Robot - Software architectures for robot programming

A course given by Henning Christiansen Spring semester 2009

What is a robot?

- Autonomous artifact
 - senses its environment
 - performs actions that affect the environment
- Application
 - Household, toys, ...
 - Industry, replace manual work, work with very small or big things, repeated or boring tasks, can work in "inhuman" environments
 - − Military ⊗
- How to program a robot?
 - open the text editor and start programming
 - well, not really ….

"Behavioural robotics"

A software (+hardware) architecture for robots

Distributed programming

This course is not about...

 competing in smart, fancy, useful, cute etc. robots

But:

it is about software architecture

During the course we (=you) should document a software architecture, relevant tools etc, and illustrate by small, running application

You will learn about distributed, parallel, embedded, pervasive, etc. computing

Tools

Lego Mindstorms

- has solved hardware problems for us: sensors, motors, mechanics, communication, on-robot computer NXT
- firmware (a little op. sys. + language interp.)
- a simplistic programming language

leJos

- Java based environment for NXT
- JVM for NXT, class library for client + server, behavioural programming ...

Practicals

- You must like to program and experiment!
- You can get inspiration for project + thesis work!
- You work in groups of 2–3 students with one Lego set; course dominated by practical work
- You should document your work in small "written assignments", that are given during the course and must be given in by fixed deadlines

Find all details here:

http://www.ruc.dk/~henning/ROBOT2009

A very brief introduction to (behavioural) robot programming

Continue this process, measuring the actions' effect on reality Perhaps several behaviours in parallel, or competing on which one takes precedence

A little advertisement movie

Is this a "behavioural robot"?

How much is fake and how much the programmed robot?

Today you will learn about

Basic robotics principles:

- sensors and actuators (e.g., motors), and how they appear from a robot program(mer)'s point of view
- programming to have the first determine actions of the second

How Lego's programming language and tools work

- a simplistic, graphical programming language
- how to put (simplistic) robot mechanics together
- how to feed a program from a server (= your computer) to the robot by USB and Bluetooth.

Today's program

- Divide around the too few Lego sets we have available today.
- Go through the "Getting started" and do the experiments and exercises that are mentioned
- make sure that everyone is engaged in every step that is made
- When this is finished, continue to extend you robot in the "Tribot" explained in the "User guide" and in the Robo Center part of Lego's development system

A few more practical remarks

We form the 2–3 student groups next week when we have more Lego sets

Lego sets stay at RUC, until we have agreed otherwise

Please

- Don't mix up the different sets (not allowed to borrow a brick from your neighbour!!
- Please place those parts that you don't use in plastic bags in an orderly way so that the box is useful for the next ones who open it