KIIS: Kunstig Intelligens & Intelligente Systemer

Artificial Intelligence & Intelligent Systems

Henning Christiansen

Introduction and overview Autumn Semester 2005

Program for today

- What do we mean by Artificial Intelligence
- Overview of the course, practical issues
- (Artificial) intelligence and knowledge
- Examples of AI technology and applications
- A detour into the philosophical issues
- Rule-based expert systems
- Prolog: An AI language:) workshop 2.5h at least
 - ? Next week

Two views of Artificial Intelligence

- 1. Philosophical: Understanding "intelligence", how to define "intelligence", can "intelligence" be implemented by a machine designed by human? [paper by A. Turing, 1950]
- 2. Pragmatic: Practically relevant technology, doing tasks that we usually associate with human intelligence [no matter how it is done]
- 3. Salesmanship: Smart people sell intelligent solution, no one sells stupid solutions

Two views of Artificial Intelligence

- 1. Philosophical: Understanding "intelligence", how to define "intelligence", can "intelligence" be implemented by a machine designed by human? [paper by A. Turing, 1950]
- → 2. Pragmatic: Practically relevant technology, doing tasks that we usually associate with human intelligence [no matter how it is done]
 - 3. Salesmanship: Smart people sell intelligent solution, no one sells stupid solutions

This course

- An overview of the area:
 - Basic concepts
 - Important applications
 - ... and techniques
- In depth with specific topics
- Book: M. Negnevitsky: Artificial Intelligence, A Guide to Intelligent Systems, 2nd ed., Addison-Wesley, 2004
- Complemented with
 - Articles, presentations by you
 - Course notes
 - Practical exercises, practical exercises, etc.!

Overall goals

- You get an overview of AI and AI methods so that
 - you can participate in AI development projects (e.g., student projects)
 - you get an idea of present state of the art
- You will be presented for current research topics, reflection (or course) the teachers' research interests
 - ideas for MsC theses and new research
- You get some experiences developing small toy AI applications (Prolog, CHR, other high-level tools)

Preliminary sketch of possible topics

- Rule-based expert system
 (forward, backward chaining, etc.)
- Reasoning in logic based systems:
 - Deduction, Induction & Abduction modelled in logic programming.
 - Applications for diagnosis, natural language understanding (discourse analysis ...)
- Uncertainty: Statistics, Bayesian reasoning, related machine learning techniques
- To level of "know-about":
 - Fuzzy logic, neural nets, data mining techniques
- Evolutionary computation, genetic programming

Preliminary sketch of possible topics

- Rule-based expert system
 (forward, backward chaining, etc.)
- Reasoning in logic based systems:
 - Deduction, Induction & Abduction modelled in logic programming.
 - Applications for diagnosis, natural language understanding (discourse analysis ...)
- Uncertainty: Statistics, Bayesian reasoning, machine learning techniques
- To level of "know-about":
 - Fuzzy logic, neural nets, data mining technique
- Evolutionary computation, genetic program

Proposal for detailed schedule will appear in course web page later this week

course welcome, but

Experimental tools

Central tools:

- Prolog NB: We use SICTUS Prolog... to have:
- Constraint Handling Rules

Additional specialized tools, perhaps

- PRISM (T.Sato & al) for parameter learning
- some ILP system (Inductive Logic Programming)
- some genetic programming system
- others if we get interested ;-)

Practical

- Everything announced at the course web page http://www.ruc.dk/~henning/KIIS05/
- Reading etc. for a next Tue, latest Wed (Thu)
- We aim at:
 - Each course day is seen as a whole, so practical exercises reflects the day's theoretical material
- We combine

Datalogi

Roskilde Universitetscenter

- traditional lectures, presentation by you
- practical & theoretical exercises
- workshop: mixing it all together
- Exam (more info at course www soon)
 - You give in some assigment(s) during course
 - Oral exam in January

Practical

- Everything announced at the course web page http://www.ruc.dk/~henning/KIIS05/
- Reading etc. for a next Tue, latest Wed (Thu)
- We aim at:
 - Each course day is seen as a whole, so practical exercises reflects the day's theoretical material
- We combine

Datalogi

Roskilde Universitetscenter

- traditional lectures, presentation by you
- practical & theoretical exercises
- workshop: mixing it all together
- Exam (more info at course www soon)
 - You give in some assigment(s) during course
 - Oral exam in January

Intelligence and intelligent systems

Requires

- Knowledge and knowledge representation
- Knowledge processing capabilities

May or may not involve

ability to learn and adapt

NB: distinction between "knowledge" and "data" may be quite subtle; example: a rescue robot

- knowing about buildings, 3D geom., etc.
- can learn a 3D map from its obs., share with other robots...
- learn strategies from its earlier rescue tasks

