUVE(SUCREP) ;

got o EXECUTE;
end;

According to its frequency - positive, zero, or negative - an active REPORTER-object isin one of
three lists controlled by the monitor. When the monitor RESUMES the first object in one of these
lists, the user-defined actions (inner) of all the list's REPORTER-objects are executed. Each
REPORTER-object will namely, after having executed its own user-defined actions, RESUMVE its
successor in the list, SUCREP, an the last object will RESUME the monitor (because its SUCREP
==THEMONI TOR).

Each REPORTER-object assures that its user-defined actions are executed only as determined by
the specified frequency, and that the frequency is not so small that time "stands still".

32

3.4.1. The LINK-prefix

The LINK-property is at the user's disposal. The REPORTER-objects are placed in one of the lists
of active REPORTER-objects independently of their LI NK-property.

3.4.2. Procedure PRELUDE

The procedure PRELUDE, defined in class CONTI NUOUS with an empty procedure-body, is
called at generation of each REPORTER-object.

The procedure is defined virtual and therefore can be redefined by the user in subclasses of class
REPORTER.

3.4.3. Procedure START

START inserts the object in one of the three lists of active REPORTER-objects. The list the object
is placed in is determined by the value of FREQUENCY - positive, zero, or negative. The first ob-
ject of the three lists is denoted FI RSTPOSREPORTER, FI RSTZEROREPORTER and
FI RSTNEGREPORTER, respectively.
Calling START when the object is already active has no effect.
Note that each object isinactive until its START-procedure s called.
START may only be called by a discrete process. Violating this rule leads to the error message

| LLEGAL CALL OF START (CLASS REPORTER)

after which the ssimulation is stopped.

3.4.4. Procedure STOP

STOP removes the object from the list of active REPORTER-objects of which the object is a
member.

Calling STOP has no effect unless the object is active.
STOP may only be called by a discrete process. Violating this rule leads to the error message
| LLEGAL CALL OF STOP (CLASS REPORTER)

after which the simulation is stopped.

33

3.4.5. Boolean procedure ACTIVE

ACTI VE returns the value t r ue if the object is a member of one of the three lists of active
REPORTER-objects; otherwise, f al se.

Since the monitor is the successor of the last object in each of these lists (SUCREP==
THEMONI TOR), and an object which is not in the list has no successor (SUCREP==none),
ACTI VE is aways equivaent to the condition

SUCREP=/ =none.

3.4.6. Procedure SETFREQUENCY (F); real F

SETFREQUENCY(F) setsthe object's frequency to F (for the meaning of F, see Section 3.4.9).

The frequency may be changed as often as necessary. The frequency of each REPORTER-object is
zero until its SETFREQUENCY-procedureis called.

If the object is active and has to be moved to another list (that is, if ACTI VE and SI G\(F) =
SI GN(FREQUENCY)), then SETFREQUENCY calls STOP followed by START.

SETFREQUENCY may be called not only when the object is active, but also when it is inactive.
However, SETFREQUENCY may only be called by a discrete process. Violating this rule leads to
the error message

| LLEGAL CALL OF SETFREQUENCY (CLASS REPORTER)
after which the ssimulation is stopped.

Actualy, SETFREQUENCY is a r ef (REPORTER) -procedure that returns a reference to this
REPORTER-object. This allows the user to write as follows:

new PLOTTER. SETFREQUENCY(0. 1) . START

where PLOTTER is a subclass of class REPORTER.

3.4.7. Real procedure FREQUENCY

FREQUENCY returns the value of FRQ the frequency of the REPORTER-object (see Section
3.4.9).

3.4.8. Real procedure REPORTTIME

REPORTTI ME returns the value of REPTI VE (see Section 3.4.10).

3.4.9. Real FRQ

FRQis the current frequency of the REPORTER-object.
The meaning of FRQis explained by the following:
FRQ>0: Execution takes place at uniformly spaced intervals and also at event times
FRQ=0: Execution takes place at the end of each time step (which includes event times)
FRQ<O0: Execution takes place only at event times
When a discrete event takes place, all active REPORTER-objects, regardiess of frequency, have
their user-defined actions executed twice at the event time, namely both immediately before and
immediately after the event.

Theinitial value of FRQis zero.

The user has access to the value of FRQ through the procedure FREQUENCY and may assign a
value to FRQwith the procedure SETFREQUENCY.

3.4.10. Real REPTIME

For an active REPORTER-object with a positive frequency REPTI ME denotes the time when the
next regular execution of the object's user-defined actions will take place. Executions due to dis-
crete event occurrences are not taken into account.

REPTI ME may be viewed as a counterpart to the PROCESS-attribute EVTI IVE.
The user has access to the value of REPTI ME through the procedure REPORTTI ME.
If the object isinactive, the value of REPTI ME is of no interest to the user and is not updated.

Theinitial value of REPTI ME is zero. By calling START or SETFREQUENCY, REPTI ME is set to
TI ME. The active REPORTER-objects themselves are responsible for updating REPTI ME and for
the determination of the earliest regular execution time, NEXTREPORTTI ME. If during updating
of REPTI ME it is discovered that FREQUENCY is so small that the addition REPTI ME +
FREQUENCY gives REPTI ME as a result, then the ssimulation is stopped with the following error

message
FREQUENCY IS TOO SMALL TO ADVANCE TI ME

35

3.4.11. Ref(REPORTER) PREDREP,SUCREP

PREDREP and SUCREP are the object's predecessor and successor, respectively, in the relevant
list of active REPORTER-objects.

PREDREP and SUCREP both have the value none when the object is not a member in any of the
three lists of active REPORTER-objects.

3.5. Procedure WAITUNTIL (B); name B; Boolean B

The procedure WAI TUNTI L may be used to define state-events, that is, events whose time of oc-
currence is dependent upon a given state-condition.

WAI TUNTI L(B) , where B is a Boolean expression of arbitrary complexity, causes the active dis-
crete process, CURRENT, to become passive (I DLE) over a period which is planned to last until B
evaluatesto t r ue. However, this passive period will end sooner if the waiting processis activated
by another discrete process.

It is possible to schedule atime-event for awaiting process, so that the process has simultaneously
a state-event and a time-event scheduled (e.g., acti vate P del ay 10, where P is awaiting
PROCESS-object). When the first of these events takes place, the other one will be annulled.

A state-event takes place as soon as the corresponding state-condition is fulfilled. The event time
will be determined with an accuracy of DTM N (see Section 2.3).

