Course on Artificial Intelligence and Intelligent Systems

Examples and exercises for conditional probabilities and Bayesian reasoning

Henning Christiansen
Roskilde University, Computer Science Dept.
(C) 2007 Version 29 oct 2007

1 Motivation and overview

This note refers to part chapter 3 of the course textbook by M. Negnevitsky. We find the text problematic in places, and we recommend our reader to skip section 3.3 and onwards.

In this note we provide firstly examples to motivate and explain the standard definitions reviewed in section 3.2 (the textbook lacks examples). Secondly, we give a new account on Bayesian reasoning which we, for clarity, release from the terminology of expert systems, and we provide informative examples.

2 Comments and examples to standard notions from probability theory

In this section, we refer specifically to the formulas of section 3.2 in the textbook, and you are supposed to have the book opened in front of you while you read the following.

The purpose of the mentioned section of the textbook is to introduce standard notions of probability theory such as probability for random variables and conditional probabilities. However, no motivating examples are given, so unless you are familiar with probability theory already, you are most likely to have difficulties in understanding the text.

In this note, we provide two related examples that you may use for your reading, and we will go through the detailed calculations at the course (as exercises).

First, we will correct one unclear point in the text. Middle p. 60 reads "The concept of conditional probability introduced so far considered that event A was dependent on event B." In fact, all results and notions referred to goes also for the special case of independent random variables.

A note on terminology: A random variable means a variable whose value is determined by an experiment, whose outcome is determined by a probability distribution. If case such a variable V may take a value in a set, say $\{$ head, tail $\}$, an event refers to the case that V takes a specific value. So one event may be the observation that an experiment resulted in $V=$ head; the textbook uses only the term "event".

You should also be aware that the textbook's definition of probability based on a ratio between numbers of "successes" and "number of possible outcomes" is very imprecise and should only be taken as an intuitive characterization; as formal a definition it is nonsense. However, the so-called law of large numbers indicates, with suitable definitions, that when repeating the experiment n times, the indicated ratio will converge to the probability as $n \rightarrow \infty$.

We will give two examples to illustrate conditional probability, the first one which, for simplicity, considers independent variables. In a second example, we use dependent random variables.

Both examples concern the colour of peoples' hair, and we will make a few simplifying assumptions.

- The colour of a person's hair is uniquely defined.
- This colour can be one of blond, red, black, brown, and if the person has no hair, we say for uniformity that the colour is "bald".

2.1 First example with independent events, plus comments to the formulas

We consider here a population of young people, which means that there are no bald persons, and the distribution of hair colour is assumed to be the same for boys and girls.

Consider the experiment of selecting, at random, a person from this population, and we assume two random variables, one for the sex of the chosen person and another for the person's colour of hair. Referring to the formulas in the textbook, p. 59-61 (middle), we assume for now, the following types of events:

- A means that the chosen person is a girl.
- B means that the chosen person has red hair.

We assume a probability of 0.5 for A (independently of the person's colour of hair) and a probability of 0.1 for B (independent of whether the person is a boy or a girl).

As an illustration, we consider a subset of the population consisting of 100 persons whose characteristics correspond perfectly to the indicated probabilities, i.e.,

- 50 are girls of which 5 have red hair,
- 50 are boys of which 5 have red hair.

We refer to this sub-population as a perfectly representative selection. Conditional probability $P(A \mid B)$ means, thus, the probability that the chosen person in the experiments is a girl, provided that we know that the person has red hair. As we know this should be 0.5 , and we notice in the perfectly representative selection that exactly 5 out of the 10 red-haired persons are girls. Compare this argument with the pseudo-math formula (3.6).

The event $A \cap B$ means that both A and B are case as the outcome of an experiment, i.e., a girl with red hair was selected. We would expect $P(A \cap B)$ to be $0.5 \times 0.1=0.05$ which is consistent with the ratio in the perfectly representative selection, 5 red-haired girls. out of 100 people. In fact, the standard definition in probability theory defines two random variables X and Y to be independent, if they obey the following law.

$$
P(X=a \cap Y=b)=P(X=a) \times P(Y=b)
$$

for any values a and b that X, resp., Y may take. Here $X=a$ denotes the event that random variable X takes value a. It follows, furthermore, from standard definitions of probability theory, for independent random variables X and Y, that

$$
P(X=a \mid Y=b)=P(X=a) \quad \text { and } \quad P(Y=b \mid X=a)=P(Y=b) .
$$

Exercise

Insert our current definitions of A and B in formula (3.7), and verify that it is correct for this example. Provide an intuitive reading of each subexpression in the equation, and verify that the analogous ratios in the perfectly representative selection satisfy similar equations.

