
KIIS: Artificial Intelligence and Intelligent Systems

Lecture 11 sep 2007
Henning Christiansen

More Prolog

Hacks and features of Prolog making it into a full

programming language:

• General data structures and lists

• Control facilities

• Arithmetic in Prolog

• Syntactic extensibility: Operator notation

• (Self-inspection and modification)

That's really all of it!

Basic notions, now adding structures

• predicates: parent

– defines a relation

– given by facts, rules, coll. called clauses

• constants: tom, bob, x, y

• variables: X, Y, Tom

• atoms: parent(A,a)

• Arguments to predicates can also be structures:

point(1,1)

line_segment(point(1,1),point(3,3))
NB: Looks

like pred's with

arguments, ...

An example of using structures

This is a program:

vertical(line_segment(point(X,Y), point(X,Y1))).

horizontal(line_segment(point(X,Y), point(X1,Y))).

line_segment(point(1,1),point(3,3))

Intuitive interpretation of structure:

How many lines of Java

is needed to produce

a similar functionality????
x

y

Querying it:

?- vertical(line_segment(point(1,1),point(2,Y))).

no

?- horizontal(line_segment(point(1,1),point(2,Y))).

Y = 1 ?

Lists, an important sort of structures

List syntax ! syntactic sugar; no new semantics

?- write([1,2,3,4,5,6]).

[1,2,3,4,5,6]

?- write_canonical([1,2,3,4,5,6]).

'.'(1,'.'(2,'.'(3,'.'(4,'.'(5,'.'(6,[]))))))

?- [1,2,3,4,5,6] = [Head | Tail].

Head = 1, Tail = [2,3,4,5,6]

?- [First, Second | Tail2] = [a,b,c,d,e,f].

First = a, Second = b, Tails = [c,d,e,f]

Working with lists; the member predicate

A built-in predicate; in SICStus (v. 3, not 4, sic!) remember this:

:- use_module(library(lists)).

?- member(a,[a,b,c]).

yes

?- member(a,L), member(b,L), member(c,L).

L = [a,b,c|_A]

Member is also a list constructor:

Implementation of member

member(X, [X | _]).

member(X, [_|L]):- member(X,L).

"append": List concat'n & decomp'n

Examples:

?- append([a,b],[c,d], L).

L = [a,b,c,d]

?- append(X,Y,[a,b,c]).

X = [], Y = [a,b,c] ? ;

X = [a], Y = [b,c] ? ;

X = [a,b], Y = [c] ? ;

X = [a,b,c], Y = [] ? ;

A definition of "append"

append([], L, L).

append([X|L1], L2, [X|L3]):- append(L1, L2, L3).

L2L1X

L3

[X|L3]

[X|L3]

Arithmetic, a stepchild in Prolog

?- X is 2 + 2 * 3.

?- X is 2 + Y * 3.

X = 8 ?

! Instantiation error in argument 2 of is/2

! goal: _79 is 2+_73*3

Remember points about

• range-restrictedness

• left-to-right execution

Exercises

• 5.1, p. 46

• 5.2, p. 46–47.

– Only triangles, identical_triangles, segment_length

and possibly area(<triangle>, <length>)

• 5.3, p.47.

• Extra: Define, using append, a predicate

find_abc(L), which is satisfied iff [a,b,c] is a

“sublist” of L, e.g.
?- find_abc([k,l,m,n,a,b,c,d,e])

yes

?- find_abc([k,l,m,n,a,b,z,z,c,d,e])

no

(can be done with just one call to append)

Useful built-ins (use with care)

Splitting terms by "=.."

?- f(a,b) =.. [F|Args].

F = f, Args = [a,b]

?- f(a,b) =.. [F|Args], NewTerm =.. [F,new|Args].

..., NewTerm = f(new,a,b)

var(arg) — argument currently uninstantiated?

nonvar(arg) — the opposite

ground(arg) — is current value of arg ground, i.e., variable-free?

atom(arg) — current value constant that is not a number?

integer(arg)— current value an integer number?

atomic(arg) — current value a constant?

... o
p
tim

izatio
n
 fo

r sp
ecial cases

Useful for translating

one program into another...

Control of backtracking by "!" (cut)

salary(S, 0):- student(S), !.

salary(S, 1000000).

student(peter).

?- salary(peter,S).

S = 0 ;

no

?- salary(jane, S).

S = 1000000 ;

no

But trying to generate all solution :(

?- salary(X,S).

X = peter, S = 0 ;

no
Be careful:

• Destroys logic

• Introduces assumptions about

 how predicates are called

Conditionals

salary(X,S):-

 student(X) -> S=0

 ;

 director(X) -> S=1000000

 ;

 professor(X) -> S=500000

 ;

 S = 10.

Like a "soft-cut", successful-test-and-choice not backtracked,

but subsequent clause may be used.

Operators: Extensible syntax

:- op(700, xfx, sparker).

manden sparker hunden.

:- op(700, xfx, bider).

X bider Y :- Y sparker X.

Important: Only syntactic sugar, no new semantics

?- current_op(X, Y, Z).

X = 1200, Y = xfx, Z = :- ? ;

X = 1200, Y = xfx, Z = --> ? ;

...
X = 1000, Y = xfy, Z = ',' ? ;

...
X = 500, Y = yfx, Z = + ? ;

...
X = 400, Y = yfx, Z = * ? ;

Example of program with operators

:- op(700, xfx, er).

:- op(100, fx, [en,et]).

en mand er et menneske.

en kvinde er et menneske.

et menneske er et dyr.

en ko er et dyr.

peter er en mand.

X er Z :- X er Y, Y er Z.

Other facilities

Generating all solutions:

setof, bagof, findall

— read about them when you need them

Input-output:

write('Hello') useful for test prints...

Inspecting and modifying the program

clause, asserta, assertz, retract

We may see those guys

later in the course

This is really all of Prolog!