Discrete processes operate in quasi-parallel, which means that "simultaneous’ events occur in a
certain order. With regard to simultaneous events, the following rules apply:

(1) Time-events take place before state-events

(2) Time-events take place in their scheduled order, that isto say, in the same sequence as
they are represented in class SI MULATI ON'slist of event notices (SQS)

(3) State-events take place in accordance with their priorities (WAI TPRI ORI TY, high-
value-first).

A state-event takes place only if its condition is true. Notice that the occurrence of a simultaneous
event can change the condition's truth value.

WAI TUNTI L must only be called by a discrete process. Violating this rule leads to the error mes-
sage

| LLEGAL CALL OF WAI TUNTI L

after which the simulation is stopped.

36

3.6. Real WAITPRIORITY

The global r eal -variable WAl TPRI ORI TY may be used to give a state-event a priority.

When procedure WAI TUNTI L is called, the state-event in question is assigned a priority equal to
the current value of WAl TPRI ORI TY.

The priority of a state-event has importance only if two or more state-events can take place si-
multaneoudly. In this case, the state-event having the highest priority will take place first.

WAl TPRI ORI TY will only changed by the user. Initialy itsvalueis zero.

3.7. Boolean WAITPRIOR

The global Boolean-variable WAl TPRI OR may be used to rank state-events having equal priority.

When procedure WAI TUNTI L is called, the value of WAI TPRI OR determines if the state-event in
guestion is to be ranked higher (WAITPRIOR ist r ue), or lower (WAl TPRI ORisf al se) than
al planned state-events having the same priority (cf. the construction acti vate P at T
prior).

WAI TPRI OR will only changed by the user. Initialy its value is false. WAI TPRI OR will only be
changed

3.8. Procedure CANCEL STATEEVENT (P); ref(PROCESS) P

CANCEL STATEEVENT may be used to cancel a planned state-event.

Calling CANCELSTATEEVENT(P) causes the planned state-event of the discrete process P, if
any, to be annulled (cf. the procedure CANCEL of class SI MULATI ON).

First, CANCELSTATEEVENT determines if the process P has any state-event associated with it,
that is, if in the list of wait-notices there exists one notice having PROC==P (see Section 3.26). In
this case, the notice in question is removed from the list. By letting the predecessor and the suc-
cessor of the removed notice be the notice itself (PREDWAI T==SUCWAI T==t hi s
WAl TNOTI CE), it is assured that no problems arise when the WAI TUNTI L-procedure attempts to
remove the notice from the list later on.

Calling CANCELSTATEEVENT(P) iswithout effect if P==none, or P has not any planned state-
events.

37

3.9. Real DTMIN, DTMAX

During the simulation time advances in steps of variable size. The step-size, among other things, is
governed by the event times and the user's requirements regarding integration accuracy. DTM N
and DTIMVAX are used to specify the minimum and the maximum allowabl e step-size, respectively.

In general, step-size will vary within these bounds. There are the following exceptions, however:

(1) A time step lessthan DTM N can be taken in order to assure that atime-event is not
passed. In addition, the length of the first step taken after an event is equal to zero.

(2) A time step greater than DTMAX can be taken whenever there are neither planned
state-events nor active continuous processes. In this case, step-sizeisaslarge as
possible without passing atime-event.

The first trial step of a simulation is of length DTMAX. In using a fixed step-size integration
method the step-size remains constant at DTMAX, unless an event occurs within a step.

Eventual active REPORTER-objects have no influence on the integration step-size. The state of the
model at the regular reporting times is determined by interpolation (see Section 2.2.2).

Before a step is completed, the conditions for planned state-events are examined at the end of the
step. If a condition is met, a more precise time determination is made, so that the earliest state-
event is found within the step. The step-length is reduced accordingly. Observe that a state-event
can be passed unnoticed, if DTMAX is so large that the corresponding condition is met within a
step, but not at its endpoint.

The time of a state-event's occurrence is determined (by binary search) with an accuracy of
DTM N. One may set DTM N to zero. In this case, state-events will be time-determined with the
best accuracy obtainable on the computer in question.

DTM Nand DTMAX are two global variables which initially both have the value zero.

Assignment of their values should be made such that 0<=DTM N<=DTMAX. If thisis not the case,
the simulation is stopped with one of the following error messages

DTM N<O

DTM N>DTMAX

These errors can only be discovered immediately after an event, or immediately after a call of the
virtual procedure | NTEGRATI ONERROR (Section 3.17).

If the time step ever becomes so small that time "stands still", the error message
THE CURRENT TI ME STEP IS TOO SMALL TO ADVANCE TI ME

is output, after which the simulation is stopped.

38

3.10. Real procedure TIME

Tl ME returns the value of THEMONI TOR. Tl IVE, that is, the current model time.

3.11. Real procedure LASTTIME

LASTTI ME returns the value of THEMONI TOR. LASTTI ME, that is, the starting point of the cur-
rent time step.

The value of LASTTI ME may be used, for example, to describe first-order difference equations
(see Section 3.3).

3.12. Real procedure DT

DT returns the value of THEMONI TOR. DT, that is, the current time increment, Tl ME-
LASTTI MVE.

The value of DT may be used, for example, to describe first-order difference equations.

Note that DT is equal to zero immediately after the occurrence of an event, so that division by DT
should be avoided.

3.13. Real MAXRELERROR, MAXABSERROR

When a VARI ABLE-object is generated the upper bound for the relative and the absolute error is
set to the current value of MAXREL ERROR and MAXABSERROR, respectively.

MAXREL ERROR and MAXABSERROR are two global variables which initially both have the value
zero.

Their values have meaning only when VARI ABL E-objects are generated (see Section 3.3.8).

3.14. Boolean EULER, TRAPEZ, ADAMS, SIMPSON

Unless specified otherwise by the user, Runge-Kutta-England's fourth-order variable step-size
integration method, RKE, is used. However, by setting one or more of the Boolean variables
EULER, TRAPEZ, ADANS or SI MPSON to t r ue, an alternative integration method may be se-
lected (see Section 2.2.1).

In contrast to RKE, the other integration methods operate with constant time steps and without

consideration of user-specified error bounds. The step-size with these methods is equal to DTMAX,
unless, of course, this causes an event to be bypassed.

39

When the continuous parts of the model are defined exclusively by difference equations, EULER,
for the sake of efficiency, should be set to t r ue. This causes namely the user-defined actions of
the active continuous processes to be executed only once at each time step (in contrast to 9 times
with RKE).

