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Abstract. With starting point in Donald Knuth’s paper "Ancient Babylonian
Algorithms", and using the algebraic reading of pre-Modern mathematical texts as a
parallel, the paper discusses the relevance of the algorithm concept, on one hand as
an analytical tool for the understanding and comparison of mathematical procedures,
on the other as a possible key to how pre-Modern reckoners thought their
mathematics and to how they thought about it.
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A “red herring”: the smoked herring drawn
across the trail of the fox in order to distract
the hounds and make the hunt last longer

To August Ziggelaar
on occasion of his eighty years’
birthday, 17 January 2008

A parallel but preceding issue

When the Rhind Mathematical Papyrus — the most important single source for ancient
Egyptian mathematics — was first published by August Eisenlohr in 1877, he interpreted
some of the calculations of the text by means of that kind of equation algebra which in his
times was currently taught in school. In 1880, Moritz Cantor followed him in the first
edition of the first volume of his Vorlesungen (iber Geschichte der Mathematik,' making it
thereby (if any specific excuse was needed) the canonical way to read the text. It remained
so in spite of the well-argued objections formulated by Léon Rodet already in 1881 (with
the conclusion [24: 205] that “when studying the history of a science, exactly as when one
wants to obtain something, one should ‘rather ask God himself than his saints’’?). In his
third edition, Cantor [3: 76] refers to Rodet’s objections and alternative interpretation
through the method of a “single false position” (p. 76),* but sees no genuine difference.

1 Still in the third edition from 1907 [3: 74].
2 My translation, as everywhere in the following when no translator is identified.

3 The method may be illustrated on the problem by which Fibonacci introduces the method in the
Liber abbaci [2: 173]: '/, and '/5 of a tree are underground, and this part is 21 palms. We posit


xxx
Sticky Note
pp. 261–272 in Arnold Beckmann, Costas Dimitracopoulos & Benedikt Löwe (eds), Logic and Theory of Algorithms. 4th Conference on Computability in Europe, CiE 2008, Athens, Greece, June 15-20, 2008. Proceedings. (Lecture Notes in Computer Science, 5028). Berlin & Heidelberg: Springer, 2008



Eric Peet, in his new edition of the Rhind Papyrus [20: 60], characterizes the matter as “not
one of essence but of form”.

Egyptian mathematics was not alone in this situation. In 1886, H. G. Zeuthen published
Die Lehre von den Kegelschnitten im Altertum, arguing that in Elements I1.1-10 the ancient
Greek geometers possessed “what one may call a geometric algebra, since on one hand,
like algebra, its deals with general magnitudes, irrational as well as rational, on the other
uses other means than ordinary language in order to make its procedures intelligible and
impress them on memory” [29: 7]. What Zeuthen had in mind was obviously a much more
modern kind of algebra than what Eisenlohr had thought of, and the assertion is rather
unobjectionable if Zeuthen’s whole explanation is taken into account.* But it was not, and
the resulting conventional wisdom of twentieth-century historiography was that the ancient
Greek mathematicians had algebra without qualification, “dressed up” as geometry but
algebra in “mathematical essence”.

Algebra was also the obvious interpretational tool when “Babylonian algebra” was
discovered and deciphered in the years around 1930 — and in subsequent decades it was
taken for the very truth, as historians and historically interested mathematicians read the
commentary and popularizations of the “saints” (i.e., of Neugebauer, van der Waerden and
others) —see [7].

Cautious objections against the existence of a “Babylonian algebra” were raised by
Michael Mahoney in 1971 [17], based however on a definition of algebra which excluded
everything written before Viéte, and therefore perhaps not very relevant for historians
interested, e.g., in al-Khwarizmi’s or Fibonacci’s algebra. A famous clash in 1975-1978

between Sabetai Unguru [26], B. L. van der Waerden [27], Hans Freudenthal [5] and
André Weil [28] at least made it clear that the status of Greek “geometric algebra” was
under discussion.

In mild form, the association of large areas of pre-Modern mathematics to algebra is
reflected in the characterization of problems as “equations”. An illustrative example
chosen at random (that is, from a book which I happened to review recently) is the
statement that a twelfth-century Liber augmentis et diminutionis shows “how linear
equations with one unknown or systems of linear equations with two unknowns may be
solved with the help of the rule of double false position™> [4: 1, 5]. This also illustrates why

a length for the tree, of which the fractions can be taken conveniently — most obviously 12. '/,+
'/3 of 12 palms are 7 palms — but we need 21 palms. Therefore the initial guess should be mul-
tiplied by *'/; =3.

