
Prolog as description and implementation

language in computer science teaching

Henning Christiansen
Roskilde University, Computer Science Dept.,

P.O.Box 260, DK-4000 Roskilde, Denmark
E-mail: henning@ruc.dk

Abstract

Prolog is a powerful pedagogical instrument for theoretical elements of
computer science when used as combined description language and ex-
perimentation tool. A teaching methodology based on this principle has
been developed and successfully applied in a context with a heterogeneous
student population with uneven mathematical backgrounds. Definitional
interpreters, compilers, and other models of computation are defined in
a systematic way as Prolog programs, and as a result, formal descrip-
tions become running prototypes that can be tested and modified by the
students. These programs can be extended in straightforward ways into
tools such as analyzers, tracers and debuggers. Experience shows a high
learning curve, especially when the principles are complemented with a
learning-by-doing approach having the students to develop such descrip-
tions themselves from an informal introduction.

1 Introduction

Teaching of theoretical aspects of computer science to university students that
do not necessarily possess a solid mathematical background may sound like a
contradiction. The Advanced Studies in Computer Science at Roskilde Univer-
sity, Denmark, is a part of long tradition of interdisciplinary studies in which the
same courses often are offered for classes of students with different backgrounds
such as Natural Science, Humanities, or Social Sciences. Certain issues that
are important for all sorts of teaching become extra critical in this context, and
furthermore stressed by the fact that a tradition of 50% student project work
throughout the studies leaves only very little time for regular courses. First of
all, the presentation needs to be appealing and fruitful for every single student
in this heterogeneous audience. Secondly, extreme care must be made in the
selection of topics in order to provide a coherent course with a reasonable cov-
ering, considering that each course has few nominal hours. Finally, each course
must be designed as a component of a full education comparable with any other
five-year university education with computer science as a major subject.

1

This paper gives an overview of a teaching methodology developed under
these conditions in which Prolog plays the combined role of as a study object
and, more importantly, as a meta-language for describing and experimenting
with different models of computation, including programming language seman-
tics and Turing machines, and tools such as tracers and debuggers. The ap-
proach has been developed and successfully applied during the 1990s and used
in courses until recently; a full account of the approach can be found in a jour-
nal paper [2] that also gives a more comprehensive set of references to related
approaches; a locally printed textbook in Danish is available [1].

In the following, we analyze the qualities of Prolog that we have relied on in
this approach, and we show how definitional interpreters, compilers and other
models of computation can be defined in a systematic way as Prolog programs
based on a general model of abstract machines. In this way, formal descriptions
become running prototypes that are fairly easy to understand and appealing
for the students to test and modify. The approach has turned out to be highly
effective when combined with learning-by-doing which has been applied for type-
checking and implementation of recursive procedures. A brief listing is given
of other items treated in a course based on the these principles, and a sample
course schedule is shown.

2 Qualities of Prolog in relation to teaching

Prolog is a wonderful programming language for any teacher of computer sci-
ence: Students with or without previous programming experience can learn to
write interesting programs with only a few hours of introduction and guided
experiments in front of a computer. A substantial subset of Prolog exposes a
mathematically and intuitively simple semantics and makes a good point to em-
phasize the distinction between declarative and procedural semantics, and thus
also to isolate various pragmatic extensions from the core language.

Computer science as university subject contains many aspects where Prolog
can be interesting, independently of whether the students intend to use Prolog
in their future careers. First of all, Prolog is an obvious second programming
language that shows the diversity of the field for student brought up with a
language such as Java. Prolog is a type-less language in which any data structure
has a denotation and with no need for constructors and selection methods as
these are embedded in Prolog’s unification. Java, on the other hand, requires
the programmer to produce large collections of classes, interfaces, methods, and
a test main method before anything can be executed. The conflict between
flexibility, conciseness, and semantic clarity on the one hand, and security and
robustness on the other is so obviously exposed in this comparison. Prolog’s
application as a database language is well-known and we shall not go into details
here; in section 5 we mention briefly how an introduction to databases has been
incorporated in our approach.