EULER, TRAPEZ, ADAMS and SI MPSON are global variables which initially are false. Their val-

ues may be changed at any time during the simulation.

3.15. Procedure PAUSE

The actions of the active continuous processes will, as a rule, be executed immediately after each
event. Through the use of procedure PAUSE a so-called "event internal” execution of the actions
of all active continuous processes can be achieved. Such a call causes the user-defined actions of
all active CONTI NUOUS-objects together with the user-defined actions of all active REPORTER-
objects to be executed instantaneously (DT=0). Afterwards, the discrete process which called
PAUSE resumesits actions.

PAUSE may only be called by a discrete process. Violating this rule leads to the error message
| LLEGAL CALL OF PAUSE
after which the simulation is stopped.
The desired effect of PAUSE is achieved by causing the monitor to become active (CONTRCOLLERL

==CURRENT).

3.16. ref(PROCESS) procedure NEXTTIMEEVENT (P); ref(PROCESS) P

The simulation is automatically controlled by two PROCESS-objects, CONTROLLER1 and
CONTROLLERZ, which during the whole simulation are always present in class SI MULATI ON's
list of event notices, SQS (see Section 2.4).

In order to avoid unintentional referencing these two PROCESS-objects, the user should not use
the PROCESS-attribute NEXTEV. In stead, it is strongly recommended that procedure
NEXTTI MEEVENT be used.

NEXTTI MEEVENT "hides' CONTROLLER1 and CONTROLLER2 from the user, but in other re-
spectsit has the same effect as NEXTEV.

The call NEXTTI MEEVENT(P) with P==none returnsthe value none.

40

3.17. Procedure INTEGRATIONERROR

The procedure | NTEGRATI ONERROR is automatically called if the requested integration accu-
racy (RELERROR and ABSERROR) can not be achieved without taking a step smaller than
DTM N.

| NTEGRATI ONERROR stops the simulation with the following error message
THE REQUESTED | NTEGRATI ON ACCURACY CAN NOT BE ACHI EVED

However, the procedure is defined virtual in class COVBI NEDSI MULATI ON and therefore can be
redefined by the user. Thus the user may determine the course of action to be taken in the cases
where the accuracy requirements can not be met. The user may, for example, (1) choose to de-
crease DTM N, (2) slacken the accuracy requirements, (3) change from RKE-integration to one of
the fixed step-size integration methods, (4) output a warning, or (5) totally ignore the error (by
defining | NTEGRATI ONERROR with an empty procedure-body).

In connection with a redefinition of | NTEGRATI ONERROR the procedure ERRORVARI ABLE
(Section 3.18) and the Boolean procedure REPEATSTEP (Section 3.19) might be useful.

3.18. Ref(VARIABLE) ERRORVARIABLE

In the virtual procedure | NTEGRATI ONERRCOR (Section 3.17), the user is able to determine
which VARI ABLE-object gave rise to the call. ERRORVARI ABLE returns a reference to the
VARI ABLE-object in question.

When | NTEGRATI ONERROR is not called, ERRORVARI ABLE returnsnone.

ERRORVARI ABLE returns the value of THEMONI TOR. ERRORVARI ABLE (Section 3.18.28).

3.19. Boolean REPEATSTEP

In connection with a redefinition of the virtual procedure | NTEGRATI ONERROR (Section 3.17),
the user is able to specify that the actual integration step must be repeated after a call of the proce-
dure. If REPEATSTEP ist r ue, the step is repeated from its beginning; otherwise, the step is
completed even though | NTEGRATI ONERROR has been called.

REPEATSTERP is a global Boolean variable which initially has the value false. Its value may be
changed at any time during the simulation.

41

3.20. Procedure SSIMULATIONERROR

If the simulation is to be stopped due to the occurrence of an error, the procedure
SI MULATI ONERROR is called just prior to termination. A complete list of fatal errors can be
found in Appendix A.

SI MULATI ONERROR prints the values DT, DTM N and DTMAX.

However, the procedure is defined virtual in class COVBI NEDSI MULATI ON and therefore may
be redefined by the user. The user may, for example, use the procedure for printing information
about the model's state at the time of the error, or close possibly open files. In connection with a
redefinition of procedure SI MULATI ONERROR the procedures ERRORVARI ABLE (Section 3.18),
ERRORCONTI NUQUS (Section 3.21) and ERRORREPORTER (Section 3.22) might be useful.

3.21. Ref(CONTINUOQOUYS) procedure ERRORCONTINUOUS

In the virtual procedure SI MULATI ONERROR (Section 3.20) the user is able by means of proce-
dure ERRORCONTI NUCUS to determine if it was a CONTI NUOUS-object that gave rise to the
error. If this was the case (ERRORCONTI NUOUS=/ =none), then ERRORCONTI NUOUS returns
areference to the CONTI NUOUS-object in question.

ERRORCONTI NUQUS returns the value of THEMONI TOR. ERRORCONTI NUOUS (Section
3.29.27).

3.21. Ref(REPORTER) procedure ERRORREPORTER

In the virtual procedure SI MULATI ONERROR (Section 3.20) the user is able by means of proce-
dure ERRORREPORTER to determine if it was a REPORTER-object that gave rise to the error. If
this was the case (ERRORREPORTER=/ =none), then ERRORREPORTER returns a reference to
the REPORTER-object in question.

ERRORREPORTER returns the value of THEMONI TOR. ERRORREPORTER (Section 3.29.28).

3.22. Real procedure MAXREAL

MAXREAL returnsthe largest r eal -value that can be represented in the computer.

MAXREAL is the only machine dependent part of class COVBI NEDSI MULATI ON. When the class
isinstalled on a computer, the procedure MAXREAL probably must be rewritten.

The monitor uses the value of MAXREAL when there are no time-events scheduled. In that case,
NEXTEVENTTI ME=MAXREAL.

42

3.24. Procedure ABORT

The procedure ABORT is called if afatal error is detected during the simulation. This causes the
simulation to be stopped at once.

Unfortunately, SIMULA has no built-in facility for aborting a program. A solution would seem to
be ajump to alabel, say STOPSI MULATI ON, placed last in the main program. However, such a
jump is not legal when the main program is inactive and would cause a runtime-error.

Nevertheless, for lack of a better method, this solution is used anyway and has been programmed
with

i nner;
STOPS| MULATI ON: ;

asthe last statements of class COVBI NEDSI MULATI ON.