Knowledge representation can be

- Explicit
 - An encyclopedia
 - Rule based
 IF rains AND go-out AND NOT umbrella THEN get-wet
- Implicit or encoded
 - A 1000000 line assembler program that plays chess
 - The weights in a trained neural network for recogizing my face

Knowledge representation can be

Explicit

An encyclopedi

Rule based

Processing is (often) "logical"

GOAL: NOT get-wet GIVEN rains

PROCESS: Apply logical law of contraposition to get

RESULT: NOT go-out OR umbrella

IF rains AND go-out AND NOT umbrella THEN get-wet

- Implicit or encoded
 - A 1000000 line assembler program that plays chess
 - The weights in a trained neural network for recogizing my face

Knowledge interesting by itself Process may generate explanation

esentation can be

Processing is (often) "logical"

Explicit

An encyclopedi

Rule based

GOAL: NOT get-wet GIVEN rains

PROCESS: Apply logical law of contraposition to get

RESULT: NOT go-out OR umbrella

IF rains AND go-out AND NOT umbrella THEN get-wet

- Implicit or encoded
 - A 1000000 line assembler program that plays chess
 - The weights in a trained neural network for recogizing my face

Knowledge interesting by itself Process may generate explanation

esentation can be

Processing is (often) "logical"

- Explicit
 - An encyclopedi
 - Rule based

GOAL: NOT get-wet GIVEN rains

PROCESS: Apply logical law of contraposition to get

RESULT: NOT go-out OR umbrella

IF rains AND go-out AND NOT umbrella THEN get-wet

- Implicit or encoded
 - A 1000000 line assembler program that plays chess
 - The weights in a trained neural network for recogizing my face

Processing is opague KnowledgeRepr.+Process only recognizable by sufficiently high percentage of successful results

Knowledge interesting by itself Process may generate explanation

esentation can be

Processing is (often) "logical"

Explicit

An encyclopedi

Rule based

GOAL: NOT get-wet GIVEN rains

PROCESS: Apply logical law of contraposition to get

RESULT: NOT go-out OR umbrella

IF rains AND go-out AND NOT umbrella THEN get-wet

Implicit or encoded

A 1000000 line assembler program that plays chess

The weights in a trained neural network for recogizing my

face

In place for knowledge difficult to formalize

Processing is opague KnowledgeRepr.+Process only recognizable by sufficiently high percentage of successful results

Knowledge about real world may often be

- incomplete (for given problem...)
- imprecise (temp is 800 degrees ± 50)
- stochastic (75% chance that Powerpoint chrashes during my lecture)
- fuzzy (Peter is tall)
- wrong
- inconsistent

This calls for

- sophisticated knowledge repr. formalisms
- add-hoc tricks, rule-of-thumbs, etc.

• sophisticated knowledge repr. formalisms

- logic with open and closed predicates ("null values"),
- fuzzy logic ~ graduated truth, linguistic quantifiers
- probability theory
- paraconsistent logic
- 10^6 different "uncertainty logics"

add-hoc tricks, rule-of-thumbs, etc.

- meta-rules in rule-based systems
- hacks in the code, shifting algorithm, ...
- behaviour of implicit representations, e.g., neural nets capable of recognizing my face when I have cleaned the fire place

Machine learning

Extracting knowledge from sets of observations

- Supervised learning
 Data annotated manually (typ.) with classification
 Machine identifies relationships Data --> class
- Unsupervised learning
 Machine identifies regularities in data
 Perhaps helped by "bias"

Supervised learning

- Train neural net with different faces with info.
 "this shows NN1", "this shows also NN1", "this shows NN2", ...
- Learn rules to classify words from annotated text, "tagging"
- "Give/V-IMP-XP help/N! Help/V-IMP-XP me/PN-1P-OBJ"
- Protein chemical formulas --> shape of molecule, or the other way round!

Unsupervised learning

- Datamining in data warehouses
 "80% of those who bought gin bought also tonic"
 "50% of those who bought gin and tonic bougth also peanuts"
- Learning logic programs from facts
- Learning Integrity Constraints in databases

A detour into the philosophical issues

Alan Turing (1950):

Computing Machinery and Intelligence

~philosophical considerations by one of the greatests computer scientists

The paper is very interesting — read it if you have time!

We touch upon a single issue: The Turing test

The Turing test: A computer is intelligent if it can fool you to believe it's human

Think of a convincing chat program,

To abstract irrelevant features away, assume all communication goes via keyboard and text windows

Turing's original version:

Datalogi

Roskilde Universitetscente

1: A: Man, B: Woman, C: "Interrogator"

2: A: Machine, B: Woman, C: "Interrogator"

Game: A does what he/it can to fool C to believe A is the woman.

If C is fooled equally many times by A="Man" and A="Machine", the Machine is Intelligent

Rest of today

- Prolog workshop
- short lecture with online demo
- you work with exercise
- ... and you have written you first intelligent programs by the end of the day ;-)

If time permits, another short lecture, and more exercises....