A study of Prolog motivates also considerations about the notion of a meta-
language: assert and retract take arguments that represent program text, the

2

same goes for Prolog’s approximation to negation-as-failure which essentially is
a meta-linguistic device within the language. The problematic semantics of
these features gives rise to a discussion of what requirements should be made
to a meta-linguistic representation. Operator definitions in Prolog comprise
syntactic meta-language within the language, and are also a perfect point of
departure for a detailed treatment of priority and associativity in programming
language syntax. In general, we have relied on the following detailed properties
of Prolog.

• Prolog terms with operator definitions provide an immediate representa-
tion of abstract syntax trees in a textually pleasing form; see the following
expression which with an operator definition for “:=” is a Prolog term:
a:= 221; b:= 493; while(a =\= b, if(a>b, a:= a-b, b:= b-a))

• Structurally inductive definitions are expressed straightforwardly in Pro-
log by means of rules and unification, e.g.,
stmnt(while(C,S),· · ·):- condition(C,· · ·), stmnt(S,· · ·), · · ·.

• Data types for, say, symbol tables and variable bindings, are easily imple-
mented by Prolog structures and a few auxiliary predicates.

• Specifications are directly executable and can be monitored in detail using
a tracer; they can be developed and tested incrementally and interactively.
Students can easily modify or extend examples and test their solutions.
Prolog invites to an interactive and incremental style of program develop-
ment, not only for students but also for the teacher to do this during the
lecture using a computer attached to a projector.

• The characterization of various pragmatic issues can be developed in direct
relation to “ideal” formal descriptions. An interpreter, for example, is
easily extended into a tracer or debugger, and code optimization can be
incorporated in a small compiler written in Prolog.

• Last but no least: Prolog appears as an easily accessible framework com-
pared with, say, set and domain theory. Although basically representing
the same universal concepts, the combined logical and operational nature
of Prolog-based specifications gives an incomparable intuitive support.

3 A basic model of abstract machines

An unsophisticated model of abstract machines is a central element in our
methodology, used for the general characterization of computer languages and
computational models.

A particular abstract machine is characterized by its input language which is
a collection of phrases or sentences, a memory which at any given time contains
a value from some domain of values, and finally a semantic function mapping a
phrase of the input language and memory state into a new memory state. For

3

simplicity, output is not explicit part of the definition but considered as part of
the “transparent” memory whenever needed.

The framework includes a general notion of implementation of one machine
in terms of another, and three different modes are defined, interpretation, trans-
lation and use of abstraction mechanisms in standard programming languages.
Interpreters and translators themselves, as well as program modules, can be
explained as particular abstract machines.

Abstract and concrete syntax are introduced and distinguished in an in-
formal way, and the representation of abstract syntax trees by Prolog terms
(as above) is emphasized. The abstract syntax of a context-free language is
characterized by a recursive Prolog program consisting of rules of the form

cat0(op(T1,. . . , Tn)):- cat1(T1),. . . ,catn(Tn).

where op names an operator combining phrases of syntactic categories cat1, . . . ,
catn into a phrase of category cat0.

Syntax-directed definitions can be specified by adding more arguments cor-
responding to the synthesized as well as inherited attributes of an attribute
grammar [5]. Consistent with our abstract machine model, we introduce what
we call a defining interpreter which to each syntax tree associates its semantic
relation of tuples 〈s1, . . . , sk〉 by predicates of the form

cati(syntax-tree,s1,. . . ,sk)

As an example, a defining interpreter for an imperative language may associate
with each statement a relation between variable state before and after execution,
which for a statement such as “x:= x+1” contains among others the following
tuples: 〈[x=7],[x=8]〉, 〈[x=1,y=32]],[x=2,y=32]〉,

4 Imperative and procedural languages

In the following we show how standard programming languages are character-
ized in our Prolog-based style, indicating the spirit in which it is communicated
in the teaching. We proceed by introducing a defining interpreter for a sim-
ple machine-like language giving a continuation-style semantics for jumps and
control points. This serves the dual purposes of making the semantics of such
languages explicit and of introducing continuations as programming technique
and semantic principle. Next is shown a defining interpreter for while-programs
and a compiler of while-programs into machine language. Finally we describe
an assignment where the students developed type checker and interpreter for a
simple Pascal-like language from a brief, informal introduction.