3.25. Procedure ERROR(MESSAGE); value MESSAGE; text MESSAGE

Procedure ERROR is called when an error is detected which is so serious that the simulation must
be stopped. A complete list of such errors can be found in Appendix A.

First, an error message is printed on the form
*** COVBI NEDSI MULATI ON
***ERROR m
*** ENCOUNTERED AT TI ME t
where mis the text parameter MESSACE, and t isthe current value of Tl IVE.
Next, the virtual procedure SI MULATI ONERROR (Section 3.20) is called, and finally, the simula-
tion is stopped by calling procedure ABORT (Section 3.24).

3.26. ClassWAITNOTICE

Planned state-events (WAI TUNTI L-events) are represented as objects of class WAI TNOT| CE (see
Section 2.3).

The classin full is asfollows
cl ass WAI TNOTI CE(PROC, PRI ORI TY) ;

ref (PROCESS) PRCC, real PRIORITY;
begi n ref (WAl TNOTI CE) PREDWAI T, SUCWAI T; end;

43

3.26.1. Ref(PROCESS) PROC

PROC is a parameter of class WAI TNOT| CE and references the waiting discrete process.

When WAITUNTIL is called, aWAITNOTICE-object is created having PROC==CURRENT.

3.26.2. Real PRIORITY

PRI ORI TY isaparameter of classWAI TNOTI CE and contains the priority of the state-event.
When WAI TUNTI L is caled, a WAI TNOTI CE-object is created having PRI ORI TY equal to the
current value of the global r eal -variable WAl TPRI ORI TY.

3.26.3. Ref(WAITPRIORITY) PREDWAIT,SUCWAIT

PREDWAI T and SUCWAI T denote WAI TNOT| CE-object's predecessor and successor in the list of
walit-notices.

PREDWAI T and SUCWAI T both have the value none when the WAI TNOT| CE-object isnot in the
list of wait-notices. However, when the procedure CANCEL STATEEVENT (Section 3.8) has been

used to remove the notice from the list, but the corresponding discrete process, PROC, is till
waiting, then PREDWAI T==SUCWAI T==t hi s WAI TNOTI CE.

3.27. PROCESS class CONTROL 1

It is the responsibility of CONTROLLERL, an object of the class CONTROL 1, that the monitor be-
comes active after each discrete event (see Section 2.4).

3.28. PROCESS class CONTROL 2

CONTROLLERZ, an object of the class CONTROL 2, assures that between discrete event the user
does not attempt to use the procedures HOLD, activate, reactivate, CANCEL or
PASSI VATE (see Section 2.4).

3.29. ClassMONITOR

The simulation is controlled behind the scenes, so to speak, by an object of class MONI TOR, called
the monitor (THEMONI TOR).

The monitor is active between discrete events and accomplishes the following tasks:

(1) Time advance
The model time, Tl MVE, is advanced in steps (see Section 2.1).

(2) Updating of state variables
Between discrete events the values of state variables are updated using numerical
integration (see Section 2.2).

(3) Event control
The discrete events are triggered at the right time and in the correct sequence (see
Section 2.3). Together with two PROCESS-objects, CONTRCLLERL1 and
CONTROLLER?Z, the monitor assures that no event is planned or cancelled while the
monitor is active (see Section 2.4).

(4) Reporting
The active REPORTER-obj ects have their user-defined actions executed with the
specified frequency (see Section 2.1).

The following class skeleton shows al attributes of class MONI TOR. An algorithm outline is given
in Appendix C.

LI NK cl ass MONI TOR
begi n
real TIME, LASTTI ME, EPSTI ME, NEXTTI ME, NEXTEVENTTI ME,
NEXTREPORTTI ME, DT, DTNOW DTNEXT, DTFULL, DTLOVER,
H, FRAC, ERRORRATI O, TEMP;
Bool ean ACTI VE;
ref (CONTI NUOUS) FI RSTCONT, LASTCONT;
ref (VARI ABLE) FI RSTVAR, VAR,

ref (REPORTER) FI RSTPOSREPORTER, FI RSTZEROREPCRTER,
FI RSTNEGREPCORTER;

ref (WAI TNOTI CE) FI RSTWAI T, LASTWAI T;

ref (PROCESS) STATEEVENT, NEXTSTATEEVENT, NEXTTI MEEVENT,
CONTROLLER1, CONTRCLLERZ;

r ef (CONTI NUOUS) ERRORCONTI NUQUS;

ref (VAR ABLE) ERRORVARI ABLE;
ref (REPORTER) ERRORREPCRTER;

end;

45

3.29.1. The LINK-prefix

Class MONI TOR has been provided with the LI NK-property so as to give the class a common pre-
fix with class CONTI NUOUS and class REPORTER. By this means, the monitor object,
THEMONI TOR, can be a successor of the last object in the list of active CONTI NUOUS-objects,
and also the successor of the last object in each of the three lists of active REPORTER-objects.

3.29.2. Real TIME

TI ME denotes the current model time.
The user has access to the value of TI ME through the global procedure TI ME (Section 3.10).

The monitor assures that time does not "stand still”. If the step-size, DTNOW ever becomes so
small that

EPSTI ME+DTNOW = EPSTI ME
and there is no event at that time, then the simulation will be stopped with the error message

THE CURRENT Tl ME STEP IS TOO SMALL TO ADVANCE TI ME

3.29.3. Real LASTTIME

LASTTI ME denotes the starting point of the current step.

The user has access to the value of LASTTI ME through the global procedure LASTTI ME (Sec-
tion 3.11).

3.29.4. Real EPSTIME

TI ME is advanced using quasi-double precision summation (see Section 2.2.3).

EPSTI ME isacorrectionto LASTTI ME. Inrelationto LASTTTI ME it is numerically so small that
the addition of EPSTI ME to LASTTI ME will produce LASTTI ME as aresult.

3.29.5. Real NEXTTIME

NEXTTI ME denotes the ending point of the current step, DTNOW that is,
NEXTTI ME = LASTTI ME+(EPSTI ME+DTNOW
It isawaystrue that

TI ME <= NEXTTI ME <= NEXTEVENTTI ME

46

3.29.6. Real NEXTEVENTTIME

NEXTEVENTTI ME denotes the time point of the next known event. As long as a state-event has
not been discovered by the monitor, NEXTEEVENTTI ME is the time of the next time-event
(MAXREAL, if no time-events are scheduled). When a state-event is time-determined,
NEXTEVENTTI ME is set to the event time of the state-event in question.

