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1 Introduction

In this note we show examples of how Hidden Markov Models (HMMs) can be implemented and
used in the PRISM system. With PRISMs facilities, we can ask for the most probable series of
state transitions that can explain a given observed sequence, and we can also adapt a HMM in
PRISM to search for more abstract criteria.

2 A simple example

We consider a HMM with four states, s0-3. From s0 it can move to either of s1 and s2 with equal
chance and not emitting any symbol. States s1 and s2 behave in similar ways, but with different
probability: they can emit an a or a b and stay in the same state, or it can go to the final state s3
without emitting any symbol.

The following drawing shows a graphical representation of this HMM. The arrow pointing from
nowhere to sl indicates that sl is the initial state, and the double circle around s3 (as well as no
arrows away from it) indicates that it is a final state. Each arrow indicates state transition with
indication of emitted symbol; symbol before the slash and probability after; as “—” indicates that
no symbol is emitted.

Notice that this way of implementing a step to a final state by a probability gives a so-called
geometric distribution of string lengths which may not always be what we want; in fact, here the
lengths are governed by the sum of two geometric distributions. Here we chose it for simplicity
of implementation. This HMM can be implemented in PRISM as follows; we use here a top-level
predicated called hmm/1, and for each state, one predicate and one random variable to characterize
next event.



values(s0, [s1,s2]).
values(sl, [sla,s1b,s3]).
values(s2, [s2a,s2b,s3]) .

set_ss:-
set_sw(s0, [0.5, 0.5]),
set_sw(sl, [0.8, 0.15, 0.05]),
set_sw(s2, [0.29, 0.7, 0.01]).

target (hmm, 1) .
hmm (S) : - hmmO(S) .

hmmO (8S) : -
msw(s0,Next),
(Next=s1 -> hmm1(S)
; Next=s2 -> hmm2(S)).

hmm1 (S) : -
msw(s1l,Next),
(Next=sla -> S=[a|Sx], hmmil(Sx)
; Next=s1b -> S=[bl|Sx], hmmi(Sx)
; Next=s3 -> hmm3(S)).

hmm2 (S) : -
msw(s2,Next),
(Next=s2a -> S=[al|Sx], hmm2(Sx)
; Next=s2b -> S=[b|Sx], hmm2(Sx)
; Next=s3 -> hmm3(S)).

hmm3 ([]1) .

We can illustrate some of PRISM’s facilities tha are useful for HMMs by the following queries and
answers. We do not explain everything in full detail, so you may in some cases need to consult the
PRISM manual.

We may use it for generating samples in the following way (notice we must remember to set the
probabilities), which may not be that interesting in this case, but we show it anyhow.

7- set_ss.
yes
?- hmm(S).

s = [a,a,b,a,a,b,a,a,a,a,a,a,a,a,a,a,a,b,a,a,a,a,a,a,b,a,
a,a,a,a,a,a,a,a,a,a,a,a,a,a,b,a,b,a,a,a,b,a,a,a,a,a,a,a,
a,a,a,a,a,a,a,a,a,a,a,b] ?

The following query asks for the probability that the model produces a list of one a and nothing
more.

7- prob(hmm([a])).
Probability of hmm([a]) is: 0.021450000000000



It is interesting to compare this probability with the viterbi probability for the same thing.

?7- viterbi(hmm([a])).
Viterbi_P = 0.02

This is slightly lower that the overall probability, as it is defined as the probability of the most
probably way that the model can generate this sequence. We may guess that this is via sl (and
that the difference is due to the less probable history that the a was produced through s2). We can
confirm this by the following query which gives an explanation of this “most probable way”.