The method can also be used for homogeneous problems of (for instance) the second degree;
then the scaling factor is the square root of the error factor.

The Rhind Papyrus only uses the method for first-degree problems, but elsewhere in the
Pharaonic mathematical corpus it is applied to homogeneous problems of the second degree (to
find the sides of a rectangle from their ratio and the area).

4 Admittedly, soon afterwards Zeuthen [29: 12] expresses Elements 11.1-10 as algebraic equa-
tions dealing with a, b, ¢, ... — but then he explains that these must be understood as statements
about lines and rectangles.

S That is, making two guesses and finding the correct value from the two errors that arise by
means of a calculation which follows the principle of the “alligation rule” (though the latter link



some historians object to the automatic algebraic reading. One problem of the treatise runs
as follows [16: 1, 326]:

Somebody traded with a quantity of money, and this quantity was doubled for him. From this he
gave away two dragmas, and traded with the rest, and it was doubled for him. From this he gave
away four dragmas, after which he traded with the rest, and it was doubled. But from this he gave
away six dragmas, and nothing remained for him.

Actually, the treatise solves this problem (and many others) not only through application of
the “double false position” but also by stepwise reverse calculation and by means of what
the treatise calls its regula, the formulation and solution of a first-degree equation in which
the unknown initial quantity is called a thing and treated exactly as an X. Seeing the
problem itself simply as “an equation” misses the need for what Viéte following Pappos
called “zetetics”, the formulation of the problem as an equation — and, in the present case,
masks that zetetics is no automatic process, since the problem may as well be translated for
instance into a system of three equations with three unknowns (the successive amounts
traded with).

A translation of a literary text always identifies that which the reader is supposed not to
know — the words of the foreign language — within a framework which the reader is
supposed to know. In cases where the semantic structures of the two languages are
different, it is sometimes possible for the translator to make a choice depending on local
semantics without telling the reader — in a classic example, translating English “wood” into
German “Holz” if the material is thought of, and into “Wald” if the “wood” refers to many
trees growing together. If an English pun is involved, an explanatory note is needed for the
German reader.

Such a note is, mutatis mutandis, what Zeuthen gave. His reference to “algebra” was a
tool for making his readers understand how the theorems from Elements II were used.
Applied thus, the reference to the reader’s notion of algebra was hence a fruitful as well as
legitimate explanatory tool — and even a way to make the reader reflect upon his own
notion of algebra.

Zeuthen’s followers forgot the note, and many of those who explained Egyptian and
Babylonian mathematics as “algebra” never thought of making similar notes. Thereby
“algebra” became a red herring, distracting from analysis of what goes on in the ancient
texts and what went on in the mind of its carriers instead of elucidating it.

Seeing historical texts through algorithms

In recent decades, it has become customary to appeal to the algorithm concept, mostly as an
alternative, at times as a supplement to “algebra”. The precedent invites us to ask whether
this is a new and better tool or another red herring?

The first publication to use the notion of algorithms as a tool to understand what goes
on in historical texts was probably Donald Knuth’s “Ancient Babylonian Algorithms”

is never made). In mathematical principle, we may see the method as a linear interpolation, and
some medieval mathematicians indeed provided a corresponding geometric proof.



from 1972 [15]. He did not see algorithms as an alternative way to explain Babylonian
mathematics but states indeed (p. 622) that the

Babylonian mathematicians [...] were adept at solving many types of algebraic equations. But
they did not have an algebraic notation that is quite as transparent as ours; they represented each
formula by a step-by-step list of rules for its evaluation, i.e. by an algorithm for computing that
formula. In effect, they worked with a “machine language” representation of formulas instead of
a symbolic language.

There are at least three layers in this. Firstly, that the algorithm is a prescription for finding
a result — it provides neither the idea behind the procedure nor any proof of its correctness,
and cannot do that (on this level of mathematics) as long as everything is understood as a
prescribed sequence of abstract numerical operations — as, secondly, was Knuth’s
understanding of the mathematical texts, based on the translations and the interpretation of
the time [7]. Only the abstract understanding of the numbers of the texts as devoid of
ontological reference allows us to consider them as elements of a “machine language”.
Thirdly, that an “algorithm” is a “step-by-step list of rules”; this may seem
uncontroversial — but see below, note 15.