3.29.7. Real NEXTREPORTTIME

NEXTREPORTTI ME denotes the time of the next regular reporting, namely the earliest
REPORTTI ME of the active REPORTER-objects having a positive frequency. However,
NEXTREPORTTI ME is never allowed to exceed NEXTEVENTTI ME:
NEXTREPORTTI ME <= NEXTEVENTTI ME

The value of NEXTREPORTTI ME is updated by the REPORTER-objects when executed. The
monitor merely sets NEXTREPORTTI ME to NEXTEVENTTI ME before the execution of the
REPORTER-objects.

The value of NEXTREPORTTI ME has no influence upon the size of an integration step. Unless

NEXTREPORTTI ME is the end point of a step, the model's state at the reporting times will be de-
termined using interpolation (see Section 2.2.2).

3.29.8. Real DT

DT denotes the current time increment.
The user has access to the value through the global procedure DT (Section 3.12).
The assertion that
TI ME = LASTTI ME+(EPSTI ME+DT)
aways holds.
DT is zero immediately after the occurrence of an event.
It is always true that
DT <= DTNOW

The value of DT is, for example less than DTNOW during RKE-integration where DT in each step
takes the following values

1/ 4*DTNOW, 1/ 2*DTNOW 3/ 4*DTNOW and DTNOW

47

3.29.9. Real DTNOW

DTNOWAdenotes the size of the current step.
The assertion that
NEXTTI ME = LASTTI Me+(EPSTI ME+DTNOW
always holds.
Usually DTNOWIis bounded by DTM N and DTMAX:
DTM N <= DTNOW <= DTMAX
However, no events may be passed within a step, that is, the condition
NEXTTI ME <= NEXTEVENTTI ME
must always be true.
When there are neither active continuous processes nor planned state-events, then

DTNOW = (NEXTEVENTTI ME- LASTTI ME) - EPSTI ME

3.29.10. Real DTNEXT

DTNEXT is used during RKE-integration to denote a proposal for the size of the next integration
step (see Section 2.2.1.2).

Its value will, if DTNOWEDTFULL=DTNEXT, be determined as follows:
DTNEXT: =M N(MAX(1, M N(2, (1/ 2* ERRORATI O) **(1/ 5) * DTNOW) , DTMAX)
During fixed step-size integration DTNEXT is equal to DTMAX.
Further, DTNEXT is equal to DTMAX at the beginning of the simulation.
The following condition is always true:

DTM N <= DTNEXT <= DTMAX

3.29.11. Real DTFULL

DTFULL is used during interpolation to denote the size of the full integration step (see Section
2.2.2).

48

3.29.12. Real DTLOWER

DTLOVER isused in the binary search for a state-event (see Section 2.3).
During the process of locating the event time of a state-event, the following conditions hold:
(1) DTLOWER <= DTNOW
(2) Thereisno state-event at the time
LASTTI ME+(EPSTI ME+DTLOVER) , but
(3) thereis at least one state-event (NEXTSTATEEVENT) at the time
LASTTI ME+(EPSTI ME+DTNOW .
The interval from DTLOVER to DTNOWis repeatedly halved until its length, DTNOW DTLOWER,
becomes smaller than DTM N. When this happens a state-event, STATEEVENT, has been time-

determined and occurs at the time

LASTTI ME+(EPSTI ME+DTNOW

3.29.13. Real H

H is used during RKE-integration to hold the value 1/ 2* DTNOW

3.29.14. Real FRAC

FRAC is used during interpolation to denote the fraction DT/ DTFULL (see Section 2.2.2).

3.29.15. Real ERRORRATIO

ERRORRATI Ois used during RKE-integration to hold the maximum value of the user-acceptable
integration error divided by the estimated integration error (ABS(A4)) for al active VARI ABLE-
objects, that is:

(ABS(ABSERROR) +ABS(RELERROR* (OLDSTATE+(EPSSTATE+DSH))) / ABS(A4)
The value of ERRORRATI Ois used to determine DTNEXT (see Section 2.2.1.2).

ERRORATI Ois not allowed to become greater than what corresponds to a doubling of the current
step-size, DTNOW Accordingly,

ERRORATI O <= 2% (2**5)

49

3.29.16. Real TEMP

TEMP isan auxiliary variable which is used for temporary storage of ar eal -value.

3.29.17. Boolean ACTIVE

When the monitor is active, that is between discrete events, the value of ACTI VEist r ue; other-
wise, ACTI VE isf al se. By means of ACTI VE it is possible to ensure that the user does not de-
stroy the process synchronisation. For example, the illegal activation of a discrete process from a
CONTINUOUS-object is detected and reported to the user (see Section 2.4).

3.29.18. Ref(CONTINUOUS) FIRSTCONT, LASTCONT

FI RSTCONT and LASTCONT denote the first and the last CONTI NUOUS-object, respectively, in
the list of active continuous processes.

Both have the value none when thelist is empty.

3.29.19. Ref(VARIABLE) FIRSTVAR

FI RSTVAR denotes the first object in the list of active VARI ABLE-objects. Its value is none
when the list is empty.

3.29.20. Ref(VARIABLE) VAR

VAR is used to traverse the list of active VARI ABLE-objects.

3.29.21. Ref(REPORTER) FIRSTPOSREPORTER, FIRSTZEROREPORTER,
FIRSTNEGREPORTER

FI RSTPOSREPCORTER, FI RSTZEROREPORTER and FI RSTNEGREPORTER denote the first
object in (1) the list of active REPORTER-objects with a positive frequency, (2) the list of active
REPORTER-objects with a frequency of zero, and (3) the list of active REPORTER-objects with a
negative frequency, respectively. The value isnone when the corresponding list is empty.

50

3.29.22. Ref(WAITNOTICE) FIRSTWAIT, LASTWAIT

FI RSTWAI T and LASTWAI T denote the first and the last WAI TNOTI CE-object in the list of
walit-notices (see Section 2.3).

Both have the value none when thelist is empty.

3.29.23. Ref(PROCESS) STATEEVENT

STATEEVENT is used by the monitor to determine if a state-condition has been fulfilled (see Sec-
tion 2.3).

3.29.24. Ref(PROCESS) NEXTSTATEEVENT

NEXTSTATEEVENT is used during the time-determination of a state-event to store the value of
STATEEVENT.

NEXTSTATEEVENT references the PROCESS-object which has planned next state-event.