?7- viterbif (hmm([a])).

hmm([a]) <= hmmO([a])

hmmO([a]) <=
hmmi([a]) & msw(sO,s1)
hmmi([a]l) <=

hmmi([]) & msw(sl,sla)
hmmi([]) <= msw(s1,s3)

Viterbi_P = 0.02

3 Providing more concise information

In case the HMM or the string is larger, this way of using the model may not be that interesting.
So we should extend the implementation of the model, i.e., the hmm/1 predicate, with an argument
that indicates which property we are interested in in a more abstract way. It this simple model we
have considered so far, we may find it sufficient to know whether we went through the state sl or
s2 to produce a given output. To do this, we modify the program in the previous section as follows.

target (hmm, 1) .
hmm(S) :- hmm(S,_).
hmm(S,X) : - hmm0(S,X).

hmmO (S,Next) : -
msw(s0,Next),

The rest of the program is unaltered, so the modification was to add an extra argument to hmm
that holds the abstract explanation. Thus, we have now both a predicate hmm/1 which gives the
same result as before, and hmm/2 which includes the abstract explanation.

Let us first test it by generating a sample.

?7- hmm(S,A).
S = [a,a,a,a,a,a,b,a,a,a,a,a,a,b,a,a,a,a,a,a,b,b]
A=s17

It seems quite reasonable that this list, with many a’s, was generated via state sl, although it in
principle it could also have been produced via s2, likely (we may believe) with a smaller probability.



4 Using the HMM to produce abstract explanations of observa-
tions

We can think of the list of symbol produced by the HMM as being produced over time by some
process in reality, and we want to predict the most likely explanation why it produced this sequence.
Assume, for example, we have observed the list

L =[a,a,a,a,a,a,b,a,a,a,a,a,a,b,a,a,a,a,a,a,b,b].

So we can consider the observation of L as a fact, and we face the abductive question of what
caused L. More precisely, what are the (most) probably explanation(s) and the probabilities for the
different possible explanation.

In other words, we are interested in knowing the conditional probabilities, P(E|L), for the
observed L and possible E. Rephrasing this in terms of the implemented model, we are interested
to know probabilities P(hmm(L,s1) |hmm(L)) and P(hmm(L,s2) |hmm(L)). For this purpose, we can
use PRISMs predicates for conditional hindsight probabilities.

?- L=[a,a,a,a,a,a,b,a,a,a,a,a,a,b,a,a,a,a,a,a,b,b],
chindsight_agg(hmm(L) ,hmm(_,query)) .

conditional hindsight probabilities:
hmm (*,s1): 0.999998891844173
hmm (*,s2): 0.000001108155827

As expected the probability for sl is very high and the one for s2 is very small but different from
Zero.

With this long sequence observed, there is intuitively a very high evidence for a particular
cause. With less evidence, the answers is expected to be less clear, as the following example seems
to confirm.

?7- S=[a,b], chindsight_agg(hmm(S) ,hmm(S,query)).

conditional hindsight probabilities:
hmm([a,b],s1): 0.747198007471980
hmm([a,b]l,s2): 0.252801992528020

So if the task is to identify, say, a fault inside a machine from listening to the sounds it produces, it
may be a good idea to have in run for a longer time, as in the example above, there is 25% chance
of being wrong if we state that sl is the case.

Finally, the following combination of viterbi computation and hindsight probability may be
useful in those cases where there are many different possible, abstract explanations. We get the
most probable explanation together with a probability showing how much we can trust it.

?7- viterbig(hmm([a,b],A)), chindsight_agg(hmm([a,b]), hmm([a,b],A)).
conditional hindsight probabilities:

hmm([a,b]l,s1): 0.747198007471980
A=s17



5 A generic program structure for HMMs searching for the final
state

By means of an example, we indicate how a generic program structure may be used for a particular
sort of problems.

Consider a old house with an obscure and dark cellar; the floor is just soil and there is a lot
of strange rubbish that one will run into and make noise when moving around down there. The
possible sounds are: rattle, crunch, and squeak. Furthermore, if someone is digging in the floor,
this will be heard as a sequence of one or more rattle sounds. If you are in the ground floor of
the house and someone is in the cellar, you can hear these sounds, but with no sense of direction.