Knuth gives this illustration (from the tablet BM 85200+VAT 6599 #24°¢). What is at
stake is to find the length and the width of the base of a cistern, whose volume is given (in
the usual transcription of sexagesimal numbers) as 27;46,40 (meaning 27+ */¢ +
0. 600 ), and whose depth is 3;20, given that the length exceeds the width by 0;50. I
conserve Knuth’s parenthetical explanations:

A (rectangular) cistern.

The height is 3,20, and a volume of 27,46,40 has been excavated.

The length exceeds the width by 50. (The object is to find the length and the width.)

You should take the reciprocal of the height, 3,20, obtaining 18.

Multiply this by the volume, 27,46,40, obtaining 8,20. (This is
the length times the width; the problem has been reduced to
finding x and y, given that x—y = 50 and xy = §,20. A R
standard procedure for solving such equations, which i
occurs repeatedly in Babylonian manuscripts, is now used.)

Take half of 50 and square it, obtaining 10,25.

Add 8,20, and you get 8,30,25. (Remember that the radix point &
position always needs to be supplied. In this case, 50 stands « __ %o
for /4 and 8,20 stands for 8 /5, taking into account the sizes =
of typical cisterns!)

The square root is 2,55.

Make two copies of this, adding (25) to the one and subtracting
from the other. ' o

You find that 3,20 (namely 3 '/5) is the length and 2,30 (namely ., 1«

2'/,) is the width. l
This is the procedure. ¢ 33 >

6 Knuth translates freely from the translation in [19: I, 198, 205]. Revised transliteration and
retranslation in agreement with recent insights in [9: 146].



We observe that until the beginning of the “standard procedure”, the numbers are not
ontologically abstract (in other words, deprived of semantics), not “machine language” but
intrinsically also an explanation — knowing that the volume is the product of base and
height, we understand that division of the volume by the height (which the Babylonians
performed as a multiplication by its reciprocal) must give the base.

What Knuth could not know in 1972 is that the “standard procedure” refers to a
sequence of geometric cut-and-paste operations — shown here alongside the prescription.
His “square root” is thus the side of a square, and the “two copies” (the text actually says
“posit it twice”) are the two sides which meet in a corner. What Knuth renders “adding (25)
to one and subtracting from the other” (actually “join to one, remove from one”) is a
recurrent ellipsis for a sub-sub-procedure in which the half-excess is joined to one side and
removed from the other — often first removed and only afterwards — because the same line
segment is involved and therefore has to be at disposition — joined to the other side. Even
this part therefore is not written in “machine language” but semantically loaded; the
inherent references to the geometric diagram’ which is manipulated provides a justification
of the procedure which is just as adequate as the one that follows from our manipulations
of an algebraic equation.®

Removal of the reference to the “machine language”, a misunderstanding induced by
the translation into modern arithmetical language, does not prevent us from speaking of the
prescription as an “algorithm’: it still consists of a “step-by-step list of rules”. However, as
Knuth points out (p. 674), he only finds “straight-line calculations, without any branching
or decision-making involved. In order to construct algorithms that are really non-trivial
from a computer-scientist’s point of view, we need to have some operations that affect the
flow of control”. The closest he gets is the reading of a text with repetition as an expanded
macro-iteration.

He might have pointed to that use of an embedded sub-routine which he observes in the
text he quotes. This feature of the Babylonian texts was explored in some depth by Jim
Ritter [23]. Ritter centred the discussion on the tablet Str. 368,° which has the same
embedded sub-routine as the example discussed by Knuth — with one small difference.
Instead of performing the bisection within the subroutine, the main procedure omits a
previous doubling that should produce the number to be bisected. The same pairwise
cancellation of operations, one inside and the other outside the sub-routine, is found in
other texts. The algorithmic interpretation can of course be saved (we may just speak of
two related but different sub-routines) — but the two-level algorithmic interpretation can
still be seen to be only a formalization of the sequence of operations, and not to cover that

7 These references are visible in the terminology, which is only rendered inadequately by Knuth.
The Old Babylonian mathematical terminology (that is, the terminology of the earlier second
millennium BCE, the period from which most mathematical texts stem) distinguishes two dif-
ferent “additive operations”, two different “subtractions”, two different “halves”, and no less
than four “multiplications” (one of which is not a genuine multiplication but a rectangle con-
struction).

8 Karine Chemla has repeatedly used the formulation that the text is “algorithm and proof in
one”. For the whole geometric interpretation of the procedure, see for instance [9].