3.29.25. Ref(PROCESS) NEXTTIMEEVENT

NEXTTI MEEVENT references the PROCESS-object which has scheduled the next time-event.
The following condition must always be true:
NEXTTI MEEVENT == CONTROLLER2. NEXTEV
This rule is used by the monitor to assure that the user does not destroy the process synchronisa-

tion (see Section 2.4).

3.29.27. Ref(CONTINUOUS) ERRORCONTINUOUS

When an error is discovered in the use of a CONTI NUOUS-object, ERRORCONTI NUOUS is set to
reference the object in question. Thereafter, procedure ERROR is called. This is the case, for ex-
ample, when CONTI NUOUS-object is STARTed or STOPped between discrete events, that is to
say, while the monitor is active.

The user has access to the value of ERRORCONTI NUOUS through the globa procedure
ERRORCONTI NUQUS (Section 3.21).

51

3.29.28. Ref(VARIABLE) ERRORVARIABLE

When the requested integration accuracy can not be achieved, ERRORVARI ABLE is set to refer-
ence the VARI ABLE-object that gave rise to the error. Thereafter, the virtual procedure
| NTEGRATI ONERRCR is called. If the user has redefined this procedure, ERRORVARI ABLE will
be set to none after acall.

The user has access to the value of ERRORVARI ABLE through the global procedure
ERRORVARI ABLE (Section 3.18).

3.29.29. Ref(REPORTER) ERRORREPORTER

When an error is discovered in the use of a REPORTER-object, ERRORREPORTER is set to refer-
ence the object in question. Thereafter, procedure ERRCR is called. This is the case, for example,
when a REPORTER-object is STARTed or STOPped between discrete events, that is to say, while
the monitor is active.

The user has access to the value of ERRORREPORTER through the global procedure
ERRORREPORTER (Section 3.22).

3.30. Ref(MONITOR) THEMONITOR

THEMONI TOR references the MONI TOR-object. The object is generated by the main program,
MAI N.

52

4. APPENDICES

4.1. Appendix A: Error messages

If an error is discovered during the simulation, the procedure ERRCR is called. The causes an error
message to be output after which the virtual procedure SI MULATI ONERROR is called and the
simulation is stopped.

The error message has the form:

*** COMBI NEDSI MULATI ON
***ERROR m
***ENCOUNTERED AT t

where mis a message describing the error and t isthe current value of TI ME.

The possible error messages with their associated numbers are given below.

1: THE REQUESTED | NTEGRATI ON ACCURACY CAN NOT BE ACHI EVED
The virtual procedure | NTEGRATI ONERROR has not been redefined by the user and
thereis at least one VARI ABL E-object, ERRORVARI ABLE, which has an estimated
integration error (A4) greater than the requested accuracy. That isto say,

ABS(A4) >
ABS(ABSERROR) +ABS(RELERROR* (OLDSTATE+(EPSSTATE+DSH)))
2: THE CURRENT TIME STEP IS TOO SMALL TO ADVANCE TI ME

EPSTI ME+DTNOWEEPSTI ME and TI MESNEXTEVENTTI ME

3: THERE ARE NO DI SCRETE EVENTS SCHEDULED

NEXTTI MEEVENT==none and FI RSTWAl T==none

4: DTM N<O

5. DTM N>DTMAX
The conditions that cause errors 4 and 5 are checked for only immediately after the

occurrence of an event, and immediately after the execution of a user-defined version of
the virtual procedure | NTEGRATI ONERROR.

53

6: FREQUENCY IS TOO SMALL TO ADVANCE TI ME (CLASS REPCRTER)

Thereis at least one REPORTER-object, ERRORREPORTER, with
FREQUENCY>0 for which REPORTTI ME+FREQUENCY=REPORTTI ME.

7: TIME IS AT I TS MAXI MUM VALUE AND NO EVENTS OCCUR

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

TI ME=MAXREAL and NEXTTI MEEVENT==none and STATEEVENT==none

| LLEGAL CALL OF PAUSE

| LLEGAL

| LLEGAL

| LLEGAL

| LLEGAL

| LLEGAL

| LLEGAL

| LLEGAL

| LLEGAL

| LLEGAL

| LLEGAL

| LLEGAL

| LLEGAL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

OF

A IIIIIIIIII

Q

CANCEL STATEEVENT

WAI TUNTI L

SETPRI ORI TY (CLASS CONTI NUOUS)
START (CLASS CONTI NUOUS)

STOP (CLASS CONTI NUOUS)
SETFREQUENCY (CLASS REPORTER)
START (CLASS REPORTER)

STOP (CLASS REPORTER)

(RE) ACTI VATE

PASSI VATE (OR CANCEL(CURRENT))
HOLD (OR REACTI VATE CURRENT)

CANCEL

Error messages 8 through 20 indicates that the procedure in question has been called be-
tween discrete events, that isto say, while the monitor is active.

Errors 17 and 20 can only be discovered if the event in question is within the "horizon" of
the monitor, that is, if P. EVTI ME<X=NEXTEVENTTI ME.

4.2. Appendix B: Efficiency and storage requirements

During the construction of class COVBI NEDSI MULATI ON, generality and ease of use has been
emphasi zed.

It iswell-known that practical simulation problems often demand many time-consuming computer
runs, and therefore it is of importance that the classis also efficient with respect to computer time.

Efficency has been enhanced through methods such as:

- Interpolation (Section 2.2.2)

- Binary search of state-events (Section 2.3)
- Step-size prediction (Section 2.2.1.2)

- RESUME-chain execution (Section 2)

The storage requirements are of lesser importance. Y et, this aspect has been taken into account.
For example, the VARI ABLE-attributes A1 through A5 are used repeatedly both during integra-
tion and interpolation.