Exercise

Do exactly the same for formulas (3.8), (3.9), (3.10), and (3.11).
To illustrate the meaning of formulas (3.12-3.14), let us for B_{1}, \ldots, B_{n} assume $n=4$ and name the events corresponding to different colours of hair; we assume still the population of young people with independence between sex and colour of hair. The perfectly representative selection conform with the probabilities, and we assume furthermore

- $P($ blond $)=0.4$, thus 40 blond persons in the perfectly repr. sel. (20 girls and 20 boys),
- $P($ brown $)=0.3$, thus 30 brown-haired persons in the perfectly repr. sel. (15 girls and 15 boys),
- $P($ black $)=0.2$, thus 20 black-haired persons in the perfectly repr. sel. (10 girls and 10 boys),
- $P($ red $)=0.1$, thus 10 red-haired persons in the perfectly repr. sel. (5 girls and 5 boys).
(So "red" is the event that we so far called B). We notice, by our initial assumptions, that these four events satisfy the condition of being mutually exclusive. A formal definition of "mutually exclusive" could state that P (blond \cap black $)=0$ and P (blond \mid black $)=0$ and similarly for any other combination of different events chosen among \{blond, brown, black, red \}.

Exercise

Check formula (3.12) by inserting our current definitions for events, A still meaning "girl", and with $\left\{\right.$ blond, brown, black, red\} for B_{1}, \ldots, B_{n}. Provide an intuitive reading of each subexpression in the equation, and verify that the analogous ratios in the perfectly representative selection satisfy similar equations.

Equations (3.13-14) refer to the case where B_{1}, \ldots, B_{n} satisfies a property referred to as "exhaustive". The meaning of this can be written as a formula

$$
P\left(B_{1} \cup \cdots \cup B_{n}\right)=1
$$

where \cup can be read as "or". According to our assumptions, $\{$ blond, brown, black, red\} is exhaustive:

$$
P(\text { blond } \cup \text { brown } \cup \text { black } \cup \text { red })=1
$$

Furthermore, since they are exhaustive and mutually exclusive, we have also the following formula.

$$
P(\text { blond })+P(\text { brown })+P(\text { black })+P(\text { red })=1
$$

As a little aside, let us consider cases when this sum does not equal to one.

- When the events are mutually exclusive, but not exhaustive, the sum may be <1 (intuitively because some samples are not counted, e.g., the green-haired).
- When the events are exhaustive, but not mutually exclusive, the sum may be >1 (intuitively because some samples are counted more that once, e.g., some one with black stripes in the brown hair).

Wrong beliefs about independence or exhaustiveness are typical sources of errors in probabilistic models.

Exercise

The step from formula (3.12) to (3.13) may appear a bit obscure as no explanation is given. Check the relationship between the two formulas for our current example, A meaning "girl", and with \{blond, brown, black, red\} for B_{1}, \ldots, B_{n}.

We will come back to formulas (3.15-3.17) which becomes more interesting when we consider events that are not necessarily independent. Notice that we so far never used the assumption that colour of hair and sex was independent.

2.2 Second example, dependent events

Bayes' formula and its various consequences find their most interesting applications for cases when the events combined in conditional probabilities are dependent. The definition of "dependent" is simple: Two random variables or, alternatively, two events are dependent if they are not independent. This formulation is not a joke, but it has the precise meaning that we cannot trust laws anymore such as $P(A \mid B)=P(A)$ and $P(A \cap B)=P(A) \times P(B)$ when A and B are dependent.

Instead of the population of young people that we referred to above, we consider now a population of grown-ups, where we still consider colour of hair (or lack of hair). Here we assume a larger variation in hair colour, which we can say is due to the fact that some men gets bald (and very few women), and that women more frequently go to the hairdresser to have their colour of hair changed; furthermore, the local nightlife is so boring that some of the younger men have left for another country (and why the younger women stay, no one knows). Clearly, colour of hair depends now on sex in some way or another - and vice versa.

Instead of giving probabilities directly, we describe instead the frequencies for a perfectly representative selection of 100 persons - perfect in the sense that they collectively respect the probabilities for the mentioned events.