9 Transliteration and translation in [19:1, 311f].



insight from which the sequence of steps is planned — which would not astonish Knuth, cf.
above.

In what Knuth regarded as the trivial sense, Babylonian mathematical texts — more
precisely, the “procedure texts”!? — can certainly be understood as consisting of algorithms.
The texts teach by means of paradigmatic examples, that is, by means of steps in sequence;
the ontological identifications of the entities which are operated on (“the height”, “the
volume”, etc.) just show that the algorithm is not a purely numerical one; occasional
explanatory remarks (“because he has said that ...”, referring to the statement) we may
understand as “comment fields”.

In this sense, however, even a Euclidean construction (say, Elements 1,1, “On a given
line segment to construct an equilateral triangle”, ed. [6: I, 10]) can be read as an algorithm,
with the only difference that the comments field (here a proof) follows after the completion
of the algorithmic prescription (“With centre A and distance AB to draw the circle BI'A ...”;
and with centre B and distance BA to draw ...”). Even this is a trivial linear algorithm, even
though it may be applied as a sub-routine in other constructions (thus already in Elements
1.2)."" We may legitimately ask whether a conceptual tool which can be applied so widely
is really informative (but the answer will probably depend on taste rather than on
arguments).

Greek mathematics is certainly more than geometrical construction, and the “comment
fields” of constructional propositions attach these to the general endeavours of theory and
demonstration. On the other hand, the concentration on paradigmatic examples was not a
Babylonian monopoly. Knuth (p. 676) already refers to the ancient Egyptians and to Indian
and Chinese mathematics (rightly, indeed, with the only difference that Indian and Chinese
sources regularly state their “algorithms” in the abstract before giving the paradigmatic
examples); and the list need not stop there. If the preponderant use of (branch-free)
algorithms characterizes these types of mathematics, should we not expect it also to
characterize the way their carriers understood mathematics?

Old Babylonian and late medieval texts allow us to reach at least a partial answer to this
question. Before we turn to the carriers’ perspective, however, we shall take up a final
aspect of the use of the algorithm notion as a historiographical tool.

10 Beyond these texts, which describe the procedure to be followed in problem solutions, the
corpus of mathematical texts encompasses “catalogues” listing only problem statements (at times
with indication of the solution), mathematical tables and tablets containing only numerical cal-
culations.

11 More interesting embedding is present in ancient Greek geometry at the level of the formulaic
language, as discussed by Germaine Aujac [1] and particularly by Reviel Netz [18: 127-167].
But this has hardly anything to do with algorithms, it only shows that the notion of embedding is
interesting on its own — cf. [8].



Algorithmic analysis

In order to distil from a text problem its “mathematical substance” (and thus to decide if
and why the procedure is adequate), some kind of formalization is often needed. To take a
simple example, the “rule of three™: 12

7 tornesi are worth 9 parigini.'* Say me, how much will 20 tornesi be worth? Do thus,
the thing that you want to know is that which 20 tornesi will be worth. And the not
similar (thing) is that which 7 tornesi are worth, that is, they are worth 9 parigini. And
therefore we should multiply 9 parigini times 20, they make 180 parigini, and divide in
7, which is the third thing. Divide 180, from which results 25 and */;. And 25 parigini
and °/; will 20 tornesi be worth. And thus the similar computations are done.

At first we replace 7 by @, 9 by b and 20 by c, and then we say that ¢ tornesi are worth ”/,
parigini. We might also have argued that 20 is *°/; times as much as 7, and the value of the
20 tornesi hence (*°/7)-9 parigini, that is, (*/z) -b (this method was called “by ratio” by the
Arabic mathematician Ibn Thabat [21: 43] around 1200 and preferred by some Arabic

mathematicians).

If read as computational prescriptions (that is, as straight-line algorithms, “first
multiply ...then divide ...” respectively “first divide ... then multiply”), these formulae are
quite adequate. The danger is, however, that they are read as algebraic formulae, in which
case the reader might believe that the two methods are identical — which is clearly a bad
approach to historical texts, since it conflates an opaque procedure (the rule of three) and
a transparent one. The frequent references in general histories of mathematics to the
presence of the rule of three in Babylonian and Egyptian mathematics shows that the mere
possibility of translating into algebraic formulae suffices to produce the mistake.