The data storage requirements of COVBI NEDSI MULATI ON are as follows:

The basic data storage requirements (THEMONI TOR etc.) 136 words
Each VARI ABLE-object 17 words
Each CONTI NUQUS-object 9 words
Each REPORTER-object 10 words
Each idle PROCESS-object 6 words
Each suspended PROCESS-object 10 words
Each waiting PROCESS-object (WAl TUNTI L) 16 words

55

4.3. Appedix C: Algorithm outline of the monitor

The actions of the monitor are sketched below.

while there are nore planned events do
begi n
coment *** | mmedi ately AFTER an event;
DT: =0; LASTTI ME: =TI MVE;

if there are any active CONTI NUOUS-objects then
begi n

for each active VAR ABLE-object do

begi n OLDSTATE: =STATE; RATE: =0; end;

execute all active CONTI NUOUS-obj ect s;
if DINEXT=0 or a fixed step-size integration nethod is used
t hen DTNEXT: =DTMAX;

end;

execute all active REPORTER-objects

and det erm ne NEXTREPORTTI MVE;

NEXTEVENTTI ME: =i f no time-events are schedul ed t hen MAXREAL
el se EVTIME for the earliest tine-event;

if a state-condition is fulfilled and TI MEXNEXTEVENTTI ME

t hen NEXTEVENTTI ME: =TI ME;

whi | e TI MESNEXTEVENTTI ME do
begi n
conment *** Between events;
LASTTI ME: =TI ME;
for each active VARI ABLE-object do
begi n OLDSTATE: =STATE; RATE: =0; end,;

comment *** Determ ne step-size, DTNOW
DINOW =i f there are any active CONTI NUOUS- obj ects
t hen M N(NEXTEVENTTI ME- LASTTI ME, DTNEXT) el se
if there are any pl anned state-events
then M N(NEXTEVENTTI ME- LASTTI ME, DTMAX)
el se DTMAX;

| NTEGRATI ON:

comment *** Take an integration step of size DTNOW
for each active VAR ABLE-object do
begi n
determ ne the STATE-increnent DS using integration;
STATE: =OLDSTATE+DS; RATE: =0;
end;

56

if the integration error is unacceptable then
begi n
i f DTNOWSDTM N t hen
begi n DTNOW =MAX(0. 5* DTNOW DTM N) ; got o | NTEGRATI ON; end;
ERRORVARI ABLE: -t he VARI ABLE- obj ect with unacceptable error;
| NTEGRATI ONERROR
ERRORVARI ABLE: - none;
i f REPEATSTEP t hen
begi n
for each active VARI ABLE-object do
re-establish STATE and RATE to their values at LASTTI ME;
got o | NTEGRATI ON
end;
end;

DT: =DTNOW Tl ME: =LASTTI ME+DT
execute all active CONTI NUOUS- obj ects and det erm ne DTNEXT;

comment *** Test if a state-event was passed,;

if a state-condition has been fulfilled then

begi n
determne the tinme, TIME, for the earliest state-event
within the step, and the state of the nodel at this point;
NEXTEVENTTI ME: =TI VE;

end;

comment *** Test if a REPORTTI ME was passed;
i T NEXTREPORTTI ME<=TI ME t hen
begi n
whi | e NEXTREPORTTI ME<=TI ME do
begi n
determ ne the nodel's state at NEXTREPORTTI ME
usi ng interpol ation;
execute all active REPORTER-objects
havi ng REPORTTI ME=NEXTEREPORTTI ME;
re-establish TIME;
end;
re-establish the nodel's state at TI M
end;

comment *** Now the step has been taken;
execute all active REPORTER-objects havi ng FREQUENCY=0;
end;

coment *** | mmedi ately BEFORE an event;
if DT>0 then execute all active REPORTER-objects
havi ng FREQUENCY<O;

| et an event take place now
end;

57

5. REFERENCES

1. Dahl,0-J, Myhrhaug,B., Nygaard K.
"Common Base Language".
Publication no s-22, Norwegian Computing Center,
Oslo 1970.

2. England,R.:
"Error estimates for Runge-K utta type solutions to systems of ordinary differential equations’.
Computer Journal, Vol. 12, 1969, pp. 166-170.

3. Helsgaun, K.
"On interpolation in class COMBINEDSIMULATION" (in Danish).
Roskilde University Center, October 1978.

4. Mdller,O.:
"Quas double-precision summation in floating point addition".
BIT 5, 1965, pp. 37-50 and 251-255.

5. Shampine,L.F., Watts,H.A.:

"Comparing Error Estimators for Runge-Kutta Methods".
Mathematics of Computation, Vol. 25, 1971, pp. 445-455.

58

TABLE OF CONTENTS

1. BASIC CONCEPTS

2. EXECUTION OF A SIMULATION

2.1. Time advance

3.1 The SIMULATION-prefix
3.2. Class CONTINUOUS

2.2.1. Integration

2.2.1.1. Euler's method

2.2.1.2. Runge-Kutta-England's method

2.2.1.3. The trapezoid method

2.2.1.4. Adams method

2.2.1.5. Simpson's method

2.2.1.6. Theimproved Heun method

2.2.2. Interpolation

2.2.3. Quasi double-precision summation

2.3. State-events

2.4. Simulation control

3. THE ATTRIBUTES OF COMBINEDSIMULATION

3.2.1. The LINK-prefix

3.2.2. Procedure PRELUDE

3.2.3. Procedure START

3.2.4. Procedure STOP

3.2.5. Boolean procedure ACTIVE

3.2.6. Procedure SETPRIORITY (R); real R

3.2.7. Real procedure PRIORITY

3.2.8. Redl PRI

3.2.9. Ref(CONTINUOUS) PREDCONT; ref(LINK) SUCCONT

3.3.ClassVARIABLE

3.3.1. The LINK-prefix

3.3.2. Red STATE

3.3.3. Real RATE

3.3.4. Procedure START

3.3.5. Procedure STOP

3.3.6. Boolean procedure ACTIVE

3.3.7. Redl procedure LASTSTATE

3.3.8. Real RELERROR, ABSERROR

3.3.9. Real OLDSTATE

3.3.10. Real EPSSTATE

3.3.11. Redl DS

3.3.12. Real DSH

3.3.13. Red A1, A2, A3, A4, A5

3.3.14. Ref(VARIABLE) PREDVAR, SUCVAR

3.4. Class REPORTER

3.4.1. The LINK-prefix

3.4.2. Procedure PRELUDE

3.4.3. Procedure START

3.4.4. Procedure STOP

3.4.5. Boolean procedure ACTIVE

3.4.6. Procedure SETFREQUENCY (F); real F

3.4.7. Redl procedure FREQUENCY

3.4.8. Redl procedure REPORTTIME

3.4.9. Redl FRQ

59

3.4.10. Real REPTIME 35
3.4.11. Ref(REPORTER) PREDREP,SUCREP 36
3.5. Procedure WAITUNTIL(B); name B; Boolean B 36
3.6. Real WAITPRIORITY 37
3.7. Boolean WAITPRIOR 37
3.8. Procedure CANCEL STATEEVENT(P); ref(PROCESS) P 37
3.9. Real DTMIN, DTMAX 38
3.10. Real procedure TIME 39
3.11. Real procedure LASTTIME 39
3.12. Real procedure DT 39
3.13. Real MAXRELERROR, MAXABSERROR 39
3.14. Boolean EULER, TRAPEZ, ADAMS, SIMPSON 39
3.15. Procedure PAUSE 40
3.16. ref(PROCESS) procedure NEXTTIMEEVENT(P); ref(PROCESS) P 40
3.17. Procedure INTEGRATIONERROR 411
3.18. Ref(VARIABLE) ERRORVARIABLE 41
3.19. Boolean REPEATSTEP 41