Event $A \backslash$ Event B_{i}	blond	brown	black	red	blue	bald	(sum)
woman	30	5	15	2	7	1	60
man	12	8	5	4	1	10	40
(sum)	42	13	20	6	8	11	100

Exercise

Write down (as numbers between 0 and 1) all probabilities and conditional probabilities, e.g., $P($ woman $), P$ (blond) $, P($ brown \mid man $), P($ man \mid red $)$, etc., that you can derive from this table.

Exercise

Check the relationship between the two formulas (3.12) to (3.13) for our current example in two versions, A meaning "woman" in the first and "man" in the second, and in both cases \{blond, brown, black, red, blue, bald\} for B_{1}, \ldots, B_{n}.

3 Bayesian reasoning, the principle

Let us consider again the example of section 2.2 and formula (3.17) from the text book. We let $A=$ woman and $B=$ red; notice that \neg woman $=$ man. With this, formula (3.17) becomes the following.

$$
\begin{equation*}
P(\text { woman } \mid \text { red })=\frac{P(\text { red } \mid \text { woman }) \times P(\text { woman })}{P(\text { red } \mid \text { woman }) \times P(\text { woman })+P(\text { red } \mid \operatorname{man}) \times P(\operatorname{man})} \tag{1}
\end{equation*}
$$

Assume, now, for some strange reason, that we do not have access to conditional probabilities of the kind $P($ sex \mid colour $)$ but we know other conditional probabilities $P($ colour \mid sex $)$ plus the probabilities P (woman) and $P($ man $)$. In this case we can use the formula above to determine the probability that an observed red-haired person happens to be a woman.

Such a judgement might be interesting in case a red-haired person (dressed in a big coat, but not wearing a hat), has been seen running away from the scene of a crime, and the police has two usual suspects in custody, both red-haired, one woman and one man.

Well, how can it be the case that we know, say P (red|woman) but not P (woman|red)? In section 2.2 above, we assumed a perfectly representative selection given and that we knew all properties of all individuals, so that all probabilities, including all sorts of conditional ones, could be found by simple counting.

In reality, we very seldom have a perfectly representative selection at hand, unless we have all information available for every person in the society. In general it may be difficult to have sufficient data for estimating all probabilities.

More importantly, it may be the case that we have some prior knowledge which in a particular situation differs from the perfectly representative selection. In our example, we may know that usual suspects typically are men, and in this case we might expect that a probabilistic model should be able to lower the probability that the observed read-haired be a woman.

Let us make some important concepts clear. The unconditional probabilities P (woman) and $P($ man) are called prior probabilities as the represents assumptions about the overall situation before any observation of an event is made. The calculated conditional probability, in this example P (woman|red), is called a posterior probability, as it is a probability calculated after a specific event has been observed (e.g. "red"). If, in our example, we assume that the person who actually performed the crime is taken at random from the population concerned with sex, this represents prior probabilities $P($ woman $)=0.6$ and $P(\operatorname{man})=0.4$. However, if we know that 80% of all criminals are men, we may use instead in our model, the prior probabilities $P($ woman $)=0.2$ and $P($ man $)=0.8$.

With Bayes' formula (in the appearance (1) above) we can predict other conditional probabilities concerning the sex of the observed read-haired person, taking into account that that this person is not any person but a criminal. Notice that the shift of prior probabilities does not indicate a shift in the conditional probabilities for hair colours (no assumption is made that, say, red-haired men are more or less criminal than others).

Exercise

Calculate the conditional probability P (woman \mid red) for the two different prior probability distributions, $P($ woman $)=0.6, P($ man $)=0.4$ vs. $P($ woman $)=0.2$ and $P(m a n)=0.8$.

In the example above where the task is to identify the most likely person who performed some crime, it may be an ethical question whether the prejudice expressed in the different prior probabilities should be taken into account.

We will consider another example in which it seems more obvious to consider different prior probabilities. We consider a certain decease for which you can go to the hospital and get a test; however, the test is not perfect so the test will indicate so-called false positives and false negatives.

So let us replace "woman" by "decease" (for "having the decease") and "red" by "pos" (for "test is positive"). Formula (1) now becomes the following

$$
\begin{equation*}
P(\text { decease } \mid \text { pos })=\frac{P(\text { pos } \mid \text { decease }) \times P(\text { decease })}{P(\text { pos } \mid \text { decease }) \times P(\text { decease })+P(\text { pos } \mid \text { no-decease }) \times P(\text { no-decease })} \tag{2}
\end{equation*}
$$

If we assume that the decease is fatal or in other ways develops to become apparent during the lifetime of the patient, we can estimate the probability that a randomly chosen person has (or has not) the decease from statistics about the entire population.