At times, moreover, even a literal reading of an algebraic formula does not allow an
unambiguous reconstruction of the computational procedure which it expresses — and thus
not to decide whether two texts actually use the same procedure. For instance, we may look
at this problem from the Late Babylonian tablet BM 34568:4

The diagonal and the length I have accumulated: 9. 3 the width. What the length and the diagonal.
Since you do not know,

9 steps of 9, 81, and 3 steps of 3, 9. 9 from 81 you lift:

remaining 72. 72 steps of % you go: 36. 9 steps of what

may I go so that 36 (is produced)? 9 steps of 4 you go: 36. 4 the length.

4 from 9 you lift: remaining 5. 5 the diagonal.

To render this procedure by the line

121 quote from Jacopo da Firenze's Tractatus algorismi from 1307, ed., trans. [12: 237].

13 “Tornesi” are minted in Tours, “parigini” in Paris.

14 1 yse the translation in [9:393], but replace the sexagesimal place value numbers with decimal
ones.



2
lis foundas 2 ([A+11"—w") , das (d+)-
d+l1
(as done in [10: 13] apart from a missing fraction line in the print) is only adequate
because d+l is a given number; if it had been calculated, the formula would not tell

whether it was calculated twice in the formula for | or once, and saved.
Moscow, no. 19

Translation Numerical Symbolical
Algorithm Algorithm

"Method of calculating a quantity,
calculated 12 times 12 D,
together with 4 4 D,
and it has come to 10. 10 D;
‘What is the quantity that says it?
* Then you calculate the difference of these 10 10-4=6 | (1) D;-D,
to these 4. Then 6 results. b
? Then you divide 1 by 12 . Then 3 results. 1:12=3 |(2) 1: D,
’ Then you calculate 3 of these 6 Then 4 3-6=4 3) (2)-(1)
results.
Behold it is 4 (the quantity that) ¢ says it.
What has been found by you is correct.

Annette Imhausen’s algorithmic representation of an Egyptian problem [13: 165].

An alternative formalism, able to better grasp the structure and details of complicated
calculations for analysis, was proposed by Jim Ritter [23]"* and amply used in adapted
shape by Annette Imhausen first in 2002 [13] and next in her dissertation from 2003 [14]:
In a three-column scheme, the single steps of the text (in translation), the numerical steps

15 The paper circulated for long before its final publication in 2004. I read it myself in 1997; a
preprint [22] appeared in 1998.

It should be added that Jim Ritter's notion of an algorithm is much broader than Knuth's
“step-by-step list of rules”. He introduces “another, more general level of the algorithm, more
general than that of the calculational techniques or that of the arithmetical operations, the level
of method of solution, the choice of strategy of solution”, and exemplifies this by the method of
a single false position which can be seen to underlie several of his examples. This has the ap-
parent advantage of making the carriers' understanding part of the algorithm. As far as I can see,
however, the algorithm concept is dissolved by the inclusion of a level which is not linked to the
steps of the algorithm (as are the “comments”, be they Babylonian or Euclidean) but which is on
the other hand common to many algorithms that differ in their steps. Instead of seeing the algo-
rithms used in weather prediction as encompassing the physical theories and differential equa-
tions on which they are based, it seems to me to leave more room for analysis to separate the
physical and mathematical theories from their implementation in computer algorithms. I shall
therefore go on using the usual (“Knuthian”) understanding of the term.



and their explanation in symbols stand in parallel. In the symbol column, the outcome of
each computation is given a Nnew name,'® which produces an unambiguous trail.

The participants’ point of view

So much about the algorithm concept as a tool for historiographic text analysis. We should
now return to its possible adequacy as a mirror for the original reckoners’ understanding of
what they were doing.

Many Old Babylonian procedure texts start the prescription by a phrase “You, by your
doing”. Is it adequate to read this as a reference to a specific algorithm individualized as
such? If so, we might perhaps expect to find occasional references to such algorithms by
name.

We do indeed find a few references by name to particular methods. What is striking,
however, is that the occurrences of the names show them to point to methods that can be
varied, not to precise algorithms (not even to what can naturally be interpreted as branched
algorithms). One, maksarum/“bundling”, refers to the division of a surface (in the actual

case, a triangle) or a volume (in the actual case, a cube) into a bundle of smaller surfaces or
volumes of the same shape [9: 66, 254]; the other, “the Akkadian [method]” refers to the
quadratic completion which we have encountered in the sub-routine discussed above — but
it turns up in a procedure of a different and quite peculiar character [9: 194].