4.1 A defining interpreter for a machine language

The following Prolog list is an abstract syntax tree for a program in a simplified
machine language. Presenting this sample to the students is sufficient to indi-
cate the existence of an abstract machine, and it gives good sense to execute

4

this program by hand on the blackboard from the intuition provided by the
instruction names.

[push(2),
store(t),

7, fetch(x),
...
equal,
n_jump(7)]

The semantics of such programs assumes a stack (that we can represent as a
Prolog list) and a storage of variable bindings (represented conveniently as lists
of “equations”, e.g., [a=17,x=1,y=32]). The central predicate in a defining
interpreter is the following. The first argument represents a sequence of in-
structions (a continuation) to be executed and the second one passes the entire
program around to all instructions to give the contextual meaning of labels.

sequence(Seq, Prog, Stackcurrent, Storecurrent, Stackfinal, Storefinal)

The meaning of simple statements that transform the state is given by tail-
recursive rules such as the following: Do whatever state transition is indicated
by the first instruction and give the resulting state to the continuation. Example:

sequence([add|Cont], Prog, [X,Y|S0], L0, S1, L1):-
YplusX is Y + X,
sequence(Cont, Prog, [YplusX|S0], L0, S1, L1).

The unconditional jump instruction is defined as follows; it is assumed that the
diverse usages of the append predicate have been exercised thoroughly with the
students at an earlier stage.

sequence([jump(E)|_], P, S0, L0, S1, L1):-
append(_, [E|Cont], P),
sequence(Cont, P, S0, L0, S1, L1).

Executing a few examples, perhaps complemented by a drawing on the black-
board — and within a few minutes the students have grasped the principle of
a continuation and continuation semantics. The remaining rules that complete
the interpreter are straightforward.

A little aside can be made, turning the interpreter into a functioning tracer
by adding the following rule as the first one to the interpreter:

sequence([Inst|_],_,_,_,_,_):- write(Inst), write(’ ’), fail.

Students are given the following exercises that serve the twofold purpose of fa-
miliarizing them with the material and introducing other important aspects:
extend language and interpreter with instructions for subroutines; write a Pro-
log program checking that labels are used in a consistent way; write a Prolog
predicate that optimizes selected subsequences of instructions; design and im-
plement an extension of the tracer with debugging commands.

5

4.2 A defining interpreter for while-programs

As a next step up the ladder of languages moving away from the machine and
closer to “problem-oriented” languages, we consider while-programs whose se-
mantics also can be specified in terms of a defining interpreter. A defining
interpreter consists of the following predicates.

program(program, final-storage)
statement(statement, storage-before, storage-after)
expression(expression, storage, integer)
condition(condition, storage, {true, false})

Most rules are straightforward, the most complicated one being the following
defining the meaning of a while statement.

statement(while(Cond, Stm), L1, L2):-
condition(Cond, L1, Value),
(Value = true -> statement((Stm ; while(Cond, Stm)),L1,L2)

; L1=L2).

The following exercises are given to the students: run a sample program includ-
ing a while loop with Prolog’s debugger switched on and record all primitive
actions; extend the language with expressions of the form result is(state-
ment, variable); extend the language with a for loop; extend the interpreter
with a simple tracing facility.

4.3 A compiler for while-programs

The structure of our defining interpreters can also be adapted to describe com-
pilers. Above, we considered a semantics for while-programs defined in terms
of state transformations and now we consider an alternate semantics captur-
ing meanings by means of sequences of machine instructions. Two auxiliary
predicates are introduces, one for creating unused machine language labels and
another one to facilitate the composition of sequences of instructions; illustrated
below. The following rule specifies the compilation of a while statement.

statement(while(Cond, Stm), C):-
condition(Cond, CondC),
statement(Stm, C1),
new_label(Lstart), new_label(Lend),
C <- Lstart + CondC +

n_jump(Lend) +
C1 +
jump(Lstart) +

Lend.