It is known that a treasure is buried somewhere in that cellar, but it is not known where exactly.
Imagine now, that we are in the house and we see a sinister-looking person with a shovel entering
the cellar from outside; we expect it is a criminal who wants to find the treasure. As it is dark
in the cellar and the person did not carry also a lamp, we expect that he or she will walk around
randomly and dig a bit here and there, perhaps even the same place several times.

Now we listen to the sequence of sounds, and we are speculating about the question: Where in
the cellar is this mysterious person.

This is a question for which a HMM is appropriate. The following diagram is a map of the
cellar, with sO being the entry. Each line corresponds to a corridor and is marked by the sound
it makes when someone passes it. The nodes are places where corridors meet and, for some of
them, it is relevant to dig; the latter is indicated by the circular line labeled rattle. The diagram
should not be read in the same way as the previous diagram, as the corridors can be passed in both
directions.

In the following, we show an implementation of a HMM for this problem, and we will structure the

code in a generic fashion, so it can solve similar problems by just exchanging the msw definitions.
For each state, we indicate the set of possible next state plus sound emitted in each case. For

each state, we indicate that it can move into one called stop, that does not corresponds to a



location or state in the usual sense, but just indicates the position in the sequence of sounds we
have experienced until the given time.

values(s0, [si+rattle,s2+rattle,stop+tnothing]) .

values(sl, [sO+rattle,sl+rattle,s4+crunch,stop+nothing]).
values(s2, [sO+rattle,s3+crunch,stop+nothing]).

values(s3, [s2+crunch,s3+rattle, s4+squeak,stop+nothing]) .
values(s4, [sl+crunch,s3+squeak, sb+crunch,s6+rattle,stop+nothing]) .
values(s5, [s4+crunch,sb+rattle, s6+squeak,stop+nothing]) .
values(s6, [s4+rattle,sb+squeak,s6+rattle,stop+nothing]) .

We were interesting in the position of the person at a given time, so we will make the implementation
return the state in which the person is at the given moment, i.e., the one which experiences the
stop. This is expressed as follows. Notice that there only one rule that takes care of all possible
state transitions.

target (hmm, 1) .
hmm(S) :- hmm(S,_).
hmm (S,Where) :- hmm(S,s0,Where) .

hmm (S,From,Final) : -
msw(From,Next+Sound) ,
(Next=stop -> S=[], Final=From

S=[Sound|Sx], hmm(Sx,Next,Final)).

We have no expectations about different probabilities, so we assume an even distribution which is
PRISM’s default when no probabilities are given or learned. Notice that the probability of stop
really does not matter when the probabilities we seek are always conditioned by a given observed
sequence. To test, we may generate an arbitrary sample.

?7- hmm(S,A).
S = [rattle,crunch,crunch,crunch,crunch,crunch,rattle,squeak,crunch,rattle,squeak,squeak]
A=sgsb57

However, the sort of problems, we want to solve with this HMM, is to estimate probabilities for
the different possible positions of the thief, given the observed sequence of sounds. The following
query tests a specific sequence, uses viterbi to find the most probable explanation, and hindsight
calculation to find the probability of it.

?7- S = [rattle,crunch,crunch,crunch,crunch,crunch,rattle,squeak,
crunch,rattle,squeak, squeak],
viterbig(hmm(S,A)), chindsight_agg(hmm(S), hmm(S,A)).

conditional hindsight probabilities:

hmm( [rattle,....,squeak],s5): 0.536480686695279
S = [rattle,....,squeak]
A =sb7?



In this particular case, we see that the conditional probability is not close to 1.0, so we may consider
to check the other possible, final states (i.e., present positions of the thief). To do this, we can drop
the call to viterbig in the query.

