KIIS: Artificial Intelligence & Intelligent Systems
Lecture 2 sep 2008

Henning Christiansen

Introduction to Prolog

Properties of Prolog as a Programming language:

* no explicit types or classes
e rule-based, founded on first-order logic
* high expressibility: functionality per program line

* Interactive, experimental programming

NB: A few examples in these ppt slides differ from note, sorry 'bout that, but I had
some nice animations prepared... :)

Background for Prolog

PROgramming in LOGic
Syntax: subset of 1.-order logic
Declarative semantics: Logical consequence
Procedural semantics:

Resolution, proof rule with unification; robinson, 196
A.Colmerauer & co. (Marseille), ca. 1970: "Prolog"

D.H.D. Warren: Efficient compiler, abstract
machine "WAM", 1975,

Language made known by R.Kowalski "Logic for
Problem solving", 1979,

Prolog and Al

e First major Al language was LISP, McCarthy & al.,
1960

— symbolic computation

— programs = data

* Prolog, intended for computational linguistics, has
become a successor of LISP for Al applications

* A Prolog program is representation of knowledge = a
database (relational DB + a lot more)

* Prolog applies backward-chaining (ct. MN, chap 2).

* Prolog includes strong metaprogramming facilities
(programs = data; easy to defining interpreters)

Later 1n the course, extensions to Prolog

e Constraint Handling Rules
e allows to mix forward and backward chaining...

e Abductive logic programming

But now, let's jump into basic Prolog

Program 1s a description ot data

parent (
parent (
parent (
parent (
parent (
parent (

pam,
tom,
tom,
bob,
bob,
pat,

bob)

. % Pam is a parent of Bob

bob) .

liz)
ann)

pat)
jim)

/ /

Basic notions:

e predicates: parent

— describes a relation
— defined by facts,

constant (symbol)s: tom, hob. x

variables: X, ¥, Tom

atoms (simple goals): parent (A, a)

Queries....

In Prolog literature,
constants are called
atoms :(

Queries

Atomic queries
?- parent(X,Y).

... give me values of X and ¥ so parent (X, ¥)
logically follows from program

Compound query
?- parent(pam, X), parent(X, Y).
... gilve me X and ¥, so that...

Procedural semantics

parent (pa bo x=]

pelnification term=term?

parent (tom, bob).

parent(tom, {i::i-i”;:;
parent (- bacKtfacking

Y=pat
~ undo an

try neWERices

parent (ther Solutions?

parent(pat, jim).

Rules

Procedural semantics

female(pam). as before + rewrite subgoal using rules
male(tom).

male (bob).
female(liz).

female(pat). with rules read as, e.g.
female(ann).

Declarative semantics = logical
consequence

Vx,yx: p(x,y) A f(x) = m(x,y)

male(jim).

The nice property:
mother (X, Y):- |
parent (X, Y), procedural = declarative

female(X). (unless procedural semantics loops)

A recursive rule

Works fine but may loop if
ancestor (X, 2) > ordering of things changed
parent (X, Z).

ancestor (X, Z):-
parent (X, ft,
ancestor (¥, Z).

?- ancestor(tom, pat).

Range-restricted programs (RR)

~ those that can be understood as databases

~ guaranteed finite relations

Counter examples:

equal (X,X).
big number (X):- X>4.

Definition:

pté:
piedicadesrér (x,v) : -
irl(X,AgeX), girl(Y,AgeY),
X \== Y,

parent (Z,X), parent(Z,Y),
AgeX > AgeY.

A clause 1s RR 1f any variable 1in its head occurs 1n its body and
any variable in a predefined test occurs also in an atom with
program-defined predicate in that body [to the left of it].

A program i1s RR if all its clauses are RR.

Negation-as-failure

Closed-world assumption: Anything not known
by database 1

Example:

orphan(X):—:EEEEongz! \+ father(_,X), \+ mother(,X).

person(adam).

person(abel).
father (adam, abel).

Extend definition of range restriction:

... and any variable in negated atom not covered by d, must occurs
also 1n an atom with program-defined predicate [to the left of it].

Counter example: /

Problems with Prolog's approximation to NaF

p(a).

Test negation
?- \+ p(a).
no
?- \+ p(b).
yes

Looks fine but sem'cs problematic in case of variables:

?- X = Db, \+ p(X).
X =Db ?

yes

?- \+ p(X), X = b.
no

Consider

* How many lines of Java code is needed for
implementing the little family database?

* Another example suited to illustrate
— Prolog's semantics
— "Simple, yet powertul”

Logical circuits

(Abstraction over) simple, electrical circuits

often app. OV =0, app. 5V = 1

In Prolog:

not (0,1).

(] not(1,0).

More simple gates

and (0,
and (0,
and(1,
and(1,

xor (0,
xor (0,
xor (1,
xor (1,

or (0,
or (0,
or(1,
or(1,

0,
1,
0,
1,

’

-

-

0]
1
0]
1

’

-

-

= O = O
~

-

0).
0).
0).
1).

0).
1).
1).
0).

0).
1).
1).
1).

aml
D
E
A [+ X
(] (] (]
(] | (]
| (] (]
| | |

A [+ X
[[[
[| |
| [|
| | [

Building circuits from gates

Example: A half-adder
Adding two bits, A and B:

I

Carmy

Notice: Analogy
between Prolog variable
and electrical
conductor

halfadder (A, B, Carry, Sum):-

A full-adder, now with old carry

Carmy i

Sumi

Carry ol

fulladder (A, B, Carryin, Sum, Carryout):-

Predicates in Prolog ofen) reversible

What do we get of output when inputting 0,1,17
?- fulladder(0,1,1,S,C).
cC=1, s =072

What input gives output =0, 17
?- fulladder(Xx,Y¥Y,z,0,1).
X=0,¥Y=1, 2 =12 ;
X=1,¥Y=0,2=12 ;
X=1, ¥Y=1, 2 =0 2 ;
no — N

Reversible: no distinction between
input- og output-variable!
Another word for reversible: Relationel

N~ -