The compiled code for the while statement is composed by the code for its
constituents, two new labels created by new label and specific instructions; the
predicate denoted by “<-” puts together the sequence indicated by “+” in its

6

second argument and unifies it with the first argument. Notice that n jump is a
conditional jump to the specified label whenever the previous computation has
placed a value representing false on top of the stack. The code produced can be
executed by the interpreter shown in section 4.1. As before, exercises are given
that involve testing and extending this compiler in various ways.

4.4 A learning-by-doing approach to recursive procedures
and type-checking

The detailed semantics and implementation of recursive procedures and type-
checking are usually consider very difficult by students. We have had good
success with these topics by means of a larger learning-by-doing assignment
continuing the material presented so far.

The students were presented for a simple Pascal-like language by means of
example programs with a recursive quicksort program as a prototypical represen-
tative. Type requirements and a standard stack-based implementation principle
for recursive procedures were described informally, and the assignment was to
implement both type-checker and compiler in Prolog.

The prescribed time for the work was one week on half time, including writing
a small report documenting the solutions. The most experienced students had
type checker and interpreter running after four or five hours, and all students
in a class of some 30 students solved the task within the prescribed time. All
solutions were acceptable and there was no obvious difference between those
produced by students with a mathematical background and by those without.

5 Other course elements

Here we list other topics integrated with the previous material in different ver-
sions of our course; more details including program samples can be found in [2].

Logic circuits modeled in Prolog is a standard example used in many Prolog
text books. This is obvious to apply in our context due to the meta-linguistic
character (modeling the language of logic circuits).

LISP modeled with assert-retract. Function definitions and variable bind-
ings are implemented using Prolog’s assert-retract. Illustrates dynamic binding
and different levels of binding times plus introduces functional programming.
The use of assert-retract as opposed to explicit state arguments makes it possible
to model an interactive Lisp environment with few lines of codes.

Turing machines. An introduction to computability theory is given, based on
Turing machines and Turing completeness. An interpreter made up by a few
lines of Prolog is an excellent way to illustrate a Turing-machine and to provide a
truly dynamic model, especially when a tracing facility is added. The existence
of the interpreter shows that Prolog is Turing-complete, and having played with
it makes it easier for the students to understand the proof of undecidability of
the halting problem.

7

Vanilla and Prolog source-to-source compilation. The familiar Vanilla
self-interpreter for Prolog [7] is a perfect example to illustrate the notion of a
self-interpreter. Appearing a bit absurd and useless to the students in the first
place, they begin to see the point of a self-interpreter when a few lines of addi-
tional code makes it into a tracer and debugger. Source-to-source compilation is
illustrated in terms of a profiling tool that inserts additional code to record the
number of entrances, successes and failures of each clause in a Prolog program.

Relational algebra in Prolog. The course described here has in some years
been integrated with a standard database course. As an introduction to rela-
tional database technology, students were given the assignment of implementing
an interpreter for relational algebra. The conditions were the same as for the
task on type-checking and recursive procedures described above, one week on
half time, including writing a small report documenting the solutions. This task
has been given to several classes of students and all students usually succeed in
producing an acceptable solution, although join often causes problems.

Syntax analysis. Traditional methods for lexical analysis and parsing are in-
tegral components of our course. Prolog is used as a ready-at-hand tool for the
students to implement finite state machines, deterministic as well as nondeter-
ministic. Top-down parsing is illustrated perfectly by Prolog’s built-in Definite
Clause Grammars [6], and bottom up-parsers by an analogous grammar formal-
ism CHRG [3] developed on top of Constraint Handling Rules [4] which is a
recent extension to some Prolog versions that provides a natural paradigm for
bottom-up evaluation. Now quick and effective introductions can be given to
standard implementation principles for finite state machines and parsing.

Dissecting a Prolog implementation in Java. As a conclusion of the
course, the students are shown a full implementation in Java of a subset of
Prolog, including lexical analysis, parsing, representation of abstract syntax
trees in an object-oriented language, and an interpreter which exposes a detailed
implementation of Prolog’s unification procedure.

6 A sample course schedule

The following table shows the schedule for a version of a course designed accord-
ing to our methodology as it was given in spring 2001. The actual course has
changed slightly from semester to semester so not all items mentioned above are
included. The course corresponds to 25% of a student’s work in one semester
(7.5 ECTS) and is concentrated on 10 full course days. Each course day con-
sists of lectures and practical problem solving related to the day’s lecture. A
considerable amount of homework is expected from the students.

