
KIIS: Artificial Intelligence & Intelligent Systems
Lecture 2 sep 2008
Henning Christiansen

Introduction to Prolog
Properties of Prolog as a Programming language:
• no explicit types or classes
• rule-based, founded on first-order logic
• high expressibility: functionality per program line
• interactive, experimental programming

NB: A few examples in these ppt slides differ from note, sorry 'bout that, but I had
some nice animations prepared... :)

Background for Prolog

PROgramming in LOGic
Syntax: subset of 1.-order logic
Declarative semantics: Logical consequence
Procedural semantics:

Resolution, proof rule with unification; Robinson, 1965

A.Colmerauer & co. (Marseille), ca. 1970: "Prolog"
D.H.D. Warren: Efficient compiler, abstract

machine "WAM", 1975,
Language made known by R.Kowalski "Logic for

Problem solving", 1979,

Prolog and AI

• First major AI language was LISP, McCarthy & al.,
1960
– symbolic computation
– programs ≈ data

• Prolog, intended for computational linguistics, has
become a successor of LISP for AI applications

• A Prolog program is representation of knowledge ≈ a
database (relational DB + a lot more)

• Prolog applies backward-chaining (cf. MN, chap 2).
• Prolog includes strong metaprogramming facilities

(programs ≈ data; easy to defining interpreters)

Later in the course, extensions to Prolog

• Constraint Handling Rules
• allows to mix forward and backward chaining...
• Abductive logic programming

But now, let's jump into basic Prolog

Program is a description of data

parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

parent(pam, bob). % Pam is a parent of Bob

pam tom

bob liz

ann pat

jim

Basic notions:

• predicates: parent
– describes a relation
– defined by facts, rules, collectively called clauses

• constant (symbol)s: tom, bob, x, y
• variables: X, Y, Tom
• atoms (simple goals): parent(A,a)
• Queries....

In Prolog literature,
constants are called

atoms :(

Queries

Atomic queries
?- parent(X,Y).

... give me values of X and Y so parent(X,Y)
logically follows from program

Compound query
?- parent(pam, X), parent(X, Y).

... give me X and Y, so that...

Procedural semantics

parent(pam, bob).

parent(tom, bob).

parent(tom, liz).

parent(bob, ann).

parent(bob, pat).

parent(pat, jim).

?- parent(pam, X), parent(X, Y).

 X=bob

?- parent(bob, Y).

 Y=ann

Success!
Other solutions?

 Y=pat Success!
Other Solutions?

No more possible
solutions at all :(
No more possible
solutions here :(

•Unification term=term?

•from left to right

•from start to end

•backtracking

≈ undo and try new choices

Rules
female(pam).
male(tom).
male(bob).
female(liz).
female(pat).
female(ann).
male(jim).

mother(X, Y):-
 parent(X, Y),
 female(X).

Procedural semantics

as before + rewrite subgoal using rules

Declarative semantics ≈ logical
consequence

with rules read as, e.g.

∀x,y,x: p(x,y) /\ f(x) → m(x,y)

The nice property:
procedural ≈ declarative
(unless procedural semantics loops)

A recursive rule
ancestor(X, Z):-
 parent(X, Z).

ancestor(X, Z):-
 parent(X, Y),
 ancestor(Y, Z).

?- ancestor(tom, pat).

Works fine but may loop if
ordering of things changed

Range-restricted programs (RR)

≈ those that can be understood as databases
≈ guaranteed finite relations
Counter examples:

equal(X,X).

 big_number(X):- X>4.

Predefined
predicate

Definition:

A clause is RR if any variable in its head occurs in its body and
any variable in a predefined test occurs also in an atom with
program-defined predicate in that body [to the left of it].

A program is RR if all its clauses are RR.

Example:
older_sister(X,Y):-
 girl(X,AgeX), girl(Y,AgeY),
 X \== Y,
 parent(Z,X), parent(Z,Y),
 AgeX > AgeY.

Negation-as-failure

Closed-world assumption: Anything not known
by database considered false.

Example:
 orphan(X):- person(X), \+ father(_,X), \+ mother(_,X).

 person(adam).
 person(abel).
 father(adam,abel).

Extend definition of range restriction:

... and any variable in negated atom not covered by ∃, must occurs
also in an atom with program-defined predicate [to the left of it].

Implicit quantifiers:
 ∃ Z Z ∃ Z Z

Counter example:

Problems with Prolog's approximation to NaF

p(a).

Test negation
?- \+ p(a).
no
?- \+ p(b).
yes

Looks fine but sem'cs problematic in case of variables:
?- X = b, \+ p(X).
X = b ?
yes
?- \+ p(X), X = b.
no

Consider

• How many lines of Java code is needed for
implementing the little family database?

• Another example suited to illustrate
– Prolog's semantics
– "Simple, yet powerful"

Logical circuits

(Abstraction over) simple, electrical circuits
often app. 0V ≈ 0, app. 5V ≈ 1

In Prolog:

not(0,1).

not(1,0).

More simple gates
and(0, 0, 0).
and(0, 1, 0).
and(1, 0, 0).
and(1, 1, 1).

xor(0, 0, 0).
xor(0, 1, 1).
xor(1, 0, 1).
xor(1, 1, 0).

or(0, 0, 0).
or(0, 1, 1).
or(1, 0, 1).
or(1, 1, 1).

Building circuits from gates

halfadder(A, B, Carry, Sum):-
 and(A, B, Carry),
 xor(A, B, Sum).

Example: A half-adder
Adding two bits, A and B:

Notice: Analogy
between Prolog variable

and electrical
conductor

A full-adder, now with old carry

fulladder(A, B, Carryin, Sum, Carryout):-
 xor(A, B, X),
 and(A, B, Y),
 and(X, Carryin, Z),
 xor(Carryin, X, Sum),
 or(Y, Z, Carryout).

Predicates in Prolog (often) reversible

What do we get of output when inputting 0,1,1?
?- fulladder(0,1,1,S,C).
C = 1, S = 0 ?

What input gives output = 0, 1?
?- fulladder(X,Y,Z,0,1).
X = 0, Y = 1, Z = 1 ? ;
X = 1, Y = 0, Z = 1 ? ;
X = 1, Y = 1, Z = 0 ? ;
no

Reversible: no distinction between
input- og output-variable!

Another word for reversible: Relationel