For the given test method, we assume also that a series of experiments have been made in order to gather statistics which makes it possible to judge its precision in terms of true/false positives/negatives, including the probabilities P (pos|decease) and P (pos|no-decease), that we can use in our formula.

Exercise

Let $P($ pos \mid decease $)=0.8$ and $P(\operatorname{pos} \mid$ no-decease $)=0.1$. Consider the case that a person goes to the test as part of a general health check without any specific suspicion that he or she should be more or less exposed to the decease than any other people. Assume prior probabilities based on statistics for the entire population saying that 5% has this decease, i.e., $P($ decease $)=0.05, P($ no-decease $)=0.95$. Calculate the posterior probability that our sample person has the decease provided that he has been tested positive.

Exercise

The day after, another person comes for the test, who is working at an nuclear power plant. It is known that of all nuclear power plant workers, 60% of them have the decease. In case this guy is tested positive, you should calculate his probability to have the decease, given the indicated posterior probabilities.

Finally, a colleague of the last mentioned goes to the test and is tested negative. What is his probability to have the decease.

4 Exercises for Bayesian networks

4.1 Power supply, revisited with probabilities

We consider the example of a power supply network that we used in an earlier exercises, where you should design an an abductive logic program which could be used to diagnose faults in the network. The text is rephrased here to make this exercise self-contained.

We consider a geographical region which has a power supply control centre that gets informed as soon as any village in the region is without electricity power. In such cases, the centre checks, using mobil phones, whether the remaining villages have electricity power. On the basis of this information, the centre must take the decision of where to send the repair teams. Our job is to develop a diagnosis system that given the information of which villages have or have not electricity power, can give suggestions for which wires or power plants that might be down, and thus are candidates for repair.

For this application, it seems reasonable to take the consistent fault assumption, as if a wire is down, it will stay down until it is repaired.

A given wire w will be in one of two states, $\operatorname{state}(w, \mathrm{up})$ or $\operatorname{state}(w, \operatorname{down})$, so a diagnosis is a combination of abducibles concerning the different wires in the region. There is also a risk that the power plants in the region can go down, so a diagnosis may also contain abducibles such as state ($p p$, down) where $p p$ refers to a power plant.

Observations are sets of "goals" of the form has_power (v) or has_no_power (v) where v refers to a village. In a given situation, we may have such information about all or just some villages.

The electricity power network can be depicted as follows; pp1 is the only power plant in this region, w1-9 are the wires, $\mathrm{n} 1-4$ are nodes in which a number of wires are connected, and v1-v4 are the villages.

We have elementary probabilities for each wire as well as the power plant being up and down, and some conditional probabilities for nodes and villages of having electricity.

Draw a graph for the Bayesian network that describes the relationships between the different probabilities, and suggest reasonable conditional truth tables. NB: You do not need to use probabilities of 1.0 an 0.0 only as there may be positive (but likely small) probability that electricity do not propagate from one location to an adjacent even in case the connection wire is up.

Make a forward calculation using you network, to find the probability that v4 has power, given that every component in the net is up.

4.2 On intelligent and annoying text editors (meant for discussion)

A widespread text editor program tries to help its user by providing information about selected facilities when it somehow senses that the user could make good use of that facility. Can you suggest a method that this text editor may apply get to the conclusion that it should put up a message box saying "I think you are xxxxxxxxxxxing, so why not use the xxxxxxxxxxx wizard?".

Quite many users seem to be annoyed by this service. Can you suggest an extension of the method, so it tries to estimate whether the user will be grateful or annoyed with a proposal that otherwise seems relevant to the working context.

5 Recommended reading Bayesian networks

R.E. Neapolitan: Learning Bayesian Networks. Prentice Hall, 2004.

Finn V. Jensen Introduction to Bayesian Networks, Springer-Verlag 2002.
For short introduction we can point to the following articles.
Eugene Charniak: Bayesian Networks without Tears. AI Magazine 12(4): 50-63 (1991)
U. B. Kjærulff and A. L. Madsen (2005), Probabilistic Networks - An Introduction to Bayesian Networks and Influence Diagrams, 133 pages, Unpublished. In time of writing, available at http://www.cs.auc.dk/~ uk/papers/pgm-book-I-05.pdf