8

1
Introduction: Abstract and concrete syntax, semantics, pragmatics, language
and meta-language. Prolog workshop I: The core language, incl. structures.

2 Prolog workshop II: Lists, operators, assert/retract, cut, negation-as-failure.

3
Abstract machines: Definitions of a.m., interpreter, translator, etc.
Prolog workshop II contd.

4
Language and meta-language, Prolog as meta-language. Semantics of sequen-
tial and imperative languages; defining interpreters and a small compiler.

5
Declarations, types, type checking, context-dependencies,
recursive procedures.

6
Introduction to and practical work with large exercise: do-it-your-self recursive
procedures, interpreter and type checker.

7
Conclusion and comments to large exercise. Turing-machines, decidability and
computability, Turing universality, the halting problem, Turing machines in
Prolog.

8
Constraint logic programming: Introduction to CLP(R) and CHR; CHR
Grammars for bottom-up parsing.

9 Syntax analysis: Lexical analysis and parsing; recursive-descent parsing

10
Overview of phases in a traditional compiler. Dissection of an implementation
of Prolog in Java. Evaluation of the course.

7 Conclusion

We have explained a methodology based on a combination of a simple, under-
lying model of abstract machines and the use of Prolog as general definition
and implementation language. Prolog is well suited for this purpose: Concep-
tual simplicity and high expressibility with a core language consistent with a
subset of first-order logic; syntactic extensibility that allows a direct notation
for abstract syntax trees in a textually acceptable form; a rule-based structure
that fits perfectly with an inductive style of definition. Last but not least: Pro-
log is an interactive language that appeals to incremental development, testing,
and experimentation with an extremely short turn-around time from idea →
implementation → observation → revision or extension of idea.

Our experience have shown that theoretical issues of computer science can
be taught in this way in an entertaining and concrete way which, unlike tra-
ditional approaches, appeals to a wide range of students for which a uniform
mathematical background cannot be taken for granted.

A critical remark may be that this form of learning is very compact, with
many important aspects covered by one minimalist and seemingly innocent ex-
ample as was the case with the interpreter for machine language. One might
fear that students tend to remember only the example and not the points that
the teacher had in mind. We have not applied any scientifically based evaluation
principle, but it is our clear impression that the practical work in exercises and
larger assignments serves fully to avoid this potential danger. Informal evalu-
ations with the students have indicated a high degree of satisfaction with the
teaching principle. Especially the larger learning-by-doing assignments (type-

9

checking plus recursion; relational algebra in Prolog) were characterized as dif-
ficult and challenging, but also some of the most interesting ones from which
the students had learned quite a lot.

Acknowledgment: This research is supported in part by the IT-University of Copen-

hagen.

References

[1] Henning Christiansen. Sprog og abstrakte maskiner, 3. rev. udgave [in
Danish; eqv. “Languages and abstract machines”]. Datalogiske noter 18,
Roskilde University, Roskilde, Denmark, 2000.

[2] Henning Christiansen. Teaching computer languages and elementary the-
ory for mixed audiences at university level. Computer Science Education
Journal, 14, 2004. To appear.

[3] Henning Christiansen. CHR Grammars. Int’l Journal on Theory and Prac-
tice of Logic Programming, 2005. To appear.

[4] Thom Frühwirth. Theory and Practice of Constraint Handling Rules, Special
Issue on Constraint Logic Programming. Journal of Logic Programming,
37(1–3):95–138, October 1998.

[5] Donald Knuth. Semantics for Context-Free Languages. Mathematical Sys-
tems Theory, 2:127–145, 1968.

[6] F. C. N. Pereira and D. H. D. Warren. Definite clause grammars for language
analysis — a survey of the formalism and a comparison with augmented
transition networks. Artificial Intelligence, 13:231–278, 1980.

[7] D. H. D. Warren. Implementing Prolog - Compiling Predicate Logic Pro-
grams – Volumes 1 & 2. D.A.I. Research Report 39, 40, University of Edin-
burgh, May 1977.

10