This corresponds well to the flexible use of the sub-routine which we discussed above;
the Old Babylonian reckoners hence appear to have conceived of their methods as
procedures which could be applied flexibly as required by varying contexts, not as a
tool-box of fixed algorithms. Only the very standardized set of problems occurring in the
texts cause us to find exactly the same procedure time and again, and thus giving us the
impression that fixed algorithms are involved.

I am not aware of the presence of elements in Egyptian mathematical discourse which
allow a similar analysis; however, the actual algorithms constructed by Annette Imhausen
are often so varied in their details that even they are likely to represent the modern analysis
only, not the way the Egyptians understood their mathematical practice.

As far as the Indian and Chinese material is concerned, my inability to read the texts in
the original language prevents me from forming a definite opinion; however, the initial
abstract formulation of rules which are then followed by examples may suggest that
(“trivial”) algorithmic thinking was closer to the way Chinese and Indian reckoners
thought.

I am much more familiar with the culture of practical arithmetic represented by
Leonardo Fibonacci and the Italian and Provencal abbacus treatises of the fourteenth and

16 1¢ is noteworthy that the same principle was followed by Jordanus of Nemore in the earlier
part of the thirteenth century, when he introduced a letter formalism with the purpose of proving
the correctness of arithmetical and algebraic theorems (and not of making symbolic algebraic
calculations).



fifteenth centuries.!” Within this culture, the word which might represent something close
to an algorithm is regula (regola, reghola, etc.). It is still reflected in our modern notion of
the “rule of three” (the regola delle tre cose of the abbacus masters) referred to above. This
really looks like an algorithm, and indeed a quite trivial one — but trivial only until we start
reading the texts closely. Indeed, if we look at for instance the presentation in Jacopo da
Firenze’s Tractatus algorismi [12: 236-240] we find that it is divided into several cases: all
three numbers are integers, one of the first two numbers contains fractions, or both of these
do. But the three cases are not treated in parallel — the second and third only tell to multiply
adequately by the denominators, leaving it tacitly understood that the rest is as in the first
case; although it is not said (and perhaps not precisely conceptualized) it is obvious that the
substructure is a less trivial algorithm:

IF all three numbers are integer GO L;

IF only one of the former numbers contains a fraction with denominator p, multiply both of these
by p;

GO L;

IF both of them contain fractions, with respective denominators p and ¢, multiply both by a
common multiple of p and g

GOL;

L:
(multiply and divide)

In the case of the presentation of the “rule of double false position” (see note 5), this
structure is even more explicit. Some of the abbacus books, and also Fibonacci,
occasionally operate with negative numbers conceptualized as “debts”; but they never do
so in the rule of double false. Therefore, the formula to be used depends on whether both
guesses turn out to result in an excess (or both in a deficit), or one in an excess, the other in
a deficit. The algorithm may not be presented in full - in Barthélemy de Romans’
Compendy de la praticque des nombres [25: 390] all that is said is thus plus et plus, meins
et meins, sustrayons. Plus et meins, adjoustons (“excess and excess, deficit and deficit, we
subtract. Excess and deficit, we add”). This only describes the initial branching structure,
and leaves out the linear part as already known

However, a regula is mostly not an algorithm, neither straight-line nor branched. For
instance, the regula of the Liber augmentis et diminutionis (see text around note 5),
reappearing as regula recta in Fibonacci’s Liber abbaci, refers to a general and very
flexible method: the application of first-degree equation algebra. Several other regulae are
similarly open-ended; actually, even the rule of three may be adequately but tacitly adapted
to problems of inverse proportionality. Application of the algorithm concept thus allows to
trace a substructure in statu nascendi in the thinking of the abbacus masters; but if they had
been asked what they meant by regola, the answer would most likely not have made us
think of an algorithm.

17 Hayrup 2005 gives the reasons that Fibonacci must be seen as an early representative of the
same broad mathematical culture as the later abbacus writings and not as the “father” of the
abbacus school.



All in all, we may conclude that the algorithm concept, when applied to pre-modern
mathematical texts, may represent a valid mapping of their procedures — at times useful, at
times as trivial as the algorithms which it digs out of the sources. If believed to correspond
to the way the early reckoners thought about their activity, it is likely to be a red herring
(barring perhaps Chinese and Sanskrit texts). If used to trace emerging substructures in the
way they thought their mathematics it is mostly also misleading — but not always; used with
delicacy it may sometimes offer a valuable tool.
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