3.20. Procedure SIMULATIONERROR

3.21. Ref(CONTINUOUS) procedure ERRORCONTINUOUS
3.22. Ref(REPORTER) procedure ERRORREPORTER
3.23. Real procedure MAXREAL
3.24. Procedure ABORT

3.25. Procedure ERROR(MESSAGE); value MESSAGE; text MESSAGE
3.26. ClassWAITNOTICE
3.26.1. Ref(PROCESS) PROC
3.26.2. Red PRIORITY
3.26.3. Ref(WAITPRIORITY) PREDWAIT,SUCWAIT
3.27. PROCESS class CONTROL 1

3.28. PROCESS class CONTROL2

3.29. ClassMONITOR
3.29.1. The LINK-prefix
3.29.2. Real TIME
3.29.3. Real LASTTIME
3.29.4. Real EPSTIME
3.29.5. Real NEXTTIME

SS5S5SSRRRRRRESEDORN

3.29.6. Real NEXTEVENTTIME 47
3.29.7. Read NEXTREPORTTIME 47
3.29.8. Real DT 47
3.29.9. Real DTNOW 48
3.29.10. Real DTNEXT 48
3.29.11. Real DTFULL 48
3.29.12. Real DTLOWER 49
3.29.13. Real H 49
3.29.14. Real FRAC 49
3.29.15. Real ERRORRATIO 49
3.29.16. Real TEMP 50
3.29.17. Boolean ACTIVE 50
3.29.18. Ref(CONTINUOUS) FIRSTCONT, LASTCONT 50
3.29.19. Ref(VARIABLE) FIRSTVAR 50
3.29.20. Ref(VARIABLE) VAR 50
3.29.21. Ref(REPORTER) FIRSTPOSREPORTER, FIRSTZEROREPORTER, FIRSTNEGREPORTER__ 50
3.29.22. Ref(WAITNOTICE) FIRSTWAIT, LASTWAIT 51
3.29.23. Ref(PROCESS) STATEEVENT 51
3.29.24. Ref(PROCESS) NEXTSTATEEVENT 51
3.29.25. Ref(PROCESS) NEXTTIMEEVENT 51
3.29.27. Ref(CONTINUOUS) ERRORCONTINUOUS 51
3.29.28. Ref(VARIABLE) ERRORVARIABLE 52
3.29.29. Ref(REPORTER) ERRORREPORTER 52
3.30. Ref(MONITOR) THEMONITOR 52

60

4. APPENDICES

4.1. Appendix A: Error messages

53
53

4.2. Appendix B: Efficiency and storage requirements
4.3. Appedix C: Algorithm outline of the monitor

55

56

5. REFERENCES

61

58

	BASIC CONCEPTS
	EXECUTION OF A SIMULATION
	Time advance
	Numerical methods
	Integration
	Euler's method
	Runge-Kutta-England's method
	The trapezoid method
	Adam's method
	Simpson's method
	The improved Heun method

	Interpolation
	Quasi double-precision summation

	State-events
	Simulation control

	THE ATTRIBUTES OF COMBINEDSIMULATION
	The SIMULATION-prefix
	Class CONTINUOUS
	The LINK-prefix
	Procedure PRELUDE
	Procedure START
	Procedure STOP
	Boolean procedure ACTIVE
	Procedure SETPRIORITY
	Real procedure PRIORITY
	Real PRI
	PREDCONT, SUCCONT

	Class VARIABLE
	The LINK-prefix
	Real State
	Real RATE
	Procedure START
	Procedure STOP
	Boolean procedure ACTIVE
	Real procedure LASTSTATE
	Real RELERROR, ABSERROR
	Real OLDSTATE
	Real EPSSTATE
	Real DS
	Real DSH
	Real A1, A2, A3, A4, A5
	PREDVAR, SUCVAR

	Class REPORTER
	The LINK-prefix
	Procedure PRELUDE
	Procedure START
	Procedure STOP
	Boolean procedure ACTIVE
	Procedure SETFREQUENCY
	Real procedure FREQUENCY
	Real procedure REPORTTIME
	Real FRQ
	Real REPTIME
	PREDREP, SUCREP

	Procedure WAITUNTIL
	Real procedure WAITPRIORITY
	Boolean WAITPRIOR
	Procedure CANCELSTATEEVENT
	Real DTMIN, DTMAX
	Real TIME
	Real LASTTIME
	Real procedure DT
	Real MAXRELERROR, MAXABSERROR
	Boolean EULER, TRAPEZ, ADAMS, SIMPSON
	Procedure PAUSE
	NEXTTIMEEVENT
	Procedure INTEGRATIONERROR
	ERRORVARIABLE
	Boolean REPEATSTEP
	Procedure SIMULATIONERROR
	ERRORCONTINUOUS
	ERRORREPORTER
	MAXREAL
	Procedure ABORT
	Procedure ERROR
	Class WAITNOTICE
	PROC
	Real Priority
	PREDWAIT, SUCWAIT

	PROCESS class CONTROL1
	PROCESS class CONTROL2
	Class MONITOR
	The LINK-prefix
	Real TIME
	Real LASTTIME
	Real EPSTIME
	Real NEXTTIME
	Real NEXTEVENTTIME
	Real NEXTREPORTTIME
	Real DT
	Real DTNOW
	Real DTNEXT
	Real DTFULL
	Real DTLOWER
	Real H
	Real FRAC
	Real ERRORRATIO
	Real TEMP
	Boolean ACTIVE
	FIRSTCONT, LASTCONT
	FIRSTVAR
	VAR
	FIRSTPOSREPORTER
	FIRSTZEROREPORTER
	FIRSTNEGREPORTER
	FIRSTWAIT, LASTWAIT
	STATEEVENT
	NEXTSTATEEVENT
	NEXTTIMEEEVENT
	ERRORCONTINUOUS
	ERRORVARIABLE
	ERRORREPORTER

	THEMONITOR

	APPENDICES
	Error messages
	Efficiency and storage requirements
	Algorithm outline of the monitor

	REFERENCES