?7- S = [rattle,crunch,crunch,crunch,crunch,crunch,rattle,squeak,
crunch,rattle,squeak, squeak],

chindsight_agg(hmm(S), hmm(S,query)).

conditional hindsight probabilities:

hmm( [rattle,....,squeak],s5): 0.536480686695279
hmm( [rattle,....,squeak],s6): 0.463519313304721
S = [rattle,....,squeak] 7

So the conclusion is that there are two possible positions of almost identical probability. If we had
known more about the thief’s preferences (in terms of probabilities for state transitions), we might
have got a more significant difference in the probabilities.

The interesting part of this example is the program structure, where we expressed the Markov
condition in just a single clause, and with details given by the values declarations only.

In general, it is an advantage to use such generic programs, but it will be a bit more difficult
to suggest a generic structure, if the abstract explanations, we were looking for, are expressed in
more complicated was.

6 Using learning to train HMMs (sketch)

In the example above, we used a well-defined abstract explanation criteria, namely the final state
after a given sequence, which is uniquely determined by the sequence of state transition.

For applications in bioinformatics, HMMSs are also used for searching more subtle patterns, e.g.,
searching for “important” substrings such as “Where is the gene?” So the explanation may be
something like “There is a gene from position 124 to position 137”.1

To express this, we can describe a HMM which has one state for skipping arbitrary letters and
another set of states for recognizing the gene. Such a HMM will be highly ambiguous in the sense
that there will be quite many ways that a given sequence can be interpreted as a series of state
transitions.

However, if we are given a set of sequences S that have been studied in the laboratory, so that
competent researchers have pointed out the positions of genes in those sequences, we can use S as
training data. When the net is trained in this way, it can give suggestions weighted according to
the probabilities for positions of genes in new sequences, so that the biochemists get hypotheses for
where to focus their laboratory investigations.

For such purposes, a first-order HMM may often be too simple, and higher-order or hierarchical
HMDMs, or combinations thereof, may be suggested, or other sorts of extensions to HMMs may be
developed.

The advantage of using PRISM in such a case, is that it is fairly easy to program and test
different variations.

!These figures seem to indicate that the sequence is taken from a very primitive bacteria.



7 Exercise: Spellchecking without a dictionary

A file with the name words.dat will be made available to you which contain a raw listing of all
words that appear in the LaTeX source file for the note on Prolog and Artificial Intelligence that
we have used in the course. Word is understood in a broad sense so that it also includes names of
LaTeX macros, and words or names that contain special characters may be chopped into two, as
any special character have been as a separator. It looks as follows:

word("documentclass") .
word ("pt").
word("article").

word ("usepackage") .

word ("prolog").
word("is").
word("a").

word ("programming") .
word ("language") .
word("that") .
word("is").

word ("very") .
word ("easy") .
word("to") .
word("learn").

word("end") .
word ("document™") .

It contains a total of 34729 words which include duplicates; all capital letters have been replaced
by small ones; one-letter words except and “a” have been deleted but otherwise everything has
been kept.

Recall that a string such as "word" is syntactic sugar for a list of character values, i.g.,
"word"=[119,111,114,100].

You may use a predicate write_string/1 which prints a list of character values so it looks as

W
1

a string.

7.1 Question

Write a PRISM program that implements a first-order HMM for recognizing words that are “sim-
ilar” to the ones in the text.

Train the model with the file, and try to generate different samples of “probable words”. Can
you suggest a way to measure the “goodness” of a given proposed word using the trained HMM?

7.2 Question

Modify you model so it becomes a second-order HMM, and consider whether it works better than
the previous one.



(We did not show second-order HMMs in this note; we recall that the next letter in a second-
order HMM depends on the previous two letters, i.e., the probability for letter n is conditioned by
letters n — 1 and n — 2.)

7.3 Question

Consider possible extensions to third or even higher order, and give your oppinion about space and
time complexity as the order increases. Will you expect any accuracy.

7.4 Post scriptum
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